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This paper is concerned with deformations of structures on manifolds.
It is divided into two parts: Part A treats the question of defining a general
theory of deformations which will generalize the theory in, e.g. [1], [7], and [10],
while at the same time retaining some geometric or analytical significance. The
second section, Part B, investigates in more detail the implications of our
general theory on the “‘classical” structures in differential geometry.

Let G € GL(n, R) be a linear Lie group, and let X be an n-dimensional
manifold. A G-Structure on X is a reduction of the structure group of the
tangent bundle of X from GL(n, R) to G; geometrically, a G-structure gives
a principal fibre bundle G¢— By~ X where B consists of all G-frames on X.
The G-structure is infegrable if X has a coordinate covering such that the
coordinate frames are G-frames. A deformation theory of integrable G-struc-
tures has been givenin [11], and, in case #n == 2kand G < GL(k, C) C GL(2k,R),
some considerable progress has been made towards obtaining general results
generalizing the well known variation of complex analytic structure. In [1]
a deformation theory of Riemannian manifolds of constant curvature was
proposed; a variant of this was used in [13], although the problem in these
cases was specifically to prove the ‘rigidity” of a structure, rather than to
discuss the geometric significance of the existence of deformations.

After some preliminaries in § I, we shall, in § II, give a general definition
of deformations of G-structures generalizing the theories described above. Our
definition may be verbally stated as follows: A 1-parameter deformation of a
G-structure G— Bg—~> X is given by a l-parameter family of G-structures
G— Bg(t)— X, Bg(0) = Bg, such that the deformed structures have precisely
the same local properties as the original G-structure. In other words, we shall
assume the local triviality of our deformations, and then seek the global
implications of this hypothesis. Clearly, such a theory generalizes the special
cases given above.

In § TIT we discuss the relationship of our theory with the theory of sheaves;
the possibility of such a relationship was one of the motivating factors in our
definition. Paragraph IV is devoted to the higher order theory of deformations;
as was indicated, for complex structures, in [2], the main synthesis here is
gained by systematically introducing the enveloping algebra sheaf of the sheaf
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of germs of infinitessimal automorphisms of the G-structure. As a new applica-
tion, we discuss conditions when global infinitesimal automorphisms are
“stable’ under deformations.

The class of G-structures may be partitioned into two subclasses, those
whose local automorphism groups are Lie groups (structures of finite type),
and those whose local groups are not locally compact (structures of infinite
type). We call the former geomelric structures, and Part B is devoted to the
deformations of these structures. The most significant fact which turns up
here is that, for a wide class of manifolds with geometric structures, the study
of their deformations may be reduced to problems in Lie groups. The general
program of Part B is to make this reduction (§§ V, VI, and VII), and then
examine what geometric significance this has for deformations (§§ VII and
VILI). In §IX, some examples of deformations of geometric structures are
constructed, along with the parameter variety of the deformation. It is seen
that these varieties can be, at best, only locally real analytic sets, as happens
for complex structures.

An interesting fact which arises is that, at least with our method of ap-
proach, the global analysis of geometrie structures does not turn out to be any
easier than the global analysis of infinite structures as far as deriving theorems
in deformation theory is concerned. Thus, in § VIII, after having worked
“formally’’ throughout the preceeding part of the paper, the methods of partial
differential equations are introduced, as in [8], to prove the existence of
deformations of structures.

The author would like to acknowledge many valuable conversations with his collegues
on the topics discussed below; in particular, S. 8. CHERN suggested the general problem

of defining a deformation theory, and, also, much of the material in § IV has been in-
fluenced by written communications from D. C. SPENCER.
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1. G-Structures: Basic Definifions and Preliminaries
1. Basic Definitions. Let X be any (differentiable) manifold and let
GL(n,R)— B —— X be the principal bundle of the tangent bundle 7' (X) of X ;
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we shall sometimes consider B geometrically as the bundle of all tangent
frames on X. f G C GL{N, R} is a closed linear subgroup of GL (XN, R}, then
there is a fibre bundle diagram

B —%— B/@
B
X

the bundle B/G is the bundle BX G L(n, R) over X and the fibre is the coset
space G L(N, R)/G. We describe 1y in geometrical terms. If 2 € X, then the
fibre B = n—'(x) may be thought of as all invertible linear mappings f: R* —
— T.(X) (= tangent space to X at x). Then 74(f) is the set of linear mappings
fog:R*—> T,(X) as g runs through @ C GL(n, R). Equivalently, if
f=1(e,...,e) is any frame at x ¢ X, then 74(f) consists of all frames fog

= <): g’ie,-, .. .,2 gf;e,-) where g = (g;‘.) 4.

7 7

Definition 1.1: A G-structure on X is given by a cross section ¢: X — B/G.

The mapping o picks out a distinguished set By of frames over X as follows:
If z ¢ X, then in a neighborhood U of ¢(x) ¢ B/G, we may find a local cross
section ¢: U — Blrgl(U). Then, for a' € wg(U), (too) (@) is a frame
(ey(@), . . ., e (@) = f(2") € By, and Bg|a—*(ny(U)) is the set of frames
f(x')g as 2! varies in 7g(U) and g ranges over G.

This totality of all such “admissable” frames gives a principal bundle.

(L.1) G — By — X,

and we shall frequently use (1.1) to signify the giving of a G-structure on X.

Suppose now that we are given o: X — B/, and let U = {U,} be an open
covering of X by coordinate neighborhoods U;. Over U; we may determine
a local section 8;: U;—~ B|a—1(U,) such that 74(8;) = 0. If {f,;} is the system
of transition functions of X relative to the covering U, then the system {J (f;;)}
gives the transition functions of the bundle B, where, for a mapping 4 : B* —» R#,
J () is its Jacobian matrix. Since 14(8;) = 14(8;) in U; n U;, we have

(1.2) J(fi5)8; = 8.9.;
where g,;: U; N\ U;— G is a smooth mapping. If ;= (2],...,2]) are the
coordinates in U7, we set dx; = (d:L1 ., da}) and w; = da,6 OF Where, for any

A ¢GL{n, Ry, A* == "A i, Then, in U s U,, we ha,ve from (1.2) w; = du;0
=da}J (f;)6¥g:T = w;g};. The cocycle condition gi, gir=gix(@mU;,N"U,;~n U,c)
follows from the cocycle condition on {J (f;;)}. Thus, associated to {o‘ }» we have
a collection {w,} of 1-forms of maximal rank satisfying

(1.3) wy=wiget; gl Gt = it

Conversely, a system {w,} satisfying (1.3) determines a section ¢: X — B/G.
Definition 1.2: A G-structure ¢ : X — B/ is tntegrable if we may choose
{U;}, {8;} above so that ¢;: U;— G.
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Remark: Equivalent to integrability are the statements:

T €6, or (5o 705) € Ba

2. Local Automorphisms of G-Structures. Given a local mapping f: X - X,
we always have its linearization fy : T, (X)— T';(, (X). If f4 is injective, we
may lift f to a bundle mapping

f*B———-—>B

Pk

[+ X—X.

Given a local mapping f of maximal rank, there is an induced mapping f, : B/G—
— BJ@, and f, (o) is a local section of B/G —= X.

Definition 1.3: Iy is the sheaf of non-abelian groups composed of. germs of
local bi-mappings of X such that fy(0) = ¢ o f. Germs in Iy are called local
bi-G-mappings. o

As it stands, I'y is a sheaf over X x X; a more manageable sheaf is the
following: o

Definition 1.4: I'g[f] is the sheaf of germs of local bi-G-mappings of X
which depend parametrically upon ¢ varying in a neighborhood of o € R! and
which reduce to the identity at o.

Thus, a germ of I'¢[t] over an open set U C X is given by open sets W, W
with W~ W' 2 U, an open set ¥ >{o} in R!, and a family of bi-G-mappings
fi: W— W(t ¢ V) with f, = identity.

Proposition 1.1: For a local bi-map f of X, the following are equivalent:
i) falo) =0, (i) fu(Bg) S Bg, (ili) fa(ds) = bigs for some g;: Ui G, and
(iv) fa () = w;g}.

Given a family of local vector fields 6 (f) on X, we may define a family f(f) of
local bi-maps as follows: (i) f(0) = Identity, and (i) —5— /( ) 0(t) o f(t) (where

we consider 0 (f) as a family of maps of X). We set f(t) = exp(@ ). (Cf §IV.l
below.)

Definition 1.6: We define a sheaf of germs of vector fields @y an X by
letting @ be these germs of vector fields § such that exp(£6) € Igltl.

Definition 1.6: We define @G [t] to be these germs of vector fields 6(t),
depending on ¢, such that exp(8(s)) € I'q[t].

Letting g be the real Lie algebra of &, we have

Proposition 1.2: Let 0 be a germ of a vector field, and let Ly denote the Lie
derivative along 6. Then the following are equivalent: (i) 0 € Og, (ii) Ly(8;)=8:9;
where g, : U - g, and (iil) Lg(w;) = — wig,.

Proof : : Let 6 €0y Then

dg(t dg.(t

Le(w.-|=7;t—exp(t6) w],_ =g e)],_= w2l ana 28| v
If, conversely, 0 satisfies (iii), then we easily see that 6 € Og.



296 PrLrip A, Grirrrres:

Corollary: @ is a sheaf of Lie algebras.

Proof: Ly ¢y = {Ls, Ly} and g is a linear Lie algebra.

Remark: I the G-structure ¢ : X B/G is integrable, then, in U,, all germs

d
"a?,‘;= (GC”—‘ 1, ...,?’L) EQG-

Ezxamples: (i) If G = 0O(n), then a G-structure is just a Riemannian
structure, & germ in Iy is a local isometry, and an element § € @ is a germ of
a Killing vector field. (ii) If ¢' = I, then a G-structure is just a parallelism
given by global l-forms w,, ..., w,; these Pfaffians may be thought of as

giving an affine connexion in the tangent bundle of X. This connexion has zero
curvature, and its torsion is given by nz( z '; ! ) functions 07? (@) an X where
dw; = C%,w; N\ wy. The elements 0 ¢ @y are then just the infinitesimal affine
motions of this linear connexion. (iii) If ¢ = GL{n/2, C) (n even), and if we
have an integrable G-structure, then X is a complex manifold, and @¢ may be
thought of as the sheaf of holomorphic vector fields.

We have the sheaf of rings # of C* functions an X, and given a G-structure
o: X-> B|G, we define

Definition 1.7: % = largest sheaf of subrings of # such that, for any
J€Re, 0€0g, |0 €O

There is a mapping p,: @g.— T,(X) defined by p,(8) = 6(z) € T,(X) for
any germ § in the stalk (@g),. We set d(z) = dim (im p,).

Definition 1.8: The G-structure G-> By X is normal if d(x) is constant
on X. The structure is fransitive if it is normal and d{x) = dim X.

Examples: (i) 1f the G-structure is integrable, then it is transitive. If this
is the case, and if G = G L(m|2, C), then %4 is the sheaf of germs of holo-
morphic functions. (ii) Let G = G L(n, R) (8o that we have a parallelism) and
suppose that d(x) = 1 (x € X). Then % is the constant sheaf R of real numbers.

Proof: A vector field 6 € @y if, and only if, Ly(w,) = 0(¢ = 1, .. ., n). Thus,
if ¢; is dual to w;, 8 €Oy if, and only if, [0, ¢,]1= 0@ = 1,...,n). But, for a
function f, {18, e;]1=f10,¢,]~ {¢;/)8; thus [f0,¢,]=0(=1,...,n)if, and
only if, (e,fy=0(s =1, ..., n) which happens if and only if f is a constant.

Q.E. D

Remark: Example (ii} leads us to make the following convention: If
d{z) = 0, then we set (H#y), = 0; if d{x) = 0, then (%g), is as given in Defini-
tion 1.7.

3. Flat G-Structures on R* (see [9]). Let R* be real Euclidean n-space with
global linear coordinates (x%,...,a"), let GCGL(n,BR) be as in §L.1 and

denote by @ the inhomogeneous linear group with homogeneous part G. Let f

be the frame (—a- .. L) at the origin o, and let ¢ - Bg-> R" be the

oxr’ """ oan
bundle of G-frames where By = orbit of f under &. (Remark: we have an exact
sequence of groups G — G ~Z+ Rr and this may be identified with the fibration

G~ Bg— Rr) Weshall describe Oy for this integrable real-analytic G-structure
on R#; it will clearly suffice to describe the stalk (@), at the origin. Letting
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e; = a—i‘]o, any germ £(x) of an analytic vector field at o may be written
(1.4 )= 2 (&, .52 .. .a"e
T A
where £ . is symmetric in the indices j,(x =1, ..., g).
Proposition 1.3: (@), consists precisely of those convergent series (1.4)

satisfying the following condition: For each q and for any gq-— 1 wvectors Ay
= (AL LA A= ()_ql_l, ce Ay

(1.5) Li= Y &, .M. . Heycs.

Jiseendg-1

~—

Remark: Let 8% = ¢'* symmetric product; then (1.5) states that &*
= (& ..;) € Hom(S?(R"), R*) and, under the pairing

Hom (S¢(R"), R%) ® §9-1(R") - Hom (R", R*) = gl(n, R), £ ® S9-1(R")—>
§cgl(n, R).

Definition 1.9: Welet g7 C Hom (S?(R"), R*) be those tensors £ satisfying (1.5).

Remark: g% = R» and gl == g.

Definition 1.10: G is said to be of finite fype if g%= 0 for some ¢ > 0.
If G is of finite type, then the least ¢ such that g? = 0 is the order of G.

Examples: (i) If G is discrete, then it is of finite type of order 1, (ii) if
G = O(n), then g*= tensors &, satisfying &, = — & = &;; thus g2=0
and @ has order 2, (iii) if G = G L(n) or Sp{(n), then G is of infinite type; this
is also trueif ¢ = SL(n), (iv) if @ = C(n)is the conformal group in n-variables,
then @ is infinite if » = 2; otherwise, it is of finite type of order 3, (v) if @

= non-singular matrices of the form (é g), then @ is of infinite type, (vi) the

question of what irreducible linear groups are of finite type is taken up in [9];
also, a general class of linear groups of finite type is given in § VL3 below.

Let @ be connected. We shall construct a sequence G*(G° = @) of linear
groups by giving the linear Lie algebra g; of G*. Let dim@ = d; then g, C
Cgl{n + d, R) is the abelian Lie algebra consisting of all matrices of the form

£ = (g gz) where £2 ¢ g2, (This makes sense since &2 ¢ Hom (R®, g).) In general,

gx(k > 0) is abelian and is defined by g, = (g,—,);- In this way we get a
sequence of linear groups G = G° G4, G2, .. .; G is of finite type of order ¢ if,
and only if, G9= I, G9-1 £ 1.

II. Deformations of G-Structures

1. Geometric Definition. Let D be a manifold with parameter ¢ and distin-
guished point ¢, € D, and let ¢ : X — B/@ be a G-structure on X.

Intuitively, a deformation of ¢ with parameter space D should be given
by a family of cross-sections o(t): X - B/G (t ¢ D) with o{{,) = ¢ which is
smooth in ¢&. However, this definition is too broad, as it clearly leads to an
infinite dimensional variation space. Example: if g is any Riemannian metric
an X, the, for any symmetric tensor &, g + t& gives a deformation of g for ¢

Math. Ann, 155 20
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small. We shall give a definition which will generalize the complex analytic
case and which, we hope, will be of a geometric interest. We first give an
example.

Example: Let G = O(n) and let ¢ € Hom (82T (X), R) be the Riemannian
metric of the Levi-Civita connection. Then we shall define a deformation of ¢
to be given by a family g,(g, = g) of locally isometric Riemannian structures
on X. For example, if X is a real 2-torus with angular parameters 8, 8,, and if
g = d0% + d 03, then such a family g, is given by g, =d6 + (1 — ) d03(—e <
< t<eg). Or we may set g, = d6% + 2646, d0, + db%; both of these families
give locally isometric structures which are, however, globally inequivalent.
Or, if g=¢"%d6? 4 d6%, then g¢g,=e"%d06%+ (1 ~1)db% gives a
deformation, but g, = " % d6% + 2t d6, d0, + 463 does not.

We now give a formal definition. Let D be a neighborhood of 6 in R™ and
let £t = (&, ..., ") be a parameter in D. Then a deformation of the G-structure
g:X— B|G is given by a family of G-structures o(f): X - B/G(c{0) = o,
t € D), depending smoothly on t, and satisfying the following condition:

(2.1) Condition A: There exists a covering U = {U,} of X and local sections
6,(t): Uy> Bla~1(U,) with 14(6,(t)) = o(t) (as described in § 1), and, for each ¢,
there exist a family of local bi-mappings ¢;(t): U;— U,(t € D) and mappings
g:(): U;—~ @G such that

(2.2) @;(t)58,(0) = 8,(t)g:(t) .

Remarks: Equivalent to (2.2) is the equation @,(£)* o(0) = o(t). If the
G-structure given by ¢ is integrable, transitive, or normal, then so are the
structures o(t). Also, if G = 0(n) and the Riemannian structure is locally
symmetrie, then the deformed structures are also. Finally, if G = I and if the
structure functions Cj,(x) are constant, then they are constant for any de-
formed structure.

Let D' be a neighborhood of 0 in R™ with parameter ¢!, and let o(f!) : X —
- B|G(c(0) = g, & ¢ D) be another deformation of ¢. Then ¢ (#!) is equivalent
to o(t) if there exists a bi-map ¢ : D-> D' and a family of bi-maps ¢ (t): X —
— X (t € D) such that g (t),0(f) = o(y(t)). With this definition we may define:
(i) trivial families of deformations, (ii) germs of deformations, and (iii) uni-
versal germs of deformations in an obvious fashion.

The above definition is simple enough, but is ill suited for analytical
purposes, so we shall give another equivalent definition.

2. Basic Sheaves; Coordinates of the First Kind. Let a(t) (t € D) be a de-
formation of ¢{0) = o : X — B/ as described above. We define a differentiable
manifold ¥~ with projection @ : ¥"-> D by setting ¥ = X X D and @{z, {)=t.
We define now a G-structure along the fibres of ¥”. Let T'» be the sub-bundle of
T'(¥") given by vertical vectors (i.e. tangent vectors £ with @, (£} = 0); then T'p
has structure group G L(n, R); let GL(n, R}~ % - ¥  be the principal bundle.
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Wethen have a diagram # » B/, and the deformation o () gives us a section
v

X ¥ > B|G defined by X)X x {t} = o(t). We now investigate what effect
Condition A ((2.1)) has on this fibre space picture.

Let J = sheaf of germs of vector fields on ¥"; J p = germs of vector

fields along the fibres of ¥" — D, and J ;, = sheaf of germs of vector fields on D.
Then we have

2.3) 0 T e T2 T, 0.

We now let Zg = sheaf of germs of vector fields £ on ¥” such that
(expté)y X = X; set ¥y = Zg N T 5, and then we have

(2.4) 0 Y. By 2 @ 0 for some quotient sheaf ¢ .

Recall that for £ €T, (= stalk at x € ¥7), we defined p, (&) = £{z). Then we
have:

Proposition 2.1: Condition A implies that

@ o pm( EG m) = pw(w yD))m

Remark: Intuitively, we have a local infinitessimal G-motion in each
horizontal direction of ¥° —— D.

Proof: For simplicity, we suppose that dim D = 1. We choose a coordinate
neighborhood U; on X such that U, X D is a neighborhood of x = («9, ¢,) € ¥".

A germ in @~Y(J p) is given by a vector field f(x;, t)»% (where f(x,, t) is a
C* function), and pw(j(xi, t) %) = f(a?, ) 2 ]t w € Tagm(¥);  thus
P:(® (T p)). is given by the vectors A o ] . € Tist9(¥)) (A € R); we must

produce a germ &(ay, &) = ) & (x;,?) TZ;;—&— Ay, t)—;i«in (EG),: such that

) 2
A(a?, ty) %= 0, since @ o P, (&(xy, &) = A(aD, f) 57]:::.,'

By (2.2) we have a 1-parameter family of local bi-maps ¢, (2) : U;—~ U;{t€D)
such that @;(f),0(0) = o(t). We define a l-parameter family of local bi-maps
Yo: Uy X D> U, X D, y, = Identity, by y,(z;,t) = (@;( + 8) @ {t) " 2;, t + s)
(D being shrunk if necessary). Then y,(z;, 8)e (2, t) = Z(a}, ¢t + s) where

= @;{t + 8) p;(t)~tx;, and thus y, is a l-parameter family of local bi-G-

mappings on ¥, and %]s~o is a germ in £y,

dy, 3
But d—t]s _ =@ )y a m" ¢ » and this proves the Proposition.
20%
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9

35 With constant

m
Corollary: Let T C Ty be the germs of vector fields 3 A
i—1

coefficients. Then we have a natural diagram

w

0 ¥, Eg Q 0
Tp
|
0.
Definition 2.1: We set 5y = ¢~ 1(T'p) so that we have
(2.5) 0—> Yy—— Eg—— Tp— 0,

and we call (2.5) the basic sheaf sequence of the deformation ¥ — D.

Remark: Although we shall not make use of it, it is true that the hypothesis
of Proposition 2.1 implies Condition A, and this gives an alternate definition
of our deformations. A modified version of this will be given below.

Let {U,} be a coordinate covering of X with coordinates ; = (2},+-+,2%)in U,
and transition functions x; = f;;(x;). Then, relative to the product covering
{U;x D} of #°, a deformation as in §IL.1 is given by a system ({z;},{f:;}.
{6:(0)}, {@:()}, {g:(x;, t)}) satisfying (2.2). For brevity, we write this system
as ({z.}, {f::} {9 O)))-

Definition 2.2: The system ({;}, {f;,}, {@:(#)}) is called a coordinate system
of the first kind an ¥".

Example: If X has an integrable complex structure, then we let U = {U,;}
be a coordinate covering with holomorphic coordinates Z; = (Z}, ..., Z?).
Then, since the deformed structures are integrable, a coordinate system of the
first kind is given by giving C* functions. 7 ,(Z;, t) = (T HZ;, 1), . . ., T 1 Z;, )
such that J,(Z;, 0) =Z; and such that J,(Z,;t), for fixed ¢, gives holo-
morphic coordinates on the manifold X, = @ '(f) corresponding to o(t):
X~ B|GL(n, C).

As another example, if ¢'= O(n), then the G-structure is given, in U,,
by a metric ds? = g¢,;(x) dxida’. Then o (f)| U, is given by dsf = g,,(z, t)datdz!
and a family of local bi-maps ¢;(t): U;—~ U; such that @,(t)* dsf = ds

3. Coordinates of the Second kind. Continuing on with the example of complex
structure of the end of § 11.2, we recall that, in [7], a deformation of a complex
manifold was given by keeping the same coordinates Z; = (Z1, ..., Z?) lo-
cally, but then varying the transition functions. Thus, X, = @-1(t) has a
coordinate covering U = {U,} with coordinates Z; in U,, and, in U; U,
Z, = {;;(Z;, t) where f,;(Z;, 0) = f;;(Z;) are the transition functions of X = X,
The generalization of this to G-structures is what we shall call coordinates of
the second kind. Before making the formal definition, we see what these co-
ordinates will mean for the Riemannian structure at the end of §1I1.2. We

shall have a fibre-space ¥~ —2. D where @~1(t) = X, will have a Riemannian
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structure g,; coordinates of the second kind will be given by a coordinate
covering {W,} of ¥, such that &(W,)= D, with coordinates {y; ¢} in W,
and transition functions y; = f;;{y;, t), t = ¢. Finally, the family of Riemannian
metrics along the fibres of ¥~ —_ D, when restricted to W, will be given by
ds* = g.p(y) dyf Ayl + ko (y, t) dyF d¢ + p(y. t) d*. Thus, ds?|W,; N X, is the
same for all ¢.

To make all this preeise, we assume that we are given a manifold X and a
G-structure ¢ : X — B/G. A deformation of o will be given, first of all, by a
fibre space ¥~ — D such that @~*(f) is a manifold. We then require a section
2" —~ #|G, where, setting X|X,=o(t): X,~ B,/G, we assume that X,
= ®~1(0) is G-isomorphic to X. So far we have no restriction that the deforma-
tion of ¢ should locally preserve structure. This is given by

Condition B: We assume that we have a covering W = {W,} of ¥,
& (W;) = D, with coordinates (y,, ¢} in W, and transition funections y; = f,;(¥;,t),

=¢in W, " W;. For each i, | W, is given by 6,(y,, ) : W;— GL(n, R), and
we require that there exist a mappings g,(y;, t): W;— @ such that, for each
fixed t,

(2.6) 8 (Y t) = 8;(y:, 0) 9: (y, 1) .

We call such a coordinatization coordinates of the second kind.

There is a consistency relation which must be satisfied in order that (2.6)
be invariant under coordinate changes. This requirement is that there exist
9:;: W; N W;— @ such that

(2.7) Ifei 5 ) (Y5 1) = 6:(y:, ) 915 (yis )

where £, (f;,;(y;, t)) is the Jacobian of f;;(y;, £) with respect to the y-variables.
We write (2.7) more briefly as

(2.8) Iy (fi:(8) 8;(6) = 6:(8) g5 (8) .

Let ¢: X— B|G and suppose that we are given a differentiable family
o(t): X > BJG (¢(0) = 0, t € D) of G-structures. Then we may form ¥ —— D
and we have X: ¥ — B/G.

Theorem 2.1: On the family ¥~ —25 D, Condition A is completely equivalent
to Condition B.

Proof: Suppose that, relative to covering {U; x D} of ¥", ({z;}, {fi;}
{6:(t)}, {:(t)}) gives a coordinate system of the first kind (Condition A); then
@;(£)48,(0) = 8,(¢) g;(t). We define new coordinates (y,, ) in W, = U, x D by
setting y, = @, ()~ 2z, t = t, and we write (y,, t) = 1;(x,;, ). For fixed ¢, we have
(Yo t) = T (s D)0 8y(2y, 8) = @it 7)1 64 (2 8)

= 6;(x;, 0) g, (6)*
= 8;(y;, 0) g;(£)~* (Since @,(0) = Identity) .
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Thus equation (2.6) is satisfied, we must verify (2.8). The change of coordinates
from (y;,t) to (y; ) is given by: t=1¢, and y, = @, (t)" () = @;(t)"f:;(x;)
= @;{t)y"t o fy; 0 @;(t) (y;) = f::(y;, ). Thus, for fixed ¢, we have

o5 Wes 1)) 05y, )
= fi5 (Y5 s 6;(y5, 1)
= @) fisde @i (B4 (05 85(z5, 1)
= @i(t) 51 84 (s, 1) gu(t)
= &(y;, 1) g;(8). Thus Condition A implies Condition B .

The converse is proven by reversing the above calculations. Q.E.D.
Definition 2.3: Let X be a manifold, and let ¢ : X — B/@ be a GQ-structure
on X. Then we define a deformation, with parameter space D, of ¢ by: (i) a
family ¢ (t) : X — B[G (¢(0) = o, ¢ € D) of G-structures satisfying Condition A;
as (i) a fibre space ¥ —— D with X:% -» %|G such that X|@~1(0)
= X|X,: Xy— B/@Gis G-isomorphic to X and such that Condition B is satisfied.
Remark: We give now a rephrasing, due to CHERN, of the definition of
deformation of G-structure. Let ¢ Bg-> X be a G-structure on X, I the
interval {—1, 17C R, and G* the linear group of (= + 1) X {#n + 1) matrices
*
g* = (?) 1)(966‘, *CR). Set ¥ = X x I, and let &%: ¥ — I be the projec-
tion. Then a deformation, with parameter space I, of the G-structure on X is
given by:
(i) A G*structure G*— Bge —+ ¥~ on ¥~
(ii) This G*-structure is required to admit G-local cross-sections in the
fibering ¥"— I in the following sense: For each point v, = (2, t,) € ¥, there
should exist neighborhoods U of x, in X, and W of t,in I such that the induced
G*structure on U X W C ¥ is G* isomorphic to a G'-structure where ' = all

matrices (g (1]) gedh.
(iii} The G*-structure on ¥", when restricted to @~(0), gives G— By~ X.
We shall see below that the group HY(X, ©y) may be interpreted as the
obstruction to reducing the structure group of any such G*.structure on ¥~
down to the group G'.

HI. The Relation with Sheaf Theory
1. The Infinitesimal Deformation. Let o : X — B/G give rise to a G-structure

G— B;—— X, and let ¥~ -2.D (@-1(0) = X) be a deformation of this
structure. We assume, for simplicity, that dim D == 1. Thus we have a 1-
parameter family o (¢) : X —+ B/G of G-structures, with ¢(0) = o, and such that
each ¢(t) is locally isomorphic to o (0). From the basic sheaf sequence (2.5),
we get the exact cohomology sequence

(3.1) - — HYY, Eg)—— HO(Y, TD)“"L* H(V , Pg)—> -
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Proposition 3.1: If X is compact, and if § = 0 in (3.1), then the deformation

¥ -25Dis trivial; i.e. there exists @ D' C D such that {0} C D*, and a 1-parameter
family of bi-maps f(1t) : Xy— X,, (£ € DY) such that f(11), 0(0) = o (£!).

Proof: The proof is not hard, and goes as follows: Let {W .}, {v.}, {f:; (w;, 1)}
be a coordinate system of the second kind on ¥". Then we may consider, in W,

the vector ﬁeld%as a section of T | W,. It W, W; == 0, then yf = f%(y;,¢)
{e=1,...,n) and t=1, thus %—> FIiR E afﬁ ,,t)*é‘z?- Now, by

afis

differentiating (2.8), we see that - a T+ Z W ) 55 ay is a section over

1%

2 a .
Win W; of Bg|W,nW,, a,ndw(at+2 (”)ag) 57 18 a

section of Tp| W, N W;. This all means that ~% is an element of H°(¥", Tp),
as well as a global vector field on D. In (3.1) we let 8 ¢ H(¥", 5g) be such that
@{0) = at,@exmtssmceé(a)~0.

Now, since X is compact, we may choose ¢ > 0 such that 0 generates a
1-parameter group exp(sf) of transformations on ¥". We observe also that

exp(s0) “covers” the l-parameter group exp( 0 ) acting on D, in the sense
that, for « ¢ ¥, @(exp(sf)z) = exp (s—‘?—) (). From this it follows that

exp(s0) is a fibre-preserving transformation group on #~ —2, D, and then we
finally conclude that exp(sf) establishes a G-isomorphism exp(s0): X, 3 X, .,
(X, = & (z)), where now we have perhaps shrunk D to a smaller domain D*.

Q.E.D.

Remark: If we let N be the nerve of the covering {W}, then in (3.1) & (7%)
is represented in H'(N, ¥¢) by the 1-cocycle {&,;(y, t)} where

» o ?
&y, ) 2 ” aya .

We now let 8, ; be the sheaf corresponding to ¢ (t) : X — B/G, and observe
that the restriction mapping r,: ¥ — X, = @&~1(f) takes ¥y into Oy, ,; thus
we have r,: H(¥", Wg)~> H (X, Og, ).

Definition 3.1: ro(5 (%))g HY(X, ) is called the infinitesimal deforma-

tion of the family ¥ —— D (see [7]).

2. Deformations and Sheaves of non-Abelian Groups. We now give another
way of looking at the realation between deformation theory and sheaf theory;
the idea of this approach goes back to A. HAEFLIGER.

Proposition 3.2: Let @— Bg— X be a G-structure where X is compact. Then
the germs of 1-parameter families of deformations of this structure may be identified
with HY(X, I'y[t]), where I'¢[t] was given in Definition 1.4.
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Proof: Let D >{o} be an open set in R, and let " —— D be a deformation
of the G-structure on X = X, = @ 1(0). Furthermore, let {U,;} be a covering
of X with nerve N, and let {U, x D}, {f;;(X,)}, {@:(t)} (¢t € D) be a coordinate
system of the first kind on #". We form the 1-cochain y = {y,;}in C*(N, I'¢[¢#])
by setting y,;;(8) = @;(¢) - @;(¢)"2(t € D). Then clearly vy ¢ Z*(N, I';{t]), and
the set mapping ¥"— y behaves under refinements of the covering. If now
y € BY(N, I'g[t]), then y;;{t) = 7, (f)~1 - 7;(t) where v;(8): U, U, is a l-para-
meter family of bi-G-Mappings in U, with v;(0) = Identity. But in this case,
in U, nU; 7,0t ¢ = 7;{t) - 9;(t) and thus the family of mappings
{z:(8) - @;()} patch together to give a global bi-G-mapping ¢(f): Xy 3 X, and
then the deformation is trivial. Thus we have an injective set mapping ¥"— y
from germs of deformations into HY(X, I, [t]).

Conversely, given y = {y,;} €Z'(N, I',[t]), we write y,;{f) in the «;-
coordinates and then we have y,;{f) - f;x* ¥5x(t) = }52 - ¥:2(t). Then we may
define transformations f;;(£) by f,; () = f;; - y:;(t), and

fis® [ = fis - i@ i) - p5®) = fin s vsull) = fir(8) -

From this, we may construct a deformation ¥~ 2D given in coordinates of the
second kind by {;}, {f:;(y; t) = };;(f) ()}, and this proves the proposition.
There is a sheaf mapping r: I';{t]— 6, defined by sending a germ f(t) in

T[] into %]M . thus we have r: H(X, I'y[t])~ H*(X, Oq).
Proposition 3.3: For a germ of deformation y = y(t) € HY(X, I'¢[t]),
r(y) € HY(X, Og) is its infinitesimal deformation.
Proof: Referring to the last paragraph in the proof of Proposition 3.2, we
see that r(y) € H(N, 6,) is given by the 1-cocycle.

9v5(1) 9 _ oyl 2
(fis)* i;t ]tzoiﬁ_ ’az _]ta:O dxg Q. E.D.

IV. The Higher Order Theory of Deformations
Let G— Bg— X be a G-structure. The first order invariant of a deformation

¥ —2 D (§ II) is the classin H1 (X, @) representing the infinitesimal “tangent”
to the deformation. We shall now construct a complete set of formal invariants
for variation of structure. Knowing these invariants and the properties of X,
one may theoretically determine the properties of the deformed manifolds
X = %-1(1}; an example of this will be given in § IV.3 below.

1. Formal Local Theory of G-Automorphisms. Let U CR"* be a relatively
compact contractible domain, and let G-» Bg— U be a G-structure given by
n-independent Pfaffians wt, ..., w". We have defined sheaves Oy Ot}
Iy, Tglt]; we let O4(t], I'y[t] be the corresponding formal sheaves. Thus,

e.g., a germ f(t) ¢ ['g[t] is given by a formal series f(t) = Y fut#{fo = 1) such

=0
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N
that, if for any N >0, f¥(t) = 3’ f,t#, then f¥(t) € I'¢[t] (modulo t¥+1). If
#=0
0(t) = 2 6,1 is a germ in O, t], we have
Lemma 4.1: Each germ of a vector field 0, lies in @G
Proof: Tt will suffice to show that de(t) €0,1t].
N
0¥ () Z 0.4, Lyw= 2 wig(t) (modt¥+1)
=1

j=

where gi(t) € g, and thus

N i
dg
L go Ny = 2 ; (mod¢?) .
dt =

91(

Since € g, the Lemma follows.

The basw tool in the study of local G-automorphisms is the mapping
exp : Og[t]— [ [t] (§ 1.2) defined as follows. If o, . . ., x, are local coordinates,
and if 0(f) = 2 Gt(t)—a%, then f(f) = exp0(t) is defined locally by f(0)
= identity and

@l 40

=6 ) of(0) .

We shall show that, by introducing the enveloping algebra sheaf Qg of @y,
the computations with exp. may be linearized. First we give an example.

Let F C GL(n, R) be a linear Lie group with linear Lie algebra 1 C gl(n, R).
For A Ef one defines a l-parameter subgroup f¥(t)CF by f*(f) = Exp(4)

«©

= 2] — A" tn. If £ Cgl{n, R) is the linear associative algebra generated by f
n =

then Exp (A) € 7[t].

On the other hand, we may think of f as the right-invariant vector fields onF.
On F we have a G-structure (G = 1) given by m = dim F left-invariant Pfaffians
wh, ..., w™, and then the sheaf of germs of right-invariant vector fields on F
is just Oy Thus, given 4 ¢f, we may define exp(4) = f(#) € I'¢[¢] by (4.1).
The connection between f#(f) and f(f) is simply that, for x € F, f(¢) (x)
= f¥#(t) - « where - is multiplication in F. Furthermore, if we have B ¢1{, and
it g(t) = exp(B), g* (1) = Exp(B), then g(t) o (1) (&) = ¢* (1) - f* (1) - @ (2 € F).
In summary:

(4.2) The element expA = f(t) € I'¢[t] may be locally expanded as a series
in £ with coefficients in the enveloping algebra sheaf of @g;

(4.3) The composition g(t) o f(f) is given by multiplying, in the enveloping
algebra, the series expansions of g(¢) and f(¢).

Theorem 4.1 given below shows that (4.2) and (4.3), suitably interpreted,
hold for general G-structures.

We consider again the G-structure G— Bg— U. The sheaf @, as a sheaf
of vector fields, may be thought of as a sheaf of differential operators. Thus,
over an open set ¥V C U, the sections of G|V generate an associative algebra
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of differential operators, and we let {2y be the sheaf of associative algebras of
differential operators so generated by @y; upon adjoining to £, a unit, it
becomes the enveloping algebra sheaf of @g. The symbol denotes the associative
product in Q.

Ezample: I n=}3'nt ax =2 CJ , then

n-l= Z(n S 3 cmf’—~) and n-—Con= [0l

There is a canonical filtration {4} of Qg with Q4 C Q4+ 1and Q% Q7 C Qi+,
¢ is linearly generated by all products 6% . 6*’-(0" E Oy 2 = p) Bmeﬂy, .Q“
consists of the differential operators in ¢ of degree =< u.
We may clearly define Q4[t] as the enveloping algebra sheaf of @g[t].
Given k > 0 and a germ 8§ € 8, we define Exp* § € 2,[t] by

(4.4) Exp* § = f' X

0=

% n (ny)ktkn {n k)ek
,E‘l ot Z’ e == — _p Bl (n—vy) Y@yt opt k) (Ot vt k1) Uk+l))

where 6% = §...8. More generally, given () = Z 6, t+ €0O4t], we define

\——v-—_J

Expf(t) € Q¢ [t] by
A %y ... By,
(4.5) Expb(t) = % ( pX y ?"(U_*L_) 7

A=0\k=1 0+ +v=Ai-k “ea Vi)

where

Pg,.. =@+ Fv+ k) W+ +o, +b—1)—-— (v, + 1),
Then Exp*0 = Exp(t*0). We may now state the generalizations of (4.2) and
(4.3):

Theorem 4.1: (CampBELL-HAUSDORFF; TAYLOR)

(4.6) (i) The elements Exp’“& (k=1,2,. 0 € Oy) generate a sheaf of
multiplicative subgroups Q% ¢ Qg[t], If G(t) € @a [t], Exp 0(¢) € QF.

(4.7) (i) There is a set isomorphism® : Q% I;[t] such that Expf(t)*
= expl(t).

(4.8) (iii ) # {s a group anti-isomorphism. That is, if D), V() ¢ QF, then
Y (t)* o D)* = (D(t) - P(8))™ where - is multiplication in Qg[t] and o is
composition of mappings.

Remarks: (i) Every element f(t) € [';[t] has a formal expansion
fi)y= ﬂ Exp" 8 (B €6y). (ii) (4.6) is a variant of the usual Campbell-Haus-

dorff {[5}, Chap. V); (4.7) is essentially Taylor’s theorem; and (4.8) ties (4.6)
and (4.7) together. (iii) (4.7) and (4.8) are the generalizations of (4.2) and (4.3)
respectively. (iv) A proof of theorem 4.1 will be discussed in the Appendix to
§ IV below.
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For applications, we need one final Proposition. There is an injection
1:0g—> ¢ and {6} is an additive direct summand of ;. The sections of
£, which belong to Im (2} are called Lie elements. Let 0{t), ¢(t), y(t) be sections

of Oy [t]; set O(f) = Z O,t* = Exp0(t) € Q[¢t], and define D (¢), ¥ (¢) similarly.
For any N > 0, set
(4.9) I'y=0y5+@Oy—~Wy+ J} O,-D,.

c+r=N
o,7>0

Proposition 4.1: (1) @ () o @ (t)¥F = W ()¥ if, and only if, I'y = 0 for all N.
({i)If I'y=0for1 = N < n, then I, ., is a Lic element.
Proof: (i) By Theorem 4.1, we may prove that @) @) = V() if, and

only if, I'y=0 for all N. But O(@) - D)= ( PN @.ut“) . ( PN @,t”)
u=0 =0
= 2 (@N + Dy + 3 0, D, ) t¥, and (i) clearly follows.

o+r=N
o, >0

(i) By (4.6), if I'(t) =1 + I'yt¥ + Iy ¥+ 4 - € Ok then I'y € Oy.
Define I'(t) by @ (t) - D (t) = I'(t) - P(t);then I'(¢) = 1 + Iy 18t + 1, 71 4,
and I, ., is a Lie element.

2. Formal higher order of deformations. Let G— Bg— X be a G-structure.
On X we have the sheaves @, O[t], [[t], Qg 24(t], and QF as defined
in § IV.1 above. Here @, O [t] are sheaves of Lie algebras, 2, O [t] aresheaves
of associative algebras, and QF, [4[t] are sheaves of multiplicative groups.
There is an inclusion Q% Q,[t], compatible with multiplication, and an
anti-isomorphism ¥ : Q§— I [¢]. The set H!(X, I'; [t]) parametrizes the germs
of formal deformation of structure.

Now let U= {U,;} be a sufficiently fine open covering of X with nerve
N; also, define a “‘shift”” operator * : Q¥ — Q. [t] by setting P (t)* = P(t) — 1
(D(t) € 2F). The following is just a restatement of (i) in Proposition 4.1.

Proposition 4.2: The elemenis f(t) ¢ ZX(N, '3 [t]) are in a 1—1 correspondence
with the elements @ (t) € CL(N, QF) satisfying

(4.10) SD)* + Oy Dy* =0 in C2(N, Qg[t)) .

The correspondence is given by @ (£)¥ = f(t).
Remarks: (i) The expression @ (t)* - @ (¢)* is the cup-product

CY(N, 251t)) ® C1(N, Qg[t])~ C2(N, Qgt]) -

(ii) If we consider formal deformations as given by ®(t) ¢ C*(N, 28)
satisfyiyng (4.10), then the infinitesimal deformation is given by

aP(t
(4.11) ¢ = dt()]b__o € H'(N, 6g) .
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Again from Proposition 4.1, we have:
Proposition 4.3: An element ®(t) € C1(N, QF) satisfies D (t)¥ ¢ SC°(N, L [t])
if, and only if, there exists ¥ () € C*(N, 2§) satisfying

(4.12) SP()* + D)y - W)* = D()* in CYN, Dg[t]) .

Theorem 4.2: (i) If H*(X, Og) = 0, then, for any ®(t) € C1(N, QF) satisfying
(4.10). there exists a P (t) € CO(N, QF) such that (4.12) holds. (ii) If H2(X, Og) =0,
then, for any @ € HX(N, O), there exists a @(t) C CY(N, QF) such that (4.10)
and (4.11) hold.

Remarks: The meaning of the above statements for deformation theory is
the following: {a) If H*(X, O) = 0, then any deformation of the G-structure
on X is formally trivial; and (b) if H*(X, @) = 0, then any class § ¢ H (X, )
is formally tangent to a deformation.

(ii) In § VIII, we shall show that, for certain @-structures, what has been
done here formally can be done ‘““actually”.

Proof: (i) We define an element & ¢ C9(N, £2,;) which lies in 1(C?(N, 6y))
CCOUN, £24) to be a Lie cochain.

Writing @ (1)* = L @ﬂiﬁ‘ then, by (4.10),0D,=0and 69D, + 2 @, D,=0
=1 gt Tr=p

(¢ >1). Now @, is a Lie cochain, and thus there exists a ¥, € O°(N, &y}
satisfying 6%, = @,. Then P1(t) = Exp ¥, € C%(N, 02§) and satisfies

SWL)* 4 D(iy* - Pi()* = D(B)* (mod £).
Suppose now that we have W¥(t) ¢ C°(N, QF) satisfying SP¥(H)* +
+ D(t)* - PV (b)* = D()* (modt¥ +1). Let PN (1)* = 3 Wi+, and define
n=1

N+1€C*N, Qg) by — gy, =0P§ 1+ ZV”H@«;'Y’?]-
G+ T =)
Then:

Lemma 4.2: (i) d#y .= 0 and (i) x4 is a Lie cochain.
Proof: (ii) follows directly from (ii) of Proposition (4.1). As for (i), we have
Snya= 3 0D, V¥~ 2 @, 8Py
ct+1=N+1 g+ r=N+1

= pX ¢Q~Q‘5,,-Y’§——( b Qg'Q)Q-&”S’)::O
etotr=N+1 ste+r=N+1
by (4.10) and the induction assumption. Q.E.D.

Now weset 1y 1= 0¥y 1 (Py .1 EC°(N, O¢) and define P¥ +1(t) ¢ C*(N,0F)
by P¥+1(f) = PN (), Exp¥+! Wy, it then follows immediately that
SWNAL()* & D)% - PN HI(t)* = D(t)* (mod t¥ +2), which proves (i).

To prove (ii), observe that Expe = @) ¢ C1(N, 2¢) and satisfies
SDL(t)* + DL(t)* o P (t)* = 0 (modi?). Suppose we have @¥(t) ¢ CL(N, QF)
satisfying § D ()* + DF (1)* o DF (1)* = 0 (mod ¥ +1). Define 1y +1 €C?*(N, Q)
by 7y t¥ = DV ()* + DV (8)* o DY (1)*) (mod t¥+2); ny., is called the
N't* obstruction to deformation.



Deformations of G-Structures, A 309

Lemma 4.3: (i)} 1y 4,= 0 and (i) 7y, ts a Lde cochain.

Proof: Again (ii) follows directly from (ii) of Proposition (4.1). Also, we have
diy= X SBYYLGYYIL ¥ @YtLeg¥ti-— ¥ X

c+r=N+1 o4 v= N4 1 et+to+r=N+1
X QN +1. QN+1. Q¥ +1 4 X GY+1L.P¥+1. pN+1 0. QED.
e+o+r=N+1

Now 7y.1= d@y,, for some @y .€ CY(N, @), and we define PY¥+1(f) ¢

€ CUN, Q2F) by O¥+1(t) = OV(t) - exp¥ Hlgy,4; it follows immediately that

SOV +1(t)* 4 PV +1(f) . PN +1(1)* = 0 (mod ¥ +2) , Q.E.D.

Remarks: By the Campbell-Hausdorff (see the Appendix below), the
obstructions may be calculated. For example, if ¢ = {g,5} € H*{N, 8¢),
then the primary obstruction is 7, = [@, @] = {[@s Ps,1} € C*(N, Og). If
7, = 00, then the secondary obstruction is given by ny~—= {(#).s,} Where

1 1
Napy = 5 [{‘paﬂ’ 6@51’ 913?] + 6 ([(paﬂ’ 65?] - 2{%1!3’ eﬂy])’ ete.
3. Application: Stability of Infinitesimal Automorphisms. Let G— By— X
be a G-structure on a compact manifold X, and let 0 ¢ H*(X, 6.} be an

infinitesimal automorphism (i.a.) of the structure. Let ¥ —=> D be a deformation
of the G-structure on X ; set X; = @~*(t) (t ¢ D) and X, = X.

Definition 4.1: The i.a. 0 is stable under the deformation {X,} if there
exists a family 0(t) of vector-fields on X such that 6(0) = 8 and, for fixed ¢,
0(t) € HO(X,, Op).

The stability of  is equivalent to the following: There exists on X a
2-parameter family of transformations f(s, t) of X with the following properties:
(i) (0, t) = Identity; and (ii) For each ﬁxed t, f(s, t) i3 a 1-parameter group of
automorphisms of G— Bg(t)—~ X,. (The family f(s, t) (¢ fixed) is induced by
0().

We shall now investigate the formal stability of the i.a. 0. Following § 1V.2,
let the deformation {Xt} be given formally by an element @(¢) € CY(N, 2%)
satisfying (4.10). Let £%[s] be the sheaf of germs of elements @ (s, ¢) where,
for fixed t, O (s, t) € QF (s is the variable) and @(s t) O, t)=0(s+ s, t).

Thus Q%[s] is generated by elements of the form 2 (6 (t))esm (B(F) € é 2 [t])-

n=
Theorem 4.3: An i.a. § € H(X, @) is stable zf cmd only if, there exists a
O (s, t) € O%N, Q¥ [s]) satisfying
(4.13) (i) 06 (s, t)* + D()* - @ (s, 1)* = O (identically in s)
d6(s, 0)]
s=0"

(if) 6 = ds

Proof: Let {(4, .. ., 2%), f;;(27)} be a system of coordinates for X, and let
{(@* = (at,...,2%), f;; (2, £)} be a system of coordinates of the second kind on ¥~
(§II). Then, if D(t) = {D,;(1)}, we may write f (e, 1) = Py (0¥ ;) ()
by the proof of Proposition 3.2. If 0 is stable, then we have a family f{s, {)
as described above, and, in coordinates, f(s, f) is given by a family {f,(s, )} of
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transformations satisfying f;(s, ) = f;; () o f;(5, £) = @;;(0)* o f;;(t) o f;(s, t).
If we let O(s, 1) = {0;(s,8)} be given by (s, t)*¥ = f;(s, t), then O (s, ¢) €
€ C°(N, Q% [s]) and satisfies @, (s, £)™ = @,;(t)¥ o O;(s, t)*. But, by theorem4.1,
this is equivalent to 0, (s, t) = D;;(f) - O;(s,), or 60 (s,1)* + D ()* - O (s,t)* = 0.
Since this argument is reversible, the theorem is proven. Q.E.D.

Remarks: (i) Just as in § IV.2, we may define obstructions to the stability
of the i.a. . Indeed, the term of degree 0 in ¢ in (4.13) says that 66 = 0, which
is satisfied. The term of degree 1 in ¢ in (4.13) says that [¢, 0] = — 0, for
same 0, ¢ CY(N, ). Thus [0, ¢] is the primary obstruction to the stability of 6.

(ii) This last remark has a geometric interpretation as follows: Let f(¢)
= exp0; then f(t) is a 1-parameter group of G-automorphisms of X; thus f(¢)
acts on the sheaf @y, and on the cohomology groups H?(X, @;). The infini-
tesimal form of this representation is given by 0 - ({) = [0, {1(¢ € H{(X, Oy)).
Thus, in order that 0 be stable, it is necessary that the 1-parameter group f(t)
act trivially on the cocycle ¢ ¢ H*(X, @) which is tangent to the deformation.

We close this section with a few related definitions which will be used below.

Let G— Byg— X and ¥" -2, D be as above, and let { : X - X be a G-auto-
morphism. We say that f is weakly stable is there exists a mapping F: ¥ — ¥~
which commutes with @, which preserves the G-structure along the fibers of 77,
and which induces f on the fibre X = ®%~1(0). (The infinitesimal version of this
was called stability above.) If the deformation {X,} is given by a family
o(t) : X — BJG, then weak stability means that we have a 1-parameter family
f(t) of diffeomorphisms of X satisfying f(t),o(f) = o (f) and f(0) = f. If, for all
t, f(t) = [, we say that f is strongly stable. (This corresponds to having 0(t) = 0
in Definition 4.1.)

We may also speak of a group M of G-automorphisms of X as being weakly
or strongly stable. 1f M acts transitively, we may say that X is weakly homo-
geneous if M is weakly stable, or X is strongly homogeneous if M is strongly
stable. Examples of these concepts will be taken up in § VI below.

Appendiz to § IV. We shall outline here a proof of theorem 4.1.

1. Proof of (4.6)}). Let zy, ..., x, be n-symbols considered as a basis for
a real vector space V; the free associative algebra of on xy, . . ., x, is just the
full tensor algebra of V:of =@ V» where V¥=V® — ® V and V°=R. Set

u

I3
& =@ V¢, o' is an ideal in &/. Now any associative algebra % may be

pw>0
canonically made into a Lie algebra #%; we let £ C oL be the Lie subalgebra
of oL generated by xy, ..., z,. Then £ is the free Lie algebra on x, ..., x,

and &7 is the universal enveloping algebra of £. If y,, y,, — is a basis of &,
then the monoicals % . . . i form a basis for 7. An element a € o7 is a Lie
element if a € . ; there are two criteria that a € &7 be a Lie element, and we
review these. Define a linear mapping

B: A"~ &L by Blx;)=2; and Bz, ® - ® x;) = [[[2;, x;)x;,]. .. % ]

1) The reference for this Section is [56], Chapter V, §§ 4 and 5; the material of this
Section may be viewed as a generalization of the discussion there.
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Then (i) @ € V™ is a Lie element if, and only, if f(g) = ma. The diagonal
mapping is the unique algebra homomorphism §: /- & ® &7 satisfying
dzx)=2;® 1+ 1@ =, Then; (i) @ € & is a Lie element if, and only if, §(a)
=a® 1+ 1® a. These criteria are due to SPECHT-WEVER and FRIEDRICHS
respectively.

Let t be a parameter for a vector space W, let W [t] be the vector space of
formal series w(t) = 2 w,t*(w, ¢ W). We may obviously make £ [t] into a
Lie algebra, and &/ [t] mto an associative algebra. We deﬁne Exp: o [t] >
— & [t] as follows: if a(f) € &/ [t], then Expa(t) =b{t) = Zo b, is given by

=

(A1) by=1 and ___dggt) = a{t) - b{t).
Remark: Expa(t) = et ®.
" ’_" Ay,. o« Ay,
(A.2) Proposition A.1: b, = 3 2 ’

K1 oyt Tom ks Pvy, ..., v)

where Ploy, ..., o) =+ + v+ k) (wa+ - +op+k—1)— (v, + 1).
Proof: By induction. For g = 1, we get b; = @, which is immediate from
(A.1) (at £ = 0). Assume (A.2) for u — 1. Then, from (A.1), ub, = 3 asb, +

a-i-rzg-—l
>
+ @,_;. By the induction assumption;
1 1 ki Qg * gy v v+ O
b o— — Gy 4 — -y o (] Ok
BT R o+,£_1k592+_+%c:,~k+1 (0:+ + ot h—1)——(ex+1)
>0
1 WOy QY
= Oq+ 3
u o ,f:‘; ot topmu—t M2+ —F e+ b —1) ——(e+ 1)
er<p—1
“ A0i.. .00,
=2 2 B e Q. E.D.
k=% ot topg=pn—%k P(Q;, . "Qk)

Remark: Proposition A.1 makes contact with (4.5).

Now let A(t) = 2’ At L) = 2’ L € At

Proposition A.2t=; f every term i:i(t) commutes with every term in &(t), then
(A3)  ExpA(t) Expl() = Bxp(Z(t) + A()) = BxpL(t) - ExpA(H).%)

Proof: Since

2B O BPEO) _ (1) BxpA(t) - Expl(t) + Expa(t) £(t) Expl (),

%) Remark: It is not true that A(t) &(t) = &(f) A(f) implies that ExpA{t) Expé&()
= Expé(t) ExpA(t).
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if we prove that ExpA(#) - { () = {(¢) - ExpA(t), then we will have
4 (Expﬁ.(t) Exp¢l (i)

A(@®) + () ExpA(t) - Exp{(?)

which will prove (A.3}). By assumption, 4,{, = {,a,; from this and {(A.2), we
shall prove that C(f) - ExpA(t) = ExpA(t) - {(¢). The term of degree n in
L(t) ExpA(t) is

< Lot Avy v Aoy - i Ao, - Ccr}»v e Ay,
y" 1 — Z" 1 2 ¢
otr=n k=1 v‘+--~f;k=r—k Ploy .o o) fre=n k=1 ot A vp=7—F Plos s ta)
T
lv, A?);c fo
6+£9z k‘é’l v;+'"%§=r k Plow- v
= term of degree n in ExpA(f) - £ (). Q. E.D.

Let o/#[t]1C &/ [t] be the subset of elements a(t) =1+ a;t + -+ with
leading term 1. Then /¥ [¢]- /#[t] C &% [t]. If a(t) C A*[t], and, if we

define b(¢ Z b,t* inductively by b, =1, b, = — ' a.b,, then a(t) ()

=0 otT—p
>0

= 1= b(t) a(t). Thus &/*[t] is a multiplicative subgroup of </ {t]. If a(t) ¢
€ /¥ [t], we define Loga(f) € o/ [¢] by

(A4) 90 _ Loga(t)-a(t).
Setting Loga(t) = A(f) = 3 1,1, we have recursively
u=0
(A.5) Apmr=pa,— 3 Aa,.

Izt

Observe that Log ExpA(t) = A(t).
Proposition A.3: We have recursively

{A.6) Ay = b (D) ay, . . .5 Gy, -

Vb b =pt1

Proof: By induction, we assume (A.6) for g — 1. Then, from (A.5),

= (g + l)aﬂ+1 - X 2 (— 1)+ (wy) Qs o« 0y Ay " Cr
O+ T=p v+ =041
>0
= (u+ 1)a, , + P (= 1) 2(0)) @y v v ey Gy By,
Vit vpp = a1
4+ 1>0
= P (1w ay, ..., Gy, - Q.ED.

O b b op=atl

Now for 1 ¢ &, we define Exp*A by

e n (ni)egen—-G-k 2k
(&.7) Exp"l: 2 ( 2 2 (n—vl)!—...-—(n—vk)!(vl,...,v,;))'

=0 \k=1 0,4+ vp=n~k
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QObserve that

Expfl=1+ Al pvees Exp®l= Bxpil= }’ ‘?%T Y i L8
a=0 "

L
%+ 1)1
and Exp*1 = Expt® 4. Part (i) of theorem 4.1 is implied by

Theorem A.l: (i) The elements ExpA(t) for A(t) € L[t] form a multiplicative
subgroup /*[t]C LF [t C A [t].

(i) 7*[t] vs generated by the elements Exp* A for 1 ¢ &.

The proof of this theorem will ocoupy the remainder of this section. If

c(t) = 2 c i € o/ [t], we say that c(f) is a Lie element if c(t) € Z[t]. We

define 6 M[t]—> (o ® o) [t] by sending ' a,t* into Y (da,)t4. It follows
easily that A(f) € 27{t] is a Lie element if, and only if, 6l(t) A® 1+
+ 1@ A(Y). If a(t) € *[t], we say that a(t) is a Lie exponential if Loga(t)
is a Lie element.

Proposition A.4: If A(t), C(t) € ZL[t], then Expd() Expl(t) 7s a Lie ex-
ponential.

Proof: We record two remarks to be used in the proof.

() Exp(A)®@ 1) = Expi(t)® 1 ¢ (& @ &) [t].

Proof: dExp 7% Hel=>A@e1)Expit) ® 1. Similarly, for a(t) ¢
€ #¥*t], Log(a(t) ® 1) = (Loga(t)) ® 1.

(ii) 0ExpA(t) = Expdi(t).

Proof: dA(t) « OExpA(f) =4
= BExpdAi(t).

‘We now prove the Proposition.
8(ExpA(t) - Expl(t)) = ExpdA(t) - Expdl(t) (by (i)

=Exp(A)@ 1+ 1@ A1) - Exp((() @ 1 + 1 ® £(¢)

= Exp(A(t) ® 1) Exp({(f) @ 1) Exp(1 ® A(})) Exp(1 ® £(t)
(by Proposition A.2). Setting w(t) = Log (ExpA{t) - Exp {(£)), we get
Sw{t) = Logd(Expi(t) - Expl(t)

= (Log (ExpA(t) - Expl (1)) ® 1) + (1 ® Log(ExpA(t) - ExpZ ()

=wt)® 1+ 10w
since

dEflI:Mt) - 40ExpA() and thus dExpi(f)

dt

Log((a)® 1)- (1® b(t))) = Loga()® 1 + 1 ® Logh(t) . Q.E.D.

Clearly (i) of Theorem A.l follows from Proposition A.4. To prove {ii),
we may show: Given A(f) € Z[t], there exists a sequence {{,} ¢ & such that

Expa(t) = II Exp*¢, .
k=0
If A(ty=2 A.t*, we consider (Exp®l,)~! ExpAi()= ExpA'(t) for some

A)yec L[t]l. But clearly A1(f) = A}t + AL#* + —, and we may -consider
Math. Ann. 155 21
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(ExpAD)~1(BExp® ) tExpA(f) = Exp A2(t) for some A (£)= 3¢+ AZ3+— L [1].
If we proceed mductlvely to determine AY for all N, and if we set {y = AY,

then ExpA(t) = H Expké',c Q.E.D,
Remark If A(t) £(8) € Z{t], then Expi(t) - Expl (¢) = Exp ¥ (¢) for some
Pt} = Z Y, i+ = Log Exp A(t) - Expl(f) € Z[t]. The coefficients ¥, may be

determmed by: (i) Writing out Expi(t) - Expl(f) using (A.2); (ii) Writing
out ¥, as an element of {2 using (A.6); and (iii) writing ¥/, as an element of &
using ‘bhe Specht-Wever criterion for a Lie element. The resulting formula
may be called the generalized Campbell-Hausdorff formula; the first few terms
were written out in the Remark following Theorem 4.2 above.

2. Proofs of (4.7) ami (4 8). In order to prove the remainder of Theorem 4.1,
we must define ¥ I'[t] which satisfies Expf(f)¥* = expf () (for
B(t) € Og[e]) and (Exp@(t) Expg()* = expg(t) o expd() (p(t) € OgLt]).
What we shall actually do is define #~1: I (t]— Q¥ by sending expf(t)
into its formal Taylor’s expansion, which will be an element of Qf.

For a vector field ¥ and a function g, let ¥ * g denote the action of the
differential operator ¥ an g. Let 6(¢) € B4l

Proposition A.b: We have formally
(A.8) g oexpl(t) = Expl(t) =g ( Taylor’s expansion )

where exp 8 (t) and Expf (t) are given by (4.1) and (4.5) respectively.
Proof: (3 steps) (i) Suppose first that @(¢) = 0 is independent of ¢, and let
xz € U. If 8(x) = 0, then (A.8) is clear at x since exp0(t) = x. If 6(x) == 0, then,

. . 9 .
for suitable local coordinates xy,...,%,, we may assume § = Sgo5 in this
%

case, explB(xy, ..., %) = @, ..., % + & ..., %, and (A.8) is just the usual
Taylor’s formula. (ii) Suppose now that () = t*6 for some k = 0, and let
zcU. If 0(x) = 0, (A.8) is again trivial; if 0(x) == 0, we may locally assume

g = ~—j, and then f(f) (zy, . . ., 2,) = exp0() (@, . . ., @) = (25, . . ., 2y +
+ 3 1 k1L L, x,). Let g be a function. Then
ag{f(t afit) v { ps 9
200D _ 3 22 gy LE = 5 (0 g;i) o (1),
3g(#{ i9)

and, since §(t) is constant the x-variables, we get = G(t) = g(f(£) (x)).
But now the very same argument as in the proof of Pmposmon A.1 above may
be used to prove (A.8) when 8(f) is of the form #*8. (iii) Now we have proved
above that the elements Exp*f (k= 0,1, 2, ..., 0 € O) generate 2F; clearly
the elements exp(f*0) (k=0,1,2,..., 6 €O) generate [[t]. Furthermore,
if g is a function, and if 8, ¢ € @, then by (ii) above g o (expt*f o exptl )
= Exp ‘g % (g o expt*6) = (Exp ‘¢ - Exp*0) »g. This clearly implies that,
for any 6(t) € Oy[t], (A.8) holds. Q.E.D.
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Proof of Theorem (4.1): We defineb=%"1: Lo [t] > Q& by exp 0 (£)*=Exp6 (¢)
where exp 6 (t) isgiven by (4.1)and Exp 0(t) by (4.5). Clearly b is asetisomorphism,
and, for 6(t), ¢@()< O4[t], we have (Exp8(t) - Exp @ (£))* = Expp(1)* x

x Exp8 (¢)*, just as in the proof of Proposition A.4. This completes the proof
of Theorem 4.1.

Bibliography

[1] CaLaBaL E.: On compact, Riemannian manifolds with constant curvature I. Proc.
Symposia in Pure Math. Vol. ITI, 155—180 (1961).
[2] Cartaw, H.: Séminaire E. N, S. Paris 1961—62.
[3] CHERN, S. S.: Pseudo-groups continus infinis. Collogue de geometrie differentielle de
Strasbourg (1953), 119—136.
[4] GrirFiTHS, P. A.: On certain homogeneous complex manifolds. To appear in Acta
Math.
[6] Jacossoxn, N.: Lie algebras. Interscience (1962).
[6] KoBayasHI, S.: Canonical forms on frame bundles of higher order contact. Proc.
Symposia in Pure Math., Vol. III, 186—193 (1961).
[7] Kopaira, K.,and D. C. SPENCER: Deformations of complex analytic structures I—IL.
Ann. Math. 67, 328—466 (1958).
[8] —, L. NireNBERG and D. C. SPENCER: On the existence of deformations of complex
analytic structures. Ann. Math. 68, 450—459 (1958).
[9] SINGER, I., and S. STERNBERG: Lecture notes on G-structures. Harvard (1961—62).
[10] SPENCER, D.C.: Some remarks on homological analysis and structures. Proc.
Symposia in Pure Math., Vol. III, 56-—86 (1961).
[11] — Deformation of structures on manifolds defined by transitive, continuous pseudo-
groups, I—II. Ann. Math. 76 (1962).
[12] Waxg, H. C.: Closed manifolds with homogeneous complex structure. Am. J. Math.
76, 1—32 (1954).
[13] WEIL, A.: On discrete subgroups of Lie groups I. Ann. Math. 72, 369—384 (1960).
[14] WoLF, J., and P. A. GrirFrTHEs: Completeness of differentiable mappings. To
appear in Mich. Math. J.

( Received March 5, 1963)

21*



