DEFORMATIONS OF COMPLEX STRUCTURE
PHILLIP A. GRIFFITHS

1. Let ¥V be a compact, connected- C* manifold. We want to talk about
complex structures on ¥, so that we assume that ¥ is of even dimension 2n and
is oriented. The notion of a complex structure on ¥V, which is compatible with the
C* structure and orientation, will mean that for each sufficiently small open set
U < V we are given the following data: complex-valued C* one-forms w’, ..., ®"
on U such that: (i) (/2 0! A@' A ... A@"AD" > 0 (ie. 0!, ..., 0" @, ..., 0" are
linearly independent and define an orientation consistent with the given one on
V); (i) do® = )%_, C3Awf where Cj are one-forms (this is the integrability
condition, which may be written dw® = 0 (0!, ..., ®")). The holomorphic functions
in U form a ring @, where a C*® function f is in Oy if f3 = O (Cauchy-Riemann
equations) where the total differential df = }7_, f,w® + Y., /;@". The fact that
the equations f; = 0 have enough local solutions to give local coordinates on
V is the Newlander-Nirenberg theorem (cf. Chern [10], Newlander-Nirenberg
[20], and Kohn [17]).

Our general problem is this:

(I) Let Z(¥) be the set of distinct complex structures on ¥ which are consistent
with the C® structure and orientation. We want to describe Z(V).

ExampLE 1. In R? with coordinates x, y we consider the standard lattice L
generated by (1, 0) and (0, 1). Then R?/L = ¥ is a C*® manifold, which is simply a
real torus-of dimension two. The orientation on Vis given by dx Ady = (i/2)dz Adz
where z = x + iy.

_.___x —————————————

Let w = dz + adz where a is a complex number. Then  is a complex valued
one form on ¥ and w A& = (1 — |«|?)dz A dz. Thus for |¢| < 1 we have a complex
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structure ¥, on V; in fact, if A is the unit disc |a| < 1, then {V,},., is a “nice
family” of complex structures on V. A standard theorem in the theory of
Riemann sugfaces is: Any complex:structure on ¥ is a ¥, for a € A. Thus, i our
example, Z(V) is a quotient of A.

EXAMPLE | (GONTINUED). We want to know when V, = V,.. The change of
variables w = (1/(1 + ))(z + aZ) is‘a real linear transformation of R? onto the
complex w-plane C. Since w(1) = 1 and w(i) = ((1 — a)/(1 + a)) i = B, the lattice
L in R? goes into the lattice L, generated by w = 1, w = f: R

&

w=u+ip

In fact, the transformation B = ((1 — a)/(1 + ®))i, |a| < 1 takes the disc A onto
the upper-half-plane 5# and the torus ¥, = C/L, since dw = (1/(1 + a))w. Thus
{(Vi}eea= {V}gewr Where Vy = C/L, Now it is a standard, result that V; =V,
if, and only if, ' = (aff + b)/(cp + d) where

cd

is an integral linear fractional transformation of & into itself. In other words,
(V) = #/T where T = SL(2,Z) is a properly discontinuous automorphism
group acting on .

The propét way to interpret this example so far is this: Let Z(V) be the set of
complex structures on ¥ = R?/L as in (I), and let ¥ be a complex structure on
V. Then V = Vj for some f e 9? and B is determined up to SL(2, Z) acting on .
This gives a set mapping Z(V) % /T which, in this example, is one-to-one onto.

In general, rather than studying (V) directly, we shall map Z(V) into spaces
(similar to 5#/I) which are easy to describe and which give interesting invariants
of a complex structure Ve Z(V).

We first do this in case dim V = 2.

Let ¥ be a compact, oriented two manifold of genus g.and X(V) = Z,, the set
of cemplex strugtures on V with the proper orientation. If g =0, then every

(“ b) eSL(2, Z)
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VeX(V) is the standard: structure on the Riemann sphere (Riemann mapping
theorem) and X, is a single point.

Assume that g = 1 and let yy, ..., 75, be a canonical basis for the first homology
group H(V,Z)(2Z® .. DZ (g terms)') by definition the intersection matrix

(¥, 7s) = Q is given by ;

The picture we have in mind is

-

"1 V2

The vector .space of holomorphic differentials on any complex structure VeZX,
is g-dimensional, and we chdose a ba’sis ', ..., w? for the holomorphic one forms.

We then form the period matrix
:

-

29
rja)‘ jwq

Y1 V2g

L J:we Jw

yl '}’29 J_:

3

this is a ¢ x 2g matrix of rank g. A change of basis a) =Y%_, 43 «* transforms
Q to & = AQ; a chinge of homology basis §, = 1AS o Vo leads to Q = QA.
Here. A = (4}) is a nonsingular g x g matrix and A (A”) is a 2g x 2g integral
matrix whlch preserves the quadratic form Q; ie. AQ'A = Q. If we agree to call

- two g x 2g matrices O, Q equivalent if Q = AQA; then the above procedure

gives a set mapping: £, 5 3 {equivalence classes of period matrices}.
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The matrix Q is not arbitrary but satisfies the Riemann bilinear relations

Q0Q = 0,
() iQO'Q > 0.

These relations are a restatement of
J oA =0, if wAd >0,
1 4 14

for a holomorphic differential w on ¥. We then define

H#, = {set of g x 2g matrices Q satisfying the Riemann bilinear relations (II) and
with the equivalence Q ~ AQ}.

The group I', of all 2g x 2g integral matrices satisfying AQ°A = Q acts on Q by
AQ) = QA and we have constructed the period mapping

®
(I11) z, > #T,.

We now examine 5, Let Q be a point in 5, and write Q = (4, B) where 4, B
are g x g matrices. Then iQQ'Q = i(—B'A + A'B) is positive definite, and it
follows that A4, B are each nonsingular. Thus Q ~ A™'Q = (I, Z) and each
equivalence class Q€ #, is given by a unique matrix (I, Z). The relations (II)
then become:

Z="Z,

(Ir) Z=X+iY, Y>0.

Thus #, = Siegel generalized upper-half-plane of genus g (cf. Siegel [22]). Clearly
#, is a convex open domain in C*@*1/?, and is equivalent to the bounded
domain of all g x g matrices W satisfying W ='W, I — W W > 0 by a suitable
linear fractional transformation.

We let G be the real, simple Lie group of all real 2g x 2g matrices T which
preserve Q; ie. TQ'T = Q where

4

Then G acts on X, by T(Q) = QT (the relations (II) are obviously preserved).
Writing Q = (I, Z), T(Q) ~ (I,(AZ + B)(CZ + D)™ ') so that G acts as a transitive
group of holomorphic linear fractional automorphisms of 5,; thus 37, is the
homogeneous complex manifold H\G where H = {Te G:(I,il)T ~ (I, il)} is the
compact stability group of the point il € #,. (Note: G = the symplectic group
Sp(g, R) and H = the unitary group U(g).) The group I of integral matrices: in
G is a discrete subgroup which acts properly discontinuously on 4 = H\G;
thus the quotient space 5#,/T, = H\G/T is an analytic'space (cf. Gunning-Rossi
[14], H. Cartan [8]).
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In summary, the period mapping (III) £, 3 #,/T’, maps the set of complex
structures to the analytic space #,/T",, which is a quotient-of a homogeneous
compiex manifold by a properlx discontinuous group of automorphisms.

EXAMPLE 1(CONTINUED). Let V be a compact Riemann surface of genus 1.
There is a unique holomorphic differential @ on V with the normalization
§, ® = 1. Then the period matrix Q(V) = ({,, ®, f,, w) = (1, f) where Im § > 0.
Fixing a base point * on ¥, the holomorphic mapping of V — V; = C/L; given
by x — (|3 w)/L, is an analytic isomorphism of V with ¥, and the mapping
%, 8 /T given above is just the period mapping.

EXAMPLE 2. An irreducible polynomial equation f(x,y) =0 in C? gives a
compact Riemann surface ¥, in a well-known manner (cf. Weyl [24]). For
instance, the equation y* = x(x — 1j(x — 4) gives a V¥, which is a two-sheeted
covering of the x-plane branched at 0, 1, 4, and co:

/
7 x-plane

:f/\\

This V, is, for A # 0, 1, oo, a Riemann surface of genus one; we have drawn in
above the one-cycles v, and y, with y,-y, = + 1. The holomorphic differential

g)‘c _ dx
y  xx—Dx—4)

W =

is the usual integrand for the elliptic integral.

Now for f(x,y;4) = y* — x(x — 1)(x — ) we have an algebraic family of
Riemann surfaces of genus one; for each 4 # 0, 1, co we have V, € Z,. In general,
if we'have an algebraic family of Riemann surfaces of genus g given by f(x, y;
Agy ooy A) = 0O, there is an obvious mapping from the parameter space W to Z,.
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Composing with the-period mapping (III); we have W 3. #4/T, (we keep the same
letter @ for this mapping). If f(x, y, 4) = y* — x(x — 1)(x — ), then ®(}) =
(jndx/y)/(_[71 dx/y) is the ratio of the elliptic integrals on ¥, : The resulting mapping

— (0, 1, c0) = s#/T given by ®(1) = (j'nw)/(jhw) is evidently given by trans-
cendental functloins of A (hypergeometric functions in this case). Thus (although
the algébraic  geometers disagree) we may think of the perlods as being trans-
cendental invariants.defined on the space z,.

The main general facts concermng the perlod mappmg Zg = /T, dre these:

A) @ is one-to-one into (ie. 1njectlve on the set level); th1s is the Torelh theorem
(cf. Andreotti [2]).

(B) The image ®Z) < A, /F is a Zariski open on a 3g — 3 gljmehsional
irreducible analytic subset (I)(E) (Le. (D(E J=X-Y where X < /T, is an
irreducible analytic set and Y < X is an analytic subset). This result is due to
Baily [4]; the irreducibility follows from the work of Bers and ARlfors on
Teichmuller spaces (cf. [1]). We mention here also the theorem of Andreotti-
Mayer [3], which essentially gives very nice necessary and sufficient conditions
on a matrix Q€ /T, in order that Q be a period matrix of a Riemann surface
of genus g.

The last general fact, which we shall call the inversion of the periods, needs
some preliminary explanation. An automorphic form of weight m is given by an
analytic function f(Z) on , which satisfies the functional equation f(T(Z)) =
det (CZ + D)"*"f(Z)(TeT,) (plus a condition at infinity if g = 1). If m is large
these automorphic forms exist “in abundance” (cf. Séminaire Cartan [9]) and
give a remarkable class of transcendental functions on ;. The quotient ¢ = f/g
of two automorphic forms gives a meromorphic function on /T, (i.e. ¢(T(Z)) =
¢(Z) for TeT')) and we have

(C) Let {V,},v be an algebraic family of Riemann surfaces of genus g and
¢ = f/g an automorphic function as above. Then ¢(®(4)) is a rational function
of Ae W.

In other words, the automorphic functions invert the period mapping up to
rational functions. In particular, the functions of the form ¢(®(2)) give a subfield
F of the field of rational functions #[ W] on W such that: ¥, = V,, if, and only

if, y(A) = y(A) forally e F

2. Let V bg,a compact,, priented C® manifold and ,Z(V) the set- of complex
structures on ¥ (cf. (I) above). We want to define a set mapping Z(V) 3 {suitable
space} which gives good invariants of a point ¥ € Z(¥) and which generalizes the
periods given in Lecture 1 when dim V = 2.

ExaMpLE 3. Let Qe 5#, be a g x Zg matrix satisfying the Riemann relations
(II). Then Q ~ (I, Z) where Z="2,ImZ > 0 (cf. (II')). Now Q need not be a
period matrix of a Riemann surface (th1s is generally the case if g = 4) However,
let m,,...,7m,, be the column vectors of Q; then m,€ C* and the vegtors
Y2 n,m, (n, €2 give a lattice Ly, = €% The complex torus T, = CY/L,, can
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then be formed.and the one cycles-y, = prOJectlon of {tnp} 0=<t<1)givea
basis of H,(Ty, Z). Letting "

be the coordinates in C¥, the differentials dw?, ..., dw? give a basis for the holo-
morphic one-forms on T, and clearly

J aw! ... J dw!
)'_l ')'Z'g
J dw? ... f dw?
T1 T2g

is the period matrix for the holomorphic one-férms on T,

Now T, is niot .an arbitrary complex torus; rather, there is a‘distinguished
holomorphic embedding f: T, = Py (N = 3¢ — 1) which depends holomérph“l-
cally on Qe #, {cf. Conforto [11]). Thus {Ta}ger, is an analytlc family of

- projective algebralc imanifolds. This suggests that we should “feformulate (I to

read:

(I Let ¥ = Py be a norsingular algebraic manifold and let Z(V) e the set of
complex structures ¥ on ¥ such that there exists an analytic family {,Vz} 2 Of
projective algebralc mamfolds ¥, < Py .containing both 'V and V (cf. Kodaira-
Spencer [16]) Then we want to find good invariants of a point V& Z(V)

In particular, we want to assign to Ve E(V) the “perlod matrix” of V and see
how much of (A), (B), (C) in §1 still works. In a nutshell, we may say that (i) nothmg
essential from (A) B), (C) is known to fail in higher dlmeﬁsmns (jl) (A) and ‘(B)
have been proved in some spemaf cases; (iii) (C) has beerl generahzed a little, but
the completg ansyer seems to 1nvolve  knowledge of the discrete series Yepresenta-
tions, of semisimple Lie groups (cf. 'Schmid [21]); and (iv) there are sevetal totally
new phenomena and many interesting problems which turn up.

Thus let Ve X(V), so that we are given a projective embedding V = Py (tech-
nically, I am speaklng about deformations of polarized algebraic manifolds). If
Vs -0 Pp IS A bas1s for H(V, Z)/(tors1on) then we want to look at period matrices
(.fy co"ﬁ where w!, ..., w™ is a suitable set of differentials on V. By duality we may
restrlct gtol < q < n. We could 1ook at the holomorphic gsforms e (such dn
 is closed and is never exact; cf. Hodge'[1 5]), but this will not be general enough
for n = 3. To see what we should use for differentials, we first look at

EXAMPLE 4. Let S < P, be a nonsingular plane curve of degree d given by
f(x,y) =0 in affine coordmates For xeS there is a nbrmal disc D, wﬁh

o bR
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boundary éD,. Thus as x traces out a one-cycle y e H,(S, Z), 0D, (x€y) traces
out a two-cycle ©(y) e H,(P, — S, Z):

P,

this tube mapping ©: H,(S, Z) — H,(P, — S, Z) is an isomorphism, and we call
the dual mapping H*(P, — S) & H'(S) (the coefficients are C here) the residue
mapping. The holomorphic differentials give a subspace H*%(S) = H*(S), and we
want to know what the corresponding classes in H*P, — S) are. 3

Let ¢ be a rational two-form with a pole of order k + 1 along S; in the above
coordinate system,

¢ = P(x,y)dxdy/f(x, y)**

where deg P < (k + 1)d — 3. Since ¢ is holomorphic on P, — S, ¢ gives a class
in H3(P — §). It is essentially a classical fact that the holomorphic differentials
are the residues of the differentials ¢ = P(x, y)dxdy/f(x, y) with a first order
pole along .

ExAMPLE 5, To generalize Example 4, we let V < P, be a nonsingular hyper-
surface of degree d given in affine coordinates by f(x,, ..., x,4,) = 0. Thie tube
mapping H(V) 5 H,, (P,., — V) exists as before and is essentially’ an iso-
morphism (technically, = is an isomorphism on the primitive part of“‘H:,(V);’cf;
Hodge [15]). Again, as before, the cohorology 'group H"*Y(P,,, —'V) is given
by differentials '

_ P(x)dx; Av..ndx,

P G

taken modulo exact differentials. We let Fi(V) < H"(V) be the subspace of H*(V)
given by the residugs of classes ¢ with a pole of order k + 1 along ¥ In [12]
it is proved that: (i) Fo(V),c Fi(V) < ... and Fy(V) = Fo, (V) = ... = F (V)
for all I > 0; and (ii) the subspaces Fy(V) for 0 < ¢ < [(n — 1)/2] determine all
of the Fj(V). Thus for n = 1,2 we need only look at F(V), but for n = 3 we must
consider the two spaces F3(V) = F3(V).

(degP=dk+1)—(n+2),
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For this example V c P,,, we will'use all of the subspaces F;(V), 0= q‘g
[(n — 1)/2], as holomorphic differentials in forming the period matrix of Y; ie.
we rteplace a vector space by a filtration. Thus .let o!,...,o™ be a basis for
F{u—1)2(V) such that ', ..., o™ is a basis for Fi(V) 0 =g = [(n — 1)/2]); ie.
we choose a basis for the flag Fy(V) < Fi(V) < ... = Flu—1y2(V). We may write
w! = R(¢Y), ..., o™ = R(¢™) where

. Pax)dx, ... dx, .,
YT

Ja)l ‘[ *
71 b/

b

J w"“'...f ™
71 Y,

b

be the corresponding period matrix for Fj(V), and Q(V) =[Qo(M)s -+ s Qu—1y21M)]
be the total period matrix. As was the case for Riemann surfaces, we must allow the

equivalences?

(1<asm)

Let

Q) =

Q ~ AQ A, 0..0
where 4 = |* :
Q~Q s x Al )

is a linear transformation on the flag F§(V) < ... < Fi- 1,/-2](1./), and ‘A = (Ag') is
an integral matrix satisfying AQ'A = Q where Q = (y,"7,) is the intersection
matrix on the primitive cycles. '

If we have polynomials f(x,, ..., X, 4+, ; 4) depending holomorphically on 2, we
let V, be defined by f(x; A) = 0; this is the sort of deformations considered in

(). Then the periods
J’ j P (X)dx, A...AdXpyy
w =
Yp () f(x > A')q+ !

clearly depend holomorphically on 4. Furthermore, Q = Q(V) satisfies the
generalized Riemann bilinear relations (cf. Hodge [15]):

(" QQ'Q =0, c,QQ0Q > 0.
Here c, is a suitable power of i so chosen that H = ¢, 0'Q is Hermitian (for
n=1c¢ =i;forn=2c¢,=1cetc),and the second relation in (I1") shall mean

that the Hermitian matrix H has certain prescribed positive-definiteness properties
(cf. Hodge, loc. cit.). For n =1, 2. H is simply positive definite; however, for

n=3,
H, *
H=\.
* *
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where H is mgyex mgy-and is positive definite, whereas H has total signature
{mo, my — my).

We det 9 be the set of total period matrices Q = [Qq;...3 Q- 42;] satisfying
the Riemann relations (II”) and with the equivalence Q ~ AQ where

¥

A, 0...0
P et ;
; -'." A[("._ 1)/2]

If G is the identity component in the group of real b x b matrices T satisfying
TO'T = Q (G is a symplectic group or an orthogonal group depending on the
parity of n), then G acts on @ by T(Q) = QT. Now G is a real, simple Lie group
which is always noncompact of maximal rank (i.e. G contains a maximal torus).
It may be seen that G acts transitively on & and the isotropy group of a fixed
point € 9 is compact; thus & =~ H\G is a homogeneous complex manifold.

ExampLEs. For n = 1, we are logking at Riemann surfaces and 2 = U(g)\Sp(g)
as was seen in §1. For. n = 2, we are considering the periods of holomorphic two-
forms on an algebraic surface and 2 =~ U(m) x SO(NSO(2m, k) where m =
dim F4(V) and b = 2m + k is the rank of the group of primitive two-cycles. In
case n=3, 2 = Ulm,) x U(m —*mo)\Sp(m;R) where the homogeneous space
U(mg) x U(m — mg)\Sp(m, R)has a somewhat saibtle complex structure if my > 0
(my = dim F3(V)). QIn general, for n'> 1, 9 is not an Hermitian symmetric space.

The group I of integral matrices in G is a discrete subgroup which acts properly
discontinupusly on 2 ; thus the quotient space 2/I is naturally an analytic space
(cf. H. Cartan, loc. cit.). The above may be summarized by sayiné_ that we have
g set mapping: |

i
(I11) {nonsingular hypersurfaces of degreed in P, ,} 2 9/T.

This period mapping coincides with the one constructed for Riemann surfaces in
§l inthe casen = 1.
Referring nqw to (I), given ¥ < P, we want to construct Z/I" so that the
periods give a mapping: l
)

(1117) - (V) A 9T,

and whigh reduces o (II) in case ¥ i$ a nonsingular hypersurface. Given
VeXZ(¥) (ie, V is a polarized deformiation of ¥), w¢ must define the filtration
Fi(V) € Fi(V) ... = F{V) = H%(V) withott assuming that.V is a hypersurface ;
here 1 £ q £ n To do this, ‘we let zﬁ be the space of C* g-forms w on ¥V which
are of type (¢,0) + ... + (g — k, k) (i.e. w Adz'* A ... AdZ'-9***1+ = ( in any local
holomorphic coordinate system). Theh AZ_, = 4% d: Af — A%t} and we let
FUV) = Z8/dA2~ | where Z{ are the closed forms in AZ Using deRham’s theorem,
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there is a natural mapping Z4V) —» HY(V) = H%V), and these maps are injective
(this uses that ¥ = Py is a Kahler manifold).

We let Fi(V) be the image of F¥(V) in HY(V); then FiV)c Fi(V)c ... c
FYV) = HYV) and the Fi(V) for 0 k=[(q- 1)/2] determine all of the F{(V)
(cf. Hodge, loc. cit.). Having defined the flag F§(V) < ... < Ff —1)2(V), we may
define the periods, the space 9 and automorphism group G, the discrete subgroup
T, and everything just as before. As the notation suggests, in case V < P, is &
hypersurface and g = n, this intrinsic filtration on H*(V) is the same as the one
given in Example 5 using the order of pole of rational differentials on P, , which
are holomorphicon P, ., — V. ‘

In summary, there is defined the period mapping ¢; (V) > 2/T. where
@ = H\G is a homogeneous complex manifold of a real, simple Lie group by a
compagt subgroup and T = G is an arithmetically defined; properly discon-
tinuous group of a‘utomkorphisms of 9. )

Two of the main properties of the period matrix ®(V).are

(D) ®(V) depends holomorphically on VeX(V) (ie., if we have an analytic
family {V,} ;.5 in the sense of Kodaira-Spencer [16], then the mapping 4 — ®(V))
i$ holomarphic from B to 9/T".) We have tried to motivate this by Example 5,
above; the general argument uses the structure equations fronr the Kodaira-
Spencer-Kurainishi local theory of deformations of complex structures [18].

(E) In addition to the Riemann bilinear relations (II), the period mapping
Vs ®(V) = [Qo(V), ..., Qg—1y2(V)] satisfies the infinitesimal bilinear relation

av) dQ Q‘Q =0 (in case g = 2p is even),
aQQ'Q, , =0 (incaseq= 2p + 1is odd).
Here Q = Q—1)2) 2nd dQ has the obvious meaning.

Now we don’t have time to go into the matter, but, the infinitesimal relations
(IV) turn out to be the key to the study of periods in higher dimensions (cf. [12]).

We now return to (A), (B), (C) at the end of §1 to see how things look in higher
dimensions.

(A) The Torelli theorem can at most be true birationally (look at nonsingular
cubic surfaces), and even this fails (e.g. the Enriques surface—here one must use
the periods of Prym differentials). Furthermore, the global Torelli theorem is
closely related to the Hodge conjecture and so is presently inaccessible. However,
we do have information on the -lodal Torelli theorem (the differential of
(V)8 /T is injective), and it seems as though it may be true “in general.”
For the hypersurfaces.in Example 5,'the local Torelli theorem is true if the degree
d=3(n+2) orifn=2ford=4 A good problem is to settle the local Torelli
theorem (one way or the other) in case ¥ is a simply-connected algebraic surface
with positive canonical bundle.

(B) The assertion that ®E(V)) < /T is essentially an analytic subset is proved
in many special cases and is most likely true in general. The method of proof

il
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used thus far is to make a very careful asymptotic analysis of the periods of an
algebraic variety as it becomes singular, e.g.

S~

this is done using the differential equations satisfied by the periods (Picard-Fuchs
equations; cf. [12]). .

(C) This is a very interesting problem which is wide open. In the first place
there are no automorphic forms (or functions) in the classical sense, except for
g=1Ttis conic’cturéd that there are “generalized automorphic forms” of a
certain type, but even these have not been constructed except in some special
cases (cf. Schmid [21]). The existence of these generalized automorphic forms
would follow from the so-called Langlands conjecture (cf. Langlands [19]) on the
discrete series representations of serpisimple Lie groups. However, even if we
postulate the existence of these “generalized automorphic forms”, it is not clear
just how thé inversion of the periods should look. What is clear is that the
problem is very much related to the infinitesimal bilinear relations (IV) on the
geometric side, as well as to L?(G) on the analytic side. There is also a rather
convincing heuristic argument that there should be an inversion of periods, even
though we have no idea how to do it.

3. Let V < Py be a nonsingular algebraic manifold and E(¥) the set of distinct
complex structures ¥ on the C* manifold underlying ¥ which are holomorphic
deformations of ¥ within Py as explained in §2. Using the periods of the g-forms
we defined a set mapping Z(V) — @/I, where 2 was a homogeneous complex
manifold and I" a properly discontinuous group of automorphisms of £. In this
lecture we want to give some geometric applications of this period mapping,
plus somie open problems and conjectures.

In patticular, we want'to talk about an algebraic family, of algebraic varieties.
In affine coordinates such a family will be given by a set of polynomial equations:

JlXps s X Ay s ) =0 (2= 1,..0),
gfAn ) =0 (j=1,..).

The parameter space B < Py, is given by the equations g4) = 0; for each Ae B,
there is defined V; < Py-by f,(x; 4) = 0. To be precise, we let & < Py x P,, be
defined by {f(x; 4) = 0, g{4) = 0}, and we assume that &, B are nonsingular.
Then. there.is a rational holomorphic mapping # 5 B such .that V, = n~ (1),
and we assume that V, is generally nonsingular. Then there will be Zariski open
sets B B, # = n~(B) = % such that we have

FcF

ln la=a
BcB
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where 7 has maximal rank on & so that the V, for Ae B are nonsingular. In
particular, # % B is a C* fibre bundle (but not in general a holomorphic bundle),
and we let 1, €'B be a base point, ¥ = V;_be the variety lying over Ao

EXAMPLE 6. Let f(x,y;4) = y* — x(x — 1)(x — 4). Then B =P, and ¥ is a
surface lying over P, with elliptic curves as fibres. Since V, is qoqsingular for
A+ {0,1,00}, we may take B =P, — {0, 1,00} so that &# < .97 is an {open)
hlgebraic surface fibered over P, — {0, 1, oo} with nonsingular elliptic*curves as
fibres.

ExampLE 7.Let [, ..., £,] be homogeneous coordinates in P,; A homogeneous
form of degree d is given by Fy(&) = Yo iaAig...ia Gio -+ Cigs her€ 4 = [0, 44,0 ]
is really a point in a big Py since the vaziety F,(§) = 0 is the same as F,,({) =0
(« # 0). In this case B = Py and ¥ — B is the family of all hypersurfaces of a
fixed degree d in P, The Zariski open set B c B is these Ae B for which the
hypersurface V, < P, is nonsingular.

EXAMPLES. Let C = P, be a plane curve of odd degree given by h(x, y) = 0;
we assume that C has at most ordinary double points:

O\

If £ = &(x, y) is a variable line (¢ is a point in P, the dual projective space)‘, then
for each such & we can construct a surface V; which is a two-sheeted covering of
P, with:branch curve C; given by &(x, y) h(x, y) = 0. Roughly'speaking, ¥, has an
equation z2 = &(x, y) h(x, y); the.assumption that hx, y) has odd degree means
that the line at infinity in P, is not part of the branch curve of V; — P,.

Now the dual curve C* < P¥ consists of all lines £ € P§ such that £ is either
tangent to C or passes through a double point:

—c

If £e Pf — C*, then the branch curve of ¥, has ordinary double points:
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and we may assume that V; is nonsingular. Thus we get a family & % B where
B> P} -~ C* and n~'(£) = V, is a nonsingular-surface.

Our problem is this:. Given & & B as above, using the periods of the g-forms
there is defined a holomorphic mapping B % 9/T" (period mapping), and we want
to study ®.

For simplicity we shall consider the case dim V = 2 = g, i.e. the periods of
the holomorphic two-forms on a variable algebraic surface. We now describe @.

On each surface V, — Py there is a distinguished homology class H, = H-V,
where H < P, is a general hyperplane (H = Py_,). Thus H, e H,(V,, Q) is thci,1
two-cycle carried by the algebraic curve H-V, in V. Since ., @ =0 for any
holf)morphic .two-form w on V,, the class H, should be ignored in describing the
perlgd mapping ®. Thus let H,(V,;0), < H,(V,, Q).be the classes y such that
the intersection number y-H; = 0; these.are the so-called primitive cycles in the
sense qf Lefschetz (cf. Hodge [15]). Since H,"H, = d > 0 (d = degree of V}), we
have dim H,(V,, Q), = dim H,(V,, Q) + 1, and we may choose a basis v,, .’ ¥
for H 2(Var Q) such that y,, ..., 7, H, gives a basis for H,(V;, Q). and the int:er’:
section matrix is

inparticular, the matrix Q = (y,'y,) ™! is a rational, symmetric matrix.

;Qn'our reference variety V =V, +(4, = base point on B) we choose a fixed
‘basis yy, ...,y for H,(V, 0),. Since # 5 B is a C* bundle, the fundamental.group
n,(B) = n{(B, 4y) sets on H,(V, Q) by translating cycles on V around a loop in
n,(B). The homology class of the hyperplane H; is obviously invariant, and so
we see that,(B) sets on the primitive homology H,(V, Q)¢. LetT' o Aut (H,(V; Q),)
be the group of automorphisms of H(¥V, Q), obtained by the action of 7;(B) on
H,(V; Q),- This group T is called the monodromy group, and the basis y,, ...,y
is determined up to the transformations in I, : v

Choose a basis ', ..., @™ for the holomorphic two-forms on V and form the

period matrix
f ol. . f ot
14! 7,

b

f o™ . f o™
Vi Ty

Then Q is determined up to transformations Q — AQ(A4 € GL(m)) and Q —» QA
wher.e A eI, the m()ni)dromy group (this is a somewhat refined version of what
we did in §2). Also Q satisfies the Riemann relations:

Q0'Q =0, QQ'Q > 0.
Here Q = (yp-y‘,)—1 is the matrix encountered above.

Q=
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Let G = SO(Q) be the real special orthogonal group of Q;ie. G = GL(b,R)
is all b x b matrices T satisfying. T.= T, TQ'T =0, det T = +1. The period
matrix space 9-is all m x b matrices Q satisfying QQ'Q = 0, QO'Q > 0, and
with the equivalence Q ~ AQ. Then G acts on 2 by T(Q) = QT; this action 4s
transitive, and so @ =~ H\G where H< G is a connected, compact subgroup.
The monodromy group I' acts properly discontinuously on 2, and the period
matrix Q(V) is a well-defined point in 9/T .

We can be moreexplicit. By the Hodge index theorem (cf: Hodge [15]), the
quadratic form Q has signature (2m, k) (2m + k = b); ie. over the reals R, Q is
equivalent to Y27, x2 — Y*_, y?. Thus the real simple Lie group G is isomorphic
to the indefinite orthogonal group SO(2m, k; R), and H = U(m) x SO(k). The
period matrix space 9 = H G is a homogeneous complex manifold (which is an
Hermitian symmetric space if, and only if, m = 1), and the discrete subgroup I'
of G acts properly discontinuously on 2 so that the quotient space Z/I" is an
analytic space.

With all these prelimiaries, the periods give a holomorphic mapping B % /I
satisfying the infinitesimal period relation dQQ'Q = 0. The basic idea we want
to illustrate is that the period mapping ® and the monodromy group I are very
closely related. A first theorem which illustrates this is:

(1) THEOREM @ is constant if, and only if, T is a finite group.

OUTLINE OF PROOF. Suppose that I' = {I} is trivial and let us set out to prove
that @ is constant. Assume also that dim B = 1, so that B is a compact Riemann

surface with a finite number of points deleted:

Since I = {I}, the period mapping lifts to ®: B — @ and the proof consists of
two steps:

(a) the period mapping ® extends to all of B (i.e. the deleted points are removable
singularities of @, this is a local question);

(b) any holomorphic. mapping ®:B— 9P of a closed variety into & which
satisfies dQQ'Q = 0 is constant.

To prove (a), we will use a result of W. Schmid that there is a, G-invariant
Hermitian metric on @ such that the holomorphic sectional curvatures are all
negative on the subspace dQQ'Q = 0 of the tangent space T(%2); the point here is
that, whereas not all sectional curvatures on 9 are negative, they are negative
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on the images ®,T(B) < Tp;(%9) of the period mapping. Thus the period
mapping ®: B - @ is negatively curved (this is a differential-geometric analogue
of mapping “into the unit disc, which is well known to have constant negative
curvature). Given that @: B = 9 is negatively'curved, results of Wu, Kobayashi,
and Kwack imply (a). The proof of (b) is similar.

Another application of periods is:

(2) APPLICATION. Suppose that dim B = [-and that the differential @, of the
period. mapping is nonsingular at one.point. Then any holomorphic mapping
C' -5 B is degenerate (i.e. f, is everywhere singular).

ProOF. We have a diagram y

ck 9
ool
B8 ar

(monodromy principle); thus F is negatively curved since @ is. By a theorem of
Wu (cf. [24]), F is degenerate, and henee the original mapping f is since @, is
nonsingular almost everywhere.

ExaMPLE 9. Consider the family # % B of Example 7. Then B = P, — {0,1, 0}
and (2) gives the classical Picard theorem: any holomorphic mapping C 4 P, —
{0, 1, o0} is constant.

(3) AppLicATION. If the differential @, is everywhere injective, then any covering
space B — B is negatively curved (i.e. all holomorphic sectional curvatures are
s -

ExampLE 10. In Example 9 we find that the universal covering of P, — {0, 1, o0}
is the unit disc in C (the fact that @, # 0 in this case is not difficult).

ExampLE 11. In Example 8, let h(x,y) = L, ... L be a product of five linear
forms ; the curve

s

and the dual curve C* is 15 lines in general position in P¥ (the set of lines through
a point in P, is a line in P¥). The surface V, is, in th1s case, a Kummer surface
having the unique (up to multiplés) holomorphic two-form w = dx dy/z Thus
m = 1 and the period matrix space’? =~ SO(2) x SO(19)\SO(2, 19; R)is a bounded
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symmetric domain of type IV. From (3) we find that: The universal covering
space of P¥ — (15 lines) can be immersed in a bounded domain.

There is an old conjecture that the nniversal covering of P, — (4 lines) is a
bounded domain. The above illustrates a rather simple application of periods to
mappings in several complex variables, and it seems to me that the interplay
between periods and Picard type theorems has only been superficially explored.

Another application of periods is to prove geometric analogues of the so-called
Tate conjectures (cf. Tate [23]; the geometric analogues were suggested by
Grothendieck). Tate’s situation deals with an algebraic variety X defined over a
finite field k; letting k be the algebraic closure of k, the equations defining X
also define a variety X over k. The Galois group % of k over k acts on X, and
% also operates on the l-adic cohomology groups H *(X, @, which the algebraic
geometers use. In particular, a subvariety S < X lifts to S < X and defines a
class in H®*" (X, Q,) which is invariant under . Tate’s conjecture is the converse:
if ye H™ (X, Q) and is invariant under %, then y comes from a subvariety § < X.
In general, Tate’s conjectures say that the Galois group should have very strong
action on the cohomology H*(X, Q).

The geometric analogue is concerned with a family # — B of the sort we haye
been discussing above; the Galois group acting on H*(X,Q)) is replaced by the
fundamental group m,(B) acting on the homology H(V, Q), and the following
holds (we are still looking at the case where V is a surface):

(4) THEOREM. Let y € H,(V, Q) be a homology class invariant under the action of
the fundamental group m,(B). Then y'determines a class v, € H,(V,, Q) for all AeB,
and we assume that v, is a curve at one point Ay € B (i.e. there is a curve C,, such
that C,, =1y,, in Hy(V,,Q)). From this it follows that y, is everywhere a curve,
and in fact there exists an algebraic surface S = & such that S-V, is a curve in
the homology class vy,.

ReMARK. The assumption that y, is algebraic at one point is necessary, because
it might be that & = V x B is a trivial family, in which case all of H LV, 0) is
invariant. :

OUTLINE OF PROOF. Let @, ..., w™ be a basis for the holomorphic two-forms
on V. A famous theorem of Lefschetz says that y is a curve if, and only if, , ®" = 0
for o = 1,...,m. Thus y is a curve if, and only if, the column vector

(i)

is zero. Changing our basis by & = Y 5_; % o’ transforms ¢ into A¢.

Consider the period matrix Q and let J = QQ’Q Then J is Hermitian positive
definite, as is H = J 1. A change of basis transforms H into ‘4A~'H A~"; thus the
length |§|2 ‘€ H ¢ is well defined. In other words, the invariant cycle y e H LV, Q)
defines a nonnegative function ¥ (=|¢[%) on B such that y(4) = 0 if, and only if,
v, € H,(V,, Q) is an algebraic curve. :
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To prove (4) we will show:

(a) ¥ is plurisubharmonic;

(b) ¥ is bounded on B, and thus extends'to a plurisubharmonic function on
the closed manifold B.

If (a) and (b) are proved, then we use the maximum principle to conclude that
V¥ is constant, which gives our theorem:

The proof:of (a) is a differential-geometric computation; the crucial step is to
use the infinitesimal period relation dQQ'Q = O. )

To see what is involved in (b), we supp6se that dim B = 1. Thus B is a compact
Riemann surfate B with finitely many points deleted:

. :

These deleted points correspond to singular fibres in the total family % — B,
and the proof of (b) is made by looking into the so-called vanishing cycles. These
are cycles (homology classes) on the nonsingular algebraic surfaces ¥, which
disappear as V, becomes singular.

ExAMPLE12. In the family y? = x(x — 1)(x — 4), the following cycle é vanishes
asA—0,

(5) APPLICATION. As an application of Theorem 4, wg consider two families
%, % B, %, n, B.Weassume that: (i) For some point 4, € B, thefibres ¥, = 7 Yo)
and V, = n; }(4,) are isomorphic; (i) the fundamental group x,(B) acts the same
on H(V,,0) and H,(V,, Q). Then the period mappings ®,:B — 2/I" and
®,: B — 9T are the same.
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REMARK. Briefly, we may say that the period mapping ®: B — 2/I" is com-
pletely determined by its value at one point and by the monodromy group. This
rigidity theorem suggests a very strong interplay between periods and monodromy.

This result was proved in case V is an abelian variety by Grothendieck [13]
and Borel-Narasimhan [7].

PROOF OF APPLICATION. Consider the product family # % B where n~'(4) =
Vi.z X V,.1- The graph of the isomorphism V; 5, = V3 3, gives an algebraic homol-
ogy class y;,€ Hy(Vaps Q) = Hy(Vy,2, X V2,500 @) Since the fundamental group
7,(B) acts the same in both families, y,, is invariant, algebraic at one point,.and
the result follows from (4).

To close, we would like to mention some problems and conjectures (sic!).
The main one is

(6) Let # & B be an algebraic family of algebraic manifolds and ®: B - 9/’
the period mapping. Then the closure @(B) = 9/T is an analytic subvariety in
which ®(B) is a Zariski open set (ie. ®(B) = ®(B)uU Y where Y < 9/T is an
analytic subvariety of dimension strictly less than dim ®(B)).

This conjecture has been provéd in many special cases, and we given an outline
of how one might proceed. Essentially we may think of B as a compact Riemann.
surface B with finitely many critical points 4, ..., Ay (corresponding to the singular
fibres V, ) deleted. The idea is to investigate the period mapping ®(4) as 4 tends to
a critical point 4. In other words, we want to give an asymptotic analysis of the
periods on ¥, as V, degenerates into a singular variety.

This is a local problem on B; we let A = B be a disc, with coordinate A,
centered at A, and we denote by &, = n~'(A) the restriction of Z to A. Thus we
have 4n analytic family {V;} of algebraic'manifolds over the disc A with ¥, a
singular variety. Let V =V, bea feference variety lying over a base point Ay % 0
and T:H (¥, 0)—-H q(f/, ) the transformation on homology obtainéd by looping
around A = 0:

This transformation T is called a Picard-Lefschetz transformation, and T gives a
tppological reflection of the singularities of V5. A remarkable theorem of Landman
is :
(7) All eigenvalues of T are roots of unity and the elementary divisors of T
are less than or equal to g.

In matrix terms, we see that (TY — I)**! = 0 for some N > 0. Replacing 4 by
&N changes T into TV and does not really change our problem; thus we may
assume that the Picard-Lefschetz transformation T is a rational, unipotent matrix.
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Locally, the period mapping ®: B — 9T lifts to ®: A — {@/T"} where A is the
punctured disc and {7"} is the cyclic group generated by T.

A local version of (1) is the following.

(8) The period mapping ®:B — 9/I" extends across the critical point 4_ if,
and only if, the Picard-Lefschetz transformation around A, is of finite order.

PRrooOF. This follows from (a) in the proof of (1).

Thus, in analyzing the period mapping ®(J1) as A — 0, we may assume that T
is of infinite order and, by (8), the periods ®(1) go to infinity in & as A — 0.

Now the period matrix space 9 is an open submanifold of a closed algebraic
variety X (think of the usual upper-half plane sitting in the Riemann sphere).
The manifold X, in the case of surfaces, is all m x b matrices Q satisfying
QQ'Q = 0 and with the equivalence Q ~ AQ. The closure ¥ of‘? in X is all Q
satisfying QQ'Q = 0, QQ'Q =0, and with the equivalence Q ~ AQ. Pictorially,

the situation is

Note that the group G of automorphisms of % acts on X; in fact, X is acted
transitively upon by the larger group of all complex matrices § satisfying
SQ'S = @, apd so X is a rational homogeneous algebraic manifold.

Return now to our period mapping ®:A — 2/{T"}. Using the differential
equations of the periods (Picard-Fuchs equations), it can be shown that

(9) As 4 — 0, the period matrix ®(1) tends to a unique point in 9 modulo
{T"}.

Pictorially, the inverse image of ®(4) in & as A - 0 will look like

(there will be infinitely many determinations of ®(1) in 2).

This picture, although quite nice, is not enough to prove (6); what we need
to know is that the limit point Q, = lim,_,, ®(4) is in a rational boundary com-
ponent (cf. Borel-Baily [5]) of 9; hete Q,€02 = J — 9.
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ExampLE 13. In the case of the ordinary upper half-plane, the rational boundary
components are the rational points on the real axis, plus the point at infinity:

y z=x+1iy

Another more geometric way of saying the above is the following: The period
mapping goes from the parameter space B to 9/T" (using the full monodromy
group now), and we look at a fundamental domain ¥ < 9:

Then each point ®(4) determines a unique point Q(A) e, and the condition that
Q, belong to a rational boundary component essentially means that the analytic
curve Q(4) = ¥ goes nicely to the boundary:
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Return to the Picard-Lefschetz transformation T It is easy toseethat T(Q,) = Q,.
On the other hand, Q, belongs to a unique boundary component F(Q,) (cf. Borel
[6]), and we could probably prove everything if it could be shown that

(10) The boundary component F(Q,) is the fixed point set of the rational
unipotent matrix T.

EXAMPLE 14, Look at the family of elliptic curves V,givenby y? = x(x — 1)(x — A):

(cf. Example 6). In this case the period matrix space & is the usual upper half-
plane 5, I = SL(2, Z) is the modular group; and so we get.the familiar picture

of the fundamental domain for SL(2, Z). As 1 - 0 it can be seén that
- i ; argd |
Q) ~ — — =—— -
(A) o log A o ilog 4.
Thus Q(4) goes uniformly to infinity in P, and this is the sort of picture we would

like to see work in general. -
Note that, in this example,
'y
0 1

and so oo is the fixed set of T; this verifies a special case of (10).
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