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V. Some Loecal Properties of Geometric G-Structures

It seems necessary, at the present time, to place some restrictions on our
G-structures in order to be able to discuss the deeper facts in the deformation
theory of these structures. One restriction which has certainly had considerable
success is to assume that @ ¢ GL(n, C)C GL(2n, R), and that the structure
is integrable. Because of this, and because our main purpose has been to
define deformations of non-integrable non-transitive structures, we shall
emphasize non-integrable structures. Furthermore, since our theory has been
geometrically slanted, since many of the ¢classical”’ geometric structures
occur when G is of finite type, and since we desire to have some worthwhile
results, we shall henceforth work primarily with these geometric G-structures;
i.e., G-structures of finite type. As an example of the difficulty when G is of
infinite type, the author does not know whether or not, for X compact,
dim A (X, @) is finite for infinite G. For the remainder of this paragraph we
shall derive some special properties, to be used later, of G structures of finite

type.
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1. Infinitessmal Automorphisms of Geomelric Structures. Let X have a
G-structure given by a cross section ¢ : X — B[G. Then we have a principal
fibering @ -~ By — X ; and, as was shown in [2], we have a G*-structure on By
and thus a bunde G*—~ By — Bg; and, in general, we have a G*-structure on
Bgx—1 and thus a bundle G* -~ Bgk — Bgk—1.

Proposition 5.1 ([3]): G s of finite type of order q if, and only if, there 1s
defined by the original G-structure a connexion in G4~ — Bgg—1 — Bge—2.

Corollary: If @ is of finite type, then % is the constant sheaf R.

Proof: From the fibering G* - Bgt —> Bgt—1, we have aninjective mapping
ay : Bgk — Rk +1 where Z gk 18 the sheaf on Bgk—1. But, if ¢ is the order of G,
then, by the example given in § 1.1, Zg¢= R on Bg—1 . Q.E.D.

Definition 5.1: If G is of finite type or order ¢, we set d(G) = n + dim (@) +
+oee e 4 dim(GQ—l).

Example: d(0(n)) = n(n + 1)/2.

Proposition 5.2: Given G — By — X where G is of finite type, then, for
any z € X, dim (@), < d(G) < .

Proof: If 0 is a germ in @y, then there is naturally induced a germ 6§
in @ on By as follows: expt(f) acts on X and, since 6 € @gs, (e-xpt(ﬂ )x acts

on Bg and d - (expt(0)y); = o = 0" is a vector field on Bg; clearly ' is a germ

in @ on Bg. Inductively, we get a germ 6% in @ on Bgk—1. If the order of
G = q, then there is defined on By a global parallelism given by vector fields
X, ..., X, (d=d(G)), and the germ 6¢ satisfies.

(5.1) (6, X;]=0 G=1,...,4d).

In fact, it is clear that the germs 0?7 € @4 on B satisfying (5.1) are in a one-

to-one correspondence with the germs 6 € @3 on X. Our proposition will
follow from;

Lemma 5.1: Let UCR™ be a finite connected domain with coordinates
2k, ..., 2™, and let vector fields X, ..., X,, define a global parallelism in U.

m
Qiven p € U and the vector { = ({1, .. .,{™) ER™, any vector field Y = )}, (i (x) a; .
j=1
Such that {7 (p) = {7 and [Y X;]= 0 G=1,...,m) s unique wn U.
Proof: Write X; = Z 0} (:c) —— ; then we have

i=1

(5.2) b [cz'(xré;;, (@) 5| = 0 G=1,...,m).

ik
Now (5.2) gives that

(6.3) 2 &2

Since the X; give a parallelism, there exists a function 7 (x): U — G L(m, R)
such that 2 73 () 7 (x) = 84 in U. Letting ,4 = ,A%(x) be the matrix

ac*

(G, k=1,...,m).

axf

oA = Z g:; A (r=1,...,m), and letting {(x) = ¥({'(x), ..., {™(z)), then
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(6.3) is equivalent to the system

(5.4) o¢

ox'

= 4 (r=1,...,m).

This (overdetermined) system was a unique solution (if any) with a prescribed
value at a point. Q.E.D.

Remark: Lemma 5.1 may be proven geometrically as follows: It will suffice
to show that Y(p)=0 and [X,, Y]=0 (j=1,...,m) imply that ¥ = 0.
For this, we shall show that [x ¢ U | Y (z) = 0] is open. Now if p’ is in a suffi-
ciently small neighborhood of p, then p' =exp(t,X; + - - - + ¢, X,,) (p) for
constants ¢,,...,¢,. Then expt Y(p’) =exp(t, X; + -+ 1, X,,) expt Y (p)
(since [X;, Y] =0)=exp(, X; + - - - + 1, X,,) (D) (smce Y (p) = 0) = p'. Thus
Y (p')=0. Q.E.D.

Lemma 5.2: Let B, be the ball of radius t around o tn R™, and let X,,...,X,,
be real analytic vector fields giving a parallelism in B,. Consider the system of
partial differential equations (5.4) where the matrices ,A are constructed as in
the proof of Lemma 5.1. Then, if a formal power series solution to (5.4) exists,
this solution will converge in B, for some ¢ > 0. Furthermore, ¢ depends only on
the tnitial values and the radius of convergence of the serves for the X,.

Proof: Were this system not overdetermined, we could apply Cauchy-
Kowaleski and be done; as it is, we shall construct a majorant problem,
which also has a formal solution, and then show that this solution converges.
We are considering the system

85'

(5.5), "‘Z Ajj(z) & (2)

with initial value £(0) = &§. We assume that a formal solution to (5.5) exists.
Write
(5‘6)%:7 Agc] (:23) = Z (A;cj)yl,...,ym xllll’ s ey x:)‘zm ’

s Hm

Bise..
and choose r > 0 such that the series (5.6)}; all converge absolutely for |z;| +
+ ++++ |2,| < r. Then choose M > 0 such that |[(4} i M

il S T T T
for all ], k, ) and u,, . . ., . Then, a fortiori, we have

M(/“l""".'—*—”m)!

(5‘7) l(A;cj)u,,...,pm = T”1+"'+ﬂm(ﬂ1)!"'(,um)! .

Set M = nM' and

5.8 B - M Zy N\ __‘Er_n_”"‘(ﬂl"""'ﬂm)!

(5:8) (=) ,,h‘;:,,m( r) ( r ) () - (pm) !

We set £, = ,Joax |&i|, and consider the (again overdetermined) system
"

(5.9) -2 — B@) £(2)

for the single function &(x) with initial value M = &, > 0. By our construction
(6.9) is a majorant of each of the n systems (5.5); (= 1,...,n). Since any
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solution to (5.5), is determined uniquely by its initial value, it will suffice to
produce a convergent solution to (5.9). We tenatively write &(z) = eH®
and try to determine a real analytic function H (x) such that (5.9) is satisfied

when H(0) = log&¥. We have 65(:::) = &(x) BH(x) , and thus we must have
9 H (x) 1 d B(x)
Sz, = B(x) for k=1,...,n. Slnce B(x) = : Ty ' o,
- imzl r
= a;i(:) for all , k£ and thus we may find H (x). In fact, if we set
m
H(x) = merog(l--Z x,.) + log M ,
i=1

then af‘k %) _ B(x) for all k and H (0) = log M. Q.E.D.

Corollary: Let the data be as in Lemma 5.1, and real analytic, and assume
that U 1s ssmply connected. Then any C* local solution to the system [Y,X;]=0
(G=1,...,m) s real analytic and may be analytically continued to a solution
wn all of U.

Proposition 5.3: Let G be of finite type, and let G — By — X be a real analytic
G-structure. Then:

(i) Any germ 0 € O s real analytic,

(ii) The G-structure 1s normal.

The proof is immediate from the Corollary to Lemma 5.2.

Let G — By — X be a G-structure where G is of finite type. Then, for any
x ¢ X, and any sequence of neighborhoods {U,} with U,, ¢ U,_, and n U,={x},
the restriction mapping p;;:0¢| U; - @g | U, (k >4) is into, and is hence
onto for , k large enough. Thus every « € X has a neighborhood N (x) such that,
for any open U with {z}C UCN(x), Og| U = Og | N () = (Og)..

Definition 5.2: Any such neighborhood N (z) is called a normal neighbor-
hood. A normal covering of X is a covering by normal neighborhoods.

Proposition 5.4: Let G — Bg— X be a normal Q-structure where Q 13 of
finite type and X is simply connected. Then dimH®(X, @y < oo, and, if
g = H°(X, Og), O 18 the trivial sheaf X X g.

Proof: Let U = {U,} be a normal covering of X. Then @y | U; = (Og),
for any = € U;, and dim@g | U; = d(x) = d for all ¢+. Thus, we may define a
d-dimensional vector bundle E — X whose fibre E, is just (@g),. The transition
functions of E are given by a system {g;;} where ¢;,: U; " U; > GL(d, R).
But, by Lemma 5.1, the matrix functions g;;(x) on U; N U; are constant.
Since any vector bundle with constant transition functions, over a simply
connected manifold is trivial, the result follows.

2. The Algebras C*(X, Og) and H*(X, @g). Let G be of finite type, let
G - By;—> X be a normal G-structure on a compact manifold X, and let
U = {U,} be a finite normal covering of X with nerve N.

Proposition .5: (i) The cochain groups C(N, Og) are finite dimensional
vector spaces for all q. (ii) The natural mapping H2(N, @g) - H* (X, @) is an
1somorphism for all q.
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Proof: (i) A g-cochain { is given by a collection {{¢, . . . i,} Where (7. .. ¢, €
€¢I'@g|U,,.. ;) and U;, ;. = U; n...NnU;. Now (i) follows since N is a
finite complex. The assertion (ii) follows from Leray’s theorem on acyclic
coverings.

The sheaf @4 on X is not only a sheaf of vector spaces, but is also a sheaf
of Lie algebras. Thus the usual formula defines a pairing

[, 1: C?(N, Og) ® C*(N, Og) > C?+%(N, Og) satisfying

0[Z, n]=[6L, n] + (— 1)L, 6] (£ € C?(N, Oy)) .

There is thus an induced pairing [ , ]: H?(X,0q) @ H1(X,0q) -~ H?+1(X, Oy)

which establishes the structure of a graded Lie algebra on H*(X, @;). This
structure will be important in § VIII below.

For a finite normal covering U = {U,} with nerve N, we choose a basis

d
6, ...,0%0f@4| U, foreachi. Any germ 0 of @4| U, may be written 0, = 3 {0
k=1

(C* €R), and we set [|0,]2 = g’ |C¥2.
k=1
For any (= {(1,... iq} €C0?(N, Og), we set |C]|2= SupN 1C3y - . - 3

Q0. . ig€
Then | |2 is a norm on C?(N, @y). Since [ , ]is bi-linear, we have:

Proposition 5.6: There exists a constant C), depending only on U, such that
112, 7l < Gzl - Il £ n € C*(N, ©).

Let B¢(N, Og) = §(C?—1(N, Oy)). Then we easily have

Proposition 5.7: There exists a constant C,, depending only on U, such that,
for any { € B4(N, Og), there exists an n, = n € C1-1(N, Og) with d(n) = and
Inll < Calcl.

3. A Resolution of @g. Not unexpectedly, one of the salient features of
geometric structures is that, in order to derive our main results, we shall not
have to rely as heavily on the methods of analysis as has been the case for
infinite pseudogroups. A notable exception here is the existence theorem given
below in § VIII. We shall now give an injective resolution of @, by differen-
tiable cross sections of vector bundles. In § VIII below we shall, for a much
more restricted class of G-structures, give somewhat modified but much more
useful resolution of @g.

Let G -~ By — X be a normal G-structure where G is of finite type. If X
is the universal covering of X, and if &, (X) = I', then we have a fibering

I'>X -2, X. There is naturally induced a normal G-structure G- Bg— X and
the sheaf @y on X admits a global basis, say 0,, .. ., 6;, over R. We let oA

= §hea{ of ¢ forms an X, and we set 97= 6, ® %3 Peﬁne i: 0@y — 9° by
i(0) =06 ® 1, and define D: 94— Za+1 by D(§ @ w) = 6§ @ dw. Then, by the
Poincaré lemma,
Proposition 5.8: The sequence
0— @yt 2. n__ ... G 2, Gani__, ...

is exact and gives an injective fine resolution of @g.
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The group I” acts as a G-motions on X ; thus I"acts on @y and /¢, hence on
&4, Obviously, as operators on 94, Dy = y D for any y € I'. We define sheaves
G1 = (997| on X as follows: over an open set U C X, the sections of 97 are
the I-invariant sections of 97 over z—1(U).

Proposition 5.9: (Og)" =~ O and the sequence

(510) 0— 0y ——@0 2.an__, ... g1 P g1 __, .

gives an tnjective fine resolution of @g.

Set now G¢= H%(X, 49); then D:G?— G2+, D2 =0, and we let H?(G)
be the cohomology groups.

Corollary: There 1s defined by (5.10) an anti-isomorphism of graded Lare
algebras H1 (X, Oy) ~ H1(R).

4. Application: Rigidity of Structure. Theorem b.1: Let G - By — X be a
normal G-structure where G is of finite type and X s compact. Then, if H (X, @g)
= 0, any (C*) germ of deformation of the G-structure an X 1s trivial.

Proof: Let ¥ -2 D be a deformation of the G-structure X = @-1(0); we

shall produce aneighborhood U of 0 € D such that the deformation @1 (U) 2.U
is trivial. Now, in the notation of (5.10), the C* sections of the sheaves %¢
(q=0,1,...,n) form the C® sections of differentiable vector bundles 0¢
(=0,1,...,n) on X, and we have differential operators D : 07 - 0?+1, By
taking metrics on X and along the fibres of the bundles 07, we may form the
adjoint D* of D; D*: 0?2 — 09-1, and DD* + D*D is elliptic. From this, the
theory of elliptic equations as applied in [7] tells us: (i) dim H¢(X,, O, ,) <
< dim H(X, @) for t in a neighborhood U of 0 € D; and (ii) if dim H*(X,, @, ,)
is independent of ¢ for £ € ¥, then ,éJDHq (X;, Og, ;) forms a vector bundle

H?1—~ ¥ over ¥, and HU (¥, W) is isomorphic to the sheaf of C* cross sections
of #9. From these facts, we conclude that, if H1(X, @g) = 0, then H (¥, ¥y)
= 0, and applying Proposition 3.1, the theorem follows Q. E. D.

Remark: By using the estimates in Propositions 5.5 we can prove this
Theorem without the use of elliptic theory for real-analytic deformations.

V1. Some Global Properties of Geometric G-Structures

1. Global Uniqueness of Structure. Let G — Bg — X be a normal G-structure
where @ is of finite type (geometric structure) and X is simply connected but
not necessarily compact. We shall see that, with a completeness assumption,
deformations of X are trivial. To do this, we need to define a complete G-
structure. Let G - Bg—> X, @ — Bl - X* be @-structures on n-manifolds
X, X1 respectively. Furthermore, let f : X — X! be a mapping of maximal rank,
which is also a G-mapping, i.e. f(Bg) < Bk.

Definition 6.1: The G-structure on X is complete if, for any X, f, X! as
above, f is surjective; and if the topological group ¢ of G-automorphisms is a
Lie group with Lie algebra H°(X, @¢).

Remarks: (i) In order to justify this definition, we recall that, from the
theorem in [14], a Riemannian structure (G' = O(n)) is complete in the usual
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sense if, and only if, Definition 6.1 is satisfied. Also, in the Riemannian case,
if we assume that X is the universal covering of a compact Riemannian
manifold in which the deck-transformations are isometries, then X is complete.
(i) An example of a normal G-structure which satisfies neither condition in
Definition 6.1 is the following: Let Y = R? with with coordinates (x, ), and let
XCY={x,y)|y=0 implies z < 0}; i.e. X = R? minus the positive z-axis.
Let G = I and the parallelism is given by dx, dy. Then the injection X — Y is
not onto. Furthermore, H°(X, @) =~ R? (the translations), but ¥ consists
only of the identity. However, there is clearly no discrete group I of G-auto-
morphisms of X such that X/I'is compact. It may be that this latter condition
in fact guarantees completeness.

Theorem 6.1: Let G — Bg—> X be a complete, normal Q-structure where G
ts of finite type and X 18 simply connected. Then: (i) If the structure is locally
homogeneous, it is globally homogeneous, (ii) Any deformation of X s G-iso-
morphic to X.

The discussion of the proof of this Theorem will occupy the remainder of
this section. Let X, X! be n-manifolds. For ¢ X, we consider the r-jets [6] at x
of local bi-maps f of a neighborhood of x into X*; for such an f, j5(f) = r-jet
of f at x. We set J, (X, X?) = LfJ i (f) and J7(X, X1) = xEX JT (X, X1); and we

call J*(X, X!) the bundle (over X) of invertible r-jets from X to X!. Now let
G CGL(n,R) and assume that we have G-structures G — Byg—> X, G —
— B} — X1, Then we may clearly define the space of G r-jets J4(X, X1).
JL(X, X1) is a topological subspace of J7(X, X!), but it is not in general a
bundle over X. However, we have (i) J7,(X, X) is a fibre-space over X; (ii) If G
is of finite type, then, for r, 1 > 03), J4(X, X!) =~ J5 (X, XV); (iii) If X and X!
have the same local structure (in particular, if X! is a deformation of X), then
J5(X, X1) has local cross sections; (iv) If the G-structures on X and X! are
both transitive (i.e. local homogeneity), then J% (X, X1) is a fibre bundle.

We say that the G-structure on X is a deformation of the GF-structure on X1
if X & X! and there is a 1-parameter family ¢ (f) : X — B/@ satisfying (2.1)

such that ¢ (0) gives By and o (1) gives B}.

Proposition 6.1: Let X be stmply connected, and let @ -~ Bg—~ X be a com-
plete transitive G-structure. Then (i) of X! is a deformation of X, then X = X1,

and (ii) the G-structure on X 1s globally homogeneous.

Proof: Let X! be a deformation of X. Then J%(X, X)~ Jg (X, X1)
(r > 0) is a fibre bundle over X with constant transition functions, since a
local bi-G-map is determined by its first d = d(G) partial derivatives at a
point. Since X is simply connected, this bundle is trivial, and thus there is a
global section f. This f is a G-mapping f: X — X! of maximal rank, and, by
completeness, f is onto. Then (i) follows by the monodromy principal.

Now for r > 0, we may consider J3(X, X) as a fibre bundle over X X X
(target and source projections), where it is a trivial bundle. Thus, given

?) The notation N > 0 means ‘“‘for N sufficiently large’.
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x, 2! € X, there exists a global section f of J% (X, X1) over X such that f(x)= 1.
The proof then follows from completeness Q. E. D.

We now give a direct proof (without using jets) of (ii) in Theorem 6.1. Thus,
let @ — B,;— X be a complete normal G-structure, and let G — B} — X! be a
deformation of this structure. Then we may find an open covering U = {U,}
of X with the following property: For each ¢, there exists a family f;(?) : U;—~ X1
of local bi-G-mappings between X and X,(=G — Bg(t) > X) coming from
o (t) such that f,(0) = identity. Also, we may assume that each f;(¢) is defined
on an open set U DU, and f;(t)U 2 U,. Set f; = f;(1), and let N = nerve of U.
We define now an element v = {7,;} € HY(N, I'y). For (¢,7) €N, we choose
W;; 2 U;n U;and let 7;; = i1 o f;, defined on W, ;. Then 7;;(W,;) 2 U; N U,.
Furthermore, for (¢,7, k) €N, 7;;T;% = T;x Thus 7 € HY(N, I'g). Now, since X
is simply connected and the G-structure on X is complete and normal, I'gis a
constant sheaf of non-abelian groups (infinitessimally generated by @|U,),
say ¢. Thus, 7 € HY(N, ¢) and gives rise to a bundle with locally constant
transition functions; this bundle is therefore trivial. We may then find ¢
= {o;} € C°(N, %) such that, for (¢,5) €N, t;; = 0;0; . Butthen f;- 0, =f; - 0;
in U; n U;, and we have thus globally defined a G-mapping g: X — X!, and ¢
is of maximal rank. Thus ¢ is onto by completeness. Q. E. D.

2. Homogeneous G-Structures. Let X be a manifold with a G-structure
G - Bg— X.

Definition 6.2: X is a homogeneous G-manifold if there exists a Lie group M
which acts as a transitive group of G-motions on X.

If X is a homogeneous G-manifold, then we may write X = M|V where
V C M is the isotropy group of point z, € X. In this case, the G-structure on X
is real-analytic, hence normal (§ V.1). Let Ad 3 be the linear representation
of ¥V on m/v induced by the adjoint representation of ¥V on m (since Ad V (v) <
C V).

Proposition 6.2: X ¢s G-isomorphic to a coset space M|V of connected Lze
groups M, V if, and only if, X s differentiably 1.somorphic to M|V and Ad #(V) <
C G, where G 18 considered as acting on m|v~ T, (X).

Remark: If M is connected but V is not, we always have a locally homo-
geneous G-structure on M|V for any G 2 Ad #(V°) where V? is the identity
component of V. If we take, in particular, @ = Ad 4:(V?°), then we call the
corresponding G-structure on M|V the canonical structure;

Proposition 6.34): The canonical G-structures are all analytic of finste type.

Proof: We may assume that V is connected. Let V1 C V be the connected
kernel of Ad# (V) on m/v. Then the fibration G — By — M|V is just V[V —
— M|Vl —> M|V. Repeating, the G* structure @* - By — B/G is just Vi[V2 -
— M|V?—> M|V! where V2 is the connected kernel of Ad3:(V') on m/v.
Continuing, we get a sequence of the form V*/V*¥+1 » M|/V*+1 » M[V*, and for
some k, V¥+! = {1} and we have a connexion in V* -~ M — M|V*, since M|V*

4) This is not a G-structure in the strict sense but is generally a higher order pseudo-
group structure.

Math. Ann. 158 24
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will in this case be a reductive homogeneous space and the usual canonical
affine connexion is just the connexion of the G,-structure. Q. E. D.
Proposition 6.4: Let M|V be connected. For the canonical G-structure on
M|V, H (M|V,Oq) =~ m.
Proof: By Proposition 6.3, H*(M|V, @) = n for some finite dimensional
Lie algebra n; then we may assume that m C n and that there is a Lie group N
with Lie algebra n such that M/V = N/W. Under the identification n/w ~

o To(M|V)=m/v (m(1)=0in M — M|V), Ad4 (W) < Ad 4 (V). The proof
now takes two steps. (i) We may construct the sequences W> W1 >---> Wk,
VO V2> +> V* asin the proof of Proposition 6.3, where we may assume that
Wi2 Vi and Ad (W) < Ad#(V7) for each j. We assert that V*+l = {1}
implies that w*+! = 0. Indeed, we have

Wk We+1 — N/Wk+l — N/W*

| |

y —M  — M|V

and thus w*+1is an ideal in n, hence w*+1 = ( (assuming, as we may, effective
action of IV on N/W). (ii) Since w*+1 = 0, Ad $:(w*) is faithful, and Ad + (W¥) C
C Ad #(v*) implies that dim w* < dimv*;i.e. dim w* = dim v*. Since w//w’ +1 ~~
~ vi/vi+1 for each j, we conclude that dimv = dim w. Thus dimn = dimm, and
thenn = m. Q. E. D.

3. Deformations of Homogeneous Q-Structures. We shall not go into the
construction of deformations on homogeneous G-manifolds, but shall give two
simple propositions which put in a general setting the phenomenon observed
in [4]. Thus let X be a homogeneous G-manifold M|V, and assume that the
M-module H'(X, @) is finite dimensional (@ may not be of finite type!). Let

¥ —2, D be a deformation of the G-structure on X, and assume that ¥ is weakly
homogeneous with respect to M, i.e. M acts as automorphisms on ¥” in a
fibre-preserving manner. Thus, for each ¢ ¢ D, M acts transitively as G-motions
on X; = @ 1(t) and thus X, = M|V,.

Proposition 6.5: ¥~ is strongly homogeneous with respect to M if, and only if,
the subgroups V are conjugate in M by a 1-parameter family o, of automorphisms
of M.

Proof: If we have such an {o;} (¢t € D), then the mapping f,: M|V - M|V,
defined by f,(mV)= a;(m)«;(V) is a bi-real-analytic mapping satisfying
mof=fom (m € M). Thus, what we essentially have is a family X,(t € D)
of G-structures on the fixed homogeneous space M/V. This statement implies
and is implied by strong homogeneity. Q. E. D.

Proposition 6.6: If M s compact, then any weakly homogeneous family 1s
strongly homogeneous, where we have perhaps shrunken D.

The proof follows from Proposition 6.5.

Example: Let X be a C-space of H. C. Wang [12]. Then we may write
X = M|V = A/B where M is compact semi-simple, 4 is the complexification
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of M, and all groups are connected. If X is non-Kéhler, then WANG exhibited
a l-parameter family homogeneous complex structures on the final C* mani-
fold M|V ; these structures were obtained from a l-parameter family of com-
plex subgroups B;C A4 such that By = Band M|V =~ A/B,. Furthermore, the
B;'s are not conjugate to B, (for # small). Thus, this family of complex structures
is weakly homogeneous with respect to 4, but is not strongly homogeneous.
We remark that there exists on X = A/B a l-parameter family of complex
structures {X,} (¢ € D) which is not even weakly homogeneous with respect to 4.
These are the non-homogeneous deformations constructed in [4].

VII. Lie Groups, Group Cohomology, and Deformations of Geometric Structures

1. The GQroups HY (X, @) for 0 < g < 2. Let X have a normal G-structure
G - By — X where G is of finite type. Then, if I" = 7, (X) and X is the universal

covering of X, there is a principal fibration I'— X —=» X. There is induced on
X a unique normal G-structure G — By —> X relative to which I" acts as
G-motions. Furthermore, I" acts on g = H°(X, @), and thus the group coho-
mology modules H¢(I', g) are defined.

Theorem 7.1: For ¢q =0, 1, HY(X, Oy =~ H(I', g). For q = 2, there i3 an
injection ¢ : H3(I', g) — H3(X, Oy).

Remarks: In general, ¢ is not surjective.

Proof of Theorem 7.1: Let {U,};¢; be a finite system of open sets in X such
that: (i) the sets {U;y} (i €I, y € I') give a normal covering of X; and (ii)
for each pair ij € I, there is at most one y = v,,; € I" such that T,y N U, = 6.
We set U; = n(U,), and then U = & {U,} gives a finite normal covering of X
with nerve N. To each (z’ 7) € N, there is associated a unique y,; € I' such that
(1) Yii = € (11) Vii = :M. ’a’nd (111) YiiViek = Vik- Thusthesystem{y,j} Eﬂl(N F)

and this element defines the principal bundle I' > X = X,
Let 0,,...,0, be a basis for g = H*(X, &;); then we may restrict 0, to
U, and project 6,|U, onto U, by x, to get a basis 6i, . . ., 6i of @4| U,. The
right action of I" on X induces a representation p : I' > G L(g), and we have:
Proposition 7.1: 6% = Z o(y:5)8 0% for (3,7) €N.

P?'OOf Set goz] ﬁ = 6‘ Then 6 = Tlx (ea) = Tlx (yzs)* (éoz) = Tk o, 9(?:5)« 5‘
——ﬁZ o(y:4)3 65 QE.D.

A g-cochain &={&; ;. }€C%N,0Og) assigns to each U;_ ;. = U;n
N-++NU;, asection§; ; ofOg| U, ;. , written in the {64} basis. The
cocycle conditions for ¢ = 0,1 are: (0) & = p(ys;) &;; and (1) & + o(ys5)
&;x = & The g-cochains f € C?([, g) are alternating functions f: I'x — xI'—+> g

¢
such that f(y, ..., ¥4 = 0 if some y; = e. Then Jf € C¢+1([’, g) is given, for

q=0,1by:(0)of(y) = e(y)f— f; and (1) 8f(yy, va) = 0(1) f(ya) — f(y1ya) +

+ ()
We need to know the relation between the y,; and the group I'; this is

given in [13]. Fix ¢, € I and for each ¢ € I, fix a chain C; = (3g, . . ., tpy—qs ty=1)
24*
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where (t,—q, %) €N, set 0; = Vi, Viii,* ** Vini, and set o;; = d0;v:;0; 1.
Then 6;; = e; 0;; = 0j;1; 0;;0;,=0;x; and 0; 0y °°*0; ; = e Whenever
¢, = %o- The elements o, (z,j) € N, generate I" with the above as fundamental
set of relations.

Let & ={&;;} €Z'(N,O¢); then &; ¢ g and &;; + o(yyj) &= & I we
have a chain J = (j,, . . .,7,) such that (j._;, 72) €N (1 < k < s), we define
&y €g by

§—1
(7'1) EJ '7;}9(7%3} Tt ij-—ljk) Efkﬂ?‘k‘

If we have a k;,,0 <k, < s, and a j €I such that Vity—17p, = Ving—17 Viig,

then we have a chain J= (jy, ..., 95,1, 0k, - - -»7s) and &; = &pn, since &;
is a cocycle. Thus &; is invariant under ‘‘deformations” of the path J. We
define f, €Z'(I',g) as follows: (1) fe(e)=0, and (ii) let 9 = §;y,;6;1,
Jig=(lgy -+ ostme1 & J5 Jro1s -+ ->70) (Jo=71o), and set fe(y) = &;,,. Then
fe(y) is well-defined by the remark on continuous deformations of paths.
In general, if y = 0;,4, * * * 0y,_,4,, We may set fe(y) = 3] 0(04,0, * * * 04_i) [el0ir_,ir)-
Clearly, f. € Z* (I, g).

Now if &= 675 for some 5 = {n;} € C°(N, Og), then &,; = o(y:;) n; — n;
for (z,9) € N. But then f:(0,;) = 0(0:;) 9;, — ms, by (7.1) and it follows that
fe = 0m;q for ;9 €C°(I, ) =~ g. It also follows easily that if f, € 6C°(1, g),
then & €6C°(N, @y). Thus we have an injection ¢: HY(N, @y) — H (T, g).

We now define a mapping f — f of Z1(I", g) - Z*(N, Og) such that the com-
posite & — f¢ — f. is the identity. The mapping f — f is given by (f);; = 0(6; 1) X
X f(o:5) — 0(8:) f(8;) — o(yis) H(8;Y) where o;; = 8;7,;6; . Then f; = &.

From the definition, HO(I', g) =~ H°(N, ®¢), and one checks that there is
an injection 1 : H2(I', g) > H23(N, @) in a straightforward manner. This com-
pletes the proof of theorem.

An Application:

Proposition 7.2: If &, (X) ¢s fimite, then any normal G-structure G — By — X
where @ is of finite type is locally rigid.

Proof. We may prove that HY(X,0q) = 0. But HY(X, Og) =~ H(], g)
and it is well known that, if I" is a finite group of order ¢, and V is a torsion-
free I-module, then HY(I', V)= 0. In fact, if f €Z' (I, V), then f(y - ')

— f@) + v - (), and, if we set m =1 3" f(y), then z € C*(T’, g) and f ()

9 yer
=y-am—n=0xn(y). Q E.D.

Remarks: (i) This Proposition generalizes known results about discrete
subgroups of compact Lie groups. (ii) Theorem 7.1 may be proven using a
spectral sequence argument; however, we shall use the constructions in the
proof to prove a similar statement for sheaves of non-abelian groups, for which
the spectral sequence is not available.

2. The Set H' (X, I'g[t]). Assume now that the G-structure G — By > X
is complete, and let G with Lie algebra g, be the Lie group of automorphisms
of this structure. Then I' is a subgroup of G, and we define a set Hom (I, G) [¢]
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as follows: Hom (I', &) [¢] consists of germs of 1-parameter families of mappings
f() : I'— G such that: (i) f(0) = identity; (ii) f(¢) € Hom (I, &) for fixed ¢; and
(iii) f(t) is C* (or real analytic) in t. We say that f(t), g(t) € Hom (I, @) [t]
are equivalent if there exists a smooth curve ¥(t) € G such that ¥ (0) =e € G
and, for y € I, T() () () = (@) () P 0.

Definition 7.1: The set Hom (I, G)[t] is defined to be Hom (I, G) [¢]
modulo the above equivalence relation.

Theorem 7.2: If the Q-structure G —~ By — X is complete, then HY (X, I'g[t]) =~
~ Hom (I', G) [t] in a natural fashion.

Proof of Theorem 7.2: We keep the same notations as in § VII (2) above.
Thus G - By — X is a normal @-structure such that the induced structure
G - By — X is complete. We have defined (see § 1.2) sheaves I'g[t] on X, and

correspondingly, f’;m on X. Now, because of completeness, I'y and Iy are
both locally constant sheaves of finite dimensional Lie groups, say G. Thus,
for UCX, I'q| U =G| U is generated by the Lie algebra @y | U. A germ
(@) €lq[t]| U is a 1l-parameter family of local G-automorphisms of neigh-
borhoods of U such that f(0) = identity; or, f(¢) may be considered as a 1-para-
meter family of mappings into G such that f(0) = e. However, writing a germ
f(?) in this second form necessitates a change of the value of f(t)(x) €G(z€U)
upon changing coordinates, and this is the whole point. To be more precise
let U= {U;} be a normal open covering of X, and identify I'g | U; with G
(constant sheaf) in the same manner as was done when identifying @ | U;
with g in § VII (2) above. Then, as in Proposition 7.2, we have:

Proposition 7.3: Let f;: U; — G be a section of I'g written tn the coordinates in
U;. Then, for (i,7) €N, wn U; N U,, {; written in the coordinates 1n U, is given by
Viili Vi

An element &(t) = {&;;(t)} € H'(N, I'q[t]) is then given by a collection
£:i(t) € G, £;;(0) = e, satisfying &;;(8) y:; &1 () piz" = &2 (t). Thus &;;(f) y:; X
X &51(t) Yir= &Ex() vir for (v,9k) €N. Now given &(t) € HX(N, I'¢[t]), we
define a collection {¥#¢;;(1)};,; €N of elements in G by *&,,;(t)=&,;(f) s,
Then, for (¢, §, k) €N, #&;;(t) #&;, () = ¥&,,(t), and ¥&,,(0) = y,;. For a chain
J = (i, g, ..., 0y,), We set FE ()= [I #& . (), and then ¥£;(0)

1=sr<m

= II vy, i, and #&;(t) is invariant under deformation of the path J. Now,
1sr<m
for (¢,7) €N, we have a chain J;; = (%5, %, - - o) b = %,§ = €5, Ug_15 - - -5 bg)»

and we set ¥E£(t) (0;;) = #&5,,(t). Then #£(t) (055) FE@) (05) = FE(E) (04n)s
and *£(0) (0;;) = 0;;. In fact, we have in essence defined a mapping *:
Z (N, I'q[t]) - Hom (I', G) [t], by sending &(t) into F£(¢).

Now if £(t) €0C°(N, I'g[t]), then &;(t) = o;(t)~ yi;0;(8) yiz* for
o() = {0:(t)} € C°(N, I'g[t]). But then ¥*&(t) (0y;) = g4, (t)20y50:,(t) or
o;,(t) E(t) (0;) = 0:70;,(t), and thus, for all y € I, g; (f) FEQ (p) =1y o;, (t).
Since g; (0) = e, we conclude that, if £(t) = 5 (t) in H' (N, I'g[t]), then *&(t) is
related to ¥*»(f) in the manner described above theorem, and thus #&(t)
= ¥y (t) in Hom (I, @) [t].
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The rest of the theorem proceeds along these very same lines, the end
result being, as asserted, an identification between H(X, ['4[t]) and
Hom (I', &) [t]. We omit the details and thus conclude the proof.

3. Formal Construction of Hom (I, @) [t]. We shall now give a global
construction of Hom([', &) [¢{] analogous to the sheaf construction of
HY(X, I'q[t]) given in § IV. Although this construction will be carried out
formally here, the convergence will be obtained by analytical methods below.

Theorem 7.3: If H?(I', g) = 0, then we may formally embed a neighborhood
of 0 tn HY(I', g) into Hom (I', @) [t] such that o corresponds to the distinguished
element tn Hom (I', G) [t].

Remarks: (i) The hypothesis in this theorem are only that G is a Lie group
with Lie algebra g, and I is a discrete subgroup of G. However, in order to
simplify computations, we shall assume that G is a linear matrix group; the
proof in general is only notationally more complicated. Finally, in order to
make the statement of the theorem more plausible, we shall associate, to each
f(t) € Hom (I", @) [t], an element f¥ ¢ H'(I", g). The proof of the theorem will
then constitute a reversal of this process.

For f(t) ¢ Hom(I', &) [t], write f(¢) (y)=1,(}) ()’E{;) tThen £, (®) fa ()
= yo(t) and £,(0) = . Define [¥ ¢ CU(T', g) by f¥(y) = 22| _ p-1. This

mapping f(¢) - [ is called the infinitesstmal mapping.
Proposition 7.4: f*(yo) = fF(y) + v - f¥(0) - ¥y, and thus f¥ ¢ HY(I, g).
Proof: Differentiate f, () f;(f)o~ - y~1 = f,4(t) (yo)~! and set t = 0.
Proof of theorem 7.3: Let 6 ¢ HX (T, g) be arbitrary. We shall construct, for

each N > 0 and y € I, a series f(f) = 2 (%)ut* € G such that: (i) (f3)y = v;

(i) f“)1 “1=0(y); and (i) f5(¢) f” ) ¥o(t) (modulo ¢*+1). Then f,(f)
= <~—-—— » (t) will satisfy the requirements of the theorem. We shall write = to

tn

mean ‘“‘congruent modulo .

dSet [3(¢) = (exp O(y) - £) - y. Then f3(4) €G, (flo=1p, (Pl y 1 =0(y),
an

@) f3(8) = (exp(y) - t) - y - (expB(0)?) - 0
= (expl(y) - 1) - y - (exp0(0)?) - y~* - (y0)
=yo+0() + y0(0): y) (yo) - ¢
= exp(0(y0)t) - yo = fi4(t) .
Suppose now that we have f%(t); we try to construct f2+1(f) (y € I'). We may
inductively assume that f%(t) = exp(¢%(f)) -y where @}(t) = f‘ @u(V)te,

=0

¢1(y) = 0(y). Define wh 51 by: f5(t) f2 6 =, 0+ wh g 1en+1) 13, (6).

Proposition 7.6: w5l ¢g (y,0 €1 cmd in fact, w51 ¢ H2(T', g).
Proof: We must show that w?) 1 + witl = w’.},‘g} + ypeuttl.y-1(y,o,

v el
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Now

HOfOREO =, 0+ wh G +1) f4(8) £ (2)

+I

n

(L wtE1en+) (14w 2ens) fo,.(6)

T

t
On the other hand,

I

fr®) fa@ f2 @) = f30) Q1+ wi"ten+) f2.¢)

o (L - ug Tl y im0 f3(t) fo. ()

-+

i

tn

+

o (L wl e i) (L Ehems) 20,0

“+

Thus w b1 + whil =wiil + y-wiil. -1 Q. E.D.

By hypothesis, there exists ¢,.; € C*([I,g) such that (d@,+,) (¥, 0)
= @Pnt1(¥0) = Pns1(¥) — YPusr(0) -+ vt = wp Tl Set @FTI(E) = ¢B(t) +
+ @ur(p)rt, and f2F1(t) = exp(ent1(t)) - . Then a direct calculation
similar to that in Lemma 7.5 shows that f2+1(t) f2 1) e frii@). Q.E.D.

4. Formal Completeness of Deformations in a Special Case. We have defined
Hom (I', @) [t] as the space of effective germs of 1-parameter families of homo-
morphisms of I" into G which reduce to the identity at ¢ = 0. Also defined was
the infinitessimal mapping Hom (I, G) [t] > HY(I', g) obtained by sending

f(t) into f* = i(-%ﬂ— “f(#) ) =o. If now ¢t = (&, ...,t™) i3 a point varying in

a neighborhood of 0 ¢ R™, then we may clearly define Hom (I", &) [¢] as homo-
morphisms depending on m-parameters. There is also an infinitessimal mapping
i : Hom (7', G) [t] X R™ - H'(I', g) defined by sending (f(t); &, ..., &™) into

it &, ..., ) = f‘lga T . {(6)-1), = - Let f(£) be a gorm in Hom (T', G)[¢],

let s vary in a neighborhood of o € R, and let g(s) be an arbitrary germ in
Hom (I, &) [s].

Definition 7.2: f(t) is a complete germ of deformation if, for any g(s), there
exists a mapping 7:8—7(s) ER™, T(0) =0, such that g(s) = f(z(s)) in
Hom (I, &) [s].

Theorem 7.4: If ¢: f(t) X R™— HY(I', g) is onto, then f(t) i3 formally a
complete germ.

Proof: We must produce formal mappings y:s— y(s) € R, y(0) = 0;
and ¥V:s— ¥(s) €@, ¥(0) = 1, such that

(7.2) P(s) f(p(s)) = g(s) F(s) .
Let &¢R™, and define 0 ¢Z (I, g) by 0:(y) = f‘lsaff-”-@]tao- 1.

at*
Given w €Z*([, g), there exists &£ ¢R™, and ¢ €C°[, g) =g, such that
w=0z+ dp;ie,fory €I, w(y) = 0:(y) + ¢ — y + ¢ + y~1. We shall construct
infinite sequences {yw,} (v, €R™), {@,} (@, €g) such that, setting ¥n"(s)



340 PaILLIP A. GRIFFITHS:
n
= exp(p"(8)) (¢"(s) = @8 + * * * + @, "), p"(s) = Z‘l%s“, we have
y b

(7.3)" ¥n(s) f,(p" (3)) y(s) Yn(s) (forall y € I').

+ !ll

The inductive construction may be assumed to begin with » = 0, in which
case (7.3)" is satisfied. Suppose, therefore, that we have made the construction
for n, and we shall do it for n + 1. Define w1 by

7)) =, (0 wh T sn+) g, (s) P (s) -

Proposition 7.6: fw’;""l €g and w*+l ¢ CY(I', g) defined by wr+l(y) = wi ™1
satisfies 0 (wr+1) =
Proof: ¥ (s) f,,a(w (6)) =, (L+ whdtsn+D) g2y (s) ¥n(s). But

P (8) fya(y™ (8)) = ¥ (3) f, (9" (5)) o (3™ (5))

= (1 + wiTlgntl)yg (s) (1 + wptlgntl) g (s) Pn(s)

i

et whTlsn+l) (14 p-wl™1l. y=1gntl) g (s) Pr(s),

and thus w?il= w1l 4 . w2*1.4-1 Q E. D.
By hypothesis, there exists y,,, €R™, @,., €g, such that —w2*1
=0y, (V) + Pns1— ¥ Puyr- 71 Seb

Prri(s) = P(S) + Ynia "L @ TH(S) = ¢ (8) + Pnia S”HE.
Proposition 7.7: Pr+1(s) f,(yp"+1(s )) o I7 (s) Pr+li(s).
Proof: ¥ +1(s) f,(y"+*(s)) = exp(w (8) + Prs1S" ) [, (" (8) + Y a 8™ Y

!

=2 (Exp™() + @uras™ ™) (V" (5) + O, () - 7 - 5" +7)

gln(s) fy(’l/)”(e?)) + Pnyr Y sntl Ogln“(y) Y gnt+l

|

n&; g,(s) Wn(s) + wn+1 pyoghtlpog ey gt 4 0Y’n+1(7) c g gntl
8
S IO PO + Y puia S = g,(0) W) Q. E.D.

Remarks: Although, we shall not do so here, it can be shown that conver-
gence holds in theorem 7.4, although we are unable to prove convergence for
theorem 7.3. For this it was necessary to assume that & is connected and that I'
is finitely generated and finitely related. If y,, ..., y, are generators of I,
we say that an expression y; ... y; has length r, and choose R such that all
relations in I" have length < R. Assume that we have a norm || on g; if

@ €CY(I', g), define || = sup l@(ys, - - - y3,)|; and if € C* (I} g), set |y
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= sup |9 (¥, - - - Yij» Vi, - - Vi,)|- The crucial point in the convergence proof
r=R
of theorem 7.3 is the following

Proposition 7.8: There exists a ¢ >0 such that the following holds: for
g=1,2 and for any v € 6C1-1(I', ), there exists a ¢ € C*—1(I", g) such that
dp =y and |g| = Cly].

Proof: Set i(yp) = s inf | @||. If the Proposition were false, then there exists

=9y

an infinite sequence {y#} € §C?-1(I’, g) with 7(yp*) = 1 and ||p*| < -;‘1-— Choose

{@*} € C1~1(I', g) such that |¢*| <2 and d¢# = y*. Assume ¢=2 (¢=1 is
similar). We have ¢*(yo)— @*(y)— yo#(0) y='=9*(y,0) (y,0€[l). By
the definition of | ||, we may assume that, for r < R, ¢*(y;,... yi,)T @(Yivi);
and, for r =< R again, since |y*| >0, @(y;...7)=@0. .. v)+
+ (Viy -+ Vi) @ Viger - - - Vi) (¥4, - - - ;)7L Since 9y, ..., p, generate I', and
since all relations are of length < R, we may uniquely extend ¢ to an affine
homomorphism ¢:[I'—g; ie. ¢ € H(I', g). But then (¢*— @) = y* and
l¢# — @|| = 0. Contradiction.

VIII. Partial Differential Equations and Deformations of Geometric Btructure

1. An Outline of the General Method. Let G —~ Bg—~ X be a complete,
normal G-structure where G is of finite type and X is compact, and assume that
H?(X, ©g) = 0. In this section we shall use the method of partial differential
equations, first initiated in [8], to prove Theorems 7.3 and 7.4; in other words,
we shall prove that ‘““formal implies actual.”

Recall that a graded Lie algebra is a graded vector space V = V°@® Vi@ - - -
together with a bracket law [, ]: V?® V?— V?+¢ satisfying: (i) [{, %]
= (= 1)p2+1[p, £ (¢ € V7, 5 € V9);and (i) (— 1)?* ([, 0, @1+ (— 1)2*[[7,0],{1+
(—1)7[[p, Clm]=01for L € V?, n € V9, @ € V*. For a vector bundle E over X,
we let & be the sheaf of U™ sections of E. A graded bundle V =V V1@ - - -
over X is a Lie bundle if the sections of ¥ = ¥ @® ¥1® - - - form a graded Lie
algebra. We shall, in certain cases, associate to G@ - By — X a Lie bundle ¥
together with differential operators D: ¥ — ¥7¢+1 gatisfying the following
conditions: (i) There is an injection ¢ : @; — ¥ such that the sheaf sequence

(81) O‘)@G—L’VO“B””Vlj—*"'MVQ_LVQ+1
is exact, and
(8.2) D[¢,q] = [DE, gl + (= 1)?[¢, Dyl (C €¥°7);

(1) to state the second condition, we let V¢ = H®(X, ¥79), and we let V?[t] be
1-parameter families @ () of elements of V¢, depending smoothly on ¢, and
satisfying ¢ (0) = 0. The second condition states that the non-linear equation

(8.3) Do(t)— [p@), p®)1=0 (p(t) € V*[¢])

may be used to construct deformations. When (8.1)—(8.3) are satisfied, we say
that ¥~ gives a Lie resolution of @¢. In general, we do not know that the resolution
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(5.10) gives a Lie resolution of @, and it will be our task to modify (5.10) in
certain cases to give a Lie resolution of @g.

2. A Lie Resolution of @4 for Canonical Homogeneous G-Structures. We first give
a resolution of the sheaf of infinitessimal automorphisms of a local Lie group.
Let U C R” be a relatively compact contractible domain, subject to shrinking,
and let w!, ..., w" be n-independent Pfaffians in U giving a parallelism and
such that dw* = c§, wPA w? (¢}, constant). Let X,, ..., X, be a dual parallel-
ism to w!,...,w" T?= bundle of vector-valued ¢-forms on U, J? and
T'v1= H°(U, 59 as above. Since we are shrinking U, we shall work with 7

n
in lieu of 9 If { € T9, write { = ) = X, ® (% and, if =2 X;® 7F, set
a=1

C,n]=2" [Xqo Xp]®@ *Anf. ThenT & T" @ T?@ - - -is a graded Lie algebra.
We shall construct an injective Lie resolution

(84) 0— Gy i:T D‘;I'l.ﬁ:.,Tz__.._._.,...___,Tq_ﬂ'il,Taﬂ__w..

The injection ¢: @y — T is the injection of vector fields. For { € 7', set
D,() =) X, ® Lyw* where L,u* is the Lie derivative of w* along {. Then
(8.4) is exact at @y and 7. We now find the differential equation which D, ()
satisfies. For { € T', set n*(t) = exp (t{)*w*. Then

(8.5) dn®(t) = cg,nP (¢) A 17 (¢)
and also

(8.6) n*(t) = w* + tLyw* + O(%) .
Combining (8.5) and (8.6), we immediately get

(8.7) d(Lyw*) = —c§,w” N\ Lywh .

Furthermore, if o =3 X, ® ¢* €T, ¢*=Lyuw* (a=1,...,n) for some
¢ € T if, and only if,

(8.8) do* = —c§,w’ N\ ¢Ff.

Thus, if we define D, : Tt — T2 by

89) DY X, @9p9)=2 X, @de*+ 23 X,® ch,uw” A\ ¢f, Dy D, =0
and

0>0@yg—>T->T - T?
is exact.

From (8.9), we now see how to define D, ,: 79— T%+1; we first introduce
some notation. Given { =} X, ® {* € T, we set d{ =), X, ® d{* and we
set QR =" X, ® c§,w” A (B. Then we define D, ,, = D:T?—» T+l (q = 1)
by
(8.10) Di)=d{+ 22RK{.

Proposition 8.1: D? = 0.

Proof: The proof is in three steps.

(i) Lemma 8.1: d(QA() = —Q2ARd, — (A Q)R L.

Proof: The proof is a straightforward computation.
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(ii) Lemma 8.2: (QAQVAL =207 (2RKQ).

Proof: (QAQR* = C%,C0uw Aw AN{"; and (QR (2K
= C%,08,w* A w* A {°. From the Jacobi identity: C%,C8, = C%3C8, + C2,C%.,
(RR R = 0%, 00,uw™ AN u’ ALY+ C%, 08, u’ A w* A (Y= 2(.(27( (27 ).
Q.E.D.

(i) D(DE) = DAL + 2QRE) + 2QAdE+2RQAE) = —202Rdl —
—2QANDARL+ 2R +4Q2K(2AL)=0. Q E. D

Theorem 8.1: The sequence 0 — @4 L, 2 2 s e 2,

D : : :
—— T+l ... 48 g Lie resolution of @y.

Proof: The proof of the exactness (i.e. the D-Poincaré lemma) follows
from the d-Poincaré lemma and the relation between this resolution and the
resolution (5.10); this is taken up in Lemma 9.2. § IX below. Thus, to prove the
Theorem, we must prove:

(8.11) D[Z, n] = [DE, ] + (— )¢ L, D]
and that the equation
(8.12) De(t) = [p(), p(®)] (@) € T [t])

may be used to construct deformations.
For (8.11), we let & € T, n € T'?; and then
D[L,nl=23 X,® {C%,dlF N+ (—1)2C4, 88 Ndnyy + 2C%,CE .w” \ E2 A7}
Now
[DE, ] =2 X, ® {0%,dl8 N ¥ + 20%,C8 ,.w* N\ & A 5°};
and
(—1)2[L,Dn]l=2 X, ® {(—1)?2 08¢ A\ ¥ + 2C%,C%,w* N E8 A 9°} .
To prove (8.11), we must show:

C3,C8uw?” NI Ao = O3, Chw NP A + O Ol A s

and, as above, this equation is just the Jacobi-identity.

Now a deformation of the G-structure on U given by w?, ..., w" is given
by Pfaffians n(f), . . ., n™(t) satisfying #*(0) = w* and
(8.13) dy(t) = C§,mP(t) A p¥(t) .

If we write ¢*(¢) = n*(¢) — w*, then }' X, ® ¢*(t) € T*[t] and from (8.13) we
get

(8.14) do* + 20%,u? A gh(t) = C%, 9B (t) A @ (£) .

However, (8.14) is just (8.12). Q. E. D.

Now let 4 be a connected Lie group, B C 4 a closed connected Lie subgroup
such that X = A/B is simply connected. In § VI.2 we saw how to put a canonical
homogeneous G-structure on X where G = Ad¥, the adjoint group of B
acting on a/b. This structure is of finite type, and H°(X, @;) = a. We shall
construct a resolution of @4 from the local considerations above.

Over X we have the bundle @ - By — X (G = B|B'); over G we have the
bundle G* > Bg: — Bg; -« -; and finally we have G* — Bgk —~ Bgk—1 where
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G* =1 (and Bgk = A). The groups G act on the right on the bundles By
for § < k. On A there is an absolute parallelism given by wl, ..., w® where
N =d(G)+ n (n = dim X). Let G be the linear Lie group of all homogeneous
automorphisms of the flat G-structure on R”. Then G acts on 4 on the right,
and 4/G = X. We let T? be the bundle, on 4, of vector valued g-forms. Then G
acts on T9, and we set V? = T¢/@. Now, since the sheaf @y on X lifts to precisely
the sheaf of infinitessimal automorphisms of the structure on A4 given by

wl, ..., w" and since the operators D : 77— J ?+1 commute with action of G
on 4, weseethat Vo V1@ V2@ - -+ gives a Lie bundle on X, and

(8.15) 0—s@g—?V Loyr__ iy 22 yun

is a Lie resolution of @,. Indeed, it is clear that the equation

(8.16) Do(t) = [p(), p®)], @) € V'[t]

may be used to construct deformations on X.

Theorem 8.2: Let X have a complete, normal G-structure which s locally
homogeneous and wn fact 1s locally isomorphic to the the G-structure on A[B
discussed above. Then (8.15) gives a Lie resolution of @y on X. If @(t) € V'[t]
satisfies (8.16), then the infinitessimal deformation to the family of G-structures

. . do(t
{X,} given by p(t) is gt( )]t=0 =

Remark: ¢ € V! and satisfies Dp = 0; thus ¢ gives a class in HY(X, 0)
by the deRham theorem.

3. The Existence of Deformations. Let G —~ Bg— X be a complete normal
G-structure where X is compact and @ is of finite type.

Theorem 8.3: If H2(X, @y = 0, then a meighborhood of o in H(X,Oy)
paramelrizes a locally complete germ of deformation of the G-structure on X.

Proof: We follow the notations established heretofore. In § VI1.2, we proved
that H'(X, I'¢[t]) was given by Hom (I', &) [¢t]. Also, from the formal consider-
ations in § VII.2, we may assume that & is connected and simply connected.
Now G acts as G-motions on X, and, since X is compact, we may find a point
# ¢ X such that, if H = stability group of & in &, H is connected and the double
coset space ¥ = I"9/Hjg compact. Now the compact manifold ¥ has a com-
plete, normal @-structure where now G = Ad¥, the adjoint group of H acting
on g/h. Since H (X, Og) >~ H*(I', g) =~ H (Y, Bg), and since HY (X, ['¢[t]) =~
=~ Hom (I, G) [t] =~ H*(Y, I'3[t]). The Theorem will follow from:

Proposition 8.2: Let the resolution (9.15) of @y be constructed on Y, and let
@ € V1 with Dp = 0. Then there exists a @(t) € V1[t] satisfying D @ (t) = [¢(t),

do(t
pand 52| =
Proof: By hypothesis, there are not obstructions to the formal construc-

tions to be done below. This will mean that, given ¥ € V2 with D¥ = 0,
there will exist a { € V! with D{ = ¥. We shall construct a sequence {¢"(t)}
r

of elements ¢"(f) = 3 ¢,t* € V'[t] satisfying ¢, = ¢: and

p=1

(8.17)" Do (t) = [¢"(t), 9" (£)] (modrr+l),



Deformations of G-Structures, B 345

then the formal series
@ () = lim ¢"(t) = D .t
r— 00 p=1
satisfies

= @, D(P(t) = [QD (¢), 99(t)]

(in a formal sense) and we shall prove convergence in ¢ and that ¢(¢f) is C>
on Y, so that formal is actual.

Since (8.17)! is fulfilled by ¢'(t) = t@, we assume given ¢r(t) satisfying
(8.17)7, and we shall construct ¢ +1(t) satisfying (8.17)"+1. Define ¥r+! ¢ V2 by

(8.18) Pr1gr = Dot (t) — [@7(¢), @" (f)] (modir+1); Pr+

is called the r 4 12¢ obstruction.
Lemma 8.3: D Wr+1 = (.
Proof: DWPr+iir+1 = — D[WP"(t), ¢"(t)] (mod ¢ +?2)

— —2[Dor(t), ¢’ (t)] (modér+2) (by (8.11))

= —2{[¢"(#), ¢"(1)], ¢" ()] (modir+?)
by (8.17)" = 0 (modir+2). Q.E.D.
If we then choose @, ., such that De, , = — P7+1; then we may easily
verify that ¢"+1(¢) = @,(t) + @, ¢"+! satisfies (8.17)"*+1. This completes the

formal proof.
N

The proof of convergence is simpler than in [8]. Namely, ds? =}’ (w*)?

a=1
gives an H invariant metric on ™%, thus a metric in the bundles V4. We define

an inner product { ,) in V7 by setting
Cm=J &L n@)du,

and we also define |{|% = (£, ). If D* is the adjoint of D, then DD* 4+ D*D
is clearly elliptic, and by standard elliptic theory, we have:

There exists a ¢ > o such that, for any ¥ € V2 with D ¥ = o, there exists
an unique 7 € V! with D*n =0, Dy =_, and |9| <c ||]|. Also, since [ , ]
involves no derivatives, we may assume ¢ > o is such that || [, 51| < ¢|]| - [|#].
Then, assuming we choose the ¢, ., as above, one easily checks that, for b
large enough, the series b(J}, ||@[#c##*) dominates, in | |, the series for ¢({)
constructed inductively. Thus ¢ (¢) is real analytic in £, square integrable on Y,
and satisfies D (f) = [@(t), @ (t)], where D is taken in the weak sense. However,
since @ (¢) satisfies the equation

(DD* + D*D) @(t) — D*[p(t), p()] = £(DD*qy) ,
which is elliptic quasi-linear for () small, ¢(t) is actually C* on Y. Q. E. D.
Remarks: (i) The success of the method just used is that it linearizes the

equations in § VIL.3 which we were unable to deal with exponentially. (ii)
Given ¢ € H(Y, O), the primary obstruction to ¢ is given by

(o, 9] € H*(Y, Og) .
If [p, o] = DY, then the secondary obstruction is given by -%— [, P].
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IX. Examples, Automorphisms and Deformations

1. Automorphisms and Deformations. Let X be a compact manifold, and
suppose that @ - Bg— X is a normal geometric G-structure. Under a mild
restriction on X, one can associate to G — Bz — X a real analytic (possibly
reducible and/or singular) variety } (@) which parametrizes a subset of the
deformations of X coming, in some sense, from the automorphisms on X.
We shall construct this automorphism vartety }, (@) in certain special cases.

Let I'->X > X be the universal covering fibration of X, and let
g = H(X, &). Then the Lie algebra g is a finite dimensional I“module; if
o:I'—> GL(g) is the action of I' on g, then g(y) [g, ¢*]1 = [0 ()9, o(y)g']
for y €I, g,¢9' €g. Thus the subspace g = H*(X,0y) ={g€g|lo(p)g=19
for all y € I'} is the Lie algebra of the Lie group of G-automorphisms of X.

There is an exact sequence of I-modules

(9.1) 0->g¥—>g—g —0;
and from the cohomology sequence, we get
(9.2) 0> HY(I, %) — HY(I, g) .

We shall examine the effect of the subspace HY (I, g%) of H(I, g) =
~ H(X, @) on deformations.
Lemma 9.1: H(I" %)~ g% ® H' (X, R).
Proof:
H(I', %) >~ Hom (I', %) =~ Hom (I][I, I'], %) o Hom(H, (X, Z),g") =~

~ ¢¥ ® H'(X, R)

(since g* is a real vector space). Q.E.D.

Let &% be the connected Lie group generated by g¥ (X is compact!).
We shall consider H?(X, @) as given by vector-valued forms via the resolu-
tion of § V.3. Then, if w € H4(X, R) is given by a form under the deRham re-
solution, and if 0 € H'(X, @y), then 0 ® w € HY (X, @y) via the resolution
of § V.3.

Proposition 9.1: For g ¢ &%, y € g%, w € HY(X, R),

(9.3) go(y®w)=Adg(y)® g*w.

Proof: The proof is immediate from the definition of induced action on
sheaf cohomology, together with the following remark. We consider &¥ as
acting on X on the left; then the Lie algebra g of &% must be taken to be
right-invariant vector fields (since these are infinitessimal left translations).
But then the left-action of &+ on g¥ is just the adjoint representation. Q.E.D.

Remark: g*w ~ w since the action of g is homotopic to the identity.

For a 1-form @ and a vector field 0, we let Lyp denote the Lie derivative of
@ along 0. Then

Proposition 9.2: For y, ! € g¥; w, w* € HY(X, R),

94) [yowyeuw]=[r,ylI@ewAw+y® L.wAw+y@LuwAw.
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The bracket [y ® w, ' ® wl] is the cup product in cohomology; [ , ]:
HY(X, 04 ® H (X, Og) - H:(X, @g). The proof of (9.4) is by a straightfor-
ward local calculation.

We now assume the following condition 3 on X: There exists a basis
wl, . .., wof HY(X, R) such that g*w/ = w/for f = 1, . .., r and for all g € G¥.
(This will happen, e.g., if & acts as isometries relative to some metric.)
Thus L,uw’ = 0 for all y €g¥ andj=1,...,r. Also, if w ¢ H(X, R), [y ® w,
vy @ w] = 0by (9.4). We shall construct a global 1-parameter family X,= X, (y,w)
of G-structures on X whose infinitessimal deformation is y @ w.

Let H be the torsion-free part of H, (X, Z), and let X* — X be the covering
space of X with deck-group H. We shall define a 1-parameter family of

actions g, of H on X* and X,(y, w) will be X*/p,(H). We define p, as follows:
forz € H, x € X*,

(9.5) 0:(2) & = (exp (tzf w) y) Tz,

We must explain this notation a little. The discrete group H acts on X* on the
right, and this action is the symbol « - z in (9.5). Also, &* acts as G-motions

on X*, and this is the action exp ((tj w) y) - in (9.5). Set X, = X*/o,(H).
4

Theorem 9.1: The manifolds X; give a deformation of the G-structure on
X = X, whose infinitessimal tangent is y @ w ¢ H (X, Og).
Proof: We first observe that gi(z + 2') - & = g,(2) p¢(3') -+ * since
exp (t | w) Y eXp (t f w) y = exp (t f w) y. Since the actions g,(H) on X* are
2z 2t 242t
G-motions, and since g,(H) is just the given action of H on X*, we have so

defined a smooth family X; of G-structures on X, and this family clearly forms a
deformation (i.e. local structure is preserved). We must compute the infini-
tessimal deformation. For fixed z ¢ H, the family of actions {— g;(z) is a
1-parameter group of G-motions on X*, and this action is generated by a
vector field &,. Indeed, for a function f on X* and for x € X*,

t
f(eXPtfw”)’)‘x‘Z)—-f(x'z)
= lm z t

= RzL(fw)y (f) ()

. 13 T(0e(2) - @) — (0o (2) - )
& @) = lim

where R, of a function g is given by R,(g) () = g(« + z). Thus, the deformation
may be infinitessimally described by the equation z — ( ( f w) y) oR,. By
2

considering the form of H'(X, @) given in § V.3, it easily follows that the
tangent to {X,}is y ® w. Q. E. D.

2. Examples of Obstructions. We shall use the above example to show how
obstructions, of any order, to deformation may be easily constructed. We shall
also construct examples of obstructions to the stability of automorphisms.
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Proposition 9.3: If g¥ is non-abelian and if the cup product H'(X, R) ®
® H'(X,R) > H3(X, R) ¢s non-trivial, then there are primary obstructions to
deformation.

Proof: Since the representation of ¥# on H(X, R) is trivial, we see that,
forw ¢ HY(X, R), y € g%, L,w = df for some function f. Let y, y* € g* be such
that [y, 9] = 0, and let w, w' € H1(X, R) be such that w A w' # 0in H?(X, R).
Then, by (9.4),%—— [yvew+y'euw, y@w+ 1wl ~ [y®@w, y1® w'] ~
~ [y, ]®@ wa w0 in H%*(X, @) (Here, we are interpreting elements in
He(X, @) via the resolution of @y in § V.3.) Q. E. D.

Example 1: Let Z be a real n-torus (n > 1), and taken with an invariant
metric; and let Y be a compact semi-simple Lie group with a bi-invariant
metric. Then X = Y X Z is a Riemannian manifold satisfying the conditions
of Proposition 9.3.

To construct an example of a secondary obstruction, we shall use the
resolution of @y constructed in § VIII.2. Thus, let X have a parallelism

wh, ..., w* with dw* = 0%, wP A w¥ (C§, constant). Then (8.15) gives an exact
sequence of sheaves
(9.6) 0— 6O top 2 om o e P e

Let A? be the global scalar ¢-forms on X.

Lemma 9.2: There is an injection j: HY(X,Oq) ® A*1— T? such that
j(0 ® dw) = Dj(6 ® w) (6 € H (X, Oy), w € A9).

Proof: Let X, ..., X, be a dual parallelism to w!, ..., w". For a vector
field £€T, { €60y if, and only if, L,w*=0 for a=1,...,n. Writing {
=} (2 X ({* € C* (X)), we have, by the Cartan formula, L,w* = ¢({) dw* +
+di@Q)ur=2) C%,wr{f + d{* Now if == {*X, ¢ HY (X, Oy), and
if w€A9 then j((® dw)=) X,® {*dw. On the other hand, by (8.10),
DG ® w) = DY X, ® {*w) = d(}) X, ® {*w) + 2Qr() X, ® (*w)
=X, 0dlrANw+ ) X, @0dw+ 2} X, ® Cs,uwif=2" X,®*dw
=j( ® dw). Q. E.D.

Corollary: The mapping j defines a mapping j : g% @ H(X, R) - H1(X,0y),
where the latter group ts computed using the resolution (9.6).

Now let £, {1 € g¥; w, w! € A, and suppose that

(9‘7) ng = L;wl = L;x w = Lc1 w=20.

Lemma 9.3: [( ® w),j(C* ® w')] = 6;([C, '] ® w A w').

Proof: Since L,w* = 0 = Lg[u?, it follows that &%, = 20%4(8; {13 = 204 5P
where (=) (X, =) (X, and (% = X;3(0%), etc. Now [j({® w),
e uw)]=[3 X, ® w3 X, ® (YPu'] =) X, ® CLgl*(*Pw A w. On the

oL
other hand, [, {1]'= [ C“XZ,Z (8Xpl =23 (Crpl*fA)X, + 3 (X P~
— 2P X, =23 040208 X, + 23200 Xp — 2 §508,0° X,
=6 X, ® C%,0*{f. Q.E.D.
Suppose now that we have {, {1, w, w* where w, w! are both non-zero elements
in H'(X, R) and (9.7) is satisfied. Suppose furthermore that: (i) [&, §'] = &;
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(ii) w A w' = dn for some 5 € A?; (iii)) Lyn = 0 = L;ynt; and (iv) wA == 0 in
H?(X, R) (observe that d(wAn) = —wAdyp=—wAwAw =0).

Proposition 9.4: Under the above hypotheses, there are secondary obstructions
to deformation.

Proof: Recall first the Remark at the end of § VIII. 3 where formulae were
given for primary and secondary obstructions (relative to D-cohomology). Let
now ¢ =j((( ® w+ {* ® wl)), then [, ] = 12§(*® wa w') = 12Dj(* ® 7)
by Lemmas 9.3 and 9.2. Thus the primary obstruction drops out. The second-
ary obstruction is given by

Example 2: We shall explicitly construct a manifold satisfying the con-
ditions given above Proposition 9.4. Let F' be the Lie group of all matrices

1 = 2
f= (O 1 y) . Then the right invariant Maurer-Cartan form on ¥ is given by

0 01
0 w, w,
df-f1={0 0 w,])where w, =dx, wy=dy, and w3 = —ydx + dz. Then
0 0 O

dwy, = 0 =dw, and dwz = dy A dx = w; A w,.
Now let I be the discrete group of matrices

1 a b
=10 1 ¢ (agb,oez)a
0 0 1

and set Z = F[I'. Then Z has a G-structure, where G = I, given by w;, w,, wj,
which clearly project to Z. Also, Z is compact. On Z, we have the closed 2-form

wzl\ w3 (Since d(wz/\ ?JU3) = """wg/\ dWs = "‘"Wz/\ wll\ wz = O), but sz w3 iS
not exact. In fact, w; A wy A wy gives a volume element on Z, and if w, A w,
= d¢@ for some l-form ¢, then w, A wgA w3 = —d(w, A ) and thus f w; A

A wy A wg = 0. Contradiction.

Let Y =8 U(3) with the G-structure, where G = I, given by 8 left in-
variant Pfaffians on 8 U (3). Then X = Y X Z has a GQ-structure where G = I,
and, since there exist elements y, y* € SU (3) such that [y, '] = ¢!, the con-
ditions above Proposition 9.4 are all met in a specific example.

Example 3: The above example may be generalized to give obstructions
of any order N > 0. We shall not go into this here.

Example 4: Return to Example 1 constructed above. Let w be a harmonic
1-form on Z, and let y be in the Lie algebra of Y. Then [y® w, y ® w] =0
and thus we may construct on X = Y X Z a 1-parameter family of G-structures
(Riemannian metrics) X, whose infinitessimal tangent is y ® w (by Theorem
9.1). Let 9! € g* be in the Lie algebra of Y and such that [y, y*] & 0. Then the
primary obstruction to the stability of the Killing field 4! on X is given by
[y y @ w]l= [y, y]1® w=0 in H(X, @q). Thus 9! is not stable under the
deformation X,;. (In fact, the manifolds X,(t == 0) are non-homogeneous.)

Math. Ann. 158 25
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3. Examples of Deformation Spaces. Example 1: Return to Example 1
constructed in § IX.2 above, where ¥ = M is a compact, connected semi-
simple Lie group of dimension d,Z = T'isan n-torus (n > 1), and X =M x T
is a Riemannian manifold (G = SO(n + d)). Let m = Lie algebra of M,
t = Lie algebra of 7, and let w!, ..., w" be n-independent harmonic 1-forms
on T'. Then, for ¢ = §, w* A w’ is a non-zero harmonic 2-form on 7. The Kiinneth
formula shows that

H(X,0p={m® HY(X,R)}® {t® H(X,R)} (¢=0,1,2).

Thus, dim H'(X, 6) = n* + nd,anddim H*(X,0g) = n# "~ 1 ¢ . o 20

Let ey, . . ., ez be a basis for m, and write [e,, ¢5] = Clge, (x, B, y=1,...,d).

We consider H(T, R) as identified with R»(»-)——(n-¢+1l) by wusing the

harmonic forms w?, ..., w" Also, we identify H!(X, @) with R* +7¢ and
(ﬂ'-*l)

me H*(X,R) with R"™ 2 °.

Now we observe that, since t is abelian, [H*(X, @), H (X, 04)] Cm ®

® H?(X,R). Define dn (n — 5 b quadratic functions f% (x=1,...,d; 1<

< t<j = n)on H(X, @) as follows: For ¢ € H (X, Oy),

(9.8) [p, 9l=5 X f5(@)ea® winw.
mz<7
Theorem 9.2: The zero locus =0 (x=1,...,d; 1=i<j=<n) on

R™ 74 gives a complete deformation space D of the Q-structure on X.
Proof: This Theorem will follow easily from Theorem 9.1. Let ¢ =} ¢, ®
® wi(p; - €H* (X, Og)) € H(X, Og). We shall follow the notations of Theorem

9.1 and define a l-parameter of actions gf of H on X* by
e/ (z)z = exp (Z (t fwf) %) A
4

Then it follows easily that, for all 2, 2! € H,

of (2) of (1) = of (z + 2') = of (#*) of (2) if, and only if, ¢ € 2. Thus, in case
@ €9, we may define a 1l-parameter of G-structures X,(p) on X by setting
X, (p) = X*/of (H). We then define a deformation family ¥~ 2. Dby setting
@& (p) = X, = X;(¢). The remainder of the Theorem is now a straight-
forward checking of details, which we shall omit. Q. E. D.

Remarks: The space & has the following properties: (i) & is a real algebraic
variety in R* * "% dim 9D = n? + nl where | =rank M; (ii) Writing R +
+ nd = R" @ R"4, the Zariski tangent space at a point (z, 0) CR™ + R*d is a
real vector space of dimension n2 + nd. Thus 2 is singular along the sub-
variety of points (x, 0), and along these points 2 is locally minimally embedded.
These singular points are quadratic singularities, and (iii) this example shows
that any general construction of deformation spaces must include singular
and/or locally reducible varieties as parameter varieties.

Example2: Let X = Y X Z be the Example 2 constructed in § IV.2 above.
The general element ¢ ¢ H'(X, ;) may be written ¢ = (& + o!) ® w, +
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+ (£2 + 0%) ® w, where &1, £2 are left invariant vector fields on F, and ¢!, o2
are right invariant vector fields on § U (3). By Lemma 9.3, [, ¢]= 12([{,{%] +
+ [0%, 0%]) ® wy A wy, and we let n, = —12([(, (2] + [0, 0%]) ® w,;, so that
D1, = — @, p]. Observe that, since [, [{,f]] = 0, [¢, 4,] € SU(3) ® H2(X,R).
Choose a basis e, . . ., eg of the right invariant vector fields on 8§ U (3), and
define 16 cubic functions f#(e =1, ..., 8;j =1, 2) on H'(X, @) by

(9.9) [0, M) = 1a7 > 15(#)€x® w0y,

@,
Let 2 C H (X, @g) be the locus ff = 0(x=1,...,8;j=1,2).

Theorem 9.3: The real analytic variety 2 parametrizes a locally complete
deformation space of the Q-structure on X.

Proof: Given ¢ € HY (X, @), define @(t) € T [t] (notation of § VIII) by
@) =te + t2n,. Then, from §IX.2, De(t) — [@(l), ()] = 0 (mod?) if, and
only if, ¢ € &, in which case D¢(t) = [@(t), ¢(¢)]. Thus, for these ¢ € I, we
may, by Theorem 8.3, associate to ¢ a l-parameter family of (-structures
X, (¢ such that the family ¥~ 2, @ defined by &1 (p) = X, () gives a deforma-
tion of the G-structure on X. The Theorem now follows. Q. E. D.

Remark: The variety & is a locally minimally embedded, real algebraic
variety having a cubic singularity along the subvariety t® HY(X,R)C 2C
C HY (X, Oy).

(Received March 5, 1963)
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