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INTRODUCTION

This paper is concerned with a specific question in harmonic analysis on reductive groups
over a local field. Central to it is the notion of an endoscopic group ([Sh| [L2]), and for a
perhaps definitive treatment [K-S]). This notion is still exotic and difficult to grasp, partly
because its origins lie beyond the periphery of harmonic analysis, in the L-group (which first
arose in the theory of Eisenstein series) and in the study of Shimura varieties, and partly
because it still has not achieved in sufficient generality its original purpose, the analysis of
the internal structure of L-packets of irreducible representations.

Roughly speaking, L-packets occur in the classification of the irreducible representations of
the group G(F) of F-valued points on a reductive group over the local field F' because there
are two types of conjugacy within G(F), that realized by elements of G(F') and that realized
by elements of G(F). Only the first appears when the harmonic analysis is treated from a
strictly analytic viewpoint, but the second intervenes when the harmonic analysis is applied
to problems in number theory, especially to the study of L-functions, and leads to a coarser
classification of irreducible representations than equivalence. The coarse classes are called
L-packets, and they are to be analyzed individually with the help of endoscopic groups.

An endoscopic group H is not a subgroup of GG, but we can associate to a conjugacy class
in H(F') several conjugacy classes in G(F'), and the harmonic analysis on G(F') is related to
that on H(F') by means of the transfer of orbital integrals. This refers to pairs of functions,
one f on G(F) and one f on H(F) whose orbital integrals on associated conjugacy classes
are related by transfer factors [see (1.4)].

The definition of transfer factors that not only allow one to attach to each f at least one
fH but also behave well with respect to functoriality has not been easy, and if it were not

First appeared in Math. Ann., Bd 278 (1987), 219-271.

1



2 ROBERT P. LANGLANDS AND DIANA SHELSTAD

that they had been proved to exist over the real field [Sh], it would have been difficult to
maintain confidence in the possibility of transfer or in the usefulness of endoscopy.

The contribution of this paper is not to prove the existence of the transfer, that is to attach
to f at least one f¥, but simply to define the transfer factor, disentangling the conditions
imposed or suggested by the harmonic analysis, by Galois cohomology, by the trace formula,
and by the constructions over R to arrive at an explicit definition that clearly must be the
transfer factor if it exists at all and that even over the real field is an improvement over
the construction of [Sh] which was not sufficiently explicit. We flatter ourselves that this
definition is an advance and that it is not merely our lack of skill that has made it so hard to
come by, but the difficulty of the subject.

In Sect. 1 we are more explicit about the transfer of orbital integrals and transfer factors,
recalling in particular the first example that was studied, the group SL(2). Their definition
appears in Sect. 3, where it will be seen that the transfer factor is the product of five terms,
two, Ay and Ay, serving to meet basic requirements of harmonic analysis. A third A;
incorporates the basic idea of endoscopy and transfer, weighted sums of orbital integrals, often
referred to as k-orbital integrals. The two others, A; and Ay, are cohomological in nature
and are there to compensate the arbitrary elements that had to be used in the definition of
Ayqp. It should be observed that A does not appear in [Sh] where it had to be replaced by an
existence argument.

The definitions of A; and A, are quite elaborate, involving a number of general arguments
and constructions that we have preferred to place in a separate Sect. 2 which also prepares
for the product formula of Sect. 6.

Although we do not discuss the existence of the transfer, thus of f# for a given f, the result
of Sect. 5 is evidence that it will be available, and is in addition the source of the factors
Ar and App. The limit formula of (5.5) shows that the dominant term near the identity of
the combination of orbital integrals of f appearing in the transfer can be made equal to the
dominant term of the stable orbital integral of an f¥. This is clearly a necessary condition
for the existence of f¥, and is what guarantees that the choice of the correction factor A is
correct. The factor Ay does not affect the asymptotic behavior, and is dictated by experience
with the real field.

The properties of the transfer factor that in addition to (5.5) in all probability characterize
it are the Local Hypothesis, which relates the transfer factor on an arbitrary group to that
on a quasi-split inner twisting, the Global Hypothesis, which is a product formula, and the
transfer factor over archimedean fields, already introduced in [Sh]. We prove the first two
here, in Sects. 4 and 6, reserving the proof that the transfer factor of this paper coincides
over R with that of [Sh] for a later paper.

It is a pleasure to dedicate this paper to Friedrich Hirzebruch, for one of us first realized
the significance of L-packets during a long stay in Bonn many years ago under the auspices
of the SFB, when he was able to study Shimura’s papers on automorphic forms. At the same
time the other was beginning the study of character identities for real groups, and L-packets
and character identities together led to endoscopy.

1. PRELIMINARIES

1.1. An example. Suppose that F' is a local field of characteristic zero and G is SLy. Take
H to be a one-dimensional torus split over the quadratic extension E of F' and anisotropic
over F. Then H is an endoscopic group for G. To vy € H(E) we attach the conjugacy
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class in G(E) consisting of semisimple elements with eigenvalues 7;;'. Assume that vy # +1
lies in H(F). Then the associated class meets SLy(F') in a stable conjugacy class of regular
semisimple elements. Call vg an image of any v in this stable class.

For f € C*(G(F)) form the integral ®(v, f) of f along the conjugacy class of regular
semisimple v in G(F') with respect to the G-invariant measure prescribed by a choice of
invariant forms of highest degree over F' on G and H. Then transfer between G' and H
requires a function A, a transfer factor, such that

v = A1) f)

extends smoothly to vy = £1. Here Zw indicates summation over representatives for the
regular semisimple conjugacy classes in G(F'); A(yy, ) is to be zero unless vy is an image
of v, so that the sum contains at most two non-zero terms.

We modify slightly the prescription for A in [L-L]. For reasons of functoriality A will
depend not on H alone but on a set (H,H,s,() of endoscopic data: H = H x W is the
L-group of H, s lies in the conjugacy class of G = PGL(2, C) determined by the elements
of GLy(C) with eigenvalues £z, z € C, and ¢ is an embedding of H in G x W = LG that
carries H into Cent(s, é) Here we may take for W the Weil group of £/F. Equivalent, or
@—conjugate, data will yield the same factor A.

We first define a factor Ay which depends in addition on the choice of an F-splitting of G.
The quotients Ag(ve,y)/Ao(Fg,7) will, however, be canonical. To prescribe A we fix some
(Fy,7) with 7, an image of 7, specify A(7 1,77) arbitrarily, and then set

_ Aoy, )
if vy is an image of 7. Thus A is canonical, up to the constant A(F,7).

The factor Ay will be a product of several terms. Only the first depends on the choice of
F-splitting. Here we will describe it for the standard splitting (B, T, X) : B is the upper
triangular subgroup, T the diagonal subgroup and X = [J}]. For the general case and for
the fact that the relative factor is independent of the choice of splitting we refer to (3.2).

Other choices are needed to define the terms in Ag: an admissible embedding of H in G,
and a-data and x-data for the image of H under that embedding. Let I' = Gal(E/F). A
embedding of the torus H in G is admissible if it is dual to a composition H—T— T where
T is some maximal torus in G containing s, 7 — T is the 1somorphlsm attached to (B, T)
and some pair (B,T) chosen so that 7" is defined over F' and H — T is a I-isomorphism. Sce
(1.2) and (1.3). The a-data for T' consist of elements a,, a_, of E* such that @, = —a, = a_,,
where +a are the roots of T" and the bar denotes conjugation in F.

The y-data are characters x., x_o on E* which extend the quadratic character on F'*
attached to F and satisfy x_, = x;'.

Here then are the terms in A,.

(I> <)‘(T>7 ST>7
where \(T) is the class in H'(T) = H'(T',T(E)) of the cocycle
0 Uy,

o — h{_al O]a(h‘l)

«
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for o nontrivial in I'. The element h is given by h~'Th = T and h~'Bh = B, with B some
Borel subgroup containing 7. Then « is the root of T"in B. The element sy is the unique
nontrivial I'-invariant element in 7'; it is also the image of s under 7 — 7. Finally, the
pairing is the Tate-Nakayama pairing.
a(yr) — 1
(IT) Xa <—) ;
Qq

where yr is the image of v under H — T, and « is either root of 7" in G.

. -1
(IIII) <111V(’}/H, 7)a ST> 3
where inv(vyz,~) is the class in H'(T) of the cocycle o — go(g)
9 "9 =1
(IIIQ) <a7 ’YT>7

where a is an element of H!(WW, f) which, roughly speaking, measures the difference between

1 and g is given by

the @—conjugacy class of the embedding ¢ : “H — £ and the class of embeddings canonically
attached to the y-data for T' [see (2.6)]. The pairing is the usual one between H'(W,T) and
T(F) [Bl Sect. 9].

(Iv) (arr) = 1) (alar) " = 1)
The image T of H in G may be replaced only by ¢~ 'T'g, where
geEUT)={geG(E):go(g7")eT}.

If (T, {aa},{Xa}) is replaced by a triple conjugate under 2(7') in the obvious sense then we

see that only the terms and ([1I)) are affected, but then clearly the effects cancel. Thus it

remains to consider T fixed and the a-data, y-data changed. Only and involve a-data.

If a, is replaced by al, = a,b, where b, € F* then A\(T') is multiplied by the class b of the

cocycle ¢ — b2, Note that b lies in EX ® X,(T) = T(E). To show that the product of
the terms and is unaffected by replacing a, with a), we have only to check that

<b7 ST> = Xa(ba)'
This is clear since b is trivial if and only if b lies in Nm E*.

On the other hand, only the terms and (ILLy)) depend on y-data. Suppose that y, is
replaced by X!, = XaCa- Then ¢, must be trivial on F*. We use the fact that the norm map

§ — 60 from T(E) to T(F) is surjective to write 47 as d707. Then a(yr) = a(d7)/a(dr) and

ga(M> . <M) e (a(61)

1/2

» .

Qq Qe

or (o (a(dr)) since ag?t (a(éT) - a(5T)> lies in F*. Thus we have to show that when y, is
replaced by x.(, the class a appearing in the term ([Ily)) is multiplied by a class a({,) such

that
<a(C0c)77T> - Coc (O-/((;T))

We will see later (3.5) that in fact a is multiplied by the class of a cocycle which is given on
E* by x — (u(x)~® That the class pairs with vz in the desired way is the Base Change
Identity in this simple case, which follows from the remarks in [Bl Sect. 9].

-1
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Lemma [L-L]. For f € C(G(F)) the function
i =) Ay, 1) f)

.
extends smoothly to H(F).

1.2. Notation. Throughout F' will be a local or a global field of characteristic zero; F will
be an algebraic closure of F'; and I' and W the Galois group and Weil group of F'/F. Let G
be a connected reductive group over F. Then G* will denote a quasi-split inner form of G
and “G the L-group of G. More precisely, we fix:

(i) (G*,¥) with G* _quasi-split over F' and 1 : G — G* an inner twist, and

(44) (G 0,Ng) with G connected, reductive and defined over C, o an L-action of T on G,

and ng : V(G)Y — \I/(G) a I'-bijection.

Here W(—) denotes canonical based root data (see [K2]).

We have then for each pair (B,T) in G and (B, T) in G a canonical isomorphism 7' — T,
where by a pair we mean a Borel subgroup and a maximal torus contained in it.

As L-group data, that is, the data of (ii), for G* we take (CA;, 0,Mc~) where ng- is given by
V(G — W(G)Y s u(4)

Finally, “G will be the semi-direct product G Wy with Wy acting by Wr — ' % Aut G.

We shall specify endoscopic data in a way useful for extension to the twisted case [K-5].

First note that if 1 — G — G — Wr — 1 is a split extension then G is not necessarily an L-
group. Nevertheless we attach to G an L-action gz on G as follows. Let 4/ = (B, T, {Xa})

be a splitting of G. We shall require that 44/ is preserved by the ¢ appearing in (ii), that is,
it is a ['-splitting (or F- sphttmg) Ife: Wrp — G splits the extension then for w € Wr we
multiply Int c(w) acting on G by an element of Int G to obtain oc(w) preserving 44/". Then
0¢ is an L-action which is independent of the choice for ¢. Clearly if og coincides with ¢ for
some choice of »/” then it coincides for all choices.

Let (H,H, s,?) be endoscopic data for G. By this we will mean:

(i) H is a quasi-split group over F.

Its L-group data will be denoted (ﬁ], om,Nu), and “H = H x Wp.

(i) H is a split extension of Wr by H and oy coincides with og.

(iii) s is a semisimple element of G.

() &:H — LG is an L-homomorphism, that is, a homomorphism of extensions of W,

such that

(a) Intsoé =a®E¢,
where a 1s a locally trivial 1- cocycle of Wg in the center Z(G ) ofG if Fis global,
or a trivial 1-cocycle of W in Z(G ) if F is local, and
(b) & \H s an isomorphism of H with the connected component of the centralizer of
s in G.
Here a ® £(h) = a(w(h))&(R), h € H, with w(h) denoting the image of h under H — Wip.
Data (H',H', s',£’) are equivalent to (H,H, s,£) if there exist an F-isomorphism o : H —
H', an L-isomorphism B : H' — H and an element g ofCAJ such that:
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(i) U(H) % W(H") and V(H') LN U(H) are dual,
(i) Intgo o f=¢ and

(iii) gsg™" lies in Z(G)Z(€)'s, where Z(€') is the centralizer in G of the image of H’

under &'

Up to equivalence and the choice of &, which amounts to the choice of an embedding of “H
in LG in the case H is an L-group, these are the endoscopic data of L2, p. 20]. Note that in
the definitions of [L2] the group H generated by “H? and the elements n(w), w € Wg, is a
split extension of W by “HY (see [LI, Lemma 4]).

If H is an L-group then we may assume that H = LH. This will be our assumption until
(4.4) as it greatly simplifies notation. The minor modification needed for the general case, a
passage to certain central extensions of H, will be dealt with in that section.

1.3. Point correspondences The isomorphism TG — T attached to palrs (Bg,T¢) in G

and (Bg, Tg) in G transports the coroots of T in GG to the roots of T in G the Bg-simple
coroots to the Bg-simple roots and the WeAyl group of T', with conAtragredlent action, to the
Weyl group of Tg. If (By, Ty) is a pair in H then there is an x in G such that Int z o £ maps
TH to 72; and By into Bg. Finally, if (B 1, Ty) is a pair in H then we have an isomorphism
T, = TG defined by the composition TH —Tg — Ta — TG and thus also an isomorphism
Ty — Tg. These isomorphisms transport the coroots of Ty in H into a subsystem of the
coroots of T in G, the Weyl group 25 of Ty into a subgroup of the Weyl group Q¢ of T,
and the roots of T into a subset of the roots of T. The map

TH/QH — Tg/QG

of orbits of {2y in Ty onto orbits of ()¢ in Ty is independent of all choices. Since these orbits
classify the conjugacy classes of semisimple elements in H(F) and G(F), and the choice of
tori is of no consequence, we have a canonical map

Anje : Oty (H(F)) = Ctu(G(F)).

We call semisimple v € H(F) G-regular if the image of its conjugacy class under Ana
consists of regular semisimple elements, and strongly G-regular if the image consists of
strongly regular elements, that is, elements whose centralizer is a torus. A strongly G-regular
element is strongly regular.

The group I' = Gal(F/F) acts on conjugacy classes.

Lemma 1.3.A. Ay, is a I'-map.

Proof. Axja = Ac+jc - Arja+ and Ag- g is the map induced by 1. Since v is an inner twist
Ag+c is a I-bijection. Thus we may assume that G is quasi-split over F. Then if Ty is
defined over F' Steinberg’s Theorem [K1] allows us to choose (Bg,T¢) with both T and
Ty — T defined over F. The lemma follows. [

Suppose that Ty is defined over F. If (Bgs, T+) is chosen so that T+, and Ty — T+ are
defined over F', as in the proof of the lemma, then we call Ty — T+ an admissible embedding
of Ty in G*. Tt is uniquely determined up to 2(7g+)-conjugacy, that is, up to composition
with Int ¢!, where ¢ lies in

WA(Te) = {g € G*(F):go(g7") € Tg-(F),0c €T }
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Note that we may take g in G, the simply-connected cover of the derived group of G*.

For strongly regular elements in G(F') or H(F') stable conjugacy is the same as conjugacy
under G(F) or H(F), and we may apply Lemma 1.3.A directly to define a correspondence of
points. Thus, if v5 € H(F) is strongly G-regular then its stable conjugacy class consists of
the F-rational points in its conjugacy class in H(F). The image of this class in H(F) under
A is a conjugacy class of strongly regular elements in G (F). The class is defined over F
and so its F-rational points are either nonexistent or form a single stable conjugacy class
of strongly regular elements in G(F'). We call strongly G-regular vy € H(F) an image of
Y6 € G(F) if 7 lies in the image under Ap,q of the conjugacy class of vy in H(F). The
twisted analogue of image is norm [K-S] which explains why we have labelled 7y, and not
Ya, as the image.

For arbitrary G-regular semisimple vy in H(F') we set Ty = Cent(yy, H)" and choose
an admissible embedding Ty — T+ of Ty in G*. If ¢ is regular semisimple in G(F') and
Te = Cent(vy, G)° then we say that vy is an image of 7¢ if there exists x € G* such that
Int zoy maps ¢ to the image g+ of v under Ty — T+ and T to Tg+. The correspondence
(vm,7¢) is independent of the choice of admissible embedding Ty — T+ and extends that
for the strongly regular elements. Further we have:

0

(i) a G-regular semisimple element of H(F') is either the image of no element or the
image of exactly one stable conjugacy class of regular semisimple elements in G(F),
and

(ii) the images of a regular semisimple element in G(F') form a union, possibly empty, of
stable conjugacy classes of G-regular semisimple elements in H(F'). If F' is local then
the union is finite.

1.4. Transfer factors. We assume here that F' is local, leaving remarks on the global case
for Sect. 6.

To normalize measures on conjugacy classes we fix invariant forms of highest degree: wg
on G, wy on H and wr on some maximal torus T in G. Then if T is any maximal torus
over F'in either G or H we transport wr to an invariant form wy of highest degree on T,
using an inner automorphism of GG if 7" lies in G and an isomorphism provided by the choice
of pairs otherwise. In either case wy depends only on wr.

To an invariant form w of highest degree on GG, H or T" we attach a Haar measure as
follows. There is A\, € F such that o(w) = A\w, o € I'. Hilbert’s Theorem 90 allows us

to write A\, as po(u~'), where p € F”*. Then pw is defined over F' and the Haar measure
|pw| is well-defined. To obtain a measure independent of the choice of p we replace this by
|pt| Y pw| which will be denoted simply as |w.

It is simplest, and sufficient, to specify transfer factors on strongly regular elements. If
felr (G (F )) then for the integral of f along the conjugacy class of any regular semisimple
element v in G(F) we take

|wal

) = Lyg)
(7. f) /T(F)\G(F)f(g 79)|le,

where T' = Cent(v, G)°. For the integral of f# € C° (H(F)) along the stable conjugacy class
of strongly G-regular vy in H(F') we take

O (v, f71) =D (v, £,
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where the summation is over representatives 7}, for the conjugacy classes in the stable
conjugacy class of yy. If vy is not strongly regular this must be modified [see (4.3)].
Suppose A is a function on

strongly G-regular strongly regular
elements in H(F) elements in G(F)

such that

(i) A(ym,) depends only on the conjugacy class of 7 in G(F') and the stable conjugacy
class of vy in H(F'), and
(ii) A(vm,7y) = 0 unless vy is an image of .
Then we say that f € C°(G(F)) and f# € C(H(F)) have A-matching orbital integrals

if
> (v, fH) = ZA”YH’Y (v, f)

for all strongly G-regular elements vy in H (F ). The summation is over representatives y for
the conjugacy classes of strongly regular elements in G(F'); only a finite number of terms in
the sum are nonzero.

We call A a transfer factor if for each f € C°(G(F)) there exists fH € C>°(H(F)) with
A-matching orbital integrals. It is best to demand that A(yg,y) be nonzero if v is an image
of v, and sometimes preferable to work with functions in the Schwartz space [Sh].

In Sect. 3 we will define a function A. If G is quasi-split over F' then the procedure is
exactly that for SL(2). In general, however, the term inv(vyy, ) appearing in of (1.1) is
no longer well-defined as the torus 7" will be taken in G* rather than G. Since only quotients
really matter we define instead a relative invariant following [K-S], and obtain a canonical
relative factor A(vg,v;7y,7) in place of the quotient Ag(vy,v)/Ao(Fg,7) in (L.1.1)).

The next section describes, in a general setting, two constructions needed for Sect. 3.

2. KEY LEMMAS

2.1. General remarks. Suppose that k is a field of characteristic zero with algebraic closure
k, and that G is a connected reductive algebraic group defined and quasi-split over k. Let
(B, T, {Xa}) be a k-splitting of G and T" be a group acting on G by automorphisms which
preserve (B, T,{X,}). Then I' acts on the Weyl group Q@ = Q(G,T) of T in G. For

0 =wxo€QxT we define n(f) = n(w) x o € G(k) x T, where n(w) € Norm(T(E), G(E))
is given by the following well-known construction [Spi].

Let o be a simple root of T in B. Then by definition 90X, = X,q, 0 € I'. Let H, be the
coroot, for o regarded as an element of Lie T. Fix the root vector X_, for —a by requiring
that [X,, X_o] = Hs. Then oX_, = X_,4, 0 €T Set

n(a) = eXp Xoe exp(_X—a) exXp Xom
so that n(a) is the image of [ _{ §] under the homomorphism SL(2) — G attached to the Lie
triple { X, Ho, X_o}. Let w € Q, w # 1, be written in reduced form w(ay)---w(a,). Then
we may set n(w) = n(aq)---n(a,) since this latter product is independent of the choice of
reduced expression for w [Spr]. If w =1 set n(w) = 1. Then Int n(w) acts on T as w and

n(ew)) =e(n(w)),  e¢€T.
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Thus if § = w x ¢ then n(f) = n(w) x g acts on T as § and
n(@l)nn(ﬁg) = t(01,02)n(0192), 91 €0 x ]__‘,

where t(60y,02) is a 2-cocycle of Q x I' in T(k).
Lemma 2.1.A.

t61,60) = [ (—1*".
a>0
9f1a<0
05107 a>0
Here o > 0 means « is a root of T in B, and a” is the coroot for « as element of X, (T).
Then (—1)*" € k* ® X,(T) C T(k).

Proof. We will verify in the next lemma that the right side is, like the left, a 2-cocycle. It is
therefore enough to show that the equality is valid when (i) 61 or 0, lies in I and when (ii)
¢, and 605 lie in €2 and further #; = w(«) where « is simple. Case (i) is clear. For case (ii), let
w=w(a) - w(a,) be a reduced expression for . Then R, = {f > 0,wf < 0} is the set of
positive roots separating the positive Weyl chamber W, from w~'W_ and contains 7 elements.
There are two possibilities. Either w™a > 0, w(a)w(a;) -+ w(a,.) is a reduced expression for
w(a)w and Ry = R, U{w 'a}, or w'a < 0 and there is a reduced expression for w with
w(ag) = w(a). In the first case both sides of the putative equality are 1; in the second both
are (—1)*". The lemma is thus proved. O

Let X be a free finitely generated Z-module and ¥ be a group which acts on X and
contains an element € sending A to —A, A € X. Then with trivial action of £*, 3 acts on
E* ® X. Let R be a finite ¥-stable subset of X and p be a gauge on R, bry which we mean
that p: R — {£1} and p(—A) = —p(A), A € R. We abbreviate a product over those A € R
for which

p(A) =1, ple™'A\)=-1, p(r~lo7'N) =1

by Hzl),a,T‘
Lemma 2.1.B. )
tp(O', T) = H<_1))\7 o, T C 27
1,0,

is a 2-cocycle of ¥ with values in k* @ X.

Proof. The coboundary of this 2-cochain is the product over all A\ with p(\) =1 of (—1)V*,
where N is the number of ordered triples in

{(U_1>\, TR D W R e D S WO W e B W R o AR W R
Ao\ ot (A o, 7_10_1)\)}
on which p takes alternating signs. Thus if p(o~'771o7')\) = —1 there can be a contribution
only from the first and last triples and then only if p(c7!'\) = —1, p(7~'o67!'\) = 1 when both
triples contribute, so that N = 2. If p(o~'77'o7!'\) = 1 and p(c~*)\) = 1 then either the first
and second triples contribute or none does, so that N is 2 or 0, but if p(o~'771e71\) = 1

and p(c~!A\) = —1 then the third triple contributes and exactly one of the second and fourth,
so that IV is 2. The lemma is proved. [l

Lemma 2.1.C. If q is also a gauge on R, then t, is cohomologous to t,.
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Proof. We may assume that ¥ is transitive on R and that X is free on { X : p(A) =1 }. Then
by Shapiro’s Lemma we reduce to the case R = {+\} where the assertion is clear. U

In the application of (2.3) and (2.6) we will have €2 = 1 and ¥ will be the product of {1, ¢}
and a subgroup I'. Then if 3 acts transitively on R either R consists of exactly two I'-orbits
O and —O or I' also acts transitively on R, in which case R is a ['-orbit O, where O = —0O.
In the former case O is called asymmetric and in the latter symmetric.

Lemma 2.1.D. Suppose that R = |J+0O, where O is asymmetric. Then the restriction of
i, 18 trivial.

Proof. We may assume X is free on O. Then again by Shapiro’s Lemma we reduce to the
case R = {£A} where the assertion is clear. O

2.2. a-Data. First we consider splitting ¢, in e X , given an extension of the action of X
on k to k with € acting trivially. A collection {ay : A € R} is a set of a-data for the action
of I' in R if:

(i) ax €k and agy = o(ay), 0 €T, A € R, and

(11) a_y = —ay, A € R.
Of course, a-data need not exist. If they do then we can split ¢, on I' in the following Way

For a product over those A € R such that p(c7!'\) =1 and p(77'\) = —1 we write

Set

o'T'

p
uy(o) = Haﬁ, oel.
1,0
Lemma 2.2.A.
ty(o,7) = Ouy(o, 7), o,T7el.
Proof.

uy(o,7) = uy(0)o (up(1)) up(or) H ay HGA H ay™.

l,o1
Fix A € R with p(A) = 1. Then the contributions of the terms with exponents £+ are as
follows.

(i) plc™N) = 1, prle7'N)= 1:1
B I e E B
(iii) ploc™\) = =1, p(rlo'N) = 1:a}-a’y =a}(—ay) = (=1)*
(iv) p(o™\) = p(t7lo™IN) = —1: 1.
Thus du,(o,7) = 11),0,7(_1)/\ =t,(0, 7). O

As a corollary of this lemma, or by simply modifying the proof, we have:

Lemma 2.2.B. Suppose that {by : A\ € R} satisfies by € k",
by = (b)\), o c F, and b_, = b,.

P
=[[®». €T,
1,0

Then

1s a 1-cocycle of T in FeX.
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By the usual argument with Shapiro’s Lemma we have:

Lemma 2.2.C.

(a) The class of v, is independent of p, and
(b) if R = £0O where O is an asymmetric ['-orbit then v, is cohomologically trivial.

Proof.

(a) We may assume that R = {£A}. Then the only gauges are £p, where p(A) = 1. Since
b=y = by we have that v_, = v,w, where w(c) = by if oA = —\ and w(o) = 1
otherwise. But w(c) = wo(z)~" where x = b

(b) Again assume R = {£A}. Then v, = 1.

U

2.3. An application. Our first task is to define an invariant for a pair (T, {aa}), where T
is a maximal torus defined over k in a connected reductive group G defined and quasi-split
over k, and {a,} is a set of a-data for T, i.e. for the action of I' = Gal(k/k) on the set
R(G,T) of roots of T" in G. Note that in this setting a-data are readily verified to exist.

We fix a k-splitting (B, T, {Xa}) of GG. There will be no harm in assuming G semisimple
and simply-connected and we do so to conserve notation. Denote by o the action of 0 € T’
on T andset ' = {o: 0 € I'}. Again Q will be the Weyl group Q(G,T).

Choose a Borel subgroup B of G containing T and h € G such that (B,T)" = (B, T).
Denote by o7 both the action of o € I on T and its transport to T by Int A1, Set

I'p={or:0el’} CQAxT.
If wr(o) is the element of € defined by Int(h~'o(h)) then op = wr(o) x 0.
The a-data for T serve also for the action on I on RY(G,T) and, after transport, for the
action of I'r on R = RY(G,T); {a_'} is also a set of a-data. By Lemmas 2.1.A and 2.2.A
n(or) = n(wr(o)) x o, ocel,

satisfies

1

n(or)o (n(TT)) n ((UT)T)

P

Vv

(o) =[] a8
1,0

and p(a) = 1 if and only if «v is a root of T in B. Then

= aiL'(O'T, TT)i
where

or — z(op)n(wr(o)) X o
is a homomorphism of I'y in Norm(T(k), G(k)) x T'. Otherwise stated,

or = m(or) = x(or)n(wr(c))

is a 1-cocycle of I'r in Norm (T(k), G(E)).
Now hm(or)o(h™') = h(m(or)o(h™')h)h~" lies in T'(k) and is evidently a 1-cocycle of T

in T'(k). Since h is unique up to left multiplication by an element of T'(k) this cocycle
yields, for given k-splitting, a-data and B O T, a well-defined element \(T') = A(q1(T') of

H! <F, T(E)) = H(T). We note some of its properties.
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2.3.1. The splitting (B, T, {X,}) may be replaced only by (BY,T¢,{X%}), where g € G(k)
is such that go(g)~! lies in the center Z of G, o € I'. Then m(or) is replaced by g~ 'm(or)g
and h by hg. Thus the cocycle defining A(T') is replaced by

hg(g~ mr(0)g)o(hg)™" = go(g)~ hma(o)a(h)™".
Then A(T) is multiplied by the class g in H'(T) represented by o — go(g)~.

2.3.2. Suppose that the a-data {a,} are replaced by {a, }. Then a!, = bya,, where by, = 0(b,)

for all o in the group X generated by I' and ¢, and hm(or)o(h™!) is replaced by
hv,(or)h ™ hm(or)a(h™),

where v, is the 1-cocycle op — Hfgbg of I'y in T(k) (cf. Lemma 2.2.B). Note that

hvy(or)h~" is the cocycle b, = o — []{, b b2 of T in T(k), ¢ denoting the transport of the

«

gauge p to RY(G,T) by Int h, and that the class b of b, in HY(T) is independent of the
gauge ¢ (Lemma 2.2.C).

2.3.8. Next we show that A(7T') is independent of B. Suppose that B is replaced by vBv™!,
v € Norm(T,G). Set u = h™'vh € Norm(T, G), and suppose that p is the element of €2
defined by u. We now have to transport o on T to T by Int(h~'v™!). Suppose we obtain
ol = wh(o) ¥ o. Then since h'v~to(vh) = kv h-h7to(h)-o(h~tvh) = u=th~to(h)o(u)
we have wi.(0) = p~'wr(o)o(u). Let Iy = {0} :a« € '}. The a-data {a,} obtained by
transport for I'}. satisfy al, = a,q, @ € R(G, T). We then define m(o7.) in the same way as
m(or) and consider

vhm(oy)o(h~ v = hum(oy)o(u Yo (h™1).

But now um(c})o(u)™' = b(or)m(or), where or — b(o7) is a 1-cocycle of I'r with values
in T. It remains to show:

Lemma 2.3.A. The cocycle b is trivial.

Proof. We have m(or) = z(or)n(wr(0)) and m(o}) = z(of)n(wi(0)); z(or) is defined in
terms of {a,} and z(¢/) in terms of {a,}. Then

m(or) = z(op)n (" wr(o)o (k)
which equals
(o7)ty (1 wr (o), o (1)t (1™ wr(o))n(u™ n(wr(o))n(o (1))
w(op)u (z(or) )ty (1 wr (o), o ()t (0, wr(e))n(pymlor)n (o (1).
Now n(u) = Au, where A € T, and then

n(o(p) = o(n(n) = o(A\)o(u).

Also we have n(p™") = n(p) ¢, (p, p='). Thus um(a )a(u) is equal to

(@ (o5))2(or) My, 1 ety (1 wr(0), @ ()t (1" wr(@)) | A~ or(Nmer),

and b(or) is equivalent to

p(a(h))wlor) (1 Yty (07 wr(0), @ )ty (1! or ()]

We now omit the subscript 7" in notation. That b(¢) is trivial follows from:
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Lemma 2.3.B.
(a) Let § = Ma;a . Then p(z(0”))z(o)" is equal to
do(07") 11 (=1)* 11 (=D"
p(a)=p(u~ta)=p(p~ o a)=1 p(a)=p(c~ a)=p(u~ o a)=1

p(ota)=—1 p(pta)=—1
(b) tp(p, ,u_l),u[tp(/flw(a),a(u))tp(u_l,w(a))] is equal to

II (=1~ 11 (—1)*

p(@)=p(p~ta)=p(p~to " a)=1 p(a)=p(c~
plota)=-1 p(pta)=-1

Proof.

p(p o pa)=-1 plota)=-1
= I« JI o«
p(pta)=1 p(a)=1
p(u~ o ta)=—1 p(o~ta)=-1

The contributions to this product are as follows.
(i) pla) =1, p(p~a) = p(c~a) = —1: az®’
(ii) ple) = p(p~'a) =p(p~ o~ a) = 1, p(a ! ~
(iii) p(n~la) =1, p(a) = ploe~'a) = p(u~lo~"a) = .t ai :
(iv) plo~ra) = p(p~ta) =1, p(p~to~'a) = —1: a2

On the other hand,
§o(6)7 ! = H az®’ H at’.

p(a)=1 plo~ta)=
p(pta)=-1 p(p o ta)=—

The contributions to this product are the following.
(i) p() =1, p(u'a) = po~'a) = —1: ag™’
(ii) p(e) = p(n~'a) Ip(/fla_loé) -1 ( Tla) =1 ag = (-1)"al,.
(iii) pu'a) = —1, p(a) = plo~a) = p(u~lo~"a) = 1: a5 = (—1)*"aZy
(iv) ploa) = p(u~"a) = 1, plu—"o 1) = —1: a2’
The assertion (a) follows.
For (b) we observe first that p(o ') = p(a) so that p(w(o)'a) = p(c~'a) for all roots .

Thus t,(u, ,ufl)u(tp(,ufl,w(a))) is equal to

I e IO o= I v I =

p(e)=1 pla)=p(c™ pa)=1 p(a)=1 p(e)=1
plp~ta)=-1 p(pa)=—-1 pp~ta)=-1 p(p

Performing the obvious cancellations, we obtain

I o

p(a)=p(oc~a)=1
ppta)=-1
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Also u(tp (™ 'w(o), a(u))) is equal to

I o= I o

p(@)=p(p~ o~ pa)=1 p(pta)=p(p~to ta)=1
p(o™ ' pa)=—1 plo " a)=-1

Then (1, 1)t (b (1 (), (1) by (1" (o)) ) equals

I o~ 11 (=)™

p(a)=p(c~"a)=1 p(pta)=p(n o ta)=1
p(pla)=—1 p(ota)=-1
The nontrivial contributions to this product occur only for either
(i) pla) = p(p'a) = p(plo~ta) = 1, plo~'a) = —1, or (ii) pla) = p(o~'a) =
p(p~to™la) =1, p(u~'a) = —1. Thus (b) follows, and the lemma is proved. O
]

2.3.4. Suppose now that Int g~! maps T to T” over F and carries a-data {a,} for T to the

a-data {a;, } for 7. We construct A(T") = Ao} (T') and A(T") = a3 (17). Note that if B O T

is used to define the cocycle m(or) then B’ = gBg~! yields m(or/) = m(or). From
hm(or)o(h) ™t = g(g~ hm(or)o(h) " a(g))g™" - golg) ™

we conclude that if g € H(T) is the class of the cocycle o — go(g)~! then A\(T) is g times

the image of A\(7”) under the homomorphism H'(T") — H'(T) given by Int g.

2.3.5. Finally, suppose that k is a number field, v is a place of k and k, is the completion of k
at v. Then a-data for T" as torus over k, or global a-data serve as well as a-data for T over k,,
or local a-data. We therefore obtain both \(T') € H'(I',T') and \,(T') € H*(T,,T) attached
to given global a-data and k-splitting of G. For o € I', C I', m(or) = z(or)n(wr(0)) is
the same whether given in terms of k or of k,. Thus A\, (7") is the image of A\(T") under
HYT,T)— HYT,,T).

2.4. An explicit splitting. We return to the setting of (2.1). Recall that if p, ¢ are gauges
on R then ¢, and ¢, are cohomologous 2-cocycles of ¥ in k* ® X (Lemma 2.1.C). Here we
shall construct an explicit splitting of ¢, /t,.

Let sp/4(0) = [,y (=D [1(_p(=1)* o € T, where [], is the product over A such that

pAN) =1, plo™N)=-1 q\)=qlc'N) =1
and H(_ o the product over A such that
pN) =p(a™N) =1, ¢\)=-1, o)) =1
Observe that s/, = s_,/p, = sp/—p = 1.
Lemma 2.4.A. The coboundary of spq is t,/t,.
Proof. For o, 7 € ', A € R, set
S(A) = (V) plo™ N, p(77 07 X), a(N), q(0 7' A), q(7 7 oI N)).

Then
Sp/q(0)0<3p/q(7))Sp/q(UT)_l = H(_l))\>
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where the product is taken over the six sets given respectively by S(\) equal to:

( 1,-1,+1, 1, 1,+1);
(£1, 1, 1 +1, 1, 1);
( 1L+1-1, 1, il 1);
(1, 1,+1,-1, 1,+1);
(£1, 1, 1,+1, 1, 1);
( 1L+l 1—1,41, 1),

The contribution of £\ to this product is as follows.
(a) If all entries in S(\) are positive: 1.

(b) If exactly five entries in S()\) are positive: (—1)* if S(\) = (1,1,1,1,-1,1) or
(1,—1,1,1,1,1), and 1 otherwise.
(c) If exactly four entries in S(\) are positive: (=D)*if S(\) =
( 17 17 _17 17 1)7
( 17 17 17 17 17 _1)7
( 17 17 _17 17 _17 1)7
(-1, 1, 1, 1,-1, 1),
(-1, 1,-1, 1, 1, 1),
or
( 17 17 17 _17 17 _1)7
and 1 otherwise.
(d) If exactly three entries in S()\) are positive: (—1)* if £S(\) =
( 17 17_17_17 17_1)7
( 17_17_17 17_17 1)7
( 17_17 17_17_17 1)a
or
(_17 17 _17 _17 17 1)7

and 1 otherwise.

On the other hand, t,(c,7)/t,(0,7) = [[(—1)* where the product is now over each of
{A:S(\) =(1,-1,1,£1,41,+1) }

and
{A:S(\) = (£1,£1,£1,1,-1,1) }.

Consider the contribution to this product from A. In cases (a) and (b) the contribution is the
same as for 9s,/,. In cases (c) and (d) if £ contribute (—1)* to s,/, we find that exactly
one of A and —A\ contributes (—1)* to t,/t,, and conversely. Thus ¢,/t, coincides with 9s,/q,
and the lemma is proved. ([l

Corollary 2.4.B.

() Sq/p 1s cohomologous to spq.
(i) SpgSq/r 15 cohomologous to s,),.

;/17, are cocycles. We can then
reduce in the usual way with Shapiro’s Lemma to the case R = {£A}. Then ¢, r = £p and

the lemma is clear. O

Proof. In view of Lemma 2.4.A both sq/ps;/lq and sp/qSq/rS



16 ROBERT P. LANGLANDS AND DIANA SHELSTAD

2.5. x-Data. We consider the case k = C and I' = Gal(L/F'), where F'is a local or a global
field and L is a finite Galois extension of F. The group ¥ = (I',¢) acts on C* ® X with
trivial action on C*. The cocycle t, is nontrivial in general. Let W be the Weil group of
L/F. Then W acts on C* ® X through W — I'. The inflation of ¢, to W does split [L1].
Here we shall construct a splitting of it using x-data which are prescribed as follows.

Set 'yy={ocel:cA=A}tand 'y ={ocel:0A=+A}, A € R. Once A has been
fixed we delete it in notation. Then F';, C L will be the fixed field of I'y, and F. the fixed
field of I'y. Note that [F : Fi] is 2 or 1 according as the I'-orbit of A is symmetric or
asymmetric. Set Wy = Wy g, and W, = Wy ,p, . Then by x-data for the action of I" on R
we mean a collection { x, : A € R} such that the following hold.

(i) xx is a character on Cyy, where Cyy is the multiplicative group of F'y\ or the idéle
class group of Fyy, according as F is local or global.

In either case we may regard x, as a character on W, = W,,.
(i3) x_x = X5 and
Xox = Xx-0 1, cel,AeR.
(71) If [Fy : Fy] = 2 then X, as character on C, extends the quadratic character on Cy
attached to the extension Fy/Fy. It is readily verified that y-data exist.

To prescribe the splitting we shall at first assume that ¥ acts transitively on R. In general,
it is a product of the splittings for the orbits. Fix A € R and choose representatives oy, ..., 0,
for TL\T. Then 0, 'A, ..., +0, '\ are the elements of R listed without redundancy. Define
a gauge p on R by

p(\M)=1 ifand onlyif N =o;'\, some 1<i<n.

Choose wyq,...,w, € W such that w; maps to o; under W — I". Then wq,...,w, are
representatives for W \W. If w € W then define u;(w) € W byf]
w;w = w;(w)wy, i=1,...,n.

Choose representatives vy € W, and v for W \W. in case [F, : Fi] = 2 and an element vy
of W, if Fy = Fy. Note that y,(vivv;") = xa(v)~L. For u € W4 define vy(u) € Wy by

vo - u = vo(u) - vy,
where i = 0 or 1, as appropriate. For u € W set

s(u) = xx (Uo(u))
and for w € W set
Ai

n N
rp(w) = HX’\ (vo (u,(w))) s(uz(w)) ,
i=1 1
where \; = o; ' \. Then 7, is a 1-chain of W with values in C* @ X.
If ¢ is any gauge on R set

n

)

Tq = Sq/pTp-
Lemma 2.5.A. The coboundary of v is t,.

Editorial comment: Although i is defined a couple of lines below, it is unclear how 4’ is defined here.
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Proof. In view of Lemma 2.4.A we have only to consider the case ¢ = p. Suppose that v,
w € W. Then
wvw = u;(V)wpw = w;(v)uy (w)we
so that u;(vw) = u;(v)uy (w). If v — o under W — T then
oy = 00171)\ = eiai_l)\ =€\,

where ¢; = +1 or —1 according as u;(v) € W, or not. Observe that ¢; = p(c7'\;). Now

rp(v)v(rp(w)) = H S(Uz‘(v))/\is(ui/ (w))”’\"

and

We claim that .

S(Uzl(w)) =t s(uz/(w))
where ¢ = 1 unless ¢; = —1 and uy(w) ¢ W, in which case it is —1. But ¢; = p(¢~1);) and
if w— 7 under W — T then uy(w) ¢ W, if and only if p(77'\)) = e;p(r71o™1\) = —1. We
conclude that

(v (rp()r(ow)™ =TT (DY = [T = tp(v, w).
plo™tA)=—1 Lo

p(r o7 \)=1
To prove the claim there is more convenient notation. Let u, v € Wy and suppose u — o,
v — 7 under Wy — I'y. Set e = p(c'A) and § = p(r~'o~'\). Then the claim asserts that

-1 ife=—-1,6=1

€ -1 _ )
s(u)s(v)s(uv) { 1 otherwise,
where s(u) = x»(vo(u)). If u € W4, and in particular if W, = Wy, then € = 1 and vy(u) =
vourg ', vo(uv) = vourg 'vg(v) so that X (ve(uw))xa(vo(v)) = xa(vo(wv)). If u ¢ W, then
vouv = vo(u)viv. If also v € W, then vy(u)viv = vo(u)vivy 'y and vo(uv) = vo(u)vivvy .
Thus

X (vo(uv)) = xa (vo(w)) xa (oo ) = xa (vo(u) ) xa(v) ™
If both u, v lie outside W, then
vouv = vo(u)v1v = vo(u)v1vy v (v)vy
= vo(u)v1vy tvg (V) v vivg Mg

Thus

1,2

-1
U1V

vo(uv) = vo(u)vlvalvo(v)vf
and
X (vo(uv)) = xa(vo(w)) xa (vrv0(v)or ) xa(vrvg tor tog ) xa(vf)
= = (v0(u) xa (vo(v)
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since yA(v?) = —1 and yx(vi7v;') = xa(2)™, © € W,. The claim is thus verified, and
Lemma 2.5.A proved. ]

It remains to check that the various choices made have no effect on r,, up to 1-coboundaries.
First we observe that

rg(w) = rpl(z) = [ xo(Nmf, i) we L,
i=1
is independent of the choices for vy, vy, wn, ..., w, and A, and that r,(zw) = r,(z)r,(w),
rel*, wel.

Consider a change in vy, v1. Then r, is replaced by a cochain 7,,. To show that the cocycle
'r’prl;l is trivial we may assume X is free on {)\ eER:p(A) = 1} and reduce to the case
R = {£A} by Shapiro’s Lemma. It is sufficient now to observe that 7, and r, coincide on
W, for then Tprzj,l defines an element of H'(Gal(F, /Fy),C* ® X). This group is readily
seen to be trivial.

Another choice w;, ... ,w!, for wy,...,w, leads to a gauge p’ and it has to be shown
that the cocycle s, /prpr;1 is trivial. Again we reduce to the case R = {£A}. Since
p' = £p, spp is trivial and, as above, it needs only to be shown that r, and 7, coincide
on W,. We may assume p(\) = p/(=\) = 1, w; = vy and w| = v;. Then A\ = A
A= =\ ayd uy(w) = vowyy ', wy(w) = vywoy', w € W. Thus for w € W, we have
XN (u’l(w))Al = xa(viwo; )™ = ya(w) = X,\(ul(w))/\ and r,(w) = ry(w), as desired.

Finally, replacing A by —A clearly has no effect. If we replace A by ' = p\ and v € W is a
lifting of o then I'y \» = o'y 10! and we may take o} = go;. Then X, = )\; and we set w) = vw;,
so that u}(w) = vu;(w)v™!. We also take v = vvgv ™', so that vjul(w) = vugu;(w)v~'. Since
X (vzv™!) = x,(z) the independence is clear.

Corollary 2.5.B. Suppose {(): A € R} satisfies:

(i) Ci is a character on Cyy and hence on W,

(i) (ax=C oo o€, NeR and (=L, N ER.
(#60) If [Fyx 0 Fiyal = 2 then ¢y is trivial on Cyy.
Then

A

c(w) = ﬁ@ <UO(Ui(w))> . wew,

is a 1-cocycle of W with values in C* ® X. Its cohomology class is independent of the choices
made in its construction.

If the action of ¥ on R is not transitive we define r, and c for each ¥-orbit, thus for each
pair =0 of I'-orbits, and then take products over all such pairs. The results are denoted
again r, and c.

2.6. A second application. Suppose that GG is a connected reductive group defined over
F. Recall that G = G x Wg. Suppose that T is a maximal torus over F' in G. Then we
shall attach to x-data for T, that is, for the action of I' = Gal(F/F) on R(G,T), a canonical
@—Conjugacy class of admissible embeddings of YT in G.

There will be no harm in replacing F throughout by a finite Galois extension L C F of F
over which T splits, and we do so without change in notation. Denote by o the action of

celonGandset T'={o:0el} Fixa [-splitting <]§, T, {XX}) of G.
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A homomorphism ¢ : T — LG is an admissible embedding if

(i) € maps T to T by the isomorphism attached to the pair (B, T) and the choice of a
Borel subgroup B in G containing 7', and
(i) E(w) € G xw, weW.
The @—Conjugacy class of £ is {Intg of:g€ G } It is independent of the choice of (]§, ’T)
and B.
We fix B. Then to specify £ we have only to give a homomorphism w — &(w) = &y(w) X w
where &(w) € Norm(T, G) and where, in addition, if w — ¢ under W — T' then Int &(w)

~

acts on T as the transport by & of the action of ¢ € I' on T. We write this transport o as
wr(o)xo € QxT, and set I'r = {or:0 € T'}. The x-data {x.} for T provide x-data for
the action of I'r on R = RY(G, T); {x;'} is also a set of y-data.
By Lemma 2.1.A
n(w) = n(wr(o)) x w e Norm(’f‘,@) X w, we W,
satisfies
n(w)n(wo)n(wiwy) " = t,(01, 72),

if w; — o; under W — T, where p(a) = 1 if and only if a¥ is a root of T in B. By
Lemma 2.5.A the inflation of ¢, to W is split by rzjl, where 7, is the 1-cochain of W in T
attached to {xa} as in (2.5). We now use p, for the gauge fixed there so that r, = s,/p,7p,,
and note that r,; ! is the cochain attached to {x,'}. Thus with

E(w) = rp(w)n(wr(o)) x w, weW

we obtain an admissible homomorphism ¢ : T — LG, It is determined uniquely up to
T-conjugacy by the I'-splitting, Borel subgroup B and x-data for T'.

2.6.1. Suppose that the I'-splitting is replaced by another, (Bg, TY, {Xiv}) We may suppose
that g € G is T-invariant [K2]. Then n(w) is replaced by g 'n(w)g, w € W, and € : 1T — LG
by Int g=! 0 &, so that the G-conjugacy class of £ is not affected.

2.6.2. We show now that the é—conjugacy class of ¢ is independent of the choice of B.
Suppose that B is replaced by B’ = vBv™!, where v € Norm(T, G), and ¢ is obtained in

place of £. Let puin = Q(@, ’T‘) be the element defined by the transport of Intv|, to T by €.
Then the transport of o from T to T via £ is 0 = Wi (o) X o, where wi(o) = p~twr(o)o(u).

Lemma 2.6.A. We have
¢ =Intg' o,
where g € Norm(T, G) acts on T as p.

Proof. The two sets of data {x.} and {x/, = X} yield

§w) = ry(w)n(wr(0)) x w, € (w) = riwn(wp(0)) x w
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if w — o under W — I". We delete the subscript T" in our notation. Lemma 2.1.A shows that
§/(w) = ry(w)n (i w(o)a (1) x w
= )ty (17 w(0), 0 (1))t (™ w(0)) (™ (w(o))n (e () x w
= ()t (s 1 [ty (17 (), 0 10) ) (17" 0(0)) (1) (1) € ().
By Lemma 2.3.B,
t(p 1 Y[ty (57 0 (0), 0 (1)) (57 (@) |

is equal to
11 (=1 1T (=1)% = s4s(0),
pl@)=p(p~ta)=p(p~to"ta)=1 pla)=plc~ta)=p(p~to~ta)=1
plota)=-1 p(pta)=-1

where ¢ is the gauge po pu=t.
To complete the proof we observe that u(ré,(w)) = Sq/po (0)7Tpy (W), s0 that

(7 00) ) (00) ™ = 40 ()70 (1) 30 (0) 1 (0)

= 5q/p(0). O
2.6.3. Suppose that the x-data {yx.} are replaced by {x,}. Then X! = (uXa, Where

{{s : @ € R} satisfies the conditions of Corollary 2.5.B. Let ¢ be the cocycle defined there.
Then the embedding ¢ is replaced by ¢ ® & where

c®RE(t x w) = c(w)é(t x w), txwerT.

2.6.4. Suppose that Int g~ maps T to T over F' and carries the y-data {x.} for T to data
{x.,} for T". Now g defines a canonical isomorphism A, : “T" — T Let £ be the embedding
of XT in LG defined (up to & (f)—conjugacy) by the choice of Borel subgroup B D T. Then
¢ = o)\, is the embedding of “T" in LG defined by the Borel subgroup B’ = ¢g~'Byg
of G. Thus the class of embeddings attached to (T’ , {Xfx}) is obtained from that attached to
(T, {Xa}) by composition with the canonical *T" — LT

2.6.5. There is a simple local-global relationship when F' is a number field. Suppose that v
is a place of F' and F, is the completion of F' at v. Fix a place w of L dividing v, and set
I'y = Gal(Lyw/F,), Wy = Wy, /p,. Then a homomorphism W, — W for which

1 —— L) > W, > Ty, > 1
1 —— Cy, > W > I > 1

is commutative attaches to ¢ : T XW — A@ x W a local embedding &, : T % Wy, — G x W,
Since £(CL,) C T x Cp,,, where T = £(T)), &, is determined uniquely up to T-conjugacy
by &.

On the other hand, the place w of L determines completions of the subfields, F, and Fl.
These completions coincide with F, and Fj, ¢, the subfields of L,, defined by I',; =
{ocel,:oAx=A}and ', . ={o €I, :0X==£A}. Then the natural embeddings F, ; —

w )
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Cy, F,+ — C4 allow us to construct y-data {Xa } for the action of I',, local data, from
x-data {x.} for the action of I', global data.

To prescribe an admissible ¢ : T x W — G x W we have to give a ['-splitting of G and a
Borel subgroup B of G containing T as well as {x,}. The same splitting and Borel subgroup
together with {X((f)} yield a local embedding & : T x W, — G x W,. Because the choices
made in our constructions do not matter we can arrange that & (w,) = {(w) if w, — w under
W, — W. Thus, up to ’T—conjugacy, &, is the local embedding attached to £, and passage
from global to local embeddings is consistent with passage from global to local y-data.

3. DEFINITIONS

3.1. Notation. Throughout Sect. 3 F' will be local and vy, 75 will be strongly G-regular
elements in H(F') which are images of the elements g, 74 in G(F).

Let T}y, TH, be the centralizers of vy, 75 in H. We fix admissible embeddings Ty — T
and Ty — T of Ty and Ty in G*, the quasi-split form of G, and denote by v and 7 the
images of vy and 7y under these embeddings. Notation for tori and elements in G itself will
always include the subscript G.

We denote by R the root system of 7" in G*, by RY the coroots, by Q the Weyl group, by
RY, the subsystem of coroots from H, by Ry the subset of roots from H and by Q5 the Weyl
group generated by Ry or R};. The analogous objects for T will be denoted R, R’ and so on.

We further fix a-data and y-data for the action of I' = Gal(F/F) on the roots of T" and
of T. These may also be regarded as a-data and y-data for the action on the coroots, and
are unaffected by passage to the simply-connected covering G, of the derived group G*. If
Ty — T is replaced by an 24(7')-conjugate [recall (1.3)] then we may use this conjugation to
transport given a-data and y-data to data for the new image of T}y.

To check the effect of our choice of embedding Ty — T, a-data {a,} and y-data {x.} we
will have only to determine the effect of:

(A) replacing (Ty — T, {aa}, {xa}) by an A(T)-conjugate triple, and

(B) changing {as}, {xa} with Ty — T fized.

Recall that Ty — T'is given by the choice of Borel subgroups By in H and B in G*, of
pairs (By,T) in H and (B,T) in G, and of z € G such that Intz o & maps Ty to T and
By into B. Several choices yield the same embedding. We may, without loss of generality,
fix T-splittings (Bu, T, {XH}) of H and (B, T.{X}) of G and require that (By, Ty) and

(B,7T) be the chosen pairs in H and G for both Ty — T and Ty — T. Up to equivalence of
endoscopic data we may assume that £ maps Ty to T and By into B. Since the endoscopic
datum s is central in & (f[ ), it lies in 7 and its preimage in fH is independent of the choice
of By; so its image sp in T depends only on the embedding Ty — T

There is a canonical embedding of the center Z (G) of GinT. Let Tad = T/Z (G ) Then
To = To (Tard) will denote the component group of the I'-invariants in Toa. The i image of sy
in fad is T-invariant and so defines an element st of 7. Finally we recall from [K2] that
Tate-Nakayama duality provides a pairing

(,): Hl(F,TSC) x 19 — C*.
3.2. Term Ap.
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Definition.

AI (’YHa IYG) = <)\(TSC)7 ST>7
where A(Ty) is computed relative to an F-splitting s/ of Gy [see (2.3)].

Lemma 3.2.A.
Aty ve) [ DV u V)
is independent of the choice of y/”.

Proof. Suppose 4/ is replaced by 47, where g € G (F) is such that go(g™!) lies in the
center Z. of G*., 0 € T'. Then \(T,.) is multiplied by the class g7 of ¢ — go(g~!) in H(T%),

by (2.3.1). Thus we have to show that
(gr.sr) = (&7 57)-
There will be no harm in replacing F' by a finite Galois extension over which 7 is split. We

do so without change in notation. Then following [L2, Lemma 6.2] we identify H'(Ty.) with
H' (X (Ti)), H'(Zee) with H=2(X,(Toa)/ X.(Tie)) and H'(Zs.) — H'(T) with

H ™ (Xu(Toa)/ X (Tie)) = H (X (Tie)).

Suppose the class of 0 — go(g~') in H'(Zs) corresponds to that of o — A,, where
Ao € Xi(Toa)/ Xi(T). Let A\, be a coset representative for A,. Then gp corresponds to the
class of 3. (07" — 1)A, in H (X, (Ti)) and (gr,s7) = (3, (07" — 1)A,)(sr) if we regard

the sum as a character on 7'. Similarly, there is a formula

(&7 57) = (Zw; - 1>XU> (T).

g
To compare the two, we may choose an element 2 of G* such that =7z = T and such that
t — x4t is the transfer to T, T of an isomorphism Ty — Tp inner in H. Then xo(z71)
represents an element of Q. Under Intz~!, T is identified as T with twisted Galois action
o7 = 0(c) x o, where o(c) € Qp, and s is identified with sp. We may assume A\, = Ay, 50
that

(&7, s7) = (Z (o7t 0(0)™! = 1))\a> (s7)

o

= (Z(OF - 1)&) (s7)

= (87, sT),
since o(0) € Qg fixes or(sy). O
Lemma 3.2.B. If (Ty — T,{a,}) is replaced by its g-conjugate, g € U(Ty), then Ai(vm, V)
18 multiplied by
(gr.sr)~ ",
where gr is the class of o — go(g™t) in HY(T,.).

Proof. This follows immediately from (2.3.4). O
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Lemma 3.2.C. Suppose that the a-data {a,} are replaced by {al}. Set b, = al,/a,. Then
Ar(va,va) is multiplied by:
T xe ().

where {xo} are x-data and the product is over representatives « for the symmetric orbits of T
in the roots of T' that are outside H.

Recall that b, € F}, and that if @ belongs to a symmetric orbit then y,, restricts to the
quadratic character on F7, attached to F.,/Fis (2.5). Also xa(ba) = Xoa(bsa), 0 € T, s0
that the choice of orbit representative does not matter.

Proof of the lemma. By (2.3.2) Aq(ym,y) is multiplied by (b,sy) where b is represented
by the cocycle o — H‘f’g bgv, q being some gauge on R. The choice of ¢ does not matter
(Lemma 2.2.C). If O is a I'-orbit then the contribution from +O to this product is also a
cocycle. Suppose it represents the class bio. Then b =[], bio. If O is asymmetric then

b.o is trivial (Lemma 2.2.C). Thus it remains to show the following:

Lemma 3.2.D. If O is symmetric then
(i) (bo,sr) =1 if O is contained in Ry and
(i) (bo,st) = Xal(ba) if O is outside Ry, where a represents O.

Proof. We extend the Shapiro lemma arguments of Sect. 2. Let X be the free abelian group
on Of ={a¥:ae€0,q(a) =1} with the inherited action of I'. Fix some a" € OY and let
X, be the subgroup generated by a”. Then the stabilizer I'y, of {£a} in ' acts on X, and
Xo = IndIEﬂm X,. Let T be the torus over F' with X,(Tp) = Xo and T, be the torus over
Fy, with X,.(T,) = X,. Then T, is one-dimensional, anisotropic over Fl, and split over F,
and Tp = Res?i“ T,. From the natural homomorphism Xo — X, (Ti) we obtain Tp — Ty
over F' and an L-homomorphism Tod — f@. Let so be the image of sp, or more precisely of
the image of sy in éad. Then

a’(so) = a’(sr), ae€O.

We pull bp back to H'(Tp), as we may, without change in notation. If se is the image of
st under mo(TL,) — mo(Th) then the functoriality of Tate-Nakayama duality yields

<bT7 ST> = <b(97 SO>'
If O C Ry then o¥(sy) =1, a € O, and so sp = 1. This proves the first assertion of the
lemma.
If O is outside H we compute (bp,sp) by reduction to T,. The image b, of bp under
HY T, Tp) = H (T, T,) is represented by

. {bo‘v, oo = —«
o

1, oa=q

Let s, be the image of sp under mo(T5) = mo(T5%+). Then by restriction of scalars for
Tate-Nakayama duality we have:

<bo, So> = <ba, Sa>.
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Since wo(ﬁf =) consists of two elements and se is clearly nontrivial, s, must be nontrivial.
Then, as observed in (1.1),

(ba; Sa) = Xal(ba),

and the lemma is proved. U
O

3.3. Term Ay.

Definition. An(vm,v¢) =[] Xa (‘1(3—?;1), where the product is over representatives « for

the orbits of " in the roots of T' that are outside H.

(2 e () (2

the choice of representative o does not matter.

Since

Lemma 3.3.A. If O is asymmetric then the contribution from +O is x4 (Oz('y)), where «
lies in either O or —Q.

Proof.
(o () o (B ) -t
OJ

Lemma 3.3.B. If (Ty — T,{aa},{xa}) is replaced by an A(T)-conjugate then Ay(vm, V)
15 unchanged.

Proof. This is immediate. 0

Lemma 3.3.C. If the a-data {an} are replaced by {a’,}, where al, = anba, then An(vu,va)
1s multiplied by

where the product is over representatives for the symmetric orbits outside H .

Proof. By definition Ar(v,7vg) is multiplied by [] xa(ba) ™!, where the product is over
representatives for all orbits outside H. Since

Xa(ba)X—a(b-a) = Xa(ba)Xgl(ba) =1
we may ignore the asymmetric orbits.

It remains to consider the effect on Ay (yy,7g) of replacing the y-data {x.} by {x,}-
Suppose (., = X, Xa - Then if a lies in a symmetric orbit ¢, must be an extension to F.* of
the trivial character on F7,.

Suppose that O is symmetric and ¢ is some gauge on . We denote by X© the free
abelian group on O, = {a €0:qla)=1 } with the inherited action of I', and let X“ be
the submodule generated by some o € O, so that X© = Indp, .., X Define the torus T®
over F by X*(T9) = X% and T® over Fy, by X*(T) = X°. Then T is one-dimensional,
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anisotropic over F, and split over F,, and T° = Res?“’ T*. From the natural homomorphism
X© — X*(T) we obtain a homomorphism 7" — T© over F and then

T(F) = TO(F) 5 T%(Fyy).
Let v be the image of v in T*(Fl,). Then

a(y) = a(y?).
Since the norm map T%(F,) — T*(F4,) is surjective we may write
v =60,

where % € T%(F,) and the bar denotes conjugation in 7%(F,) with respect to T*(Fl,).

Although we could do without it here we describe the analogous construction for an
asymmetric orbit @. Thus X*© is the free abelian group on O and X is the subgroup
generated by some a in ©. Then I' acts and X has stabilizer I',, = I'y,. We define T*°
over F' by X*(T*9) = X*©; T is the one-dimensional F,-split torus with X*(T%) = X,
and T%° = Resy, T°. From X*° — X*(T) we obtain

T(F) — T*O(F) = T%(F,).
If 4 is the image of v then a(y*) = a(7y). O

Lemma 3.3.D. If the x-data {x.} are replaced by {x.}, where x., = Xala, then Au(vu, V)
15 multiplied by

asymm symm

IT 6™ IT G,

where the product T[*™ is over representatives av for pairs £O of asymmetric orbits outside
H, and [T”™™" is over representatives for the symmetric orbits outside H.

Proof. The contribution [[*¥™ is clear from Lemma 3.3.A. If « lies in a symmetric orbit we
have

a(7) = a(y") = a(d°3%) = a(8*) /a(5").

Hence
o) —1Y . (a(*) — alom)
Ca( (g, > Ca( a0 (5%) )
_ Ca(a(éo‘)a—aoz@a)) 'Cam_l
= Coc (O‘(‘;a))
since (a((ia) - W) /aq lies in FY, and (, (a(éo‘))_l = Ca((67)). O

3.4. Term Ay, or A;. The next two terms will be denoted Ay, and Ayyy,, or more briefly
Ay and As, since they are combined in a single term in the twisted case [K-5].

We begin with the case that G is quasi-split over F', taking G as G* and the twist ¢ to
be the identity. Since g is an image of v there exists h € G such that hygh™' = 7. Set
v(o) = ho(h)™!. Because v is strongly regular the class inv(yg,vg) of v(o) in HY(Ty.) is
well-defined.

Definition (G quasi-split). Ay(vy,v6) = <inv(”yH,’yg),sT>_1.
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In general, we work with the two pairs of elements vy, 7o and 7y, 7. There exist h,

h € G, such that
1

hp(ye)h™ =5 and Wp(Fe)h =7
Set
v(o) = hu(o)o(h)™" and (o) = hu(c)a(h) ™,
where u(o) € G, and ¢Yo(¢)™! = Intu(o), 0 € I'. Then v(o) and v(o) are cochains of T in
T,. and T, each well-defined up to coboundaries because v and 7 are strongly regular.

Further, dv = 0v = Ou, each coboundary taking values in the center Zs. of G,. Let
U =U(T,T) be the torus

TSCXTSC/{ ZGZSC}

Then o — (v(0)~!,7(0)) defines an element of H'(U) which is independent of the choices
for u(c), h and h. We write this class as

(’YH> Ya )
inv
Y ’}/G

From Ty x T — U we get HY(Ty.) x HY(Ts.) — H'(U). If G is quasi-split then inv <7H 12)
is the image of (IHV(’}/H,’Yg) L inv(¥y,7q))-

Recall that 7, W is T /Z (G ) the torus dual to the preimage T, of T in Gy.. We denote
by TSC the torus dual to Thq = T/Z(G). Then the center Z. of the simply-connected covering

of the derived group of G, which is a finite group isomorphic to Zg, is canonically embedded
in Ty, and T.. Set

(/]\:T\SCX%SC/{(Z,Z):ZEZSC}.

Then X*(U) C X*(Tie x Ts.). At the same time, X*(U) C X*(Ti x Ts). The Q-pairing
between X*(ﬁc x Ty) and X*(Ty. x T.) yields a dual Z-pairing between X*(ﬁ) and X*(U),
and so U is the torus dual to U. N

To the endoscopic datum s we attach sy € 7o(U') as follows. Suppose 3 lies in the preimage

under T — Taq of the projection of s onto Toq = T/Z(A) From 7 — T and T — T we

obtain Te. — TSC and Toc — Ts.. The images 57 and 57 S of s depend only on the embeddings
Ty — T and Ty — T. The image sy of (Sr, AT) in U is independent of the choice of 5. It is
also T-invariant and so defines an element sy of mo(UT).

Definition. Ay(vy,ve; 71, Ve) = <inv<%>,s(]>.
Note that if G is quasi-split over F' then
_ : 1. _
Ay e T V) = vy, ve)sr) (v, 7e) s 7)-

Lemma 3.4.A. IfTy — T and Ty — T are replaced by their g- and G-conjugates, where
9 € UTi) and g € A(Ty.), then Ay(vu, Ya; Tu, Vo) s multiplied by

(gr,s7) {87 s7) ",

where gr is the class of o — go(g™1) in HY(T..), and gz the class of o — go(g~4) in H'(T.).
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Proof. v(0) is replaced by g*v(c)o(g) and g(g~ v(0)a(g))g~" = v(o)- (ga(g)_l)_l. Similarly

for T(o) and the lemma follows. O
3.5. Term Ay, or A,. For the construction here we fix Borel subgroups By D Ty, B DT
which yield the isomorphism fH =Ty —>T — T dual to Ty — T. To the y-data {x.}
are attached admissible embeddings & : “T — LG extending T — T and &y, : 2Ty — “H
extending T\H — Tg. Then
€ &ry = aér,

where a is a 1-cocycle of Wr in T for the transport of the action of Wr on T. We transport
a to T without change in notation. Its class a in H'(Wpg, f) is independent of the choice
of By and B by (2.6.2), and of the T-splittings (By, Ty, {X*}) and (B,T,{X}) by (2.6.1).
Further if (Ty — T, {xa}) is replaced by its g-conjugate, g € A(T'), then a is replaced by its
image in H' (W, fg) under the map induced by Int g~! [see (2.6.4)].

Definition. Ax(vy,vq) = (a,7).
Clearly, replacing (TH — T, {a.}, {Xa}) by an 2((T")-conjugate has no effect on As(vm, ve).

Lemma 3.5.A. Suppose that the x-data {x} are replaced by {x’,}, where x., = xaCs. Then
Ao(vH,va) is multiplied by

asymm symm

I O™ I a6

where the product [[*™ is over representatives a for the pairs £O of asymmetric orbits
outside H and [[™™™" is over representatives « for the symmetric orbits outside H.

The elements v* and §* were defined in (3.3), and will be recalled in the proof.

1

Proof. According to (2.6.3) a is replaced by ac™" where c is represented by the cocycle

c(w) = Hﬁ(a (vo (ui(w))>0i_la.

a =1
Here the product ], is over representatives o for pairs O of I'-orbits of roots of T" that lie

outside H. The elements vo(u;(w)), o; 'a were defined in (2.5). Note also Corollary 2.5.B.
Suppose that O is a symmetric orbit outside H. As in (3.3) we have

T(F) — TO(F) =2 T%(F,).

Then 7© denotes the image of v in T9(F) and v® its image in T*(F,); 7* = 6%6*. We have
also
H'Wp,,,,T*) = H'(Wg, TC) — H*(Wg,T).

We pull ¢ back to co in H' (W, TO) and let ¢, be the corresponding element of H (W, ., T%).
Then

(c,7) = {co.77)
by the functoriality of (,) which follows from its definition [Bl Sect. 9]. Moreover

<C(9> 70> = <Ca, 7a>

because the pairing (,) respects restriction of scalars (see [B]). To compute (c,,v*) we
introduce S, the group obtained from G,, by restriction of scalars from F, to Fl,, and the
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obvious homomorphism S, — T, surjective on Fl,-valued points. By functoriality, we may
replace ¢, by its image in H'(W4,, S,) and conclude that

(Carv™) = Cala(d)).
For asymmetric O we have
T(F) — T*°(F) =2 T*(F,)
as in (3.3), and dual
H'(Wp,, T%) = H' (Wp, T*0) — H'(Wp, T).

again it is sufficient to compute (c,,v*). Now T is split over F,, and from c,(w) = (,(w),
w € Wg,, we obtain

(Car ™) = Cala(v).
This completes the proof of the lemma. 0

3.6. Term Ap. If v € T(F) then [], (a(y) — 1), where the product is over all roots of T
in G*, lies in F'. We set
1/2

Dg+(v) =

[(a(v) -1)

[0

Definition. Ar (vm,va) = Da+(v) D (i)™
Then Ary(vm,7q) depends only on the stable conjugacy classe of .
3.7. The factor A. We now fix the pair 7, 7, and specify A(7,7) arbitrarily. Then we
define
A(F}/Ha fVG) = A(7H7 WG)A(PYFD G 7H7 76‘)7
where
A(vu, V6 T e)

is equal to

Ai(ya, v6) i An(vn,76) i A, (Y1,76) ) A (vm,76)

AFu,Ye) Au(VmVe) Au(Vu:Ve) Av(Tu:Ve)

In the case that G is quasi-split over F' we set

ANo(vi,va) = Ai(ve, va) Au(ve, Ya) A1 (Ve va) Ao (Y, va) Arv (Vi Ye)

“Arn, (Ve Yas Vs Ya)-

so that

A(vr:v6 T Va) = Do(va, v6) [ DoV, V-
Recall that Ai(vy,va), but not Ar(vu,va)/Ar(Vy,7a), depends on the choice of an F-
splitting for G*.

Theorem 3.7.A. A(yy,7q) is independent of the choice of admissible embeddings, a-data
and x-data.

Proof. If Ty — T, Ty — T and their a-data, y-data are replaced by 4(7T)-, 4(T')-conjugates
then only A; and A; are changed. By Lemmas 3.2.B and 3.4.A, A is unchanged. If the
a-data and y-data alone are changed then Ap, A, and A, are affected. Again the effects
cancel, by Lemmas 3.2.C, 3.3.C, 3.3.D, and 3.5.A. O
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The same lemmas show that the factor Ag(yy, V) is independent of these choices.
Finally, if no strongly regular element in G(F') has an image in H(F') we set A = 0.

4. SOME PROPERTIES OF A
4.1. Invariance.
Lemma 4.1.A.
AV V6 Vi D (i 76 Vi &) = A0V 163 Vi 18)-
Proof. 1t is enough to show this with A replaced by A; = Ay, that is to show that

<inv(1,2)a SU1,2> <inv(2,3)a SU2,3> = <inv(l,3)7 SU173>7
where
Vi Ve

1 <i<j<3,and T" is the image of Cent(v%, H) under some admissible embedding in G*.
Let

inv(; ;) = inv <M>, Uij = U(T", T7),

V =T5 x T2 x ngc/{ (z7h 2w w) 2w € Zy }

in the notation of (3.4). There are F-homomorphisms U; ; — V. Under the induced maps
on cohomology the image of inv(, 3 is the product of the images of inv(; 2y and inv(, 3). Still
following the notation of (3.4) we see that the dual of V is

17:ilcxi%xii/{(z,z,z):ZEZSC}.

Let sy be the image of (Sy1,S72,873) in WO(XA/F). Then

(inv (9, SU172> (inv(a,3), SU273> = <image(inv(172)) image(inv s 3)), sv>
which equals
<image(inv<173)), sv> = (inv(1,3), Sv,.5)
and the lemma is proved. O
Corollary 4.1.B.

(1) A(va,va;va,va) =1 and
(i4) AV ve) = Alve, v6) AV, Y63 Vs ve) if vE, Vi are images of ya, g Tespectively.

Lemma 4.1.C. A(yg,va) depends only on the stable conjugacy class of vy in H(F) and
the conjugacy class of vg in G(F).

Proof. Let 75 = g 'y¢g, g € G(F). Then
Ay, ve) = Alvm, v6) A(vm: e: i, v6)-
On examining the terms Ay, ..., Ay we see that

Ay Y v, ve) = A1 (Y, Ve v Y6)

and so it remains to check that Ay (v, V5 vm,va) = 1. There is g1 € Gu(F) such that
9 'v¢9 = 91 "vag1- Then gio(g1)~! is a cocycle with values in Ker(Gy. — G). If h € GZ,

is such that hi)(yg)h™! = 7 then h¢(gl)¢('y&)(hw(g1))fl = v and so the cocycle defining
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: A -l .
1nv<%> is of the form (w(gla(gl) D" (o) 1,'0(0)). Then Ay (Va,Ve; Ym, Ya¢) coincides
with <1/J (gla(gl)_l)fl, sT> - A1(YH, Ya; v, Ve ). The first term in this product is trivial since

U(gio(g1)™") € Ker(Gi, — G*); the second is trivial by (4.1.B).

Suppose v = h~'yyh is stably conjugate to vy. Then an admissible embedding of
Cent (v}, H) in G* is obtained by composition of an admissible embedding of Cent(vg, H)
with Int h. Term-by-term examination of A yields A(vy, va; vm, Ve) = 1. O

4.2. The local hypothesis. We now examine the relation between factors for G' and those
for G*.

The endoscopic data (H,H, s, ) serve both G and G*. Suppose that strongly G-regular
vu € H(F) is an image of v € G(F). Then vy is also strongly G*-regular. By Steinberg’s
Theorem [K1J, vy is the image of a stable conjugacy class of elements in G*(F). Suppose
that yg+ belongs to this class. Then both A(yy,7vq) and A(vg,ve+) are defined and nonzero.
Set

Acra (Vi Yo, Yar) = Ay, va) [ A(ve, Yar)-
It is clear from the definitions that this assumes a quite simple form, for we may use the
same auxiliary data of admissible embeddings, a-data and y-data to define all terms in
the numerator and denominator. Since A(yy,vg) and A(yy,ve+) are canonical only up to
constants we will investigate

Ac/e+ (i, Y6, Y6+ ) [ Agyc- (Ve 76 V6
where v}, is an image of v, and of ..
First we shall define a number Ay (va, ve+; 76, Vo). There are unique admissible embed-
dings Cent(vy, H) — Cent(vg+, G*) and Cent (v}, H) — Cent (., G*) mapping vu to ve-

and vy to vo.. We set
. TH, G
/\H(7G77G*§7IG77/CJ*> =\1v / | Su
VYo Vo

in the notation of (3.4). Note that inv(%) is represented by the cocycle

H' G

(o(h)u(o)'h~t Wu(o)o(h')71),

where h, b’ € G, and

Wp(ve)h™ =6, KON = 1.
Moreover u(o) € G%. is given by ¥o(¢))"! = Int u(c). Then Ay is independent of the choice
of vg, ..., 76 within their conjugacy classes (see the proof of Lemma 4.1.C).

Lemma 4.2.A.
Agjae (’7H77G77G*)/AG/G* (7}{77577/@*) = Mg (Ve Var; ’Y’Ga VIG*)-

Proof. We choose admissible embeddings as in the definition of Ay. Since Ay, Ay, Ag, Ary
take the same values at (vy,v¢) as at (yy, ve+) only A; yields a nontrivial contribution to
the left side. In view of Corollary 4.1.B this contribution is

Al(’YH»’YG; ’Y}{, ’Y/G)/Al(”YHa’YG*; ’Y}{a%;*) = Al(”YH:’YG; ’Y}{a%;)
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by our choice of embeddings. This equals
)\H(’YG'a el ’Yé;, ,}/}I)?
and the lemma is proved. 0

The following is then immediate:

Corollary 4.2.B.
A(VHv’)/G) ’o A(’Y}bﬁ)/G)
N = MG Ve e Ve ) A
Nomora) 10e0396 06 ) K S

This asserts that the factors A satisfy the Local Hypothesis of [L2, Chap. VI]. To reconcile
our notation with that of [L2] we note that if Ty = Cent(yg, H), T' = Cent(yg+, G*) and
Te = Cent(yg, G) then

Ty s Ty > T s T
Ta

is a diagram D, where Ty — T is the admissible embedding taking vy to vg+ and Int h o 1) :
Tg — T'. Similarly we have D"

T, —— Ty > T > 17

Tg
The Local Hypothesis states that ¢(D, D’), the left side of Lemma 4.2.A, is given by an

expression (#(E, E')) which we now show to coincide with Ay = Ay (va, Ye+, V6, Vo )-
There is no harm in assuming G simply-connected. Let U = U(T,T"). Then we have

Xu(U) = Xu(Taa) x Xu(Tq)-

The elements A € X,(Thq), N € X.(T.,) are defined on p. 84 of [L2]. On modifying
A" as on p. 85 we may assume (6.12) of p. 85. Then O(E,E’) = A — X. On the other
hand, (A\,X) € X.(U) and defines an element of H~'(X,(U)) which corresponds under
Tate-Nakayama duality to the class of the cocycle

(o(h)u(o) A= Hu(o)a(h') ™)
defining inv(%) in HY(U). Since k is obtained from the endoscopic datum s [L2 p. 100]
H>
we conclude that x(0(E, E')) coincides with Ay.

4.3. Extension to all G-regular elements. The definition of Ay(ygy,va; 7y, 7o) requires
that G-regular vy be strongly regular. The notion of image, however, is well-defined for an
arbitrary G-regular semisimple element in H (F') [recall (1.3)] and we expect an identity

O (v, 1) ZA (vir:76) 2 (e, £°)

for all G-regular semisimple elements vy in H(F'), where A(vy,7¢) = 0 unless vy is an
image of 7¢.
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We shall extend A by continuity. Suppose 7% € Ty (F) is G-regular and is an image of
7% € Te(F). Fix an admissible embedding Ty — T of T in G* and an isomorphism Int xo) :
T — Tg over F so that 4% — 72 under Ty — Tg. Suppose gi, ..., g, are representatives

for D(Tg) = Te(F)\A(Te)/G(F), where A(Tg) = {g € G(F): go(g)™' € Ta(F) } Then if
va € Ta(F) is strongly regular the elements g; 'v5g; are representatives for the conjugacy
classes in the stable conjugacy class of 7o. We may find a sequence {vg} of strongly G-regular

elements in Ty (F) such that {vx} — 7%. Let v¢ be the image of v under Ty — T. Then
the limit 75, = g; '72g; of {g; 'vcg:} has 7% as image. We define

A('y%ﬁ"g)zwhrg Ay, 97 "v69:),
H—=VH

as an examination of the terms in A shows the right side to be well-defined. Then if f, f#
have A-matching orbital integrals we have

(I)St rYvaH ZA7H77G 7G7f)7

where ®(v4, f) is as specified in (1.3) and

m

O™ (v, 1) = @i £,
=1
with v}, = h;'ygh; and {h;} representatives for D(Ty). Thus on either side a conjugacy

class may contribute several terms.

4.4. Passage to central extensions. The center of (G is canonically embedded as a central
subgroup of H. If vy is an image of 7 then 27y is an image of z7q, z € Z(F). Still assuming
H is 'H we have:

Lemma 4.4.A. There is a character \¢ on Z(F) such that
A(ZVHWZ’YG) = )‘G(Z)A(’YHafyG)a z € Z(F>7
Jor all vu, va-

The proof will be included in another paper. There is one case which it is useful to treat
here.

Proof for z in the identity component Z° of Z. According to the definitions,

A2y, 296) A1, v6) ™ = Dal2ym, 296) Do, 76) ™ = (. 2),
so that we have to show that the character z — (a, z) on Z°(F) is independent of the choice
of vy and of Ty — T', y-data and a-data. The last three choices have no effect because they
have no effect on A. B
Given also ¥ and Ty — T we form S =T x T/Z°, Sy =Ty x Ty /72°, G = G x G/Z°
and H = H x H/Z°, where Z° is embedded in each case by z — (z,271). Because Z° is
connected we have natural embeddings

Lg s b 5 I, LSy s My x My, "G =G x'G, "H —'Hx'H

and may form commutative diagrams
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LI — L xLH Lg s L7 x LT
§£ I(E,E) 5s£ {(gmﬁ
LG — 5 LG x L@ LG — ., Lqg

and so on. As a result we conclude that the element (a,a) of H(Wp, T x T) is the image of
an element a of H'(Wx, S). Then

<a7 Z><57 Z>71 = <(a>§)> (Za Zﬁl)> = <57 1) =1
and the lemma is proved. 0

We now remove the assumption that H is an L-group. The data (H,H, s,§) given, orbital
integrals of functions on G(F') will be matched not with those of functions on H(F) but
with those of functions on H;(F'), where H; is a central extension of H. We shall take H;
attached to a central extension of GG as the arguments are more transparent. Thus we fix
a z-extension 1 — 7, — G; — G — 1 of G [K1]. This means, in particular, that 7, is a
connected central subgroup of Gy, G1(F) — G(F) is surjective and the derived group of Gy
is simply-connected. The dual sequence 1 — G — @1 — 21 — 1 allows us to regard G as
a subgroup of G;. We may assume that og, (o) and gg(0) agree on G, o € T, so that LG
embeds canonically in *G;.

There is a central extension 1 — Z; — H; — H — 1 and embedding &; : “H; < G such
that (Hy,LH,, s, &) are endoscopic data for Gy (see [L1]). The parameter for a character
on Z(F) is given by

Wrp —— LGl — LZl ,
where the ﬁrﬁt arrow denotes the restriction of & to Wpr and the second is the natural
extension of G — Z;.

The matching is to be between orbital integrals of functions f on G(F'), and thus of
functions on G (F) invariant under Z;(F), and orbital integrals of functions f#* on H,(F)
satisfying

fH(zh) = M) ffr(h),  z€ Zi(F), he H(F).

We need consider only elements vy, whose image in H(F') is strongly G-regular. Then
Vi, is an image of vo € G(F) if it is an image of some 7, in the preimage of v¢ in Gy (F).
The element 7g, is uniquely determined. We say that f and f! have A-matching orbital
integrals if, as usual,

(D8t7 17fH1 ZA’}/HU’YG‘ fYG?f)

for all such ~yy,. Because of the transformatlon rule for fH1 we must have

A('Z’YHN’YG) - )‘(Z>A(7H1770>7 KAS ZI(F)
The factor A(ym,,vq,) has been defined. We set

Al ve) = Alvm, v6)
if v, is an image of 7, and 7¢ is the image of vg, under G1(F) — G(F), or A(vw,,7¢) =0
if vy, is not an image of 4.
Recall that
A(zym, 2v6) = M(2)A0m,v6,), 2 € Zu(F),
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where A; is the character on the center of G (F) attached to a [see the beginning of the proof
of (4.4.A)]. To conclude that

A(ZP}/H1 ) fYG) = )‘(Z)A(VH1>'YG)

we have only to show that A; coincides with A on Z;(F'). But a is represented by the cocycle
a defined by

&1 'fTHl( w) = a(w)ér, (w), w e Wp,
where Ty, = Cent(yu,, H1) and Ty, — Ti is an admissible embedding. To compute A; on
Z1(F') we project a onto Zl, obtaining a; : Wr — Zl Since, by construction, §r,, (w (w) € Hxw

and &7, (w) € G x w, w € Wg, we have that Wr - & LG, — £Z; coincides with w — a;(w) X w
and then A\; = X on Z;(F) by definition.

The group H; is determined up to isomorphism by G; and (H,H, s, &), but & may be
replaced by b ® & where b is a 1-cocycle of W in the center of H 1. This cocycle determines
a character \g on H(F) and A\, A\; are replaced by AgA, AgAp.

Finally, we observe that it is only the equivalence class of (H,H, s, §) that matters for the
definition of A. The choice of twist ¢ : G — G* does affect A, but ¥ may be replaced by
Intz o, x € G*, without effect.

5. REGULAR UNIPOTENT ANALYSIS

5.1. Regular unipotent elements (review). Recall that the regular unipotent elements
of G(F) are characterized by the property that each lies in exactly one Borel subgroup of G.
They form a single conjugacy class [St].

Suppose B is a Borel subgroup of GG containing the maximal torus 7'. Denote by N the
unipotent radical of B. For a simple root a of T"in B let N, be the 1-parameter subgroup of
N attached to @ and N be the subgroup of N generated by the 1-parameter subgroups for
the remaining roots of 7" in B, so that N is the direct product N, - N*. Set N’ =) N
Given root vectors {X,} we define z,(u) for v in N by

u=expry(u)X, (mod N%).

Then u is regular if and only if z,(u) is nonzero for all simple a. See [Stl, pp. 110-112] for
this and the next paragraph.
Fix ug regular in N. Then every regular element in N may be written in the form

w =t ut,

where v/ € N’ is uniquely determined and t € T is determined modulo the center Z of G.
Conversely, every element of this form is regular in N. Note that z,(t " 'u/ugt) = a(t) " aq (uo).
Let u be any regular unipotent element of G, B, be the Borel subgroup containing wu,
and T, be a maximal torus in B,. For each simple root a of T}, in B,, define a root vector
XY by requiring exp X to be the projection of u onto N,. Write y»/(u) for the splitting
(Bu, T, {X"}) of G. Every splitting of G is obtained in this manner.
The following are equivalent:
(i) G is quasi-split over F.
(ii) G has an F-splitting.
(iii) There are regular unipotent elements in G(F).
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For (iii) = (ii) we observe that if v € G(F') then 4/ (u) is an F-splitting as long as T}, is
chosen over F'. Note also that then 44/(u) is determined up to N(F)-conjugacy by . For
(i) = (iii), the existence of a Borel subgroup over F' implies that the conjugacy class of
regular unipotent elements is defined over F'. This class then contains an F-rational point
[K1].

From now on G will be quasi-split over F. The regular unipotent elements in G(F') form a
single stable conjugacy class by definition [K1]. Suppose T'and B = T'N are defined over
F. Then each G(F)-conjugacy class of regular unipotent elements in G(F') meets N(F). If
ug € N(F) is regular then the regular element u = t~*v/ugt in N is F-rational if and only if
u' € N'(F) and to(t™!) € Z(F), 0 €T.

Lemma 5.1.A. The correspondence u — g/ (u) induces a bijection between the G(F)-
conjugacy classes of reqular unipotent elements in G(F') and the G(F)-conjugacy classes of
F-splittings of G.

Proof. As above, if u € B(F) then 4/ (u) is determined up to N(F')-conjugacy, where N
is the unipotent radical of B. On the other hand, if 42" = (B,T,{X,}) is an F-splitting
then we can find v € N such that »/(u) = . For 0 € I' we must have y/(ou) =

as well, which implies that u~'o(u) lies in N’. Because H' <F, N'(F )> is trivial we can find

u' € N’ such that uu' € N(F'). Then y/ = »/(uv’). It is clear now that u — 4/ u induces
a surjective map from G(F')-conjugacy classes to G(F')-conjugacy classes. For injectivity it
is enough to show that if B = TN is over F' and 4/ (u1) = »#/(uz), where u; and u, lie in
N(F), then u; and uy are N(F)—Conjugate. But 4/ uy = 44/ uy implies that uy = t~ '] ugt
and uy = t'ubugt with ¢t € T and u}, uy), € N’, for some fixed regular ug € N(F'). Because u,
uy € N(F) we have to(t7!) € Z, o0 € T, and u}, uy, € N’(F). Thus it is enough to show that
uwjug and ubug are conjugate under N (F) This is so because N'(F)uy is the N (F)-conjugacy

class of ug [Stl, p. 112] and H* (F, N(F)) = 1. The proof is then complete.

We now define a transfer factor A(u) for u regular unipotent in G(F'). Fix an F-splitting
= (B, T, {Xa}) of G. There exists h € G such that

S W) = i,
where h acts in the obvious manner. Then ho(h)™! lies in the center Zy. of Gy, 0 € I'. The
class inv(u) of ¢ — ho(h)™" in HY(T, Z,.) is well-defined.
To pair inv(u) with the endoscopic datum s we choose any maximal torus 7" over F' in G
which contains regular elements with images in H(F'). inv(u) has an image invy(u) under
H'Y(Zy) — HY(TL.). As earlier, (3.1), s determines an element sy of 7o(7Y,). We set

(inv(u), s) = {invy(u), sr).
The argument used in the proof of Lemma 3.2.A shows that <inv(u), s> is independent of
the choice for T'. In addition if we define A(7,7) and Ao(Fy, V) as in (3.7), but use—
for reasons that will appear later—the opposite splitting 4+ = (Boo, T, {X_a}), where
B, NB =T and the root vectors X_, are fixed as in (2.1), then

A H> IG
Au) = m@w u),s)

is independent of the choice of 44" Finally, A(u) depends only on the G(F')-conjugacy class
of uin G(F). O
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5.2. Stars and the variety X. This will be a review of some material from [L3]. We
continue with G quasi-split over F' and (B, T, {Xa}) an F-splitting of G.

Let T be a maximal torus over F' in G. We fix some Borel subgroup By containing 7" and
in the usual manner transport the roots, Weyl group, Weyl chambers and Galois action for T’
to T without change in notation. We denote by €2 the Weyl group, by 20 the set of Weyl
chambers and by W, the chamber attached to By or B. If w € Q we write W (w) for the
chamber w™'W, and B% for the Borel subgroup w™' Brw, where w € G represents w.

Let S be the variety of stars attached to 7' [L3]. The choice of By affects S, but a different
choice yields an F-isomorphic variety. Recall that the elements of S are functions from 20
to B, the variety of Borel subgroups of G. A typical element will be denoted (B(W)) The
F-structure is defined by

o (B(W)) = (a<B(a;1(W)))), ser,

and G acts on the right:

(BW))* = (97 B(W)g).
If W, W' are adjacent chambers, so that W = W (w) and W' = W (w(a)w) for some w €
and simple root o of T in B then by definition (B(W), B(W’)) lies in the closure of the orbit
of (Br, B4 in B2,

The standard star sy is given by B(W(w)) = B%, w € Q. A star is reqular if it lies
in the G-orbit of sg. The F-rational regular stars form the orbit of sy under A(7) =
{9eGF):gotgeT}.

Let Bo be opposite to B relative to T. Then S(B.) consists of all (B(W)) for which

each B(W) is opposite to B, and S(B,,, B) consists of those stars for which we also have
B(W,) =B. If B,, = TN, then the morphism

(n. (BW))) = (BW))"
from N X S(By,B) to S(By) allows us to identify these two varieties.

If W is a chamber and 8 a W-simple root the coordinate function z(W, (), or z(w, @), is
defined on S(Bu, B). Here w € Q and B-simple « are given by W = W(w) and wf = a.
The chamber W' = W (w(a)w) is adjacent to W and there is a unique h € N such that

hB(W)h™! = B,
and then
hB(W')h™! = exp(—2X_,)Bexp 2X_,,
where z = z(W, 8) = z(w, a) lies in F. We have, for F-rational (B(W)),
(5.2.1) o(z(w,a)) = z(owor', oa), oel.
If g € G and s = (B(W)) is a star we write g € s if g € (), B(W). Let X" consist of all

pairs (g, s), where g is regular semisimple, s is regular and g € s, and let X be the closure
of X"in G x S. Both X° and X are defined over F, and X is contained in { (g,5): g € s }.

Thus ¢ : (g, (B(W))) — (g, B(Wy)) is a well-defined morphism from X to the Springer-

Grothendieck variety M = { (9,B):g€B } Let 7wy : M — G be the projection onto the
first factor and ¢y : M — T be defined by ¢y(g, B) = 7 if h='gh = v mod Ny where
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B" = By and Ny is the unipotent radical of By. Both my; and ¢y, are smooth and m; is
proper. Set 1 =m0 & and ¢ = ¢y 0 €. Then both m and ¢ are defined over F', and ¢ is
smooth and proper.

Set M° = 7' (Gregss)- Then € : X0 — M is an isomorphism. If 4 € T is regular then
¢~ () is the G-orbit of (v, sg) and so may be identified with the conjugacy class of v in G. If
also 7 is F-rational then ¢~1()(F) is identified with the stable conjugacy class of v in G(F).

5.3. Regular unipotent elements and X. Suppose u € G is regular unipotent and
contained in the Borel subgroup B,. Then we define the star s, by B(W) = B,, W € 25,
and set x, = (u, $y).

Lemma 5.3.A.
(i) xy lies in X.
(i) If u e G(F) then x, € X(F).
(ii) £ : X — M is invertible at x,,.

Proof. A point in S(B,,) may be written s", where s € S(By,B) and h € N,,. Suppose
g € s". Then we write g = h™'tnh, where t € T, n € N. We calculate the z-coordinates of s
in terms of ¢, n as follows.

Let s = (B(W)). If a is B-simple then z = z(W,, @) is the solution to

B(w(a)Wy) = exp(—2X_o)Bexp 2X_,.
On the other hand, write tn as
tn = texp(za(n)Xs)n'
where n’ € N*. The condition that
texp(zq(n)Xa)n' € Bw(a)Wy)
is the requirement in SL(2) that

1 Ojla O |[1 =z 1 0] |ar o
2z 1110 a7 '|0 1|{|—2z 1| |y b
be upper triangular, where z = z,(n), z = 2(W,,«) and «a(t) = a*.
If s is regular then z # 0 and
vz =1,n)z(Wi,a)=1—a?=1—a(t)"

This equation continues to hold on X. Observe also that a; is then a=! and z; is a?z. More
generally, suppose W = W(w) and wf = . Then:

Lemma 5.3.B. If n is reqular then
1- Bt

z W7 /8 = )
)
where x(W, B) is a rational function of tn which is defined and equal to xo(n) att = 1.

Proof. Consider now z = z(w(a) W4, w(an)ag), where ag, a; are B-simple. Let z; be the
coordinate z(W,, aq) of s, so that
exp le_alB(w(ozl)W+) exp—2X_,, =B
and
exp le,alB(w(al)w(&g)W+) exp —21X _q, = exp(—2X_o,)BexpzX_,,.
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Thus z is the coordinate z(W,, ) for the star
Bi(W) = expz1 X_q, B(w(a)W) exp —z1 X _q,, W e,
which is regular if s is. Replace tn by
ting =exp 1 X_g tnexp —z1X_,,.
Then if z,,(n1) # 0 we get

1— Oéo(tl)_l
z(w(al)W+,w(a1)ao)—xao(nl) :

The earlier SL(2) calculation shows that ¢, = w(ay)(t) and also that if oy = aq then
Tag(n1) = ap(t)Ta,(n). Otherwise x,,(n1) is a more complicated function of ¢ and a but
it is equal to x,,(n) at t = 1, for then z; = 0. Thus the lemma is verified in the case of
z(w(ar)Wy,w(ar)ag). We repeat this procedure to obtain the lemma in general. O

From this lemma we deduce immediately Lemma 5.3.A. For (h™'tnh,s) € X the star s is
a rational function of ¢, n and h that is defined in a neighborhood of t = 1, n = u, where it
takes the value s,,. OJ

Corollary 5.3.C. ¢ : X — T is smooth at x,,.

5.4. Orbital integrals as fiber integrals. From now on we assume F' local and view
> Ay, 76)® (6, f), f € CF (G(F)), as a fiber integral on X (F). Fix for once and for
all an admissible embedding Ty — T of Ty in GG, which is quasi-split over F', along with the
Borel subgroup By containing T'. If ~ is the image of 75 under Ty — T then

v =Y Al ve)o(ve f)

is a function on the regular elements of T'(F'). Its value at 7 is an integral over the fiber
¢~ H(y)(F) in X(F) as follows.

The forms wg, wr on G, T and measures |wg|, |wr| have been specified in (1.4). To wg
there is attached a G-invariant form wy; of highest degree on M nowhere vanishing on M
and hence, after transport by &, a G-invariant form wx of highest degree on X nowhere
vanishing on X° [L3| Lemma 2.8]. We embed the variety U, of regular unipotent elements in
G as an open subvariety of ¢~*(1) under u — z,. More generally if z € Z we embed U, as
an open subvariety of ¢~ !(z). Then ¢ is smooth at the points in zlU., and we see easily that
wy is nonvanishing around zle,. If v € T'(F) is regular then the quotient of wy by ¢*(wr)
defines a G-invariant form w., of highest degree along ¢~*(v). For z € Z we similarly obtain
a G-invariant form w, of highest degree along 2U,.,. For v and z F-rational the measures
lw,| on ¢~ 1(7)(F) and |w,| on Zee(F) are specified in the manner of (1.4). Recalling the
definition of wr in (1.4) we note that |w,| is independent of 7. On the other hand, by [L3|
Lemma 2.12],

jor] = TTIL = a7 - lwal /|or .
where the product is over roots a of 7' in By. We replace |w,| by

| = [T )]

to obtain
|w3| = Da(7)|wal/|wr]-
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Then for vy strongly G-regular we may write

Du(yu) Y Ay, 16)® (e, f)

G

/ A@) f (n(@)) 2],
d~L(7)(F)

as

where
Aa) = Ay, m(x)) D (vi) Da ()~
With suitable conventions there is a similar formula in the case « is not strongly regular, but
we shall not need this fact.
Since G is quasi-split over F' we have defined A(vy,vq) as
A(WHa WG)
A0(7H77G>A0<7H’7G>7
where 7, 7 are fixed and
Ag = AtAnA;AxAry.
But A (yu,v6) = Da(v)Du(vr) ™" and Ai(va,v6), An(va,V6), D2(vm; ve) depend only
on 7. Thus Aj(z) = A (yu, 7(x)) alone varies along the fiber ¢~ () (F).
Write x as (7g, $) and assume s € S(By). To specify A;(z), we choose g € G such that

<7G7 5) = (’Ya 80)97
where sg is the standard star. Then inv(vy,g) is the class of the cocycle o — ga(g)™! in
HY(T) and
A(x) = <inv('yH,’yg)’1, sT>

[see (3.4)]. More precisely, we should pass to G to define inv(yy,ve). We do so without
change in notation. Proposition 5.2 of [L3] describes the inverse cocycle o(g)g™! in terms of
coordinates. We recall this next.

The cocycle A(T') from (2.3) will be computed relative to a-data {a,} and the splitting
opposite to (B, T, {Xa}). Also p will denote the gauge on the roots of T in G attached to

Br, and []], will indicate a product over roots o such that p(a) = 1 and plozta) = —1.
Suppose w(aq) - - - w(a,) is a reduced expression for wy(o), where o = wr(o) X o. Set wy = 1
and wy = w(ag) - wlag), 1 <k <7 If pla) =1 and plor'a) = —1 then a = wy_1(aw),

some 1 < k < r, and we may set
2(o,a) = z(—wp_ 1 W4, —av).
Note that —w,_ W, = wp_qw_W, and
— = W 1W_Q,
where w_ € € maps W, to —W, and o = —w_ay.

Lemma 5.4.A. inv(vy,ve) ! is represented by the cocycle

2

o ()

1,0
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Proof. This formula has just to be reconciled with that of [L3, Proposition 5.2]. We have
used h, where (Bp,T)" = (B, T), to identify roots of T with roots of T. Suppose that
(Br, T)" = (Bs, T) and weo(0) = w_wr(o)w_. Then
Woo(0) = w(@y) - - - w(a,)
is a reduced expression. We define n(ws(c)) and n(ws(0)™) as in (2.1), but relative to the
splitting opposite to (B,T, {Xa}). Thus
n(we(0)™') = n(—a,) - n(—a).
By Lemma 2.1.A

n(woe(0) 1) = n(we(@)) " [T~

where []_, indicates a product over roots « such that both o and —ws (o) v are positive for

B.. Note that h; <Hm(—1)“v)h1’1 = ’fﬁ(—l)av. Applying (5.2.1)) we rewrite the formula
of [L3] as

o(h)n(we(o) " T(=1) A7

oo
times

hy 1_[Z(a,wk—l(ozk))w(al)mw(a'“l)aZ hit.
k=1

(To make the comparison with [L3] easier we note that hy «» hw”', that n(ww(c)™!) +
W, *+* Wa,, and that all u,, are 1. We recall from (5.2.1)) that o (z(w, a)) = z(owor', oa).)

Siﬁce NT):0— h1< -~ agv)n(wm(a))a(hl_l), we obtain

p

AT [T e [T T 2(om0) ™"

1,0
as desired, because Int h; takes the root @ of T to the root —a of T O
Lemma 5.4.B. If y¢ = ny 'tnn; where n € N is reqular and n, € N, then z(o,a) = 1:;(:(3)),

where x(o,a) = x5, (n) asy — 1.

Proof. ¢(yg,s) = v implies that h™'yh = t and we have only to apply Lemma 5.3.B to
2(—wp AWy, —a). n

The constructions and results of (5.3) and (5.4) are described for SL(2) in [L-S].

5.5. A limit formula. We assume that H; is a central extension of H as constructed
in (4.4). The character \“* of Lemma 4.4.A defines characters A on Z;(F), the kernel
of Hi(F) — H(F), and X\ on Z&(F), the preimage of the center Z(F) of G(F) under
H,(F) — H(F). Recall that Z(F) is canonically embedded in H(F'). The projection of
ZE(F) onto Z(F) will be written as 2; — 2z, and 7; will be an element of H;(F') with strongly
G-regular image vy in H(F).
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Theorem 5.5.A.
lim l)H1 0i! ZA 71;'76‘)(1)('76'7]0)'

Y121
G

18 equal to

%z ZA (zu, f),  feCE(G(F)),

where Y, indicates summatzon over representatives u for the G(F')-conjugacy classes of
regular unipotent elements in G(F'), and

d(zu, f) = / fl,

the integral being taken over the conjugacy class of zu, an open subset of zUyeg(F').

Corollary 5.5.B. If f € C*(G(F)) and f* € C(Hy(F),\) have A-matching orbital

integrals then
Z(I)(zlul, = A%z ZA (zu, f).
u1

Proof of the Theorem. Because A(z171, 27g) = A9 (21)A(71,7¢) we reduce immediately to
the case z; = 1. Replacing G by G; we may assume that H; = H. By known properties of
the asymptotic behavior of orbital integrals it suffices to consider a function f supported in a
small neighborhood of a regular unipotent element in G(F).

Suppose that v is strongly regular, and let z = (yg,s) lie in ¢~1(v)(F), with s in the
coordinate patch S(B.). We write x as (tn, s;)™, where n; € By, s1 € S(By,B) and
t = h™tyh, and assume n € N is regular. Then all that has to be shown is that as v — 1 we
have A(z) — A(n). From (5.4) we have

Alx) = A(?H? ?G)

AO (7H7 rYG’)

Both Ag(7y,7) and Ar(vm,ve) are to be computed relative to the same F-splitting, that
opposite to (B, T,{X,}). Nothing else depends on a splitting.

The quotient A(F g, 7Va)/Ao(F g, V) i a constant which also appears in A(n). By definition

A1y, va) = <)‘(T)aST>-

Au(vu,ve) Hxa( )

where the product is over representatives « for the I'-orbits of roots of T' outside H. If O is
an asymmetric orbit then the contribution for +O is a character (which we could take to be
trivial) evaluated at v (Lemma 3.3.A). Thus we need take into account only the symmetric
orbits. It remains to consider Aq(yy,va), for Aq(vw,7g) is a character evaluated at v and
so has limit 1. But

A (vasve) - Au(vasva) - A(ve,ve) - Da(ves va)-

Also

A1<7H7 VG) = <il’lV(’}/H7 ’YG)_17 ST>

~1 is represented by the cocycle

and inv(7u,76)
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of Lemma 5.4.A. On cancellation with A; we may replace inv(vx,vg) ! by the class of the
cocycle
D oV D av
H( —Qg ) B H(aax(a, a))
Utoay) ~HGE =

(see Lemma 5.4.B). But around 1, a(7)'/? is well-defined and continuous. Thus we rewrite
the cocycle as

{1 ) TG

Since aa/<a('y)1/2 - a(v)’lﬂ) lies in F, the first product is a cocycle (Lemma 2.2.B).
The pairing of this cocycle with sr yields

I (=)

where the product is taken over representatives « for the symmetric I'-orbits of roots outside
H (Lemma 3.2.D). The product of this term with the contribution of the symmetric orbits to

A is then:
1/2
[ (o Loy = e,

and so approaches 1 as v — 1. We conclude that

A(7H77G’) :
lim A(z) = Aol Ta) LHKC(’Y)’ sT),

where C(7) is represented by the cocycle

p

[ (st )t )"

1,0

But lim,,_,; z(0, a)a(y) /% = 24, (n) (Lemma 5.4.B). Thus it remains to show that

P %
H Lay, (n)
1,0

represents the class invy(n) defined in (5.1).
We shall pass to G as necessary, without change in notation. Choose t € T such that

a(t) = za(n)
for all simple roots . Then inv(n) is the class of ¢ — to(t)™! in H'(Z). Its image invy(n)
in H(T) is, after transport to T, the class of this same cocycle but now for the or-action

on T.
Set t; = w_(t7'), and note that

for all simple . We have also that
o(t)t;" = w_(ot ™ w_(t) =w_(to(t™)) = to(t™)
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since this last element is central. Thus it is enough to show that:

p
Hmak (n)®" is cohomologous to  o(ty)t7".
1,0

But [}, 7a, (n)®" = TI1_, za, (n)*+@5). For this, recall that wr (o) = w(ay)---w(a,) is a
reduced expression and wy = 1, wr = w(ay) - - w(ay), 1 < k < r. Hence

H T ()" = H g (61) ) = tyw(an) - wloy) (87") = trwn (o) (67).

Since oty = t; (mod Z), this equals
o(t)wr(o)(oth) = o(t)or(ty') = o(t)ty - tiop(ty?),

and we are done. O

6. GLOBAL CONSEQUENCES

6.1. Outline. Here the results take a simple form. To explain them we continue the example
of SL(2) from (1.1). Now F' is a number field with adele ring A. The global matching
concerns

(6.1.1) > Aa(vm,v6)®alve, 1),

gle,
where vy # £1 lies in H(F) and is an adelic image of 7¢ € G(A), Pa(yg, f) is the
integral of a function f on G(A) along the G(A)-conjugacy class of 74, and the sum is over
representatives yg for G(A)-conjugacy classes. The factor A, is prescribed as follows.

To say that vy is an adelic image of v we mean, in this example, that v is everywhere
locally stably conjugate to the image v of v under some admissible embedding H — T
of H in G defined over F. If ¢, is the component of 74 at the place v then the element
inv(vm,v6,0) of H (T, T(E,)) is defined as in of (1.1). For almost all v it is trivial
and the image inv(yg) of Y-, inv(yu, v6,) in the 2-element group H' (T, T(E)\T(Ag)) is
independent of the choice of 7. Moreover, inv(ys) is trivial if and only if the G(A)-conjugacy
class of v meets G(F). Tate-Nakayama duality allows us to pair inv(yg) with the image sp
in 7' of the endoscopic datum s, that is, with the nontrivial element of TT. Then we define

AA(VH,Y6) = <inv(70), 3T>.
Thus Aa(vm,v¢) = 1 if the G(A)-conjugacy class of ¢ meets G(F') and Aa (v, 76) = —1
otherwise.

We use unnormalized Tamagawa measures to specify orbital integrals. The function f is
to be of the form [], f, where f, € C2°(G(F,)) for all v, and for almost all v the function
f» is to be the characteristic function of K, = G(QO, ) divided by the measure of K,. Then
Pa(ve, f) =11, 2(ve,0, fo). The local factor A(yy,ve,) was defined in (1.1). Inspection of
the terms shows that

(6.1.2) Ay, v60) =1 for almost all v

and
(613) HA(PYH;P)/G,U) = AA(VH?VG)
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provided the fixed elements 7, 7, are F-rational and at each place v the otherwise arbitrary

A(Fy, ) is chosen so that (6.1.2) and (6.1.3]) are satisfied.
Then

> Aa(v16)®a (e f ZHA Vi1,796.0)® (Ve f)
ole v
—HZA Vit Y6) (Va0 fo)

v VG

by |[L2, Lemma 8.3]. This equals [], /¥ (vx) where f/ is the smooth extension of
YH — Z A(7H7 7G,v)¢(7@,va fv)

YG,v

to H(F,) (see Lemma 1.1.A). For almost all v, f is the characteristic function of the maximal
compact subgroup of H(F,) divided by its measure.
We set f# =T, fZ to conclude that

Fom) = Aa(va,16)®alve f)-
e
This is the global matching of orbital integrals for our example (see [L-Li p. 756]).
In general we shall define an adelic factor Ap, and verify (6.1.2)) and the product formula
(6.1.3) for the local factors of Sect. 3. Then suppose that f = [[, fo, /7 =1, /¥ are as

usual, and that strongly G-regular v5 € H(F') is an adelic image of 75 € G(A). Because of
(6.1.2) and [L2, Lemma 8.3] we have for almost all v that

O (v, £ =) A vew) (Ve fo),

plexy)

each side having non-zero contribution from only one conjugacy class. Thus if f, and f2
have A-matching orbital integrals for all v we conclude that

(6.1.4) Oy (i 1) =Y Aa(ym,76)®a e f),

G

where the left side is, by definition, the sum of the integrals of f along the H(A)-conjugacy
classes of elements everywhere locally stably conjugate to v4. With a little care this extends
to elements vy which are G-regular but not strongly G-regular (recall (4.3) for the local
analogue).

Finally we shall observe that the Global Hypothesis of [L.2] is satisfied. Thus, assuming
the Hasse Principle for G, the factors of Sect. 3 will be correct for stabilization of the
Arthur-Selberg Trace Formula (see [L2, Chap. VIII}).

6.2. Notation. If v is a place of F then we fix an extension v of v to F and for L C F

denote by L, the completion of L so determined. There will be no harm in working with some
suitably large finite Galois extension L C F' of F'. Thus I' = Gal(L/F) and I', = Gal(L,/F,).
Set W = Wyp,p and W, = Wg, /. Then we fix W, — W such that

1 —— LY > W, > 1y > 1

L]

1—— C} |74 > I

~
—_

g
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is commutative.
Global endoscopic data (H,H, s, §) yield data (H,H,,&,) for G as a group over F, such

that each of
H, W,
%74

> H

H, LI La,

|

H LG

~
—_

~

Ty ——— T

~
—_

~

and

is commutative, \ivhere L@, is the semi-direct product G W, with W, acting through
W, = W % AutG.

Again H need not be an L-group and we introduce central extensions of H satisfying global
analogues of the conditions of (4.4) (see [L1, [K1]). In the following discussion we assume
that H itself satisfies these conditions and identify H with LH. Passage to the general case is
then routine, following (4.4) for the local case.

Let K =[], Ky, K* =[], K be compact open subgroups of G(Ay), G*(Ay). We fix a
finite set V4 of places such that for v ¢ V4 the groups G, G* are unramified at v and K,,, K}
are hyperspecial maximal compact subgroups of G(F,), G*(F,). Outside Vj, v is defined over
F,, up to composition with an inner automorphism which does not affect transfer factors.
Choose g, € G(F,) such that 1, = Int g, 0 ¢ is defined over F, and takes K, to K. Then
1, may be used to identify G(F,) with G*(F,).

6.3. Adelic images and transfer factors. Suppose vy € H(F') is G-regular and lies in
the maximal torus Ty of H.

At each place v we shall allow only admissible embeddings of T in G* which are defined
over F. These exist by Steinberg’s Theorem (see [K1]). Then we say that vy is an adelic
image of 7o € G(A) if, for every v, vy is an image of the component g, of 75 in G(F,).
Thus if Ty maps to T and vy to v € T(F') under some admissible embedding over F' then
we require that for each v there exists z, € G*(L,) such that Int z, o 1) maps the maximal
torus in GG containing 7, to 1" over [, and carries 7, to 7.

Suppose vy, 7y are strongly G-regular elements of H(F') and are adelic images of ~g,
Yo € G(A). For an L splitting T the element

. VH; VG w
Hy =NV ———
(fYHv ’yG,v )
of H(I',,U(L,)) was defined in (3.4).

Lemma 6.3.A. p, =1 for almost all v.

Proof. Take an L splitting T'. For almost all v ¢ Vj: (i) L is unramified at v; (ii) 7, yq, lie
in K,; and (iii) for each root a of T"in G*, a(y) is a unit in the ring of integers of L,. That
vu is an image of 74, means, for v ¢ Vp, that v¢, and v are stably conjugate. If (i), (ii),
and (iii) are satisfied v¢, and v are conjugate under K, (|JL2, Lemma 8.3]). If K, is the
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stabilizer of the hyperspecial point x of the Bruhat-Tits building of G(F;,) we denote by K.
the stabilizer of z in Gg(F,) and by K1 the stabilizer in G (L,). By [K3l (3.3.4)], 76
and 7y are conjugate under Ky 1. Since HYT,, Ty N Ky r,) = 1 for almost all v and yg,,, ¥
are strongly regular we conclude that 7 ,, 7 are conjugate under K. for almost all v. Then
the class inv(yy,vg,) in H' (Fv, Tsc(Lv)) is trivial.

We argue similarly for 7, and 7 to obtain for almost all v ¢ V} that

(7Ha7@v> inV(ﬁHaiG,v)
Ly = INV = =1,

T Vow )  V(VH Yow)
and the lemma is proved. O
Let yu be the image of Y, p, in H*(I',U(L)\U(AL)) under

ST HN T, U(Ly)) — HY(D,U(L)\U(AL))

given by 1 - U(L) - U(AL) = U(L)\U(AL) — 1 and the isomorphism
> H'Y(T,,U(L,)) = H' (I, U(AL)).

The endoscopic datum s determines sy, € Wo(ﬁ Tv) as in (3.4). By its definition s also
determines sy € mo(TY;) and similarly sz [see (1.2), (3.1)]. As in (3.4) we may define

sy € 71'0([7 ) which depends only on the choice of embeddings Ty — T, Ty — T. Global
Tate-Nakayama duality allows us to pair p with sy and the local-global relationship for the
pairing yields:

(6'3'1) <,u, SU> = H<ﬂva SU,v)-

There is another way to define p. Strongly G-regular gy is an adelic image of 75 € G(A)
if and only if there exists h € GX.(Ap) such that
hp(ye)h™ =~
[see the proof of (6.3.A)]. We proceed as in the local case (3.4). Recall that yo(v)™! = Int u(o),
u(o) € GX(L), and then v(o) = hu(o)o(h)™! lies in T, with dv = Qu taking values in
Tio(L). Thus v(o) defines an element pi7 of H' (T, Tie(L)\Tic(AL)). By global Tate-Nakayama

duality we may pair pr with sp. Further, (ur, sr) is independent of the choice of admissible
embedding Ty — T over F', and clearly

(6.3.2) (. su) = (ug, sT) /(e st)-
It will be more convenient to write (ur,s7) as d(vy,va)-
Lemma 6.3.B.

(1) d(Vi,va) = d(vm, va) if 'yH is stably conjugate to vy in H(F).
(7)) d(vu,vg) = Ay, va) if v is G(A)-conjugate to .
(ii5) d(ve,ve) = AV, Ve) if Y, Ti are adelic images of va, Vo € G(F).

Proof. (i) is immediate. For (ii) we use and then (6.3.1)) to reduce to the proof of
Lemma 4.1.C for the local case. For (iii), 1 is trivial if ’Yg, Y € G(F) for then we find h,

h € G* (L) such that hp(ye)h ™t =7, hp(F)h = =7. now yields the result. O
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Fix strongly G-regular 7, € H(F') and 7, € G(F') such that 7, is an adelic image of 7.
We assume that such a pair 7, 7 exists; otherwise all the following factors are to be zero.

Definition. For all strongly G-regular v5 € H(F),

Ay ve) = AV, 7Ve)/d(ve Ve)
if vy is an adelic image of 7o € G(A) and Aa(vm,V¢) = 0 otherwise.

By Lemma 6.4.B, Aa(vm,7¢) is independent of (i) the pair 7, J4; (ii) vg within its
stable conjugacy class; (iii) 7o within its G(A)-conjugacy class. Further,

AA (7H7 ’YG) =1
if vy is an adelic image of v and the G(A)-conjugacy class of 75 meets G(F).

6.4. Product formulas. To specify the local factors of (3.7) we use a pair 7, 7, of F-
rational elements, as for the adelic factor. At almost all places v we set A (F,75) = 1. At
the remaining places A®)(F,,%) is arbitrary except for the requirement that

H A(U) (7H77G> = 1.

Then as in (3.7), but with the superscript (v) inserted, we set

A(v) (’VHa ’YG',U) = A(v) (TH’ 7G,v)A(U) (,YHa VG w; 7H7 WG)

for all strongly G-regular v in H(F). The relative factor A (vi, ¥q.0: ¥, V) is the product
of
A (v, ve0) AR (760) AP (v, v6.0)

ATy 7e) AYFA) ANy Te)

and
AR)/) (Ve Y60)
AR (T, 76)
The various terms are defined using any admissible embeddings over F;,, and a-data, y-data
for G as a group over F,. We shall use embeddings over F' and global a- and y-data [see
(2.2), (2.5)] in order to obtain product formulas for the individual terms as well as for A.

Theorem 6.4.A.

(i) For almost all v, each of

A1 (VY60 T Es V)

A i v60), AV (v vee), AV (i, vew)

and Ary(vu, Va.0) equals 1.
(i) 11, A%U) (Vi Yew) = 1, and similarly for Aﬁ)), Ag)), and ARJ,)

In the last section we showed that

AP (v, Yows Ta Ta) = 1
for almost all v (Lemma 6.3.A) and that

H A§U) (’}/H? VG,v; 7H77G) = AA(W/Ha P)/G)

(E3T) and €3]
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Corollary 6.4.B.

(4)
(1)

AP (vg,vG.) = 1 for almost all v and
Hv A(U) (’YH’ ’yG,’U) = AA(IYBU /VG)

This product formula contains the Global Hypothesis of [L2, p. 149] because Aa (vw,7¢)
is the term %(e(D)) of [L2]. To see this we translate our terminology into that of diagrams,
as at the end of (4.2). The formula for ¢(D) on p. 137 of [L2] determines an element of
H™'(I', X.(U)) which under global Tate-Nakayama duality coincides with our p of (6.3).

Then (e(D)) is (1, sy) which is the same as Aa (vm,76)-
Proof of Theorem.

(Ar)

(Am)

By definition,

AV (Vi ) = (Mo(Tie), s70)
[see (3.2)]. Recall from (2.3.5) that the global invariant A\(Ti.) € H' (I, T(L)) is
defined and that \,(7}.) is the image of A\(T}.) under H! (F T(L)) = HY (T, T(Ly)).

Thus for almost all v we have A\,(Ty.) = 1 and then AI (7H> Yew) = 1. Further, the
image of >, Ay(Ti) in H' (T, Tye(L)\Tic(AL)) is trivial and so

HA%U)('VH/VG,U) - HO‘U?STW) - <imager\v7ST> =1

(%

In (2.6.5) we attached local y-data {x. } to global data {x,}. The character Y is
defined on F, ,, the fixed field in L, of the stabilizer of a in I, and

AY (v v6,0) Hxa< 1>,

where the product is over representatlves « for the orbits of I', in the roots of T" which
lie outside H. Note that § = 22~ lies in F),, the fixed field in L of the stabilizer of

«a in I'. On the other hand we may write Xo as [, Xa,» Where x,, is a character on
(F, ® F,)*. Then we claim that

A( ,}/H),VG’U HXOMJ

where the product is now over representatlves « for the orbits of I' in the set of roots
outside H. Then

A%’f) (Y, vew) =1
for almost all v and

T12% (i v60) = [T TT xew®) = TT T xew®) = [T xa(6) =1

To prove the claim we fix a root « outside H and choose representatives oy, ..., o, for
[,\I'/T, where 'y, is the stabilizer of o in I". Then o1y, ..., 0, are representatives

for the I',-orbits in the I'-orbit of «w. Thus the contribution to Aﬁ)) (v#, Yap) from
these orbits is [], Xf,%(aié). But F, ® I, = [[, F, ,-1, = [],0; “Y(F,4.0). From

Xa = Xoia - 0; We conclude that if x,, = [[, xi then x; = XE,”L - 0;, and the claim is

proved.
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(As) By definition,
A (1 760) = (07),
where a,, is the element a of H'(W,,T) constructed in (3.5). Because we have global

x-data and Ty — T is defined over F' we may similarly construct a € H'(WV, f)
By (2.6.5) we have that a, is the image of a under H*(W,T) — H'(W,,,T). Thus

Ao(Yi,Ya,) = 1 for almost all v and ], Aé”) (Yi,ve0) = 11, (aw,7) = (a,7) = 1 since
v eT(F).
The assertions of the theorem are immediate for Apy. This completes the proof.

O
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