DIMENSION OF SPACES OF AUTOMORPHIC FORMS

ROBERT P. LANGLANDS

I will first formulate a problem in the theory of group representations and show how to solve it; then I will discuss the relation of this problem to the theory of automorphic forms. Since there is no point in striving for maximum generality, I start with a connected semisimple group G with finite center. An irreducible unitary representation π of G on the Hilbert space H is said to be square-integrable if for one and hence, as one can show, every pair u and v of nonzero vectors in H the function $(\pi(g) u, v)$ is square-integrable on G. It is said to be integrable if for one such pair $(\pi(g) u, v)$ is integrable.

Suppose Γ is a discrete subgroup of G and $\Gamma \backslash G$ is compact. As was shown by Godement in an earlier lecture the representation π of the previous paragraph occurs a finite number of times, say $N(\pi)$, in the regular representation on $L^{2}(\Gamma \backslash G)$. The problem is first to find a closed formula for $N(\pi)$. The method which I will now describe of obtaining such a formula is valid only when π is actually integrable.

Square integrable representations are similar in some respects to representations of compact groups; in particular they satisfy a form of the Schur orthogonality relations. There is a constant d_{π} called the formal degree of π such that if $u^{\prime}, v^{\prime}, u$, and v belong to H then

$$
\int_{G}\left(\pi(g) u^{\prime}, v^{\prime}\right) \overline{(\pi(g) u, v)} d g=d_{\pi}^{-1}\left(u^{\prime}, u\right)\left(v, v^{\prime}\right)
$$

If u and v are such that $(\pi(g) u, v)$ is integrable and π^{\prime} is unitary representation of G on H^{\prime} which does not contain π, then

$$
\int_{G}\left(\pi^{\prime}(g) u^{\prime}, v^{\prime}\right) \overline{(\pi(g) u, v)} d g=0
$$

for all u^{\prime}, v^{\prime} in H.
Let $L_{i}, 1 \leqslant i \leqslant N(\pi)$, be a family of mutually orthogonal invariant subspaces of $L^{2}(\Gamma \backslash G)$ which are such that the action of G on each of them is equivalent to π. Suppose that π does not occur in the orthogonal complement of

$$
\bigoplus_{i=1}^{N(\pi)} L_{i}
$$

If π is integrable there is a unit vector v in H such that $(\pi(g) v, v)$ is integrable. Let v_{i} be a unit vector in L_{i} corresponding to v under some equivalence between H and L_{i}. The

[^0]orthogonality relations imply that the operator $\Phi \rightarrow \Phi^{\prime}$ with
\[

$$
\begin{aligned}
\Phi^{\prime}(g) & =d_{\pi} \int_{G} \Phi(g h) \overline{(\pi(g) v, v)} d h \\
& =\int_{\Gamma \backslash G} \Phi(h)\left\{\sum_{\Gamma} \xi\left(g^{-1} \gamma h\right)\right\} d h
\end{aligned}
$$
\]

if $\xi(g)=d_{\pi} \overline{(\pi(g) v, v)}$, is an orthogonal projection on the space spanned by $v_{1}, \ldots, v_{N(\pi)}$. For our purposes it may be assumed that v transforms according to a finite-dimensional representation of some maximal compact subgroup of G. Then the argument used by Borel in a previous lecture shows that

$$
\sum_{\Gamma} \xi\left(g^{-1} \gamma h\right)
$$

converges absolutely uniformly on compact subsets of $G \times G$. Hence $v_{1}, \ldots, v_{N(\pi)}$ may be supposed continuous. As a consequence

$$
\sum_{i=1}^{N(\pi)} v_{i}(g) \bar{v}_{i}(g)=\sum_{\Gamma} \xi\left(g^{-1} \gamma h\right)
$$

Set $h=g$ and integrate over $\Gamma \backslash G$ to obtain

$$
N(\pi)=\int_{\Gamma \backslash G} \sum_{\Gamma} \xi\left(g^{-1} \gamma g\right) d g .
$$

The sum in the integrand may be rearranged at will. If Σ is a set of representatives for the conjugacy classes in Γ the integral on the right equals

$$
\begin{aligned}
\int_{\Gamma \backslash G} \sum_{\gamma \in \Sigma} \sum_{\delta \in \Gamma_{\gamma} \backslash \Gamma} \xi\left(g^{-1} \delta^{-1} \gamma \delta g\right) d g & =\sum_{\gamma \in \Sigma} \int_{\Gamma_{\gamma} \backslash G} \xi\left(g^{-1} \gamma g\right) d g \\
& =\sum_{\gamma \in \Sigma} \mu\left(\Gamma_{\gamma} \backslash G_{\gamma}\right) \int_{G_{\gamma} \backslash G} \xi\left(g^{-1} \gamma g\right) d g
\end{aligned}
$$

if Γ_{γ} and G_{γ} are the centralizers of γ in Γ and G respectively. The equality of $N(\pi)$ and the final expression is of course a special case of a formula of Selberg and has been known for some time.

The problem of evaluating $\mu\left(\Gamma_{\gamma} \backslash G_{\gamma}\right)$, the volume of $\Gamma_{\gamma} \backslash G_{\gamma}$, has been discussed in the lectures on Tamagawa numbers. So we shall not worry about it now. Since $\Gamma \backslash G$ is compact every element of Γ is semisimple; thus our problem is to express the integral

$$
\int_{G_{\gamma} \backslash G} \xi\left(g^{-1} \gamma g\right) d g
$$

in elementary terms when γ is a semisimple element of G.
If π is a square-integrable representation of G on H, v is a vector in H which transforms according to a finite-dimensional representation of some maximal compact subgroup of G, and

$$
\xi(g)=d_{\pi} \overline{(\pi(g) v, v)},
$$

then a recent theorem of Harish-Chandra states that

$$
\begin{equation*}
\int_{G_{\gamma} \backslash G} \xi\left(g^{-1} \gamma g\right) d g \tag{a}
\end{equation*}
$$

exists for γ semisimple and vanishes unless γ is elliptic, that is, belongs to some compact subgroup of G. Since Σ contains only a finite number of elliptic elements the sum in the expression for $N(\pi)$ is finite. We still require a closed expression for the integrals appearing in it.

Let K be a maximal compact subgroup of G. Since G has a square-integrable representation there is a Cartan subgroup T of G contained in K. It is enough to compute the integral (a) for γ in T. There is a limit formula of Harish-Chandra which allows one to compute its value at the singular elements once its values at the regular elements are known. Thus we need only evaluate it when γ is regular. It should be remarked that in this limit formula there is a constant which depends on the choice of Haar measure on G_{γ}. The exact relation of this constant to the choice of Haar measure has never been determined; until it is, our problem cannot be regarded as completely solved.

If γ is regular and the measure on G_{γ} is so normalized that the volume of G_{γ} is one, then

$$
\int_{G_{\gamma} \backslash G} \xi\left(g^{-1} \gamma g\right) d g=\chi_{\pi}\left(\gamma^{-1}\right)
$$

if χ_{π} is the character of π. An explicit expression for the right-hand side has recently been obtained.

Let \mathfrak{h} be the Lie algebra of T; choose an order on the roots of $\mathfrak{h}_{\mathbf{C}}$; and let Λ be a linear function on $\mathfrak{h}_{\mathbf{C}}$ such that $\Lambda+\rho, \rho=\frac{1}{2} \sum_{\alpha>0} \alpha$, extends to a character of T and so that $(\Gamma+\rho, \alpha) \neq 0$ for all roots α. Assume, for simplicity, that ρ also extends to a character of T. To each such Λ there is associated a square-integrable representation π_{Λ} and if $H \in \mathfrak{h}$

$$
\chi_{\pi_{\Lambda}}(\exp H)=(-1)^{m} \epsilon(\Lambda) \sum_{\sigma \in W} \frac{\operatorname{sgn} \sigma \exp (\sigma(\Lambda+\rho))(H)}{\prod_{\alpha>0}\{(\exp (\alpha(G) / 2)-\exp (-\alpha(G) / 2))\}}
$$

Here $m=\frac{1}{2} \operatorname{dim} G / K, \epsilon(\Lambda)=\operatorname{sgn}\left(\prod_{\alpha>0}(\Lambda+\rho, \alpha)\right)$, and W is the Weyl group of K. Every square-integrable representation is equivalent to π_{Λ} for some Λ. However the values of Λ for which π_{Λ} is integrable are not yet known. For some special cases see [1] and [2].

The geometrical meaning of the numbers $N\left(\pi_{\Lambda}\right)$ is not yet completely clear. I would like to close this lecture with some suggestions as to what it might be. Since the evidence at present is rather meagre, they are only tentative. If $\mathfrak{g}_{\mathbf{C}}$ is the complexification of the Lie algebra of \mathfrak{g}, the elements of $\mathfrak{g}_{\mathbf{C}}$ may be regarded as left-invariant complex vector fields on G and G / T may be turned into a complex manifold in such a way that the space of antiholomorphic tangent vectors at $\bar{g}=g T$ is the image of $\mathfrak{n}_{\mathrm{C}}^{-}$if $\mathfrak{n}_{\mathrm{C}}^{-}$is the subalgebra of $\mathfrak{g}_{\mathrm{C}}$ generated by root vectors belonging to negative roots. Let V^{*} be the bundle of antiholomorphic cotangent vectors and introduce a G-invariant metric in V^{*} and hence in $\bigwedge^{q} V^{*}$. Let B be the line bundle over G / T associated to the character $\xi(\exp H)=\exp (\Lambda(H))$ of T. If Γ is a discrete subgroup of G let $C^{q}(\Lambda, \Gamma)$ be the space of Γ-invariant cross-sections of $B \otimes \Lambda^{q} V^{*}$ which are square integrable over $\Gamma \backslash G / T$. There is a unique closed operator $\bar{\partial}$ from $C^{q}(\Lambda, \Gamma)$ to $C^{q+1}(\Lambda, \Gamma)$ whose domain contains the infinitely differentiable cross-sections of compact support on which $\bar{\partial}$ is to have its usual meaning and whose adjoint is defined on the infinitely differentiable cross-sections of $C^{q+1}(\Lambda, \Gamma)$ with compact support.

Set $C^{q}(\Lambda,\{1\})=C^{q}(\Lambda)$. I expect, although I do not know how to prove it, that when $\Lambda+\rho$ is nonsingular the range of $\bar{\partial}$ is closed for every q. If this is so then the cohomology groups $H^{1}(\Lambda)$ will be Hilbert spaces on which G acts. Is it true that they vanish for all but one value of q, say $q=q_{\Lambda}$, and that the representation π_{Λ}^{\prime} of G on $H^{q_{\Lambda}}(\Lambda)$ is equivalent to π_{Λ} ? The following theorem is a clue to the value of q_{Λ}.
Theorem (P. Griffiths). Let a_{1} be the number of noncompact positive roots for which $(\Lambda+\rho, \alpha)>0$ and let a_{2} be the number of compact positive roots for which $(\Lambda+\rho, \alpha)<0$. There is a constant c such that if $|(\Lambda+\rho, \alpha)|>c$ for every simple root, $\Gamma \backslash G$ is compact, and Γ acts freely on G / T, then $H^{q}(\Lambda, \Gamma)=0$ unless $q=a_{1}+a_{2}$.

It is, I think, worthy of remark that if one assumes that $H^{q}(\Lambda)=\{0\}$ for $q \neq q_{\Lambda}=a_{1}+a_{2}$, then a formal application of the Woods Hole fixed point formula shows that if γ is a regular element of T, then the value at γ of the character of π_{Λ}^{\prime} is $\chi_{\pi_{\Lambda}}(\gamma)$. By the way, it is known that $H^{0}(\Lambda)=0$ unless $q_{\Lambda}=0$ and that if $q_{\Lambda}=0$ the representation of G on $H^{0}(\Lambda)$ is in fact π_{Λ}.

Finally one will want to show that when π_{Λ} is integrable and $\Gamma \backslash G$ is compact the number $N\left(\pi_{\Lambda}\right)$ is equal to the dimension of $H^{q_{\Lambda}}(\Lambda, \Gamma)$. This can be done when $q_{\Lambda}=0$; in this case $H^{0}(\Gamma, \Lambda)$ is a space of automorphic forms.

It should be possible, although I have not done so, to test these suggestions for groups whose unitary representations are well understood, in particular, for $\operatorname{SL}(2, \mathbf{R})$ and the De Sitter group. To do this one might make use of an idea basic to Kostant's proof of the (generalized) Borel-Weil theorem for compact groups. Suppose σ is a unitary representation of G on a Hilbert space V. Let $C^{q}(V)$ be the space of all linear maps from $\bigwedge^{q} \mathfrak{n}_{\mathbf{C}}^{-}$to $V . C^{q}(V)$ is a Hilbert space. The usual coboundary operator from $C^{q}(V)$ to $C^{q+1}(V)$ can be defined on those elements of $C^{q}(V)$ which take values in the Gårding subspace of V. The closure d of this operator is the adjoint of the restriction of its formal adjoint to those elements of $C^{q+1}(V)$ which take values in the Gårding subspace. Of course T acts on $\bigwedge^{q} \mathfrak{n}_{\mathbf{C}}^{-}$. If $f \in C^{q}(V)$ define $t f=f^{\prime}$ by $f^{\prime}(X)=t f\left(t^{-1} X\right), X \in \Lambda^{q} \mathfrak{n}_{\mathrm{C}}^{-}$. There is a natural identification of $C^{q}(\Lambda)$ with the set of f in $C^{q}\left(L^{2}(G)\right)$ such that $t f=\exp (-\Lambda(H)) f$ if $t=\exp H$ belongs to T and of $C^{q}(\Lambda, \Gamma)$ with the set of f in $C^{q}\left(L^{2}(\Gamma \backslash G)\right)$ such that $t f=\exp (-\Lambda(H)) f$. Moreover the following diagrams are commutative.

The point is that d is easier to study than $\bar{\partial}$ because to study d we can decompose V into irreducible representations and study the action of d on each part.

References

[1] J. Dixmier, Représentations intégrables du groupe de De Sitter, Bull. Soc. Math., France 89 (1961), 9-41.
[2] Harish-Chandra, Representations of semisimple Lie groups, VI, Amer. J. Math. 78 (1956), 564-628.
[3] \qquad Discrete series for semisimple Lie groups, II. Acta Math. (to appear) [Acta Mathematica, vol. 116, December 1966, pp. 1-111].
[4] Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387.
[5] R. P. Langlands, The dimension of spaces of automorphic forms, Amer. J. Math. 85 (1963), 99-125.

Compiled on May 7, 2024.

[^0]: Appeared first in Proc. of Symp. in Pure Mathematics, vol. IX, Amer. Math. Soc. (1966).
 Based on notes of the original lecture taken by J. Shalika.
 Miller Fellow.

