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V. Some Local Properties of Geometric G-Structures 

I t  seems necessary, at the present time, to place some restrictions on our 
G-structures in order to be able to discuss the deeper facts in the deformation 
theory of these structures. One restriction which has certainly had considerable 
success is to assume that  G ~ GL(n, C)C GL(2n, R), and that  the structure 
is integrable. Because of this, and because our main purpose has been to 
define deformations of non.integrable non.transitive structures, we shall 
emphasize non-integrable structures. Furthermore, since our theory has been 
geometrically slanted, since many of the "classical" geometric structures 
occur when G is of finite type, and since we desire to have some worthwhile 
results, we shall henceforth work primarily with these geometric G-structures; 
i.e., G-structures of finite type. As an example of the difficulty when G is of 
infinite type, the author does not know whether or not, for X compact, 
dim Hi(X, 0~) is finite for infinite G. For the remainder of this paragraph we 
shall derive some special properties, to be used later, of G structures of finite 
type. 
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1. Infinitesimal A utomorphisms o] Geometric Structures. Let X have a 
G-structt~e given by a cross section a : X  ~ B[G. Then we have n principal 
fibering G ) Ba ~ X;  and, as was shown in [2], we have a Gl-structure on Ba 
and thus a bunde G ~ ~ BG,- ~ BG; and, in general, we have a Gk-structure on 
BGk--1 and thus a bundle G k .~ Bak ~ Ba~-l .  

Proposition 5.1 ([3]): G is o / f in i te  type o/order q i/, and only i/, there is 
defined by the original G.structure a connexion in G q-1 ) B ( ~ q - 1  -->- Baa-2. 

Corollary: If G is of finite type,  then ~/a is the constant sheaf R. 

Proo]: From the fiberingG k ~ Bah '~-----L, ~ Ba~- i  , we haveaninject ivemapping 
~* : ~ak ~ ~ak + 1 where ~a~ is the sheaf on Bak-x. But, if q is the order of G, 
then, by the example given in § 1.1, ~aq = R on Baq-1 .  Q.E.D. 

Definition 5.1: If G is of finite type or order q, we set d(G) - n + dim (G) + 
+ ' ' "  + d im(Gq-1) .  

Example: d (O(n) )= n(n + 1)/2. 
Proposition 5.2: Given G ~ B a ~ X where G is of finite type, then, for 

any x E X,  dim(Oa)x <- d(G) < co. 
Proo/: If 0 is a germ in Ca, then there is naturally induced a germ 01 

in Oa, on Ba as follows: expt(0) acts on X and, since 0 E Oao, (expt(0)).  acts 

on B a, and-d-{d (expt(O),)t = 0 ---- 0 x is a vector field on Ba; clearly 01 is a germ 

in Ca1 on B~. Inductively, we get a germ 0 k in OGk on BGk-1. If the order of 
G = q, then there is defined on Baq a global parallelism given by vector fields 
X1, . . ., X a (d = d(G)), and the germ 0 q satisfies. 

(5.1) [0~, i ~ ]  = 0 (i = 1 , . . . ,  d) .  

In fact, it is clear tha t  the germs Oq E Oaq on Baq satisfying (5.1} are in a one- 
to-one correspondence with the germs 0 E Oa on X. Our proposition will 
follow from; 

Lemma 5.1: Let U C R  ~ be a finite connected domain with coordinates 
x l , . . . ,  x ~, and let vector ]ields X 1 , . . . ,  Xm define a global parallelism in U. 

m 8 
Given p E U and the vector ~ = (~1, . . . , ~m) E Rm, any vector field Y = ~ ~ (x) ~x~ " 

i = 1  
Such that ~ (p) = ~ and [ Y, X~] ~ 0 (i 1 , . . . ,  m) is unique in U. 

m a 

Prool: Write X~ = S r/J(x) a--~t ; then we have 
j--1 

[ a a] (5.2) S C'(~)a~, '  v~ (~) ~ = 0 
i,k 

Now (5.2) gives tha t  

(5.3) S C' ~ '7~ - S ni ac. 
i ax~ i ax( 

(j= 1, . . . ,  m). 

( / , k =  1 , . . . , m ) .  

Since the X~ give a parallelism, there exists a function ~(x):  U-~ GL(m,  R) 
such that  ~ #i (x) ~ (x) = ~i in U. Letting ~A = rA}(x) be the matrix 

rA~ = ~ ~0~ r/r"t (r = 1,.  . . ,  m), and letting ~ ( x ) -  t(~X(x), . . . ,  ~ ( x ) ) ,  then 
l 
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(5.3) is equivalent to the system 
a¢ 

(5.4) Ox" -- rA " ~ (r = 1 , . . . ,  m). 

This (overdetermlned) system was a unique solution (if any) with a prescribed 
value at a point. Q.E.D. 

Remark: Lemma 5.1 may be proven geometrically as follows: I t  will suffice 
to show that  Y ( p ) =  0 and [Xj7 Y] = 0 (j = 17. . .7  m) imply that  Y 0. 
For this, we shall show that  [x ~ U ] Y (x) = 0] is open. Now if p' is in a suffi- 
ciently small neighborhood of p, then p ' =  exp(t~X~ + . . - +  tmX,,)(p) for 
constants t 1, . . . ,  t~. Then expt Y(p') 
(since [Xj, Y] = 0) = exp(t IX 1 + . . .  + 
Y(T') - O. Q.E.D. 

= exp(t lX 1 + " "  + tmX~) expt Y(p) 
tmXm) (p)(since Y ( p ) =  0 ) =  p'. Thus 

Lemma 5.2: Let Bt be the ball o/radius t around o in R m, and let Xa,. . .  ,X,n 
be real analytic vector fields giving a parallelism in B 1. Consider the system o/ 
partial differential equations (5.4) where the matrices ¢A are constructed as in 
the proo[ o[ Lemma 5.1. Then, i / a  [ormal power series solution to (5.4) exists, 
this solution will converge in ]38/or some e > O. Furthermore, e depends only on 
the initial values and the radius o/convergence o] the series/or the Xi. 

Proo/: Were this system not overdetermined7 we could apply Cauehy- 
Kowaleski and be done; as it is, we shall construct a majorant problem, 
which also has a f o c a l  solution, and then show that  this solution converges. 
We are considering the system 

a p ( x )  ~ j  
(5.5)t Oz~ z~ A~j(x) (x) 

with initial value 
Write 

~i(0) ----- ~ .  We assume tha t  a formal solution to (5.5) exists. 

(5.6)lj A~j(x) = S (A[j)m,...,~ x~' ~" 
P I , . . . , ~  

and choose r > 0 such tha t  the series (5.6)~1 all converge absolutely for Ixll + 
M 

+ . . .  + Ixml < r. Then choose M > 0 such that  I(A~i)m, ..,~1 -< 
• - -  r # l + ' " + # m  

for all l, k, j a n d / f i , . . . ,  #m. Then, afortiori,  we have 

(5.7) 

Set M = nM' and 

M(~I + "'" + #,,,)t 
" ,  + " "  + " , -  ( m ) !  • • • ( t , , . )  ! 

#a, . . . ,  #m (re) t - . -  (~.)t  

We set ~0 = max I~1, and consider the (again overdetermined) system 
j = 1 , . . . , m  

(5.9)  _ B (x) (z) ax~ 

for the single function ~ (x) with initial value M _~ ~0 > 0. By  our construction 
(5.9) is a majorant of each of the n systems (5.5)t (1 = 1 , . . . ,  n). Since any 
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solution to (5.5)~ is determined uniquely by its initial value, it will suffice to 
produce a convergent solution to (5.9). We tenatively write ~ ( x ) -  e~(®) 
and try to determine a real analytic function H (x) such that (5.9) is satisfied 

when H ( 0 ) =  log~ M. We have O~(x) OH(x) ax~ - ~ ( x )  ax~ ' and thus we must have 

axk - - B ( x )  for I ¢ - - 1 , . . . ,  n. Since B ( x ) - - M  
1 - -  x~ ax~ 

i - - 1  ..... r 

aB(x) 
u ,  ,, 

a x k  

OH(x) 
then ax~ 

for all j, k and thus we may find H (x). In fact, if we set 

l m 
H(x) = - r M  log 1 - ~ '  

i = l  

x, ) 
r + logM 

- B(x) for all k and H (0) = logM. Q.E.D. 

Corollary: Let the data be as in Lemma 5.1, and real analytic, and assume 
that U is simply connected. Then any C ~ local solution to the system [Y, Xj]--O 
( j--  1 , . . . ,  m) is real analytic and may be analytically continued to a solution 
in all o] U. 

Proposition 5.3: Let G be o/finite type, and let G ---> B a ~ X be a real analytic 
G-structure. Then: 

(i) Any germ 0 ~ Oa is real analytic, 
(ii) The G-structure is normal. 
The proof is immediate from the Corollary to Lemma 5.2. 
Let G ~ B a > X be a G-structure where (7 is of finite type. Then, for any 

x ~ X, and any sequence of neighborhoods { Us} with Us (. Us_, and ~ Un-- {x}, 
the restriction mapping p j~:OalU~ ~ Oa]Uk  (k > j) is into, and is hence 
onto for ], k large enough. Thus every x C X has a neighborhood N (x) such that,  
for any open V with {x} C U C N (x), Oa [ U ~ Oa l N (x) ~ (Oa)~. 

Definition 5.2: Any such neighborhood N(x) is called a normal neighbor. 
hood. A normal covering of X is a covering by normal neighborhoods. 

Proposition 5.4: Let G ~ B a ~ X be a normal G.structure where (7 is of 
finite type and X is simply connected. Then dimH°(X,  Oa) < 0% and, i~ 
g = H ° (X, OG), Oa is the trivial shea/X × g. 

Proo]: Let U = {U~} be a normal covering of X. Then Oa] U~ _~ (Oa)x 
for any x E Ui, and dim Oa[Ui  = d(x )= d for all i. Thus, we may define a 
d-dimensional vector bundle E -~ X whose fibre E z is just (Oa)x. The transition 
functions of E are given by a system {gi~'} where gij:U~ ~ Uj ~ GL(d, R). 
But, by Lemma 5.1, the matrix functions g~(x) on Us ~ Uj are constant. 
Since any vector bundle with constant transition functions, over a simply 
connected manifold is trivial, the result follows. 

2. The Algebras C*(X, Oa) and H*(X,  Oa). Let G be of fimgo type, let 
G > B a ~  X be a normal G-structure on a compact manifold X, and let 
U = (Ui} be a finite normal covering of X with nerve N. 

Proposition 5.5: (i) The cochain groups Cq(N, Oa) are finite dimensional 
vector spaces/or all q. (ii) The natural mapping H q (N, 00)  --> H q (X, Oq) i8 an 
isomorThism lor all q. 
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Proof: (i) A q-cochain ~ is given by a collection {~i 0 . . .  iq} where ~i 0 . . .  iq E 
E ]"(Oal Ui.. . .~)and Ui,...¢~-U~0 f ~ . . .  f~ Ui .  Now (i) follows since N is a 
finite complex. The assertion (ii) follows from Leray's theorem on acyclic 
coverings. 

The sheaf Oa on X is not only a sheaf of vector spaces, but is also a sheaf 
of Lie algebras. Thus the usual formula defines a pairing 

[ , ]: C~(N, Oa) @ Ca(N, Oa) > C~+q(N, Oa) satisfying 

a[C, ~] = [aC, ~] + ( -  ~)'~ [C, a~] (C E o~,(~, 0,~)). 
There is thus an induced pairing [ , ] : H~(X, Oa) ® Hq(X, Oa) ~ > H~+q(X, Oa) 
which establishes the structure of a graded Lie algebra on H*(X,  Oa). This 
structure will be important  in § VII I  below. 

For a finite normal covering U -  {Ui} with nerve N, we choose a basis 
d 

0 ~ , . . . ,  0~ of Oal U, for each i. Any germ 0 of Oaf U~ may be written O, - Z ~' O~ 
k = l  

d 
(~k E R), and we set I]O, il ~ = ~ l$kl 2. 

k = l  

For any ~" -- {~'io.. .  iq} E C ~(N, Oo), 

Then ][ II 2 is a norm on C q (N, OG). Since [ 

w~ s~,~ IICli* ~up 11C¢o...¢,~112. 
io...i~EN 

, ] is bi-]iuear, we have: 
Proposition 5.6: There exists a constant C 1, depending only on U, such that 

Ii[C, ,~]11 -~ ciIICIi" 11,711 C, ,J E C*(N, Oa). 
Let Bq(N, Oa) = ~t(Cq-I(N, Oa)). Then we easily have 
Proposition 5.7: There exists a constant C2, depending only on U, such that, 

]or any ~ E Bq( N, Oq), there exists an ~7¢ -- ~7 E Cq-l( N, Oa) with ~(~7) --- ~ and 
11,711--< C, ilCII. 

3. A Resolution o/Oa.  Not unexpectedly, one of the salient features of 
geometric structures is that,  in order to derive our main results, we shall not 
have to rely as heavily on the methods of analysis as has been the case for 
infinite pseudogroups. A notable exception here is the existence theorem given 
below in § VIII .  We shall now give an injective resolution of Oq by differen- 
tiable cross sections of vector bundles. In § VII I  below we shall, for a much 
more restricted class of G-structures, give somewhat modified but much more 
useful resolution of Oa. 

Let G > Ba-+ X be a normal G-structure where G is of finite type. If X 
is the universal covering of X, and if ~x (X)=  F, then we have a fibering 

/ ' - *  X " , X .  There is naturally induced a normal G-structure G-~ Ba-> J[ and 

the sheaf ~a  on X admits a global basis, say ~1 , . . . ,  ~ ,  over R. We let ~ q  

- -sheaf  of q forms an X, and we set ~q = Oa @ ~q.  Define i:(~a > ~o by 
i(~) -~ ~ @ 1, and define D :  ~q .... > ~q+l by D(~ @ w) = 0 ® dw. Then, by the 
Poinear~ lemma, 

Proposition 5.8: The sequence 

0 ~ ~ ~o ~ ~1 ............. ~ .  ~ ~ 

is exact and (liVeS an infective fine re~olution o/Oa:. 
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The group/1  acts as a G-motions on 1~; thus F acts on ~ a  and d ~q, hence on 
~q. Obviously, as operators on ~q, D ~, - ~D for any ~ E F. We define sheaves 
~q- -  (~q)r I on X as follows: over an open set U C X, the sections of ~q are 
t h e / ' - i n v a r i a n t  sections of ~q over g-1 (U). 

Proposition 5.9: ( a )  --- Oa and the sequence 

(510) 0 O i ~0 D ~1 ~q D • ........ > G > _ > _ _ , . . .  ............... ~ ; q + l  . . . . . . .  . .  

gives an in~ect~ve fine resolution o/Oa. 
Set now Gq= H°(X,  ~q); then D :  G q ....... > G q+l, D ~= O, and we let Ha(G) 

be the cohomology groups. 
Corollary: There is defined by (5.10) an anti-isomorphism o/ graded Lie 

algebras Hq(X, O a ) ~  Hq(G). 
4. Application: Rigidity o/ Structure. Theorem 5.1: Let G-+ Ba > X be a 

normal G-structure where G is o/ finite type and X is compact. Then, i] H 1 (X, Oa) 
-- O, any (C ~) germ o/ de/ormation ol the G-structure an X is trivial. 

Proof: Let ~ ..... ~ - D be a deformation of the G-structure X - -  e3 -1 (o); we 

shall produce a neighborhood U of o E D such tha t  the deformation iS- 1 (U) ~ , U 
is trivial. Now, in the notation of (5.10), the C ~ sections of the sheaves ~q 
( q - - 0 ,  1 , . . . ,  n) form the C ~ sections of differentiable vector bundles 0 q 
(q - 0, 1 , . . . ,  n) on X, and we have differential operators D :  0 q > 0 q+l. By 
taking metrics on X and along the fibres of the bundles 0 q, we may  form the 
adjoint D* of D; D * :  0 q > 0 q-l, and DD* + D*D is elliptic. From this, the 
theory of elliptic equations as applied in [7] tells us: (i) dim Hq(Xt, Oa, t) 

d imH q (X, 0¢I) for t in a neighborhood U of o E D;  and (fi) ff dim H q (Xt, 0(~, t) 
is independent of t for t E Of, then t:UDHq(Xt, O,g,t) forms a vector bundle 

9ffq ..... ~ 3~ over $P, and Hq (3~, Ta)  is isomorphic to the sheaf of C ~ cross sections 
of o~fq. From these facts, we conclude that ,  if Hi(X,  Oa) = 0, then H1($/', kr/a) 
= 0, and applying Proposition 3.1, the theorem follows Q. E. D. 

Remark: By using the estimates in Propositions 5.5 we can prove this 
Theorem without the use of elhptic theory for real-analytic deformations. 

VI. Some Global Properties of Geometric G-Structures 

1. Global Uniqueness ol Structure. Let G -+ Ba -+ X be a normal G-structure 
where G is of finite type (geometric structure) and X is simply connected but  
not necessarily compact. We shall see that ,  with a completeness assumption, 
deformations of X are trivial. To do this, we need to define a complete G- 
structure. Let G >  B a ....... > X, G-+ B~-+ X 1 be G-structures on n-manifolds 
X, X 1 respectively. Furthermore,  let / : X -> X 1 be a mapping of maximal  rank, 
which is also a G-mapping, i.e. ~, (Ba) ~_ B~. 

Definition 6.1: The G-structure on X is complete "if, for any X, f, X 1 as 
above, ] is sur~ective; and if the topological group ~ of G-automorphisms is a 
Lie group with Lie algebra H ° (X, Oa). 

Remarks: (i) In order to justify this definition, we recall that ,  from the 
theorem in [14], a Riemannian structure (G-- O(n)) is complete in the usual 
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sense if, and only if, Definition 6.1 is satisfied. Also, in the Riemannian case, 
if we assume that X is the universal covering of a compact Riemannian 
manifold in which the deck-transformations are isometrics, then X is complete. 
(ii) An example of a normal G-structure which satisfies neither condition in 
Definition 6.1 is the following: Let Y = R ~ with with coordinates (x, y), and let 
X C Y = {x, y)lY = 0 implies x < 0}; i.e. X = R ~ minus the positive x-axis. 
Let G = I and the parallelism is given by dx, d y. Then the injection X -+ Y is 
not onto. Furthermore, H°(X, OG)~ R~ (the translations), but E¢ consists 
only of the identity. However, there is clearly no discrete g r o u p / '  of G-auto- 
morphisms of X such that  X[I'  is compact. I t  may be tha t  this latter condition 
in fact guarantees completeness. 

Theorem 6.1: Let G-~ BG ~ ~ X be a complete, normal G.structure where G 
is o] finite type and X is simply connected. Then: (i) I] the structure is locally 
homogeneous, it is globally homogeneous, (ii) Any de]ormation o] X is G-iso. 
morphic to X. 

The discussion of the proof of this Theorem will occupy the remainder of 
this section. Let X, X 1 be n-manifolds. For x E X, we consider the r-jets [6] at x 

"r of local bi-maps ] of a neighborhood of x into X1; for such an ], )~(]) -- r-jet 
of ] at  x. We set J~ (X, X 1) = U j~ (]) and J~ (X, X 1) = U J~ (X, X1); and we 

l xEX 
call J¢ (X, X 1) the bundle (over X) of invertible r-jets from X to X 1. Now let 
G g GL(n,R)  and assume tha t  we have G-structures G > BG-~ X, G-~ 
- B ~  ~ XL Then we may clearly define the space of G r.jets J~(X, X1). 

J~(X, X 1) is a topological subspace of J~(X, X1), but it is not in general a 
bundle over X. However, we have (i) J~(X, X 1) is a fibre-space over X;  (ii) If G 
is of finite type, then, for r, r ~ >~ 03), J~(X, X 1) ~ J~(X, X1); (iii) If X and X 1 
have the same local structure (in particular, if X 1 is a deformation of X), then 
J~(X, X 1) has local cross sections; (iv) If the G-structures on X and X 1 are 
both transitive (i.e. local homogeneity), then J~(X, X 1) is a fibre bundle. 

We say that  the G-structure on X is a de]ormation of the G-structure on X 1 
X 1 and there is a 1-parameter family ~ ( t ) : X  ~ BIG satisfying (2.1) i f X c ~  

such that  a(0) gives B a and a(1) gives B~. 

Proposition 6.1: Let X be simply connected, and let G ~ BG > X be a com- 
X 1 Igete transitive G-structure. Then (i) i] X 1 is a de]orrnation o] X, then X G ' 

and (ii) the G.structure on X is globally homogeneous. 
Proo]: Let X 1 be a deformation of X. Then J~(X, X1 )~  J ~ ( X , X  1) 

(r >~ 0) is a fibre bundle over X with constant transition functions, since a 
local bi-G-map is determined by its first d = d(G) partial derivatives at a 
point. Since X is simply connected, this bundle is trivial, and thus there is a 
global section ]. ,This ] is a G-mapping ] : X - ~  X 1 of maximal rank, and, by 
completeness, ] is onto. Then (i) follows by the monodromy principal. 

Now for r >~ 0, we may consider J~(X, X) as a fibre bundle over X × X 
(target and source projections), where it is a trivial bundle. Thus, given 

s) The notation N ~ 0 means "for N sufficiently large". 
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x, x 1 E X, there exists a global section ~ of Jra(X, X 1) over X such t h a t / ( x ) = x  1. 
The proof then follows from completeness Q. E. D. 

We now give a direct proof (without using jets) of (ii) in Theorem 6.1. Thus, 
let G --> Ba -~ X be a complete normal G-structure, and let G -> B~ > X 1 be a 
deformation of this structure. Then we may find an open covering U = {U~} 
of X with the following property:  For  each i, there exists a family fi (t) : Ut ~" X 1 
of local bi-G-mappings between X and X~(--G > Ba(t ) X)  coming from 
a(t) such t h a t / i ( 0 )  -- identity. Also, we may assume tha t  each/ i ( t )  is defined 
on an open set /~ D Ui and/ i ( t )  0 ~= Ui. Se t / i  = fi(1), and let N = nerve of U. 
We define now an element x = {Vis} E HX( N, -Pa). For (i, ~)E N, we choose 
Wij ~_ Ui ~ Uj and let "rij =/]-1 o/i, defined on Wis. Then T~s(W~s ) _~ Ui c~ U s. 
Furthermore,  for (i, ], k) E N, XiSTSk = Vi~. Thus ~ E HX( N, Fa). Now, since X 
is simply connected and the G-structure on X is complete and normal, Fa  is a 
constant shea] of non-abelian groups (infinitessimally generated by Oal Ui), 
say f~. Thus, v E HS(N, f#) and gives rise to a bundle with locally constant 
transition functions; this bundle is therefore trivial. We may then find 

{ai} E C°(N, ~) such that ,  for (i, j) E N, ~is = ~s~  -1. But  then fs" ~ = ]i " ~ 
in Ui ~ Us, and we have thus globally defined a G-mapping g : X ~ X 1, and g 
is of maximal rank. Thus g is onto by completeness. Q. E. D. 

2. Homogeneous G-Structures. Let X be a manifold with a G-structure 
G ~ B a - > X .  

Definition 6.2: X is a homogeneous G-mani/old if there exists a Lie group M 
which acts as a transitive group of G-motions on X. 

If X is a homogeneous G-manifold, then we may write X ~ M]V where 
V C M is the isotropy group of point x 0 E X. In  this case, the G-structure on X 
is real-analytic, hence normal (§ V.1). Let Ad ~ be the linear representation 
of V on m/v induced by the adjoint representation of V on m (since Ad V (v) C_ 

v). 
Proposition 6.2: X is G-isomorphic to a coset space M / V  o/ connected Lie 

groups M, V i/, and only i/, X is di~erentiably isomorphic to M[ V and Ad @ (V) ~_ 
g G, where G is considered as acting on m/v ~ Tz° (X). 

Remark: If M is connected but  V is not, we always have a locally homo. 
geneous G-structure on M / V  for any G _~ Ad @(V °) where V ° is the identi ty 
component of V. If we take, in particular, G Ad @(V°), then we call the 
corresponding G-structure on 31/V the canonical structure; 

Proposition 6.34): The canonical G.structure~s are all analytic o/ finite type. 
Proo/: We may  assume tha t  V is connected. Let l/~ C V be the connected 

kernel of Ad @(V) on m/v. Then the fibration G : ~ Ba ~ M / V  is just V ] V l )  
M / V  1 ~ M/V.  Repeating, the G 1 structure G1---> B a, ~ BIG is just l n / V a ~  
M / V ~ )  M / V  1 where V ~ is the connected kernel of AdC~(V ~) on m/v x. 

Continuing, we get a sequence of the form V ~] V ~ + 1 ~ M / V  ~ + 1 ~ M/W',  and for 
some k, V ~ +1 _ {1} and we have a connexion in V ~ )  M ..... ~ 31] V ~, since M / V  ~ 

4) This is not a O-structure in the strict sense but  is generally a higher order pseudo- 
group structure. 

Math. Ann. 158 24 
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will in this case be a reductive homogeneous space and the usual canonical 
affine connexion is just  the connexion of the Gk-structure. Q. E. D. 

Proposition 6.4: Let M/V be connected. For the canonical G-structure on 
M/V, H°(M/V, Oa)'~ m. 

Proo/: By Proposition 6.3, H°(M]V, Oa)= n for some finite dimensional 
IAe algebra n;  then we may  assume tha t  m ~ n and tha t  there is a Lie group N 
with Lie algebra n such tha t  M/V ~ N/W. Under the identification n / w  ~ 

To(M/V)  m/v = 0 in M M/V), Ad (W) =< Ad (V). The proof 
now takes two steps. (i) We may  construct the sequences W ~ W l ~ .  • • D W k, 
V ) In ~.  • • ) V k as in the proof of Proposition 6.3, where we may  assume tha t  
W j _~ V j and Ad @ (W j) ~_ Ad @ (V~) for each ]. We asser~ tha t  V k +1 _ (1 
implies tha t  w k + x -  0. Indeed, we have 

Wk/Wk+l ...... N/Wk+l .... 

V k ~, M 

N/W  

i 
M/W 

and thus w k +x is an ideal in n, hence w k +1 = 0 (assuming, as we may,  effective 
action of N on N[W). (ii) Since w k +1 _ 0, Ad @ (w k) is faithful, and Ad ~ (w k) C 
CAd @ (v k) implies tha t  dim w k < dim v k" i.e. dim w k dim v k. Since w~/w j + ~ 

vJ/v j +~ for each j, we conclude tha t  d imv - dim w. Thus d imn - dim m, and 
then n - m. Q. E. D. 

3. Deformations of Homogeneous G.Structures. We shall not go into the 
construction of deformations on homogeneous G-manifolds, but shall give two 
simple propositions which put  in a general setting the phenomenon observed 
in [4]. Thus let X be a homogeneous G-manflold M/V, and assume tha t  the 
M-module Hx(X, Oa) is finite dimensional (G may  not be of finite type !). Let  

$P ~ ; D be a deformation of the G-structure on X, and assume tha t  ~ is weakly 
homogeneous with respect to M, i.e. M acts as automorphisms on $P in a 
fibre-preserving manner.  Thus, for each t E D, M acts transit ively as G-motions 
on Xt  = ¢5-1($) and thus X t = M/Vt. 

Proposition 6.5: ~ is strongly homogeneous with respect to M if, and only if, 
the subgroups Vt are conjugate in M by a 1-parameter [amily ~t of automorphisms 
o / M .  

Proof: If we have such an {~t} (t ~ D), then the mapping 5' :M/V ~ M/Vt 
defined by [t (m V) ~ ~t(m) ~t (V) is a bi-real-analytic mapping satisfying 
m o / = / o m (m E M). Thus, what  we essentially have is a family X,( t  E D) 
of G-str~actures on the fixed homogeneous space M[V. This s ta tement  implies 
and is implied by strong homogeneity. Q. E. D. 

Proposition 6.6: I / M  is compact, then any weakly homogeneous family is 
strongly homogeneo~, where we have perhaps shrunken D. 

The proof follows from Proposition 6.5. 
Example: Let X be a C.space of H. C. W ~ G  [12]. Then we may  write 

X = M/V = A/B where M is compact semi-simple, A is the complexification 
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of M, and all groups are connected. If X is non-K~hler, then WA~o exhibited 
a 1-parameter family homogeneous complex structures on the final C ~ mani- 
fold M/V;  these structures were obtained from a 1-parameter family of com- 
plex subgroups BtC A such tha t  B 0 ~:: B a n d M / V  ~ o o  A/B~. Furthermore, the 
B~s are not conjugate to B 0 (for t small). Thus, this family of complex structures 
is weakly homogeneous with respect to A, but is not strongly homogeneous. 
We remark that  there exists on X -  A /B  a 1-parameter family of complex 
structures {X~} (t E D) which is not even weakly homogeneous with respect to A. 
These are the non-homogeneous deformations constructed in [4]. 

VII. Lie Groups, Group Cohomology, and Detormations ot Geometric Structures 

1. The Groups Hq (X, Oo)/or  0 ~_ q ~ 2. Let X have a normal G-structure 
G .... ~ Ba -~ X where G is of finite type. Then, f f / '  = ~1 (X) and ~ is the universal 

covering of X, there is a principal fibration F :  ~ ~ ~ ~ X. There is induced on 
,~ a unique normal G-structure (7 ~ ~a  :~ ~ relative to which / '  acts as 
G-motions. Fu r the rmore , / '  acts on 9 = H°( ~ ,  ~a), and thus the group coho- 
mology modules Hq(F, 9) are defined. 

Theorem 7.1: For q = O, 1, Hq(X, 0(~),=~ Hq(F, 9)" For q = 2, there is an 
injection i : H~(I ", 9) ~ H~( X,  Oo). 

Remarks: In general, i is not surjective. 
Proo[ o[ Theorem 7.1: Let { ~ } ~  ~ be a finite system of open sets in ~ such 

that :  (i) the sets {~i 2} (i E I, ~, E F) give a n o ~ a l  covering of i~; and (ii) 
for each pair i} E I, there is at most one y ~'i~ E/" such that  ~i yr~ /~ =[= ~. 
We set Ui = ~r(~),  and then U = :r {Ui} gives a finite normal covering of X 
with nerve N. To each (i, }) E N, there is associated a unique ~,t~ E IT' such that  
(i) ~,i ~ = e, (ii) ~,i ~ = ~ 1 ;  and (iii) ~,i~ r~ ~ = r~ ~. Thus the system {~,i~} E H~ (N, F) 

and this element defines the principal b u n d l e / ' - ~  ~ ~ ; X. 
Let 0~ , . . . ,  ~, be a basis for g - H°(~ ,  Ca); then we may restrict {~ t~ 

E~, and project 0~ [E~, onto U, by ~r, to get a basis 0 ] , . . . ,  0~ of Ool U,:. The 
fight action o f /~  on ~ induces a representation ~ : / '  > G L(g), and we have: 

Proposition 7.1: O~ --- ~w 0(~',~)~ 0i~ [or (i, i) E N. 

Proo[: Set ~ I O ,  ~ ........ 0~. Then 0~ = ~z, (~) 
= X 0 (~',~)~ 0~. Q.E.D. 

A q-cochain ~ = {~i,...{~+,} E Cq( N, Oh) 
r ~ - . -  r~ Ui~+, a section se{,...i,+, of  Oa l U{,...i~+,, w r i t t e n  in  the {0~'} basis. The 

assigns to each Ui,...~÷, = Ui, r~ 

cocycle conditions for q = 0, 1 are: (0) ~ = ~()q~)~j; and (1) ~ j  + ~(~,~) 
~j~ - ~i~-The q-cochains [ E Cq( P, 9) are alternating functions [:  F x  ~ x P-+ 

such that  ] ( ~ x , . . . ,  rq) -- 0 ff some ~,j = e. Then ~[ E Cq+l( I', g) is given, for 
q = O, 1 by: (0) ~[() ,)  = @(),)[ :=~ ~-: [; and (1) ~[(~'t, ~'~) = @(~'~) [()'s) - [()'~ 7~) + 

+/(r,). 
We need to know the relation between the ~,~ and the group F;  thia is 

given in [13]. Fix i0 E I and for each i E I, fix a chain Ui = (i0, • • . , / n - a ,  i,n = i )  
24* 
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where (is-x, i~) E N, set Oi = 7i,¢, 7i, i, '"Ti.,.,i, , ,  and set a~  = ~ 7ij6] -i. 
Then a~  = e; a~  = a ~ l ;  o'i/qtk=(ri~; and aioi, ai, i, • "" ai~_~i, -- e whenever 
i~ = i o. The elements ale, (i, ~) E N, g e n e r a t e / '  with the above as fundamental  
set of relations. 

Let  ~ = { ~ }  E ZI(N, Oa); then ~ ~ E 9 and ~ ~ + ~ (),~ ~) 5 ~ = ~i ~. If we 
have a chain J -  ( io , - . - ,  ?s) such tha t  (i~-1, i~)E N (1 =< k _~ s), we define 
~z E9 by 

s--1 

k=0  

If we have a k o, 0 < k o g s, and a ~ E I such tha t  ~)~ko--lik°--" ~1ko--l~i]ko' 
then we have a chain J~ = (?o, . - . ,  i~°-l, ?~° , . . . ,  ?~) and ~j = ~j,, since ~ 
is a cocycle. Thus ~j is invariant  under "deformations" of the pa th  J .  We 
define ]~EZI (F ,$ )  as follows: ( 1 ) / ~ ( e ) = 0 ,  and (ii) let ~,=(~i?i¢(~f ~, 
Ji¢= ( i o , . . . ,  i~_ 1, i, i, i t - i , - . - , i o )  ( i o - io ) ,  and set ]~() ,)= ~ j , .  Then 
/t (),) is well-defined by the remark on continuous deformations of paths. 
In  general, if ), = ~iii,"" "ai,_li,, we may set ]~(~) = ~ ~ (ai,~, • • "%_,i~)/~(~i~_,i~). 
Clearly, 1~ E Zx(F, g). 

Now if ~ = dt~/ for 
for (i, i) E ~. But  then 

some ~/= {~i} E C°(N, Oa), then ~ij = ~ ( ) ' i j ) ~ j -  ~/i 
l~(aij) = ~ ( a i j ) ~ i , - ~ i ,  by (7.1) and it follows tha t  

/~ = J~io for ~/io E C°(F, 9 ) ~  6. I t  also follows easily tha t  i f /~  E ~C°(F, 9), 
then ~ E OC°(N, Oa). Thus we have an injection i : Hi(N, Oa) ~ Hi ( -  P, 9)- 

We now define a mapping f -+ f of Z 1 (F, g) .......... ~ Z 1 (N, Oa) such tha t  the com- 
posite ~ ~ f ~  > f~ is the identity. The mapping / -~ f is given by (])~j = ~ (~-1) x 
× ~((rij)- ~(~-~) ~((~i) O()'i~) ~(~i-~) where ~ri~ = ~i )'i~/--1. Then f~ = ~. 

From the definition, H°(F,  g ) ~  H°(N, Oa), and one checks tha t  there is 
an injection i:H~(F, g) ~ H~(N, Oa) in a straightforward manner.  This com- 
pletes the proof of theorem. 

An Application: 
Proposition 7.2: I f  zt~ (X) is finite, then any normal G-structure G ~ B a -+ X 

where (7 is o/finite type is locally rigid. 
Proo]. We may  prove tha t  H~(X, Oa) = O. But  Hi(X, 0~) ~ Hi(F, 9) 

and it is well known that ,  i f / '  is a finite group of order q, and V is a torsion- 
free / '-module, then HI( / ' ,  V)-= 0. In  fact, if ] E ZI(F, V), then ]( ) , .  ?') 

1 ~ [(y), then :t E C°( F, 9) and [(y) 
q ~Er 

= ] ( y ) +  )," ~(71), and, if we set n -  

= y ' ~ t - -  ~t = ~}~t(),). Q. E. D. 
Remarks: (i) This Proposition generalizes known results 

subgroups of compact Lie groups. (ii) Theorem 7.1 may  be 
about  discrete 

using a p r o v e n  

spectral sequence argument;  however, we shall use the constructions in the 
proof to prove a similar s ta tement  for sheaves of non-abelian groups, for which 
the spectral sequence is not available. 

2. The Set Hi(X, ~ra[t]). Assume now tha t  the G-structure G ........ ~/~a-+ 
is complete, and let (~ with Lie algebra 9, be the Lie group of automorphisms 
of this structure. T h e n / '  is a subgroup of G, and we define a set Horn (F, fl) [t] 
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as follows: Hom (/', G) [t] consists of germs of 1-parameter families of mappings 
/(t) : / ' - +  G such that :  (i) ] (0) = identity; (ii) f (t) ~ Horn (T', G) for fixed t; and 
(iii) /(t) is C ~ (or real analytic) in t. We say tha t / ( t ) ,  g(t) ~ Horn (F, G)[t] 
are equivalent if there exists a smooth curve ~( t )  ~ G such that  ~(0)  = e ~ G 
and, for 7 ~ / ' ,  ~( t )  (/(t) (~,)) = (g (t) (~,)) ~(t).  

Definition 7.1: The set Horn(F, G)[t] is defined to be Horn(F, G) [t] 
modulo the above equivalence relation. 

Theorem 7.2: I / the G-structure G -+ 1~ a ~ 2 is complete, then H ~ (X,/~a [t]) 
tIom (/', G) [t] in a natural/ashion. 
Proo[ o/ Theorem 7.2: We keep the same notations as in § VII (2) above. 

Thus G ~ Ba-+ X is a normal G-structure such that  the induced structure 
G ~- ~a  =~ ~" ~ is complete. We have defined (see § 1.2) sheaves Fa  [t] on X, and 

correspondingly, /'G [t] on ~ .  Now, because of completeness,/ 'o and /~a  are 
both locally constant sheaves of finite dimensional Lie groups, say G. Thus, 
for UC X, F a i U  = G ] U  is generated by the Lie algebra Oal U. A germ 
/(t) E Fo[ t ] IU is a 1-parameter family of local G-automorphisms of neigh- 
borhoods of U such that  [ (0) = identity; or, [ (t) may be considered as a 1-para- 
meter family of mappings into G such that [ (0) = e. However, ~Titing a germ 
](t) in this second form necessitates a change of the value of [ (t) (x) ~G (x ~ U) 
upon changing coordinates, and this is the whole point. To be more precise 
let U = {V~) be a normal open covering of X, and identify FalV~  with G 
(constant sheaf) in the same manner as was done when identifying Oa U~ 
with 9 in § VII (2) above. Then, as in Proposition 7.2, we have: 

Proposition 7.3: Let [~ : U~ .... ~ G be a section o[ Fa written in the coordinates in 
U~. Then,/or (i, ]) ~ N, in Ui f~ U~, ]~ written in the coordinates in Ui is given by 

An element ~ ( t )=  {~i,(t)} ~Hl(N, Fa[t]) is then given by a collection 
~i¢(t) ~ G, ~i¢(0) = e, satisfying ~i¢(t) ?i¢ ~¢~(t) ~,~l = ~¢~(t). Thus ~i¢(t) ~'i¢ x 
x ~¢ ~ (t) ~,¢ ~ = ~i ~ (t) 9'i ~ for (i, jk) ~ N. Now given ~ (t) ~/-P (N, Fa [t]), we 
define a collection {~i¢(t)}(i,¢)~N of elements in G by 
Then, for (i, ], k) ~ N, :~i¢(t) :~¢~(t) = :~i~(t), and v~¢(0) = ~'i~. For a chain 
J = ( i ~ , i ~ , . . . , i m ) ,  we set @~j(t)-- 1-I #~i,i,+,(t), and then #~j(0) 

l ~ r < m  

= I I  7i, i,+, and #~j(t) is invariant under deformation of the path J.  Now, 
i < = ' r  < m 

for (i, ~) E N, we have a chain Ji~-- ( io , /1 ,- . . ,  i,n-- i, j = i,, i s - l , ' -  ", io), 
and we set #~( t ) (a~j)= #~J,j(O. Then #~(t) ((~i~) #~(t)(trek) = #~(t) (aik), 
and #~(0) ((rij)= (ri~. In fact, we have in essence defined a mapping #:  
Z I(N, Fa  [t]) - Horn (F, G) [t], by sending ~ (t) into #~ (t). 

Now if (~I) E 6C°(N, Fa[t]), then ~ij(t) = ~i(t) -1 ~ , i ~ ( t )  7~  1 
~(t) - {Q~(t)) ~C°(N, Fa[t]). But then #~(t) ((~,j)- e~o(t)-l~i~Qi,(t) 

for 
o r  

~io(t)#~(t) (a#) (z~JQio(t), and thus, for all ? E/ ' ,  ~i°(t)#~(t) (~)-- ~" ~io(t) • 
Since ~i° (0) = e, we conclude that,  if ~ (t) - ~ (t) in HX(N, Fa[t]), then #~ (t) is 
related to #~/(t) in the manner described above theorem, and thus #~(0 
= (t) in Horn(iV, G) [t]. 
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The rest of the theorem proceeds along these very same lines, the end 
result being, as asserted, an identification between /P (X ,  Fa[t]) and 
Horn(F, G) [t]. We omit the details and thus conclude the proof. 

3. Formal Construction of Horn(F, G)[t]. We shah now give a global 
construction of Horn(F, G)[t]  analogous to the sheaf construction of 
Ha(X,/ 'a[t]) given in § IV. Although this construction will be carried out 
formally here, the convergence will be obtained by analytical methods below. 

Theorem 7.3: I] H ~ (I', 9) - O, then we may ]ormaUy embed a neighborhood 
o{ o in Hi(F, §) into Horn(F, G) [t] such that o corresponds to the distinguished 
element in Hom(F,  G) [t]. 

Remarks: (i) The hypothesis in this theorem are only that  G is a Lie group 
with Lie algebra 9, a n d / '  is a discrete subgroup of G. However, in order to 
simplify computations, we shall assume that  G is a linear matrix group; the 
proof in general is only notationally more complicated. Finally, in order to 
make the statement of the theorem more plausible, we shall associate, to each 
/(t) E Hom(/r', 6}) [t], an e l emen t /#  E//1(/ ' ,  9). The proof of the theorem will 
then constitute a reversal of this process. 

For /(t) E Hom(/ ' ,  G) [t], write / (t) (7) - /r (t) (7 E F). Then Jr(t) ],(t) 

= fro(t) and Jr (0)= 7. Define [# E Ct(/ ' ,  ~) by [#(7) dfr(t)J~ t - - o  ~ r-~" This 

mapping /(t) -+ /#  is called the infinitessimal mapping. 
Proposition 7.4: / # (Ta )=  1#(~) + 7" [#(a). 7 -~, and thus /#  E H~(F, 9)- 
Proof: Differentiate/:,(t) ]~(t)a -1 .  7 - 1 =  l?a(t) (~(1) -1 and set t - -  0. 
Prool o/theorem 7.3: Let 0 E H1 (F, 9) be arbitrary. We shall construct, for 

n 

each N > 0 and 7 E/' ,  a series ]~(t) = ~ (/'~)~,t~' E fl such that: (i) (]~)o = ~'; 
/z----1 

(ii) (/~h" 7 -1- -  0(7); and (iii) /'~ (t) /no (t ) ~/~¢(t) (modulo t'~+l). Then ~:,(t) 
lim = ~ [~ (t) will satisfy the requirements of the theorem. We shall write -- to 
l~ t n  

mean "congruent modulo t n''. 
Set /~(t) = (exp 0 (~,). t) .  ~,. Then [~r(t) E G, (/~)o - 7, ([~rh" ~- t  - 0 (Y), 

and 
(t) = (exp 0 (r) .  0" r" (exp 0 (q) 0" 

= (exp0(r) .  0" r" (exp0(~)0 • r-x . (ra)  

~. 7a + (O(r) + ~O(a) r -9  (ra)" t 

,v  xp(0(ra)0. ra  • 

Suppose now that  we have ~ (t); we try to construct/~ + 1 (t) (7 E F). We may 
n 

inductively assume that  ~ (t) = e x p ( ~  (t)). 7 where ~ (t) ~ ~, (r)t~, 
~ff i0  

~(),)  = O(y). Define wr,"+l,~ by: l~(t) po(t)t,,+ ~ (1 + w'~,+~t "+~) l~(t).  
Proposition 7.5: w~, + 1 E ~ (7, cr E F) and, in/act ,  ,,," + 1 H ~ w~,o E (F, ~). 
Proo/: W e  must s h o w  t h a t  , , , "  + 1 w~ + 1 ...... ,,,*t + 1 . n + 1 .  1 ~yo,, + ~,a - - ~ , ~ ,  + ~' w~,, ~,- (~, a, 

EF). 
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Now 
I~ (t) 1~ (t) 1,- (t) 

On the other hand, 

t n +  2 

T ,  ',', 

i n +  2 

-+~t-+l) l '~,,(t) l",(t)  (1 + w~,,o 

n+lt"+l) (1 + 'mn+l/-n+l) (t) (1 + wr,, ~ ,,,,~,,r,~-,- /~,~, 

1~ (t) 1~ (t) 17 (t) # +  2 f~(t) (1 + w. "+  l~n+l)/~v(t) 

, ,+ 2 (1 + ~, . w~. +, ~ . ~ , - l t , , ÷ , ) l , ~ ( t )  / , , , ( t )  

(1 + ~,. wan,+ 1" ~,,-ltn+l)(1 + w~, +l,a~r 
t n 4  2 

Thus . + 1 w n + 1 _ ct~n + 1 n + 1 wv,~ + v~,, - w~,~ + ),. w~,~ • 7 -'1. Q . E . D .  
((~0n+l)  By hypothesis, ,here exists 9,+1 E CI(F, 9) such that  (),,a) 

- -  9 n + 1 ( ~  ' q )  - -  9 n + 1 ( ~ ' )  ~ ,gn+x( (7 )  . ~,-1 - -  W~,,an+l. S e t  q ~ + l ( t ) - -  (p~(t)  + 

+ 9,+~(~,)t"+~, and /~+x(t )=exp(9~+x(t ) )  • ~,. Then a direct calculation 
similar to that in Lemma 7.5 shows tha t /~+  l(t)/~+ l(t)t ~ u/~ + l(t). Q .E .D .  

4. Formal Coml~leteness o/De/ormation, in a Special Case. We have defined 
Hem (/', G) [t] as the space of effective germs of 1-parameter families of homo- 
morphisms o f / '  into G which reduce to the identity at t = 0. Also defined was 
the infinitessimal mapping Hem(F,  G) [~] -~ /~(F ,  9) obtained by sending 

/(~) into/~¢ d/if) If now ~ = (t~,.. t m) is a point varying in ....... d t  " t ( t ) - l ] ¢  = o" ", 

a neighborhood of o E R~, then we may clearly define Hem(/ ' ,  G) It] as homo- 
morphisms depending on m-parameters. There is also an infinitessimal mapping 
i : H o m  (T', G) [t] × R"  ~ HI(T ', 9) defined by sending (f(t); ~1 , . . . ,  ~m) into 

i(f(t); ~1,.. ., ~ )  __ ~y, ~ O/(0ot~ . ](t)_l] * = 0- Let/(t) be a germ in Hom (F, G) [t], 

let s vary in a neighborhood of o E R, and let g(s) be an arbitrary germ in 
HoT. (/', G) [8]. 

Definition 7.2: f(t) is a complete germ of de/ormaAion if, for any g(s), there 
exists a mapping , : s -+ T(s) E R m, ~(o) = o, such that  g(s) = f(z(s)) in 
Hem(/ ' ,  G) [s]. 

Theorem 7.4: I] i : ] ( t ) ×  R ~ > HX(] ', 9) is onto, then f($) is formally a 
complete germ. 

Proof: We must produce formal mappings ~ : s  > ~(s )ER% ~ ( o ) =  0; 
and ~ : 8  .... ~ ~(s )  E G, ~ ( 0 ) =  1, such that 

(7.2) ~ ( , )  1(~(8)) - g(,)  ~(,). 

a,,(o] . r_~. Let ~ E R% and define 0, EZa(/ ' ,g) by 0,(},)~ ~ ~-~ t=o 
~t*=l 

Given w EZI(/', 9), there exists ~ E R ~, and ~ E C°(/', 9 ) =  9, such that 
w -- 0~ + ~ ;  i.e., for ~ E/', w(~) - 0e(?) + ~ - ~" ~" ~-x. We shall const~act 
infinite sequences { ~ } ( ~  E R~), { ~ }  ( ~  E g) such that, setting ~i~n(s) 
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= exp (7~" (s)) qlS + - ' - +  q.s"), ~ - ( s ) =  
n 

~ '  ~psu, we have 

(7.3)" ~ n  (s) /r (~P'* (s)) sn % 1 g~' (s) ~n  (s) (for all 7 ~ T') .  

The inductive construction may  be assumed to begin with n = 0, in which 
case (7.3) ~ is satisfied. Suppose, therefore, tha t  we have made the construction 
for n, and we shall do it for n + 1. Define w~ + 1 by 

(s) (s)) 
sn+2  

(1 + w'~ +~ s.+~) gr(s) 

Proposition 7.6: w~ +1 ~ 9 and w n+l ~ CI(F, 9) defined by w'~+1(7 ) = w'~ +1 
8a~i8~ 0(w "+1) -- 0. 

Prool: T" (s) /v,,(~," (s)) . +  ~ (1 + w ~ + l s  -+~) g'~(s) T . ( s )  But 

(") bo( " (.)) = t (v" (.))/o(v" 
(l  "[" W~ +1 8 n+l) ~,(8) (1 + w~ +1 8 n+l) [~(8) ~[-In(8) 

sn +2 

(1 + w~ +1 8 n+l) (1 -a t-- 7 "Wna+l"7--18n+l) gTa(8) ~/n(8) , 
~n+2 

and thus n + 1 = w~ + 1 + 1. wro + 7"  wn 1 " 7 -  Q . E . D .  
By hypothesis, there exists ~n +1 ~ Rm, ~0~ + 1 ~ ~, 

= OWn+l(7) -~- ~gn+l-  7" ~On+l " 7 -1" Set 

such tha t  - w~ +1 

8 n+l,  (pn+l(8) = (p"(8) + (P'~+I 8"+1 '~)n+l (8) ~--" ~n(8) + '~n+l 

Proposition 7.7: ~n+~(s) ]v(~pn+~(S))n~ 2g~(s ) ~ + ~ ( s ) .  

exp( -(s) + + Proo]: ~'~+X(s) ]r(~f +X(s)) .~i + 2 

sn+ 2 

~ (1 + w'C+~s"+~)g~(s) 7t-(s) + ~ . + ~ .  r . s  ~+~ + 0~÷, (7)"  r ' s  ~+~ 
8n+2 

g~(s) ~"(s)  + w'¢ + ~ . 7" s"+~ + ef.+~ . 7" s.+~ + 0~,,,+, (7)" ~' s.+~ 
sn+2 

'iJi " • • - - ' -  Q . E . D .  

Remarks: Although, we shall not do so here, it  can be shown tha t  conver- 
gence holds in theorem 7.4, although we are unable to prove convergence for 
theorem 7.3. For  ttfis it  was necessary to assume tha t  G is connected and t h a t / '  
is finitely generated and finitely related. If  7 1 , . . . ,  yn are generators of F,  
we say that  an expression 7 i , .  • • ~i, has length r, and choose R such that  all 
relations in /~ have length < R. Assume tha t  we have a norm l l on 9; if 

E Ca(/', g), define I]~!! = sup ]~ (~ i , .  • • ~ ) 1 ;  and if ~ E C~(/', 9), set ll~ll 
r ~ 2  
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- - s u p  i~ (7~ , ' ' -  ~%, ~%+,--" 7~)[" The crucial point in the convergence proof 
r~_R 

of theorem 7.3 is the following 
Proposition 7.8: There exists a c > 0 such that the [oUowing holds: /or 

q = 1, 2 a n d / o r  any ~ E ~Cq-I(F,  ~), there exists a q~ E Cq-~( F, ~) such that 
~¢p : ~, and []¢P]I ~ C]I~'l[. 

Proof: Set i ( ~ ) -  inf H~[[. If  the Proposition were false, then there exists 

1 
an infinite sequence {~}  E ~Cq- l ( ]  ~, ~) with i ( ~ ) =  1 and [I~'H < ..... . Choose 

P 
{~}  E Cq-~(I ', 9) such that ][~[[ < 2 and ~ ~ ~ .  Assume q = 2 (q : 1 is 
similar). We have ~(~ ,a )  - 7~(7) - ~ ,~(a)  ~,-~ = ~ ( 7 ,  a) (7, a E/ ' ) .  By 
the definition of ]] H, we may assume that,  for r ~ R, ~ (7~ , . . .  7 a )  , "¢(7~,-.. 7~); 

and, for r g R again, since ]l~]l ~ 0, ~(~'~,.--  ~'~,) --- ~(~'~,.-- 7~) + 

+ ( 7 i , . . .  7i~)q~(70+,'-- 7 0 ) ( 7 i , . - .  70) -L Since ~ h , . . - ,  ~'n generate F, and 
since all relations are of length <= R, we may uniquely extend ~ to an affine 
homomorphism T : / ~  ~ 9; i.e. ~ E Hi( F, 9). But  then 8 ( T ~ -  T ) ~  ~ and 
11~ ~ -- ~[1=> 0. Contradiction. 

VIII. Partial Differential Equations and Deformations of Geometric Structure 

1. A n  Outline o/ the General Method. Let O > Be > X be a complete, 
normal G-structure where G is of finite type and X is compact, and assume tha t  
Ha(X,  Oa) = 0. In this section we shall use the method of partial differential 
equations, first initiated in [8], to prove Theorems 7.3 and 7.4; in other words, 
we shall prove tha t  "formal implies actual." 

Recall tha t  a graded Lie algebra is a graded vector space V - V ° $ V 1 ~ • • • 
together with a bracket law [ , ] : V • ® V q ~ V ~+q satisfying: (i) [¢, ~] 
-- (-- 1)~q+l [~, ~] (~ E V v, ~ E gq); and(ii) ( - 1)rr [[~, r/f, 0 ]+  ( -  1)q" [[~,O],~] + 
( -  1) qr [[~0, ~],~] ......... 0 for ~ E V ~', ~7 E V q, q9 E V". For  a vector bundle E over X, 
we let d* be the sheaf of C °O sections of E. A graded bundle V -- V°~9 V ~ @ • -" 
over X is a Lie bundle if the sections of ~e" ~ ¢p0 ~9 $pl ~9 • • • form a graded Lie 
algebra. We shall, in certain cases, associate to G .... ~ Ba > X a Lie bundle V 
together with differential operators D : C ' q  .... > ¢,.'q+1 satisfying the following 
conditions: (i) There is an injection i :OG > ¢-o such tha t  the sheaf sequence 

(8.1) 0 -'> 0 G /' ~/'0 D ~/'1 39 ~ q  D ~Pq-t-1 

is exact, and 

(8 .2)  D [~, 7] ::~ [De, ~] + ( -  1)~ [¢, D~]  (~ E ¢ 'u);  

(ii) to state the second condition, we let V q ~ H ° ( X ,  ~q) ,  and we let V q [t] be 
1-parameter families ~(t) of elements of V q, depending smoothly on t, and 
satisfying ~(0) -- 0. The second condition states tha t  the non-linear equation 

(8 .3)  (0  - (0 ,  (t)] - 0 E 

may be used to construct deformations. When (8.1)-(8.3)  are satisfied, we say 
that ~ gives a L/e resolution of Oa. In general, we do not know that the resolution 
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(5.10) gives a Lie resolution of Oa, and it will be our task to modify (5.10) in 
certain cases to give a Lie resolution of 0o. 

2. A Lie Resolution o/Oa [or Canonicnl Homogeneous G-Structures. We first give 
a resolution of the sheaf of infinitessimal automorphisms of a local Lie group. 
Let U < R" be a relatively compact contractible domain, subject to shrinking, 
and let u ~ , . . . ,  w" be n-independent Pfaffians in U giving a parallelism and 
such that  d uf  = c~vw~A wr (c~  constant). Let X 1 , . . . ,  X ,  be a dual parallel- 
ism to w a , . . . ,  w", Tq = bundle of vector-valued q-forms on U, ~9-q and 
Tq = H°(U, 8"a) as above. Since we are shrinking U, we shall work with Tq 

St 
in lieu of ~'q. If ¢ 6 Tq, write ~ = ~ = X~ @ ~ ,  and, if ~ = ~ X~ ® ~ ,  set 

~ = 1  

[¢, U] = ~ [X~, X~] @ ~" A ~Tt ~. Then T ~/n ~ T2~9 
We shall construct an injective Lie resolution 

i 
(8.4) 0 : . . . . .  - Oa .- T D ,  D ,  T 2  . • • • ') f 1 . . . . .  ~ . . . . . . . . . . . . .  r 

• • • is a graded Lie algebra. 

T q  D ,÷,~ Tq + 1 

The injection i :Oa ~ T is the injection of vector fields. For ~ 6 T, set 
D~ (~)= ~ X~ @ L¢uf where L¢uf is the Lie derivative of uf along ~. Then 
(8.4) is exact at Oa and T. We now find the differential equation which D 1 (~) 
satisfies. For ~ ~ T, set ~7~(t) = exp(t~)*uf. Then 

(8.5) a (t) = (0 A ,f, (t) 
and also 

(8.6) 

Combining (8.5) 

(8.7) 

Furthermore, if ~ -- ,~  Xo, 
6 T if, and only if, 

(8.8) 

n (t) = + tL¢w  + O(t') . 

and (8.6), we immediately get 

d ( L c u f ) - - c ~ , w ~ '  h Lcw~. 

d~* = - c~ rwr h ~ .  

Thus, if we define D , :  ~/u > T , by 

(8.9) D~(~Y ~ X~ ® 7 ~ ) -  X X .  

and 

is exact• 
From (8.9), 

(a = 1 , . . . ,  n) for some 

® dT~ + 2 X X~ ® c~vwV A c/, D, DI = 0 

setgx - Z x , ®  
by 

(8.10) 

Proposition 8.1: D z ~= 0. 

r wr A ~.  Then we define Da +1 = D: Tq-~ T q+l 

we now see how to define D~ +1 : Tq-+ T q +t; we first introduce 
some notation. Given ~ - ~ X~ ® ~ 6 Tq, we set d~ - ~ X~ ® d~ ~, and we 

Pro®I: The proof is in three steps. 
(i) Lemma 8.1:d(~2 ~ ~) = - ~ 2  ~ d~ - (Q ~ Q) 

ITI '~ '  Proof: The proof is a straightforward co putation. 

D(~) ~ d~ + 2 Q  ~ ~ .  
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(ii) Lemma 8.2:(~2 X ~2) 7~ ~ -- 2 ~ ~ (~2 X ~). 
Proof: ((~2 x ,('2) ~ ~)~ = C } v C ~ , w  a A w * A ~ ;  and (~2 x (~2 x ~))~ 

- C} v C~ ~ wV A w • A ~'. From the Jacobi identity: C} ~ C~, = C~ ~ C~ ~ + C~ ~ C~,, 
((~ ~ ~)x ~)~= c ~ , c ~ w ,  ~ w~ ~ ~ + o}.C~,w~ ^ w~ ~ ~ =  2(s~ ~ (~ ~ O )  ~ . 

Q.E.D. 
(iii) D(D~)  = D(d~  + 2 ~2 7~ ~) + 2 ~2 ~ (d~ + 2 ~ 7~ ~) - - 2 ~2 ~ de ..... 

- 2 ( ~ 2 ~ / 2 )  ~ + 2~2~d~ + 4~2x (~2x~) - 0. Q . E . D .  

Theorem 8.1: The sequence 0 -~ Oa 
D ~ D , T ~ T* T ~ ~ . . . - ~  T a  

1) Tq + ~ -+ is a Lie resolution o I Oa. 
Proof: The proof of the exactness (i.e. the D-Poincar6 lemma) follows 

from the d-Poincar~ lemma and the relation between thi~ resolution and the 
resolution (5.10); this is taken up in Lemma 9.2. § IX  below. Thus, to prove the 
Theorem, we must prove: 

(8.11) D[$,  ~/] ~ [De,  ~/] + ( -  1)deg~ [¢, D~/] 

and that  the equation 

(s.12) D ~ (t) = [~ (t), ~ (t)] (~ (t) ~ T ~ [t]) 

may be used to construct deformations. 
For (8.11), we let ~ E Tq, ~ ~ T~; and then 

DIS, ~] - X X~ ® {C~ d~  ~ ~ + (-  ~)~ V ~  
Now 

~ W • 

and 

A d~lr + 2C~,C~,wr A ~ea A ~1"}. 

(-- 1)q [~, D~/] - ~ Xa ® { ( -  1)q C ~  A r/r + 2 C~ v Cra 
To prove (8.11), we must show: 

p A ,f}; 

and, as above, this equation is just the Jacobi-identity. 
. . .  w ~ i s  g i v e n  Now a deformation of the G-structure on U given by w 1, , 

by Pfaffians ~1 ( t ) , . . . ,  ~n(t) satisfying ~ (0 )  - w ~ and 

(8.13) 

If we write ~ ( t )  
get 

(8.14) 

d ~ (t) = C~ ~,f  (t) A ~ (t). 

- ~ ( t ) -  w% then ~w X, z @ q~(t) E T~ [t] and from (8.13) we 

However, (8.14) is just (8.12). Q. E. D. 
Now let A be a connected Lie group, B C A a closed connected Lie subgroup 

such that  X = A [ B  is simply connected.In§ VI.2 we saw how to put  a canonical 
homogeneous G.structure on X w h e r e G  = Ad #, the adjoint group of B 
acting on a]b. This structure is of finite type, and H ° ( X ,  O a ) -  a. We shall 
construct a resolution of Oa from the local considerations above. 

Over X we have the bundle G ~ B a ~ X (G--- BIB1); over G we have the 
bundle G 1 ~ Bal ~ Ba; . . . ;  and finally we have G ~ -+ Bak-+ B ~ - I  where 
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Ok= I (and Ba~ =~ A). The groups 6P" act on the right on the bundles Bok 
for i ~ b. On A there is an absolute parallelism given by w l , . . . ,  w n where 
N = d(G) + n (n = dimX). Let G be the linear Lie group of all homogeneous 
automorphisms of the flat G-structure on R". Then G acts on A on the right, 
and A/G = X. We let Tq be the bundle, on A, of vector valued q-forms. Then G 
acts on T q, and we set ¥~ = Tq[G. Now, since the sheaf Oa on X lifts to precisely 
the sheaf of infinitessimal automorphisms of the structure on A given by 
w l, . . . , w %  and since the operators D : Y'q -+ #-q+l commute with action of (i 
on A, we see tha t  ¥ $ ¥1 $ yz $ . . .  gives a Lie bundle on X, and 

(8 15) 0 O(~ i ~ D ~/'1 . ,](/, qD . r- ~ > . . . . . . .  > ~ > q + l  

is a Lie resolution of Oa. Indeed, it is clear tha t  the equation 

(8.16) nq~(t) = [~(t), ~(t)], ~(t) E In[t] 

may be used to construct deformations on X. 
Theorem 8.2: Let X have a complete, normal G.structure which is locally 

homogeneous and in [act is locally isomorphic to the the G.structure on A/B 
discussed above. Then (8.15) gives a Lie resolution o] Oa on X. I] q~(t) E V 1 [t] 
satisfies (8.16), then the infinitessimal de[ormation to the [amily o/G-structures 

{Xt) given by q~ (t) is d ~(t) ] 
dt t = 0  --~" 

Remark: ~ E V 1 and satisfies D~  = 0; thus ~ gives a class in Hi(X, 0(~) 
by the deRham theorem. 

3. The Existence o] De]ormations. Let G > B a  > X be a complete normal 
G-structure where X is compact and G is of finite type. 

Theorem 8.3: I[ Hz(X, Oo) O, then a neighborhood o] o in Hi(X,  Oa) 
parametrizes a locally complete germ o[ de]ormation o/ the G-structure on X. 

Proo[: We follow the notations established heretofore. In  § VII.2, we proved 
tha t  H i ( X , / ' a  [t]) was given by Hem (/', G) [t]. Also, from the formal consider- 
ations in § VII.2, we may assume tha t  (~ is connected and simply connected. 
Now G acts as G-motions on i t ,  and, since X is compact, we may find a point 

E ~ such that,  ff H - stability group of £ in fl, II is connected and the double 
coset space Y = F \°/H is compact. Now the compact manifold Y has a com- 
plete, normal G.structure where now G -- Ad #, the adjoint group of H acting 
on g/h. Since HI(X, Oa) ,-.~ Hi( / ' ,  g ) ~  Hi(Y,  00), and since Hl(X,I'a[t]) ~ 

Hem( / ' ,  G) H i ( Y , / ' ~  [t]). The Theorem will follow from: 
Proposition 8.2: LeJ the resolution (9.15) o / O a  be constructed on Y, and let 

E In with Dq~ = O. Then there exists a ~(t) E V 1 [t] satis/ying D ~(t) -- [~(t), 

and dt t=0 = ~" 
Proo]: By hypothesis, there are not obstructions to the formal construc- 

tions to be done below. This will mean that ,  given k~ E V ~ with D ~ 0, 
there will exist a ~ E Tn with D~ = ~ .  We shall construct a sequence {~r(t)} 

of elements ~r (0 ~ ~ P  E T ~ [t] satisfying ~l ~: and 
# = 1  

(8.17)" D~or(t) ~ [~or(t), ~ ( t ) ]  (modr~+t), 
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then the formal series 

= 

OO 

r - ~ o o  # =  1 

(by (8.11)) 

2 [ [~( t ) ,  ~ ( t ) ] ,  ~'(t)] (modt ~+~) 

Q.E.D. 
_ ~ r + l  then we If we then choose ~ + ,  such tha t  D ~ + ~ - -  

verify tha t  ~ + x ( t ) =  ~ r ( t ) +  ~r+~t ~+1 satisfies (8.17)~+L This 
formal proof. 

hr 

The proof of convergence is simpler than in [8]. Namely, ds 2 -  ~Y (uf) 2 

gives an H invariant metric on / , \o ,  thus a metric in the bundles Yq. We define 
an inner product ( , )  in V q by setting 

($, 7 ) f  (~(Y), ~(Y))d/~,  
Y 

and we also define [1~11~ = (~, O. If D* is the adjoint of D, then DD* + D*D 
is clearly elliptic, and by standard elliptic theory, we have: 

There exists a c > o such that ,  for any ~ E V ~ with D T = o, there exists 
an unique ~ E I n with D*~ 7 = o, D~  = $, and 1]~711 < c !15ll- Also, since [ , ] 
involves no derivatives, we may  assume c > o is such that  ]I [~, ~]]l < cll$[l" I]~]I. 
Then, assuming we choose the ~ + x  as above, one easily checks that ,  for b 
large enough, the series b(~Y ]I~]I"c"P) dominates, in !1 11, the series for ~(t) 
constructed inductively. Thus ~ (t) is real analytic in t, square integrable on Y, 
and satisfies D ~ (t) = [q~ (t), 9~ (t)], where D is taken in the weak sense. However, 
since ~ (t) satisfies the equation 

(DD* + D* D) q~ (t) - D* [~ (t), ~ (t) ] -- t (DD* ~x), 

which is elliptic quasi-linear for (t) small, ~(t) is actually C °o on Y. Q. E. D. 
Remarks: (i) The success of the method just used is tha t  it linearizes the 

equations in § VII.3 which we were unable to deal with exponentially. (ii) 
Given ~ E Hi( Y, Oh), the primary obstruction to ~ is given by 

[q~, ~] E H'( Y, Oa) . 
1 

If [9~, ~] = D ~ ,  then the secondary obstruction is given by ~- [~, ~ ] .  

by (8.17) r --= 0 (modt r + 9). 
may  easily 

completes the 

~ r + l t r + l  :~::i: Dq~'(t)- [9~'(t), ~'(t)] (modt '+l) ;  ~ r + l  (8 .18)  

is called the r + 18~ obstruction. 
L e m m a  8 .3 :  D ~ + x  = 0.  

Proo]: D ~+1t~+1 D [ ~ ( t ) ,  ~r(t)] (modt ~+~') 

- 2 [D ~r (t), ~r (t)] (modt ~ + 2) 

satisfies 
q~ = q~, D q~ (t) = [~ (t), q~ (t)] 

(in a formal sense) and we shah prove convergence in t and tha t  q~(t) is C °o 

on Y, so tha t  formal is actual. 
Since (8.17) 1 is fulfilled by ~ l ( t ) - - t ~ ,  we assume given ~r(t) satisfying 

(8.17) r, and we shall construct ~ + l ( t )  satisfying (8.17) r+l. Define ~ r + l  E V ~ by 
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IX. Examples, Automorphisms and Deformations 

1. Au~omorphisms and Deformations. Let X be a compact manifold, and 
suppose that G ~ B a -~ X is a normal geometric G-structure. Under a mild 
restriction on X, one can associate to G ~  Ba ~ X a real analytic (possibly 
reducible and/or singular) variety ~ (G) which parametrizes a subset of the 
deformations of X coming, in some sense, from the automorphisms on X. 
We shall construct this automorphism variety ~ (G) in certain special cases. 

Let / '  ~ ~ , X be the universal covering fibration of X, and let 
9 = Ho( ~ ,  ~a). Then the Lie algebra 9 is a finite dimensional/'-module; if 
~ : I '  ~ GL(9 ) is the action of / '  on 9, then q(~,)[g, g~]- [~(~)g ,  ~(~)gl] 
for ~, E/1, g, g~ E 9. Thus the subspace 9 # = Ho(X, Oa) - (g E 9 ] ~(~)g -- g 
for all ~, E F} is the Lie algebra of the Lie group of G-automorphisms of X. 

There is an exact sequence of/'-modules 

(9.1) 0 - ~ g #  ~ 9~ ~ 9 ' -~0;  

and from the cohomology sequence, we get 

(9.2) o ......... ~ H~(/1, ~*) .......... > H~ (/', ~) .  

We shall examine the effect of the subspace /P(F ,  9 #) of Hi(F, g ) ~  
__~ Ha (X, Oa) on deformations. 

Lemma 9.1: H i ( / '  , §# )~  g# ® H ~ (X, R). 
Proof: 

H~ (/", ~),--, nom (/', ~#)~ Hom (/'/[/', F],  ~ # ) ~  ~ o m  (H~ (X, Z), ~),--, 
~v ® H~(X, R) 

(since 9 # is a real vector space). Q.E.D. 
Let ~ #  be the connected Lie group generated by 9 # (X is compact!). 

We shall consider H a (X, Oq) as given by vector-valued forms via the resolu- 
tion of § V.3. Then, if w E Hq (X, R) is given by a form under the deRham re- 
solution, and if 0 E H°( X ,  Oa), then 0 ® w E Itq( X, Oq) via the resolution 
of ~ V . 3 . . . .  

rrolmSlUOn 9.1: For g E {!i #, ~' E 9#, w E H ~ (X, R), 

(9.3) g o (~, ® w) = Adg(~,) ® g*w.  

Proo]: The proof is immediate from the definition of induced action on 
sheaf cohomology, together with the following remark. We consider ~ #  as 
acting on X on the left; then the Lie algebra 9 # of ~ #  must be taken to be 
right-invariant vector fields (since these are infinitesshnal left translations). 
But then the left-action of ~ #  on 9 # is just the adjoint representation. Q.E.D. 

Remark: g*w ~ w since the action of g is homotopic to the identity. 
For a 1-form ~ and a vector field 0, we let L0~ denote the Lie derivative of 

along 0. Then 
Proposition 9.2: For 7, 7 x E 9#; w, w a E [./l(Z, R), 

(9.4) [~, ® w, ~,x ® ~ ]  = [~,, ~,x] ® w ^ ~ + ~, ® L~,,w A w ~ + ~,~ ® L~,w ~ h w . 
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The bracket [~ ® w, ~,10 wa] is the cup product in cohomology; [ , ]: 
H~(X, OG) ® Hi(X, Oa)> Hz(X, Oa). The proof of (9.4) is by a straightfor- 
ward local calculation. 

We now assume the following condition ~ on X: There exists a basis 
w ~ of H I(X, R) such that  g* wJ w~ for / 1 , . . . ,  r and for all g E ~i#. 

(This will happen, e.g., if ~)# acts as is®metrics relative to some metric.) 
Thus LrwJ = 0 for all ~ E 9# and ~ = 1 , . . . ,  r. Also, if w E Hi( X, R), [~ ® w, 
~, @ w] = 0by  (9.4). We shall construct a global 1-parameterfamil Xt(~,,w ) 
of G-structures on X whose infinitessimal deformation is ~ @ w. 

Let H be the torsion-flee part  of//1 (X, Z), and let X* > X be the covering 
space of X with deck-group H. We shah define a 1-parameter family of 
actions ~t of H on X* and Xt(~, , w) will be X*/~t(H ). We define ~t as follows: 
for z E H, x E X* 

(9.5) 

We must explain this notation a little. The discrete group H acts on X* on the 
right, and this action is the symbol x .  z in (9.5). Also, ~@ acts as 6/-motions 

on X*, and this is the action exp ( ( t / w ) ~ ) . x  in (9.5). Set X t = ,X*/~t(H). 
g g 

Theorem 9.1: The mani/olds X~ give a de/ormation o/ the (7-struaure on 
X = X o whose infinitessimal tangent is ~ ® w E 111 (X, Oa). 

Pro®l: We first observe tha t  Qt(z + zX) • x =  Q~(z)~,(zl) • x since 

s w), (,f w),_ °x,(, +s .o,,oo  

G.motions, and since e0(H) is just the given action of H on X*, we have so 
defined a smooth family X~ of G-structures on X, and this family dearly forms a 
deformation (i.e. local structure is preserved). We must compute the infini- 
tessimal deformation. For fixed z E H, the family of actions t > ~t(z) is a 

G-motions on X*, and this action is generated by a 1-parameter group of 
vector field ~z. Indeed, for a function ] on X* and for x E X* 

(~- 1) (x) = lira l(Q,(z) " x) .... l(#o(Z) " x) 

t--+ O t 

_ t(ox ,/w. 

t--~O t 

I(~" z) 

= 

where Rz of a function g is given by Rz (g) (x) -- g (x.  z). Thus, the deformation 

considering the form of Hi(X, 0o) given in § V.3, it easily follows tha t  the 
tangent to {Xt} is ~, ® w. Q. E. D. 

2. Examples o~ Obstructions. We shall use the above example f~ show how 
obstructions, of any order, to deformation may be easily cons tmc t~ .  We shall 
also construct examples of obstructions to the stability of automorphisms. 
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Proposition 9.3: I] 9 # is non.abelian and if the cup product H i (X ,  R)® 
® H I ( X , R ) >  H~(X,R)  is non.trivial, then there are primary obstructions to 
de/ormation. 

Proof: Since the representation of ~ #  on H I (X, R) is trivial, we see that ,  
for w ~ / P ( X ,  R), 7 ~ 9 #, Lrw - d[ for some function [. Le~ 7, 71 ~ 9 # be such 
tha t  [7, 71] ~= 0, and let w, w 1 ~ Hi (X ,  R) be such tha t  w ^ w 1 =4= 0 in Ha(X, R). 

I 71 7 ~ wl] [7 ® w, ® Then, by (9.4), ~- [7 ® w + ® w 1, 7 ® w + ® ~ 7 ~ w 1] ~ 

~ [7, 71] ® w h w I =4= 0 in H~(X, Oa) (Here, we are interpret'mg elements in 
H ~ (X, Oa) via the resolution of Oa in § V.3.) Q . E . D .  

Example 1: Let Z be a real n-torus (n > 1), and taken with an invariant 
metric; and le~ Y be a compact semi-simple Lie group with a bi-invariant 
metric. Then X = Y x Z is a Riemannian manifold satisfying the conditions 
of Proposition 9.3. 

To construct an example of a secondary obstruction, we shall use the 
resolution of Oa constructed in § VIII.2. Thus, let X have a parallelism 
w a , . . . ,  w" with du f  = C~:,w~ ^ w~' ( C ~  constant). Then (8.15) gives an exact 
sequence of sheaves 

i D D (9.6) 0 ~ O a  ~ T ~ T 1 > . . .  > T q  ~ T ~+1- > - . . .  

Let  A q be the global scalar q-forms on X. 
Lemma9.2 :  There is an injection ]: H°(X,  Oa)® A ~ ~ T ~ such that 

j(O ® dw) = Di(O ® w) (0 ~ H°(X, 0~), w ~ A~). 
Proof: Let  X 1 , . . . ,  X,, be a dual parallelism to w l , . . . ,  w". For a vector 

field ~ ~ T, ~ ~Oa if, and only if, L C u f -  0 for ~ -  1 , . . . ,  n. Writing 
= ~ ~X~(~ ~ ~ C ~° (X)), we have, by the Cartan formula, L c u f -  i ( $ ) d u f  + 
+ gi(~)uf  = 2 ~ C ~ , w ~  ÷ d~ ~. Now if 0 =~ ~ - ~ ~ X ~  ~ H°(X,  Oa), and 
if w ( A ~, then j(~ ® dw) = ~ ,  X~ ® ~ dw. On the other hand, by (8.10), 
D(j(C ® w)) D ( X  X~ ® C~w) - d(~, X= ® C~w) + 297~ ( X  X= ® C~w) 
= ,~, X~ ® d~ ~ A w + ~ X~ ® ~ dw + 2 ~ X~ ® C ~ w r ~  = X X~ ® ~ dw 
=j(C®dw). Q.E.D. 

Corollary: The mapping j defines a mapping j : ~* ® Hq (X, R) > Hq (X, Ca), 
where the latter group is computed using the resolution (9.6). 

Now let ~, ~1 ( 9~,; w, w a ~ A 1, and suppose that  

(9.7) L Cw = L Cw 1 -  L e w - L C, w I - 0 .  

Lemma 9.3: [j (C ® w), j (C1 ® wa)] = 6j ([C, C'] ® w h w'). 
Proof: Since Lcuf - 0 - Le/w~, it follows tha t  },~r = 2 C ~ ;  ~1~ = 2 C ~ 1 ~  

where ~ = ~ ~ X a ,  ~1 = ~ ~l~X~ ' and ~,~ = X~(~), etc. Now [3"(~ ® w), 
i(C I® wl)]-- IX X(x ® C a'w'X Xfl® CI~W 1]--X X~ 

other hand, [C, CI] '= [Z  C~X~, Z CI"X,] - 2 
- 2: C'"CSx  = 2 Z  o ,C CI"X  + 
~- 6 X  XN® Ct~flC°{C 1". Q. E. D. 

Suppose now tha t  we have C, C1, w, w 1 where w, w I are both non-zero elements 
in Hi (X ,  R) and (9.7) is satisfied. Suppose furthermore that :  (i) [}, }1] = }1; 

® C r ~ ~ l ~ w  ^ w 1. On the 

Z + Z C Cl, fX _ 
2Z 
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(ii) w A u9 d z l for some z 1 E A1; (iii) LCy = 0 - L¢lyl;  and (iv) w ^ y 4= 0 in 
H ~ ( X ,  R) (observe tha t  d ( w  ^ ~7) .... w A d~ 7 -- - - w  A W h W a = 0). 

Proposition 9.4: Under  the above hypotheses,  there are secondary obstructions 

to deformat ion.  

Proo]: Recall first the Remark  at  the end of § VIII .  3 where formulae were 
given for pr imary and secondary obstructions (relative to D-cohomology). Let  
now ~ : j((~ ® w + ~1 ® wl)), then [~, ~] = 12j (~1 @ w h w 1) = 12Dj (~1 @ ~7) 
by Lemmas 9.3 and 9.2. Thus the pr imary obstruction drops out. The second- 
ary obstruction is given by 

6.12 
2 i ® = 36/( 1 ® w A + 0 in  H (X, 0o). Q.E.D. 

E x a m p l e  2: We shall explicitly construct a manifold satisfying the con- 
ditions given above Proposition 9.4. Let  F be the Lie group of all matrices 

] = 1 . Then the right invariant  Maurer-Cartan form on F is given by 
0 

d [ .  [ - l =  0 wz~ where w 1 = dx ,  w 2 d y ,  and w a = - y d x  + dz .  Then 
o o /  

dw, = 0 - dw, and d w  3 = d y  ^ d x = w~ ^ w 2. 

Now l e t / '  be the discrete group of matrices 

y (ia ) 1 (a, b, c E Z) ,  
0 

and set Z -- F[1-'. Then Z has a G-structure, where G = I ,  given by w 1, w~, ws, 
which clearly project to Z. Also, Z is compact. On Z, we have the closed 2-form 
w~ A w3 (since d (w2 h ws) -- -- w~ ^ dws = J w, A w 1 ̂  w~ ~ 0), but  w~ ^ ws is 
not exact. In fact, w 1 ̂  w~ ^ w 3 gives a volume element on Z, and if w s ^ w 3 
= d~  for some 1-form ~, then w 1A w 2 ^ w s -- d ( w  1 ̂  q0) and thus f w 1 A 
^ w~ ^ w 3 -- 0. Contradiction. z 

Let  Y = S U(3) with the G-structure, where G - - I ,  given by 8 left in- 
variant  Pfaffians on S U (3). Then X = Y × Z has a G-structure where q -- I ,  
and, since there exist elements ~,, ~,1 E S U(3) such tha t  [~,, ~,l] __ ~1, the con- 
ditions above Proposition 9.4 are all met  in a specific example. 

E x a m p l e  3: The above example may  be generalized to give obstructions 
of any order N > 0. We shall not go into this here. 

E x a m p l e  4: Re turn  to Example  1 constructed above. Let  w be a harmonic 
1-form on Z, and let ~ be in the IAe algebra of Y. Then [~ ® w, ~, ® w] = 0, 
and thus we may  construct on X - Y × Z a 1-parameter family of G-structures 
(Riemannian metrics) Xt whose infinitessimal tangent  is ~, ® w (by Theorem 
9.1). Let  ~,1 ~ 9~ be in the Lie algebra of Y and such tha t  [~,, ~1] 4= 0. Then the 
pr imary obstruction to the stabili ty of the Killing field ~1 on X is given by 
[~ ,  ~, ® w] = [~1, ~] ® w 4= 0 in  H i ( X ,  Oa). Thus ~1 is not stable under the 
deformation Xt. (In fact, the manifolds Xt(t  4= 0) are non-homogeneous.) 

Math. Ann. 158 25 
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3. Examples o/Delormation Spaces. Example 1: Return to Example 1 
constructed in § IX.2 above, where Y = M is a compact, connected semi- 
simple Lie group of dimension d, Z = T is an n-torus (n > 1), and X M × T 
is a Riemannian manifold ( G ~  S O(n + d)). Let m - - L i e  algebra of M, 
t -  IAe algebra of T, and let w ~ , . . . ,  w n be n-independent harmonic 1-forms 
on T. Then, for i ~= ~, w ~ ̂  w i is a non-zero harmonic 2-form on T. The Kiinneth 
formula shows tha t  

Hq(X,  = 

Thus, dim t P ( X ,  Oa) 

Let e~ , . . . ,  ed be a basis for m, 

{m ® Hq (X, R)} $ {t ® Hq (X, R)} (q = 0, 1, 2).  

= n a + n d ,  and dim H ~ (X, Oa) = n s (n 1) 2 + d . n  

and write [e~, e~] = C~er(~, r, ~ = 1, 

( n  ...... 1) 

2 " 

• . . ,  d ) .  

We consider Hq(T, R) as identified 
harmonic forms w 1 , . . . ,  w n. Also, we 

n (n--l).d 
m ® Ha(X, R) with R 2 . 

with Rn(n-1)--(n-q+D by using the 
identify H ~ (X, Oa) with R n' +nd, and 

Now we observe that,  since t is abelian, [Hi(X, Oa), Hi (X,  Oa)] C_ m ® 
( n  1) 

® Ha(X, R). Define d n 2 quadratic functions ~/ (~ = 1 , . . . ,  d; 1 

=< i < i ~ n) on t P ( X ,  Oa) as follows: For ~ E Hi( X,  Oa), 

- " 2 :  ffj( )e= ® ^ w J .  (9.8)  3 

Theorem 9.2: The zero locus ]~i = 0 (:¢ = 1 , . . . ,  d; 1 < i < j ~ n) on 
R n, +nd gives a complete de]ormation space ~ o I the G-structure on X.  

Proo] This Theorem will follow easily from Theorem 9.1. Let ~ = ~Y~ ~ ® 
@ wJ(~ • :EH°(X, Oa)) E Hi (X ,  Oa). We shall follow the notations of Theorem 
9.1 and define a 1-parameter of actions p~ of H on X* by 

Then it follows easily that,  for all z, z 1 ~ H, 
~ (2:) ~ (Z 1) : ~ (Z 7 t- Z 1) : ~ (Z 1) ~ (Z) if, and only if, ~ E ~ .  Thus, in case 

E @, we may define a 1-parameter of G-structures X~(~) on X by setting 

X~ (q~) : X*/O~ (H). We then define a deformation family ¢" ~ ~ ~ by setting 
e~-l(~) = X~ : XI(~). The remainder of the Theorem is now a straight- 
forward checking of details, which we shall omit. Q. E. D. 

Remarks: The space @ has the following properties: (i) @ is a real algebraic 
variety in R n'+ n~, d i m ~  - n a + nl  where l -  r ankM;  (ii) Writing R n' + 
+ n d =  R n' ~ R "~, the Zariski tangent space at a point (x, o) 6 R n' + R n~ is a 
real vector space of dimension na+ nd. Thus ~ is singular along the sub- 
variety of points (x, o), and along these points ~ is locally minimally embedded. 
These singular points are quadratic singularities, and (iii) this example shows 
that any general construction of deformation spaces must include singular 
and/or locally reducible varieties as parameter varieties. 

Example 2: Let  X = Y × Z be the Example 2 constructed in § IV.2 above. 
The general element ~ 6 Hi(X,  Oa) may be written ~ = (~1 + al) @ Wl + 
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+ (~2 + ~2)@ w2 where ~1, ~s are left invariant vector fields on F,  and a 1, a z 
are right invariant vector fields on S U (3). By Lemma 9.3, [~, ~] = 12 ([~1,~ z] + 
+ [a 1, a~]) @ w 1 ̂  wg., and we let ~/~ = - 12 ([~1, ~ ]  + [al, a~.]) ® wa ' so tha t  
~ / ~  = -- [~, ~]. Observe that ,  since [f, [f, f]] = 0, [~, ~ ]  E SU(3)  ® H~(X, R). 
Choose a basis e ~ , . . . ,  e s of the right invariant  vector fields on S U(3), and 

. . . ,  8; i = 1, 2) on H~(X, Oa) by define 16 cubic functions ][ (a : 1, 

1 
(9.9) [~, ~7~]- 144 ]~(9~)e~ @ wj ^ w 3. 

o~, j 

Let ~ C Hi(X,  Oa) be the locus/~ ~ 0(~ = 
Theorem 9.3: The real analytic variety 

de[ormation space o[ the G-structure on X. 
parametrizes a locally complete 

ProoI: Given q~ E Hi(X, Oa), define ~(t) E T1 [t] (notation of § VIII)  by 
~(t) t~ + t~~/~. Then, from § IX.2, D ~ ( t ) -  [q~(t), ~ ( t ) ]  0 (modt s) if, and 
only if, ~ ( ~ ,  in which case D ~ (t) [~ (t), ~ (t)]. Thus, for these q~ E ~ ,  we 
may, by Theorem 8.3, associate to ~ a 1-parameter family of G-structures 

X~( 0 such tha t  the family SP ~ > ~ defined by c5-1 (~) - X~(1) gives a deforma- 
tion of the G-structure on X. The Theorem now follows. Q. E. D. 

Remark: The variety ~ is a locally minimally embedded, real algebraic 
variety having a cubic singularity along the subvariety f @ / P ( X ,  ~ )C  ~ C 
C H (X, Oa). 
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