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0. Introduction. The theme of this paper will be negative curvature and complex
analysis. The basic reasons underlying this theme may be schematically expressed

as follows:

negative curvature = suitable functions are plurisubharmonic,
plurisubharmonic functions = consequences in function theory.

At the risk of oversimplification and omission, the theory as it presently exists may
be outlined in the following way:
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The reader may note the special position of Hodge theory and its subsequent
applications to algebraic geometry in the outline. It is here that occurs what to me
are the most interesting applications of the philosophy of negative curvature in all
of its facets—both the linear and geometric theories appear, but time will not
permit exploration of this subject (cf. [G-S] for heuristic discussion and further
references). Similarly we will be unable to discuss the recent work of Greene and
Wu, and for this we refer to their recent announcements in the Bulletin of the
American Mathematical Society.

The plan tor this paper is

1. Ahlfors lemma and applications.

2. Kobayashi metric and volume forms.

3. Nevanlinna theory—the equidimensional case.

4. Nevanlinna theory—holomorphic curves.

Generally speaking, I shall attempt to give the relevant definitions, some repre-
sentative proofs, but shall omit all straightforward computations. The background
references are [C], [K], [Co-G], and [G-K] (letters refer to the bibliography at the
end).

1. Ahlfors lemma and applications.
A. Hermitian metries. Let M be a complex manifold with holomorphic co-
ordinates zy,--,2,,. A Hermitian metric on M is given locally by

ds? =3 hydz;dz; = 3, @: @i

where (/) is a C= positive definite Hermitian matrix, and the p, are C*= (1, 0) forms

which diagonalize the metric. Given such a metric, there are two basic consequences:

(i) There exists a unique connection compatible with the metric and complex
structure. The structure equation for this connection is

dp; = ; Pi A @+t (g + @a=0)

where () is the connection matrix and the #; are forms of type (2, 0) (torsion
forms). The curvature matrix is defined by

By = dpy; — Zk: Pie N Pige

The most important scalar quantities arising from the curvature matrix are the
holomorphic sectional curvatures

OE) = @ { DO 28

determined by the (1, 0) vector & The complex manifold M is said to be negatively
curved in case there exists a Hermitian metric all of whose holomorphic sectional
curvatures satisfy

PE S -A<0
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for some positive constant 4. Multiplying the metric by 1/4 allows us to assume that
A =1, and this will always be done.

(ii) If § = M is a complex submanifold with induced metric, then we may
choose the ¢; such that ¢,y = - = p,, = 0 along S. Using the index range 1 = a,
3 = s and the obvious notations, the curvature matrix for S is given by a formula

D S)as = D(M)ag — X Awy A Ay

where (4,,) is a matrix of (1, 0) forms. In particular, if & is tangent to S, then
O(S, £) < ®(M, £), so that S is negatively curved in case M is. This principle that
curvatures decrease on complex submanifolds is of fundamental importance, and
perhaps may be explained as reflecting the ellipticity of the d-operator. Indeed, in
C x C the graph (z, f(z)) of a holomorphic function has negative curvature exactly
because of 3f/9z = 0.

In case M is a Riemann surface, a Hermitian metric is ds? = hdzdz with
associated (1, 1) form 2 = H(— )2 hdz A dz. The curvature matrix is a global

(1, 1) form @ and @ = K- where

« A2
K= _.;; .a_al:_‘%ik (c> 0)

is the Gaussian curvature. Thus

K = 0 <= log h is subharmonic

which
(a) using (ii) above shows that negative curvature has to do with plurisub-
harmonic functions, and
(b) marks the first appearance of the logarithm function, which is ubiquitous
in the theory.
EXAMPLES.
(i) The Poincaré metric,

cp? dz dz

w(p) = @ = PP on d, = {|z] < g},

dx dy e R
- = on H={z=x+iy:y >0},
has constant Gaussian curvature K = — 1 for suitable constants ¢, ¢;.

(ii) The punctured disc 4* = {0 < [¢] < 1} has universal covering , and the
induced Poincaré metric is

o I L .
L) = [ilog 1%
Two trivial but important properties of this metric deal with the circles y(p) =
{It] = p} and concentric punctured discs 4*(p) = {0 < [¢| < p}, and these are
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(a) the length [(y(0)) = Oasp — 0,

(b) the area [, @ < oo for p < L.
Both properties are immediate from the usual picture

o)

of the fundamental domain for H — exp J* and the formula given above for the
Poincaré metric on H.
(iif) On the Riemann sphere P! = C J {w}, the metric

i cdz dz
(I +|z[??

has Gaussian curvature K = + 1. Given a point @ # o0, we set

[al?

a(a) = T+ |ap’ pla) = a{a)(log plo(a))?

where ¢ > 1is constant. If a, b, ¢ are distinct finite points, we set

o

Lo(@p(b)oe) | ™

At each point a, b, ¢ this metric has asymptotically the same singularity as has the
Poincaré metric z(J*) at ¢ = 0, and a computation shows that the Gaussian
curvature of z(a, b, ¢) is £ —1 for a suitable choice of x. The fact that P'— {a, b, c}
is negatively curved was traditionally deduced from the uniformization theorem,
but the above elementary procedure of writing down negatively curved metrics
globalizing the singularity of the Poincaré metric z(4*) at ¢ = 0 will work in situa-
tions where there is no uniformization.

B. Ahlfors generalization of the Schwarz lemma. A pseudo-metric on a Riemann
surface is the same as a metric except that the coefficient function is allowed to
Ivanish at isolated points. If /': 4, » M is a nonconstant holomorphic mapping
into a Hermitian manifold M, then f*(ds?) is a pseudo-metric.

Let /1 dz dz be a pseudo-metric on 4, with Gaussian curvature £ and () =
h(p) dz dz the Poincaré metric with constant Gaussian curvature K, = — 1.

wla, b, e) =

AHLFORS LEMMA. [f K £ — 1, then h = h(p).
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Proor. It will suffice to prove the case p = 1. For this we write & = u(a)h(0)
(¢ = 1) and observe that

(1) lim,, w(o)(z) = u(l)(z),

(i) lim; ., w(o)(z) =0 (g < 1).
Because of (i) it will suffice to show that u(s) = 1 for # < 1, while (ii) implies that,
for o < 1, u(s) has an interior maximum at some point zy = z(g). By the maximum
principle

02 FIBUNG _ _ kizppizy) + Ken(o)an)
which, using K, = — 1 and K = — 1, implies that

hle)z) = h(zv),

or equivalently
u(olz) = 1. Q.E.D.

COROLLARY. If M is a negatively curved complex manifold, then a holomorphic
mapping [+ A — M is distance decreasing relative to the Poincaré metric on /A and
given metric on M.

Applying this corollary to a holomorphic mapping f: 4 — 4, we find that

5| (T Y
L= [f@F =1~z

which is the intrinsic form of the Schwarz lemma due to Pick.

1A

C. Some applications of the Ahlfors lemma.

ScHOTTKY-LANDAU THEOREM. Let a, b, ¢ be distinet points on the Riemann sphere
Pland f: 4, — P! — {a,b, ¢} a holomorphic mapping with f'(0) # 0. Thenr <
R(a, b, ¢, f(0), f(0)).

ProoF. If z(a, b, ¢) is the metric on P! — {a, b, ¢} constructed in example (jii)
above, then the Ahlfors lemma applied to f*z(a, b,c) = h dz dz gives

h(z) £ #(r)(@) = h0) = 5
e \V2_ .
=r5(40) = R(@ b, 610, 7O)
COROLLARY (LITTLE PICARD THEOREM). A holomorphic mapping f:C — P! —
{a, b, ¢} is constant.

In general, we shall say that if a complex manifold M has the property that, for
any holomorphic mapping f: 4, - M with f'(0) # 0, the radius satisfies r =
R(M, f(0), f'(0)), then M has the Schottky-Landau property. The Ahlfors lemma
implies that any negatively curved complex manifold has the Schottky-Landau
property.

A second application of the Ahlfors lemma is the following extension result:
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Kwack’'s Tueorem. If M is a compact negatively curved complex manifold,
then any halomorphic mapping [ : 4% — M has a removable singularity at the origin.

Proor. Using the compaciness of M and passing to subsequences when neces-
sary, we may assume that any sequence of points {z,} tending to zero in 4* has
images w, = f(z,) tending to some point wy. We must prove that wy is the same lor

any such sequence {z,}.

To begin with, we observe from the distance decreasing property of f and the
first property mentioned above of the Poincaré metric on 4* that the circles y(z,)
passing through z, have images also tending to wy. Let P << P’ be concentric
polycylindrical coordinate systems around wy in M. By what was just said, an an-
nular ring 4, around the circle y(z,) may be assumed to be mapped into P.

If our result were false, then in trying to let 4, become as large as possible and

still be mapped into P we will encounter points z;, and z, on the outer and inner
boundaries of 4, whose images w,, = f(z;) and wj, = f(z}) lie on the boundary of

P. Passing again to subsequences, we may assume that w; — wj and wy; — wj.

T
______-———P‘”"'_E_P__ w, ,I'I
" — 25 ]
|I — =y [ el
| Fiyiz (|
| .' oy 0G|
[ | |
| | [ |
| | oW, | I.' P
| | |'I |
| i . [ |
' rrars .-
{ \ fn(z o, {
I [ S /__j;(—::)‘)__; - I
e u-TF ___d___JI

Let g be a holomorphic function on P’ which vanishes at w, (n > 0) but not at
wy or wy, and set i = gof. By the argument principle, the number of zeroes of &

in A, is given by
dargh = 0.

1 1
b darg k= 2z 72277
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Q.E.D.

On the other hand, /#(z,) = 0 by construction.
COROLLARY (RIEMANN EXTENSION THEOREM). A holomorphic mapping [ : 4* — 4

has a removable singularity at the origin.
Proor. Let [ = Aut(J) be a properly discontinuous group operating without

fixed points and having compact quotient.

FUNDAMENTAL DOMAIN FOR [7

f K

Applying Kwack’s theorem to the composed mapping
P

.
|

Al =M

gives an extension of /, and hence one for £, Q.E.D.
It is amusing to compare the geometric argument just given with the usual

analytic proof utilizing Laurent series.

2. The Kobayashi metric and volume forms.

A. The Kobayashi metric. Let M be a complex manifold and T,(M) the holo-
morphic tangent space at a point x € M. For each vector & e T,(M) we will, fol-

lowing Royden, define the Kobayashi length F(x, &) as follows:
Let # = Z(x, £) be the class of all holomorphic mappings f : 4, — M which

satisfy £(0) = x, f,(8/0z) = &.

Then we set

e
F(x, &) = inf—.
Bl

Royden has proved that F(x, &) is semicontinuous on the tangent bundle T(Af)
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Consequently, if y : [0, 1] — M is a piecewise smooth path, then the integral
1) = [ F o, 700

exists and allows us to define the Kobayashi pseudo-distance

_O(.\‘, J”) (.\’, .}' = ‘w)

by the usual procedure of minimizing the lengths of paths joining x and y.

The manifold M is hyperbolic in case p(x, y) is a distance. Manifolds satisfying
the Schottky-Landau property are hyperbolic—in particular, this is the case if M
is negatively curved. Especially noteworthy are manifolds which are complete
hyperbolic.

The Kobayashi metric is intrinsically defined on any complex manifold, and
has many pleasant properties of which we wish to mention two:

(i) holomorphic mappings are distance decreasing relative to the Kobayashi
metric; and

(i) the metric p “behaves well” with respect to products, covering spaces,
submanifolds, etc.

Time will not permit us to give many of the results concerning the Kobayashi
metric, for which we refer to [K], but we do want to call attention to two recent
pretty applications. The first is Royden’s theorem [R] that the Kobayashi metric
equals the Teichmiiller metric on the Teichmiiller space. The proof is noteworthy
for the insight which it gives into both the Teichmiiller space and Kobayashi
metric.

The second application, which will be discussed in some detail, is a recent Big
Picard type result due to Borel in a form proved by Kobayashi and Ochiai (cf,
[K-O] and [K-K]). We begin with the observation that, because of the distance
decreasing property of p, Kwack’s theorem discussed above holds with the same
proof in case M is a compact hyperbolic manifold. A significant generalization
occurs when M is an open set in a compact, complex space N. Then we say that
M is hyperbolically embedded in case: (i) M is hyperbolic, and (i) if {x,}, {y,} are
sequences of points in M with x, —» x, y, —y, and p(x,, y,) — 0, then x = y.
Intuitively, p should distinguish points on the closure M.

If M is hyperbolically embedded in N, then the proof of Kwack's theorem still
applies to prove that a holomorphic mapping f: A* — M extends to a holomorphic
mapping f: 4 — N.

To apply this result, we consider a bounded symmetric domain D = C* and
arithmetic group I' of automorphisms. The quotient space M = D/["is a negatively
curved, quasi-projective algebraic variety admitting the Baily-Borel compactifi-
cation N = D[I". Kobayashi and Ochiai proved that M is hyperbolically em-
bedded in N, thus proving

BoreL’s THEOREM. A helomorphic mapping f: J* — DI extends to f: 4 —
DTl
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A special case of Borel’s theorem is when M = P! — {a, b, ¢} and N = P'. In
this situation the fact that M is hyperbolically embedded in N is obvious from the
metric written down in the first lecture, and the above result is the usual Big
Picard Theorem.

B. Volume forms. Thus far our discussion has centered around holomorphic
mappings where the domain is one-dimensional. In the general several variables
case, the first situation to study is the equidimensional case of a holomorphic map-
ping f: D — M between complex manifolds of the same dimension, and where f
is assumed to be nondegenerate in the sense that the Jacobian determinant J{ /) is not
identically zero. In this situation volume forms will play the analogous role of
metrics in the one-dimensional case, with the Ricei form being the analogue of the
curvature.

A volume form on a complex manifold M is given by a positive C=(n, n) form
£2. Locally & = h(z) ¢ (z) where # is a positive C= function and

0(z) = T1 (((— 1)¥2/2) dz, A dz,)
w=]
is the Euclidean volume form. A pseudo-volume form is the same, except that
locally h = |g|2h; where £ is positive and g is a holomorphic function. Iff: D — M
is an equidimensional, nondegenerate holomorphic mapping and @ is a volume
form on M, then f*(Jis a pseudo-volume form on D,

Associated to a pseudo-volume form @ is its Ricei form Ric 2, a global C=(1, 1)

form defined locally by

Ric 2 = dd< log h

where d¢ = ((— 1)2/4z)(9 — 3). (The operator dd¢ = ((— 1)¥/2/2z)3d is intrinsi-
cally defined by the complex structure, and plays in several variables the analogous
role to the Laplacian in one variable.) Ricci forms are functorial in the sense
that /*(Ric ) = Ric(f* Q).

The conditions
Ric 2 = 0, (RicQ)* = Ric A -+ ARicQ =0

n

(%)

will play the analogous role to the Gaussian curvature condition K< — 1 in

the one variable case.
ExampLEs. (i) When M is a Riemann surface with Hermitian metric 4 dz dz, the
associated (1, 1) form @ = ((— 1)V2/2) hdz A dZ is a volume form and

RicQ = ¢(— K)Q
where ¢ > 0 is a constant and K is the Gaussian curvature. Our signs have been
chosen so as to keep as many as possible of them positive during the discussion.
(ii) On the unit ball B = C* or unit polycylinder P = C* there is a unique
volume form [, the Poincaré-Bergman volume form, which is invariant under the
biholomorphic automorphism group and which satisfies
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Ric I = 0, (Ric 1y = II.

(i) On the complex projective space P# with homogeneous coordinates Z =
[Zy,+++, Z,], the differential form ¢ = dd° log | £|? is the (I, 1) form associated to
the Fubini-Study Kéhler metric on P*. The volume form ¥ = ¢/ satisfies Ric ¢ =
— (1 + D¢ (To check the signs, recall that the usual metric on P? has positive
curvature, hence negative Ricci form.)

Hyperplanes 4 in P* are given by linear equations

(A, Z> = AyZy+ o + A,Z, =0,
and we set (cf. § 1)

_ K4, P
o) = TapEZ

o(A) = 0(A)<10g _a(%)z.

Given n + 2 hyperplanes {A4,} in general position, i.e. no n+ 1 are linearly
dependent, define

rat2 ] G
o) = 1 ey *
This is a volume form on P* — [ J**% 4, having singularities along the A4, of
the same character as those of the Poincaré volume form on (J4*)* x 47—* For

suitable choice of constant yx, one checks directly that
Ric Q(4,) > 0, Ric 0(A4,)" = Q(A4,).

In the case n = |, our construction reduces to the singular metric z(a, b, ¢) on P!
given in § 1. The condition of n + 2 hyperplanes comes from the n + | factor in
Ric#" = — (n + 1)¢b. Analogues of 0(4,) exist on general smooth projective
varieties with the anticanonical divisor playing the role of the “n + 1" in the pre-
sent case—cf. [Ca-G] for further discussion.

C. The Ahifors lemma for volume forms and applications. Let D be either the unit
ball B = €= or unit polycylinder P = C'* with Poincaré-Bergman volume form
I, and let Q be a pseudo-volume form on D.

Lemma (CHERN-KOBAYASHI). If [ satisfies the conditions (x) above, then O = I

Proor. Writing @ = u- /I, the proof is almost exactly the same as that of the

Ahlfors lemma, where the only new step uses the Hadamard inequality
[Trace (hy)/n] z [det (h)]"
for a positive Hermitian matrix (/).

As an application of the Ahlfors lemma for volume forms, we let B, be the ball
of radius r in C%, {4,} aset of n + 2 hyperplanes in general position in P*, and
f:B,— P —{J**} 4, a holomorphic mapping with Jacobian determinant J£(0)
# 0. Then the same proof as that of the Schottky-Landau theorem above leads
to the

CoROLLARY. Under the above conditions, r < R({4,}, f(0), Jf(0)).
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In particular, an entire holomorphic mapping f/: C* — P* — U,, A, is neces-
sarily degenerate, a result due to A. Bloch (1926), and which has been recently
rediscovered by Fujimoto and Green.

3. Equidimensional Nevanlinna theory.

A. General philosophy. In § 2 we saw that a nondegenerate holomorphic mapping
S : €7 — P must meet at least one of n + 2 hyperplanes {4,} in general position.
More precisely, given f(0) and Jf(0), there is a largest r such that the ball B, = {z e
Cr:|lz| = r} of radius r can miss f~1(4; + --- + A,). Applying the same
reasoning to balls centered around other points in C*, we arrive in principle at a
lower bound on the size of f~1(4; + - + A, .2).

Nevanlinna theory is a precise and far reaching quantitative study of the size of
Sf YAy + -+ + Ay,y5). The First Main Theorem (= F.M.T.) gives an upper bound
on the magnitude of f~1(A) for any hyperplane 4. The Second Main Theorem
(= S.M.T.) gives a lower bound on f~1(4; + -+ + A,.»), and when played off
against one another these two estimates yield the famous defect relation of Rolf
Nevanlinna.

In one complex variable, what is being studied are the solutions to the equation

(3.1) fle)=a (zeC,acPY)

where [ is an entire meromorphic function (hence the synonym value distribution
theory for the subject). The size of f~a) in this case means the number n(a, r)
of solutions to (3.1) in the disc | z| = r. The F.M.T. bounds n(a, r) from above by
the order function T(f, r), an increasing convex function of log » which plays for
general meromorphic functions a role analogous to the degree of a rational func-
tion or maximum modulus of an entire holomorphic function. The S.M.T. gives
a lower bound of approximately the sort

(3.2) nla, r) + n(b, r) + nle. r) = T(f, r).

The F.M.T. may be viewed as a noncompact version of the Wirtinger theorem,
which says that the area of an algebraic curve C = P2 is equal to the intersection
number of € with any line. The lower bound (3.2) is proved as follows: Given
f:C — P and the metric z(a, b, ¢) on P! — {a, b, ¢}, set [*n(a, b, ¢) = h dz dz.
Then Picard’s theorem says that # must have some singularities, and the S.M.T.
gives a formula for the size of the singular set of / in terms of 7(f, r).

In these two remaining lectures we shall discuss in more detail how the theory
works for nondegenerate, equidimensional holomorphic mappings f: C* — P*
and nondegenerate holomorphic curves. When coupled with a standard discussion
regarding lme bundles and divisors on complex manifolds, the equidimensional
theory goes through whenever P* is replaced by an arbitrary algebraic variety
with the anticanonical divisor replacing the n + 1 hyperplanes in general position,
but the situation regarding holomorphic curves in general algebraic varieties is
still pretty much open.

B. The order function and F.M.T. Let f: C — P be a holomorphic mapping
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and ¢) = dde log | Z||? the standard Kihler form on P». Wirtinger’s theorem sug-
gests that the quantity (/, r) = [, /¢ should be related to the number n(A, r)
of points of intersection of the analytic curve f(4,) with a hyperplane 4 in P»,
This is made precise by Crofton’s formula

KFr) = L (A, r)I(4)

expressing the area of the piece of analytic curve f(,) as the average number of
points of intersection with hyperplanes 4 € P, the dual projective space.

For reasons arising from Jensen’s theorem, and ultimately related to twice in-
tegrating the operator dd¢, the growth of fis more conveniently measured by the
order function

70/, r) = 104 ) dolo.

For an entire holomorphic function f: € — ¢ = P, it is an easy consequence of
Crofton’s formula and the Poisson-Jensen formula that the order function T(f r)
is essentially the maximum of log | £ in 4,.

To define the order function for a holomorphic mapping f: €™ — P#, we shall
restrict f to the lines through the origin and use the 1-dimensional order function
just introduced. Although not the most natural definition of the order function,
this is the quickest and will suffice for our purposes.

In €™, we let P! be the projective space of lines & passing through the origin
and ¥(§) = (dd® log |z||2)»~! the canonical density on P»-1,

Given f: € — P~ for each line £ we may restrict /" to £ and then define the
order function T(/, r, £) as above. Using this, the order function for fis given by

1) = | 10, 9T,

We will now describe how one measures the size of an analytic hypersurface
V' = C; for simplicity, we shall always assume that 0 ¢ ¥. Denoting by Vir] =
V' n B, that part of ¥ in the ball of radius r, we set

w(V, r) = ﬂ:fh’j[’} NV s j"n( v, p}%.
0 {

For each line & &€ Pm—1, the intersection Ve = ¥V n £ is a discrete set of points in
£, and a variant of Crofton’s formula is
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) nv,ry = [ ave, @,

Moreover, results of Lelong and Stoll (cf. [G-K]) show that
(ii) V is algebraic of degree d<=n(V, r) = d.

Because of (i) and (ii) it seems reasonable to use the counting function N(V, r) to
measure the growth of the analytic hypersurface V.

Now let /1 € — P* be a holomorphic mapping which is nondegenerate in the
sense that the image does not lie in a hyperplane. For each such hyperplane A,
the inverse image Ay = f1(A) is an analytic hypersurface in €™, and we set

n(A, r) = n(dyg r), N(A, r) = N(dy, r).

Crofton’s formula and (i) above imply that
(3.3) T(f, r) = _.' N, )T ().

The F.M.T. expresses the relation between T(f, ) and N(A, r) for a particular
hyperplane A. To state this formula we recall the function

o(d) = <4, ZX1/ | 4|21 Z||*
on P, and we denote by /1 the unique closed 2m — 1 on € — {0} which is in-
variant under unitary transformations and satisfies Jizi=r A =1 for all radii r.
The F.M.T. is the formula

(E.M.T) N4, r) + IwwiogﬁA = T(f, r) + O(1, A).

This equation is proved quite easily by integrating twice the Poincaré equation of
currents

! 3 e 1_. P S a0 R
(3.4 dd mg&@ =f*¢ — Ay,

and, as mentioned previously, should be viewed as a noncompact form of Wirting-
er’s theorem. Since ¢(A4) < 1, a corollary of the F.M.T. is the famous Nevanlinna
inequality

(3.5) N(A, r) = T(f, r) + O(1, A).

The reader may wish to compare (3.3) and (3.5) .For an entire meromorphic func-
tion f(z), (3.5) bounds the number of zeroes of fin the disc |z| < r by the maximum
modulus of f.

C. The S.M.T. and defect relation. Let f : C* — P» be an equidimensional holo-
morphic mapping whose Jacobian determinant Jf is not identically zero. This
implies that f{C*) cannot lie in a hyperplane. We want to measure how much this
image meets a set {4,} of n + 2 hyperplanes in general position.

Let (A,) be the volume form on P» with Singuiarit_ics on Ay + - + Aypg
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which was constructed in the second section. The pull-back [*Q(4,) = 0:(A,) is
a singular pseudo-volume form on C*, having “zeroes” along the ramification
divisor R = {Jf = 0} and “poles” on f~1(A; + -+ + Apio).

It was proved in § 2 that /(4; + --- + A,.,) must be nonempty. To measure
the size of this analytic hypersurface, we write Q¢(A,) = h® where ¢ =
I, ((— 1)V2/2) dz; A dZ; is the Euclidean volume form. The function 4 is non-
negative with zeroes on R and poles on /~1(4; +---+ 4,,.,). Considering the locally
Li-function log & as a distribution, we arrive at the equation of currents (cf. (3.4))

(3.6) dde log h + X f~1(A,) = R + f* Ric Q(4,).

Integrating (3.6) twice vields the
J' log h-A + X N(A,, r)
lzl=r ¥

(8.M.T) = N(R, ) + .[;{.[3, Ric Q¢(A4.) A @—r}

dp
o
where for simplicity we have assumed that 4(0) = 1,

To see better how the S.M.T. leads to a lower bound on e N(A,, r), we shall
restrict to the case n = 1, although the final estimates (3.12) below are the same in
the general case. In fact, the general situation is done in basically the same way,
the only new ingredient being the use of the Hadamard inequality as in the ex-
tension of the Ahlfors lemma to volume forms.

In the case n = 1, Ric Qs(4,) = Q¢(4,) by the condition (+) on negative curva-
ture. Since N(R, r) = 0, the S.M.T. implies the estimate

r Nd 1
3. j hdz dz)%2 < Lk ;
3.7 O(L’ zdz) 2 < %}N(Ahr)-;-z%-[la:mlugh 9
At this point we use the notation
T#G) = I(I h dz d:)“'_f'"
o\ 4, g
If we use the ubiquitous concavity of the logarithm
1 1
5 _[ log h df < log(,-_)f-z- J' h d&)
and obvious computation
ik 1 diT#(r)
2z iZi:rhdﬂ B ré '(dlogr)z-
in (3.7), we arrive at the inequality (r = 1)
(3.8) T#(r) < 5 N(4,s r) + log (gf;—;%’z]

If there were no derivatives in the last term on the R.H.S. of (3.8), then we
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would obviously have a lower bound on ¥, N(A,, ). Even so, a clever but simple
calculus argument gives
dZTH(r)
(d log r }?
where the notation “||”* means that the stated inequality holds outside an excep-
tional open set E satistying [z dr/r < + co. Combining this inequality with (3.8)
gives, for any ¢ > 0, the lower bound estimate

(3.10) (1 = OT#(r) £ 5 N4y, 7) |

g [T |,

where the exceptional intervals depend of course on the particular & chosen.
Now in principle we are done. The inequality (3.10) gives a lower bound on the
size of f=1(4, + -+ + A,..). To obtain the defect relation, one first proves that

(3.11) T#(r) = T(f, r) + (negligible terms)

by explicitly taking into account the form of Q(A,). Combining this with (3.5)
and (3.10) gives the simultancous ineqaulities

N, r) 2 T(f, r) + O(1),

2 g oy
12 SN2 (A=) T |.
Using the first inequality in (3.12), we may define the Nevanlinna defect
N(A,, 1)

d(4,) = 1 — lim sup T 7)

oo
with the properties that

0=d(4) =1,
d(A,) = 1 if f omits the hyperplane A4,.

Using the second inequality in (3.12),
% 6(4,) £ (n + 2) — lim sup {3 N(4,, r)/T(f, r)}

ItA

n+1+e

which yields the defect relation
DAY <n+ 1

in its usual form.

4. Holomorphic curves and some open problems.

A. Siatement of the theorems of Ahlfors and Bloch. A holomorphic mapping
S 14, — Pt will be called a holomorphic curve. We say that the curve is entire
in case r = + oo, and nondegenerate in case the image does not lie in a linear hy-
perplane. A classical theorem of E. Borel (1896) states that a nondegenerate entire
holomorphic curve must meet at least one of n + 2 hyperplanes {4,} in general
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position. For # = 1 this reduces to the usual Picard theorem. Following a pre-
liminary attempt by H. and J. Weyl, the corresponding defect relation

(4.0) Do) Sn+1

was proved by Ahlfors (1941). An analogue of the Schottky-Landau theorem for
fidy— Pr — (A4 + -+ + A,.,) was proved by A. Bloch (1926). We shall discuss
how the method of negative curvature leads to a proof of Ahlfors’ theorem in a
similar fashion to the equidimensional case treated in the last lecture. Such an
approach has thus far failed to yield the Bloch theorem, and there are some nice
open problems in this area.

For simplicity we shall usually restrict ourselves to the case n = 2 of holomorphic
curves in the projective plane. Our n + 2 hyperplanes in general position then be-
come four lines 4,, 4s, A3, A, spanning a quadrilateral Q.

——

The diagonals D of this quadrilateral give lines P! meeting Q in 2 points. Thus
Pt — P! [} @ = €%, and in this way we find nonconstant but necessarily degener-
ate maps /' : €' — P? — Q. The proof of Borel's theorem shows that any such f
must map into one of the diagonals.

Recalling the Kobayashi metric F(x, &) from § 2, Bloch’s theorem is:

F(x, &) = 0 unless x is on a diagonal D and & is tangent to D.
This is a beautiful result, and the only proof of which I am aware is the highly
nontransparent one given originally by Bloch. Finding a more conceptual argument
for this theorem is an open problem for the theory.

Returning to the general case of a nondegenerate entire holomorphic curve
f 1 € — Pn, the order function T(f, r) and counting function N(A4, r) have been
defined and satisfy the Nevanlinna inequality N(4,r) < T(f,r) + C. As before we

may define the defect

d(A) = 1 — lim sup ;r%}, :;

with the properties that
0=d(d) =1, d(A) = 1 if f(C) misses A.

The Ahlfors defect relation (4.1) is a quantitative refinement of the Borel theorem.
This result concerns a 1-dimensional curve in a high-dimensional space, and the
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interpolation between dimensions | and » is accomplished via the osculating curves
associated to the holomorphic curve. We shall see how these osculating curves
arise naturally when one attempts to use the method of negative curvature which
proved successful in the equidimensional case.

B. Negative curvature and the Ahifors theorem. Let [ : € — P?be anondegenerate
entire holomorphic mapping given by a homogeneous coordinate vector Z{t) =
[zo(2), z:(2), z2(1)] (t € €). Suppose that {4,} is a set of N lines in general position,
A is a generic line, and recall the notations

o = dde log|Z(1)||* (= f* (standard Kihler form on P?)),

_ZODE 6 7 T -
oi(A) = 20O TAT? (= 0 < Z(¢) lies on the line A).

Motivated by the equidimensional case and explicit expression

e AT

|z|*(log(1/1z|9))?
for the Poincaré metric on the punctured disc, we are prompted to consider the
singular metric

1 :
o = {1 pnu,,)uogwbom,,))re}*"“'

In computing the Ricci forms of this and all future metrics, we shall ignore the
{log (z/po(A,))]? terms, the reason being that these terms essentially always help
to make curvatures more negative—especially around the singular points. To
assist in computing Ric w,, we shall also use the following comments:

(i) Ric (ug)) = dd* log u + Ric ¢ where u is a positive function and ¢ is a positive
(1, 1) form;

(ii) Ric ¢y = — 2 ¢y, since the holomorphic sectional curvatures of P are all
equal to + 2, and curvatures decrease on complex submanifolds; and

(iii) dd< log (1/go(A)) = ¢y, by definition,

Using (i)—(iii) and ignoring the [log (x/0s(A,))) 2 terms, we find that

@.1) Ric wo = (N — 3) do-

Consequently, for N = 3 the metric aw, has negative curvature.

However, this curvature cannot be bounded away from zero for the following
reason:

Given on the punctured disc 4* = {0 < [z| < 1} a metric /i dz dz with Gaussian
curvature K < — 1, then ;= h dz dZ < oo by the Ahlfors lemma and second
property of the Poincaré metric on 4*. Now, on the other hand, the holomorphic
curve may, at some point £y, be unramified so that ¢(fy) # 0, but have arbitrarily
high order of contact with one of the lines, say 4;. Then the denominator
o(4;) [log (¢¢/p(4))F in wy becomes zero to arbitrarily high order and so [, <sw”
=+ oo.
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This suggests that we additionally consider the functions

_ NZ(t)y A Z(1), Al
A =120y A ZW0FiAP

which vanish at points #, where f(/,) meets A tangentially. Using the notations

$u(d) = dd=log||Z(t) A Z'(1), 4]
¢ = ddelog| Z(1) A Z'(1) |,

the singular metric

25 o) A
= {H Pn(Ay)[lﬂg(.ufpo(Au))zj} L

is always integrable. The Ricci form
4.2) Ric @, = N¢yo + Ric g — Ny + X (),

where we continue to ignore the [log(/og(4,))]2 terms. To compensate for the
term — N¢by, we are thus prompted to consider a second metric

G {H ) . __.__} r
"7 o) Tlog (/or(A))FS
Using (4.2),
4.3) Ric w; + Ric wy = N¢y + Ric ¢y + Ric ¢y,

In order to conclude that w; and w, form, so to speak, a negatively curved pair of
metrics—thereby forcing a defect relation as before—it is necessary to relate
Ric ¢hy and Ric ¢f;.

Now ¢bg = dd< log || Z(1)|? is the pull-back of the standard Kihler metric on P?
under the given mapping f. Similarly, ¢, = dd* log | Z(t) A Z'(t)||2 is the pull-back
of the standard Kihler metric on the dual projective space P2* of lines in P? under
the dual curve mapping f* : ¢ — P?*, which is given by

S*(t) = tangent line to £(C) at f(¢).

In classical algebraic geometry, the relation between degree (C) and degree (C*),
for an algebraic curve C and its dual C* is provided by the Pliicker formulae, whose
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Y
Illl j'* .l'l
\/ () x

!
/ o)
{ ,f"l

[ | / J

extension to holomorphic curves was given by H. and J. Weyl. For plane curves the
relevant relations are

(4.4) Ric ¢y = — 2¢bp + ¢y, Ric ¢y = — 21 + o.

Plugging these into (4.3) gives

(4.5) Ric @; + Ric wy = (N — Dby — ¢

On the other hand, following the same procedure as in the equidimensional case,
the first equation in (4.4) gives

S ofe <2009 % + croel [ (], ) E ]
which we shall write as
(4.6) ¢ < 2+ ) |.
Combining (4.5) and (4.6) yields
%)) Ricw, + Ricw, = (N —3 -3¢y |.

Thus, for N = 4, the pair of metrics w,, w, taken together has negative curvature
and both metrics are integrable. In fact, one easily calculates the curvature is

bounded away from zero except at intersection points A; ] 4.
To circumvent this final difficulty, Mike Cowen introduced Holder exponents

with the following conclusion: Setting

= L
g {H _PD(A»][iOg (‘ufp@(Au)}]z} o

1 ;
o= e {IlcaSiog (i)
for suitable choice of constants ¢y, €3, p,

(4.8) 2 Ric g1 + Ricg, = (N — 3 — &)ho + (1 + @) |-
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Since the singular divisor of 2 Ric ¢ + Ric gy is just 2,/ ~1(4,), (4.8) may be
rewritten in distributional language as

Z_jf_[(A‘,) g ("‘V b 3 e 8)9‘30 |,

which then leads to the Ahlfors defect relation as in the equidimensional case.

C. Some problems. The following collection of problems, which to the best of my
knowledge are still open, deal for the most part with the relationship between
holomorphic mappings and the Kobayashi metric and algebraic geometry. The
basic underlying question is to understand in terms of the algebro-geometric prop-
erties of a variety V the possible holomorphic mappings f 1 D — V' from open sets D
in C'* into V, generalizing as far as possible the understanding of the case when V
is an algebraic curve obtained through the classical uniformization theorem.

(i) Let M be a complex Hermitian manifold. The holomorphic tangent spaces
are denoted by T,(M), and {0, (%1 denote the projections of a tangent vector {
into T(M), T(M) respectively. A complex manifold M’ is said to be s-quasi-
conformally equivaleni to M if there is a diffeomorphism [ : M ' — M such that
1A/ 1/ < & for every & e TUM)).

PropLEM. Suppose that M is a compact, complex manifold which is hyperbolic
in the sense of Kobayashi. Then for sufficiently small ¢, is any complex manifold
M’ which is e-quasi-conformally equivalent to M necessarily hyperbolic?

It seems to me quite likely that the answer to this question is yes. If so, then
given an analytic family {M,},=; of compact, complex manifolds when M, is
hyperbolic, the M, would be hyperbolic for sufficiently small ¢.

(i) The next two problems deal with complex manifolds (usually algebraic varie-
ties) M which are hyperbolic on a Zariski open set in the sense that the Kobayashi
length F(x, £) > 0 unless x lies on a subvariety S and £ is tangent to S there. This
definition is prompted by the Bloch theorem concerning P? — {4 lines in general
position}. Because of his result and similar examples of Mark Green [G], it seems
that being hyperbolic on a Zariski open set may be more froitful in studying al-
gebraic varieties than the requirement of strict hyperbolicity. In any case, being
hyperbolic on a Zariski open set is invariant under birational transformations, thus
affording some additional flexibility.

ProBLEM. Let {M,},=, be an analytic family of compact, complex manifolds
where M, is hyperbolic on a Zariski open set. In particular, the M, may be hyper-
bolic. Then is M hyperbolic on a Zariski open set?

(iii) Recall that an algebraic surface M is of general type if the graded canonical
ring @, H°(M, ¢(nK)) has transcendence degree two. Examples are nonsingular
surfaces of degree = 5in P3.

ProBLeM. Is an algebraic surface of general type hyperbolic on a Zariski open
set? Is the complement P2 — C of a smooth plane curve of degree = 5 hyperbolic
on a Zariski open set? Is a general smooth surface of degree = 5 in P3 hyperbolic?

An affirmative answer to problems (i) and (ii) should allow one to obtain in-
formation on at least the last part of this problem by checking a few special surfaces
and the applying techniques from deformation theory.
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(iv) There is a notion of measure hyperbolic due to Pelles (cf. [E]) which bears
the same relation to volume forms @Q satisfying (+) in §2 as does hyperbolic to
negatively curved metrics. In particular, any surface of general type is measure
hyperbolic.

ProBLEM. If M is an algebraic surface which is measure hyperbolic, then is M
of general type?

By looking at the classification of algebraic surfaces, one sees that this problem
is equivalent to showing that a K3 surface M is not measure hyperbolic (elliptic
surfaces are never measure hyperbolic). Letting P(ry, r3) = {(z1, 2) : |z1| < ry,
|za| < r2}, roughly speaking one must construct nondegenerate holomorphic maps
f: P(ry, rs) — M where the product r, r, — oo, which is a uniformization type of
question. In any case, a dense set of K3s is nor measure hyperbolic.

(v) Let M be a compact algebraic variety, and D = M a divisor with normal
crossings such that M — D is complete (in a suitable sense) hyperbolic on a Zariski
open set.

(ExaMpLE, M = P#and D = (n + 2)hyperplanes in general position.)

ProeLeM. Can one find a lower bound on the size of /(D) for a nondegenerate
entire holomorphic curve f': C — M?

If so, then in order to prove defect relations one might not need to construct
negatively curved metrics so explicitly as has been the case thus far. Solving this
problem would probably necessitate obtaining information on the following two
questions: '

(vi) PropLEM. Let M be a compact algebraic variety and D = M a divisor with
normal crossings such that M — D is complete hyperbolic. Then can one estimate
the Kobayashi length F(x, &) for M — D as x tends to D?

In this connection, we should like to point out that A. Sommese (Princeton
thesis, 1973) has shown that given a complete, negatively curved ds? on M — D,
then this metric is, in a suitable sense, asymptotic to the Poincaré metric on J*
when one approaches D from a normal direction.

(vii) ProBLEM. In what, if any, sense is the Kobayashi metric F(x, &) of a hyper-
bolic manifold M negatively curved? Specifically, given a holomorphic mapping
f 14 -+ Mand setting h(z) = F{ f(2), f.(8/3z)), then can one say anything about
Alog h (taken in the distributional sense)?

(viii) ProBLEM. Let M be a compact, complex manifold and D = M a divisor
such that M — D is complete hyperbolic. Then does any holomorphic mapping
fid* - M — Dextend tof: 4 — M?If M — Disonly assumed to be complete
hyperbolic on a Zariski open set but fis taken to be nondegenerate, then does the
same extension theorem hold?

EXAMPLES. P? — {5 lines in general position} and P2 — {4 lines in general

position}.
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ON THE CURVATURE OF RATIONAL SURFACES

NIGEL HITCHIN

1. Introduction. Among the differential-geometric vanishing theorems for Kihler
manifolds we have the following:

(a) If a Kidhler manifold X has positive sealar curvature, the plurigenera P,
vanish for m > 0.

(b) If X has positive holomorphic sectional curvature, the fundamental group z; is
trivial and P,, = 0 for m > 0.

(¢) If X has positive Ricei curvature, the dimension of the space of holomorphic
p-forms h#? is zero for p > 0, 7y = land P,, = Oform > 0.

We notice now that the objects which vanish are not only invariants of the
complex structure but also birational invariants. In particular, they are all zero for
rational algebraic varieties. This leads one to conjecture that rational varieties are
characterized by admitting a Kéhler metric with some positivity of curvature which
will force the vanishing of one or more of these invariants.

For curves this is clearly true—a one-dimensional Kéhler manifold with positive
curvature is biholomorphically equivalent to P! by any of the above arguments,
and conversely P! admits a Kihler metric of positive curvature. For regular
surfaces (i.e., the first Betti number &, = 0) with positive scalar curvature, van-
ishing theorem (a) above together with Kodaira’s classification implies rationality.
The question we are concerned with is the converse. Do all rational surfaces admit
a Kihler metric of positive scalar curvature? We prove the following:

THEOREM. Almost all rational surfuces admit a Hodge metric of positive scalar
curvaiure.

AMS (MOS) subject classifications (1970). Primary 53C353,

£ 1975, American Mathematical Society

65




