
THE DIMENSION OF SPACES OF AUTOMORPHIC FORMS

R. P. LANGLANDS

1. The trace formula of Selberg reduces the problem of calculating the dimension of a
space of automorphic forms, at least when there is a compact fundamental domain, to the
evaluation of certain integrals. Some of these integrals have been evaluated by Selberg. An
apparently different class of definite integrals has occurred in Harish-Chandra’s investigations
of the representations of semi-simple groups. These integrals have been evaluated. In this
paper, after clarifying the relation between the two types of integrals, we go on to complete
the evaluation of the integrals appearing in the trace formula. Before the formula for the
dimension that results is described let us review Harish-Chandra’s construction of bounded
symmetric domains and introduce the automorphic forms to be considered.

If G is the connected component of the identity in the group of pseudo-conformal mappings
of a bounded symmetric domain then G has a trivial centre and a maximal compact subgroup
of any simple component has non discrete centre. Conversely if G is a connected semi-simple
group with these two properties then G is the connected component of the identity in the
group of pseudo-conformal mappings of a bounded symmetric domain [2(d)]. Let g be the Lie
algebra of G and gc its complexification. Let Gc be the simply-connected complex Lie group
with Lie algebra gc; replace G by the connected subgroup G of Gc with Lie algebra g. Let K
be a maximal compact subgroup of G with Lie algebra k; then k contains a Cartan subalgebra
h of g. Fix once and for all an order on h. This order is to be so chosen that gc is the direct
sum of kc, p+ and p−; p+ is spanned by the root vectors belonging to the totally positive roots
and p− by the root vectors belonging to the totally negative roots. Moreover p+ and p− are
abelian and [kc, p+] ⊆ p+ and [kc, p−] ⊆ p−. Let P+, P−, and Kc be the connected subgroups
of Gc with Lie algebras p+, p−, and kc respectively. The exponential mapping of p+ into P+

is bijective; thus P+ is provided with the structure of a complex vector space. Moreover
G ⊆ P+KcP− and P+ ∩ KcP− = {1}. Then P+KcP−/KcP− which is identified with p+ is
a complex vector space and the image of G is a bounded symmetric domain B. Finally it
should be observed that G∩KcP− = K and that p+ is an open subset of the space Gc/KcP−.
Now identify p+ with complex coordinate space and let z be the column of coordinates. If
g ∈ Gc, z ∈ p+, and z′ = g(z) ∈ p+ (in the space Gc/KcP−) let dz′ = µ(g, z) dz. Before
defining the automorphic forms it is necessary to establish a lemma.

Lemma 1. Let Kc be the restriction of Kc to p+, then µ(g, z) ∈ Kc.

Suppose X ∈ p+ and f(·) is holomorphic in a neighborhood of z′ on p+ or P+ since they
are identified. Set h(p+kp−) = f(p+), p+ ∈ P+, k ∈ Kc, p− ∈ P−. Then h(·) is a holomorphic
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function on part of Gc. Let z = p ∈ P+ and z′ = p′ ∈ P+ then, at t = 0,

d

dt
h
(
g exp(tX)p

)
=

d

dt
h
(

exp
(
tg(X)

)
p′
)

=
d

dt
h
(
p′ exp

(
tp′−1g(X)

))
= L(X1)h(p′) + L(X2)h(p′) + L(X3)h(p′)

= L(X1)h(p′) = R(X1)h(p′).

Here p′−1g(X) = X1 + X2 + X3, X1 ∈ p+, X2 ∈ kc, X3 ∈ p−. L(Xi) and R(Xi) denote
the obvious left or right invariant differential operators. It is necessary to verify that the
map X −→ X1 is given by an element of Kc. But gp = p′kp−; so p′−1g = kp−p

−1 and
kp−p

−1(X) = kp−(X) ≡ k(X) (mod kc + p−); thus X1 = k(X). Finally it should be
remarked that µ(g, z) is a holomorphic function of g and z.

Suppose that σ is an irreducible, holomorphic matrix representation of Kc of degree d
which is unitary on K. Then, since µ(g1g2, z) = µ(g1, g2z)µ(g2, z), it is easily seen that the
action of G on the space H(σ) of holomorphic functions on B, whose values are column
vectors of length d, defined by g−1f(z) = σ−1(g, z)f(gz), with σ(g, z) = σ

(
µ(g, z)

)
, is a

representation of G. If Γ is a discrete subgroup of G define an (unrestricted) automorphic
form of type σ to be a function f in H(σ) such that γf = f for all γ in Γ. For subgroups
of the symplectic group this definition is essentially the same as that of [7]. As is shown
there the dimension of the space, H(Γ, σ), of automorphic forms of type σ is finite if G/Γ
is compact. For a large class of representations σ the calculations of this paper lead to the
following formula for the dimension

(1) N(Γ, σ) =
∑
{γ}

ν(Gγ/Γγ)χ(γ).

The sum is over a set of representatives of those conjugacy classes of Γ that have a fixed
point in B. Gγ is the centralizer of γ in G and Γγ is the centralizer of γ in Γ. If the Haar
measure ν on Gγ is appropriately normalized then χ(γ) equals

(2)
(−1)bγ

v(Bγ)

∑
wγ\w ϵ(s)

∏
α∈Pγ

(
sΛ(Hα) + sρ(Hα)

)
esΛ(H)+sρ(H)

[Gγ : G0
γ]
∏

α∈Pγ
ργ(Hα)

∏
α∈P
α/∈Pγ

(
e

1
2
α(H) − e−

1
2
α(H)

)
The various symbols will be explained in the course of the proof. This formula agrees with
those presented in [3] and [6].

2. In this paragraph and the next the trace formula is reviewed in our special context and a
first connection with the work of Harish-Chandra is established. The end result is formula (1)
with the numbers χ(γ) expressed as integrals.

Since µ(k, z) = k ∈ Kc, the measure

dz =
∣∣∣det

(
µ(g, 0)

)∣∣∣−2∏
i

dxi dyi,

with z = g(0), is well-defined on B and invariant under G. The invariant measure on G is to
be so normalized that ∫

B

f(z) dz =

∫
G

f
(
g(0)

)
dg.
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Set G(z) = σ∗−1(g, 0)σ−1(g, 0) with z = g(0). G(z) is well-defined and

G
(
g(z)

)
= σ∗−1(g, z)G(z)σ−1(g, z).

Introduce the space H2(σ) of functions f in H(σ) for which
∫
f ∗(z)G(z)f(z) dz is finite. The

action of G on H2(σ) is easily seen to be unitary. The functional f → fj(z), where fj(z) is
the jth coordinate of f(z), is bounded on H2(σ); let∫

B

g∗j (z1, z2)G(z2)f(z2) dz2 = fj(z1)

and set K(z1, z2) =
(
g1(z1, z2), . . . , gd(z1, z2)

)∗
. Observe that

K(gz1, gz2) = σ(g, z1)K(z1, z2)σ
∗(g, z2).

If L2(σ) is the space of measurable functions f on B for which
∫
f ∗(z)G(z)f(z) dz is finite

then

g(z1) =

∫
B

K(z1, z2)G(z2)f(z2) dz2

defines the orthogonal projection of L2(σ) onto H2(σ). Consequently

K∗(z2, z1) = K(z1, z2)

and ∫
B

K(z3, z2)G(z2)K(z2, z1) dz2 = K(z3, z1).

Although not necessary it is convenient to verify now that the representation of G in H2(σ)
is equivalent to a representation investigated by Harish-Chandra [2(c)]. Let W be the inverse
image of B under the map Gc → G−1

c → G−1
c /KcP− (W = P−KcB

−1 if B is considered a
subset of P+); then if g ∈ W and f ∈ H(σ) set f(g) = σ−1(g−1, 0)f

(
g−1(0)

)
. Then f(g)

satisfies: (α0)f(pkg) = σ(k)f(g) if p ∈ P− and k ∈ Kc; moreover f(g) is holomorphic on W
and if f(z) is in H2(σ) then∥∥f(·)

∥∥2 =

∫
B

f ∗(z)G(z)f(z) dz =

∫
G

∥∥f(g)
∥∥2 dg.

So the mapping is an isometry on H2(σ). The kernel is replaced by

K(g1, g2) = σ−1(g−1
1 , 0)K

(
g−1
1 (0), g−1

2 (0)
)
σ∗−1(g−1

2 , 0).

Observe that (i) K(k1g1, k2g2) = σ(k1)K(g1, g2)σ
∗(k2) if k1, k2 ∈ Kc, (ii) K(pg1, g2) =

K(g1, pg2) = K(g1, g2) if p ∈ P−, (iii) K(g1g, g2g) = K(g1, g2) if g ∈ G, (iv) K∗(g2, g1) =
K(g1, g2), and (v)

∫
K(g1, g2)K(g2, g3) dg2 = K(g1, g3).

Now we introduce a third space of functions. Suppose k′c is the semi-simple part of kc and c
is the centre of kc, then kc = k′c + c and hc = hc ∩ k′c + c. Any linear functional on hc ∩ k′c may
be extended to hc by setting it equal to zero on c. Then the given order on the real linear
functions on hc induces an order on the real linear functions on hc ∩ k′c. The representation
σ restricted to k′c is irreducible; let ψ0 be a unit vector belonging to the highest weight
with respect to the above order. Then, for all h ∈ hc, hψ0 = Λ(h)ψ0 where Λ is a linear
functional on hc. Extending the customary language call Λ the highest weight of σ. If f(g)
is a holomorphic function on W satisfying (α0) above set h(g) =

(
f(g), ψ0

)
. Then (α) if

p ∈ P−, h(pg) = h(g); (β) if n ∈ N ′, the connected group with Lie algebra n′ =
∑

CX−α,
the sum being over the positive roots α for which X−α ∈ kc, then h(ng) = h(g); and (γ) if a
is in the Cartan subgroup A of Gc with algebra hc then h(ag) = ξ(a)h(g) with ξ(a) = eΛ(H) if



4 R. P. LANGLANDS

a = exp(H). Conversely given a holomorphic function on W satisfying (α), (β), and (γ) there
is a holomorphic function f(g) such that h(g) =

(
f(g), ψ0

)
. Indeed for fixed g the function

h′(k) = h(kg) on K satisfies (i) h′(ak) = ξ(a)h′(k) if a ∈ A ∩K and (ii) R(X)h′(k) = 0 if
X ∈ n′. Let ℓ be an index for the classes of inequivalent irreducible representations of K and

let
(
ψℓij(k)

)
be the matrices of the representations chosen with respect to a basis (ϕ1, . . . , ϕdℓ)

consisting of eigenvectors of h; moreover suppose ϕ1 belongs to the highest weight. Then
h′(k) ∼

∑
ℓ

∑
i,j α

ℓ
ijψ

ℓ
ij(k). Using (i) and (ii) it is easily seen that, first of all, αℓij = 0 unless

i = 1 and then that αℓij = 0 unless ℓ = ℓ(σ). So h′(k) =
∑

j α1jσ1j(k). Set f(g) =
∑
αijϕj

then h(g) =
(
f(g), ψ0

)
; moreover f(g) is a holomorphic function of g satisfying (α0) above.

Finally the Schur orthogonality relations imply that∫
G

∣∣h(g)
∣∣2 dg =

∫
G

∣∣∣(f(g), ψ0

)∣∣∣2 dg
=

∫
K

dk

∫
G

∣∣∣(f(kg), ψ0

)∣∣∣2 dg
= d−1

∫
G

∥∥f(g)
∥∥2 dg.

This shows that the representation of G on H2(σ) is equivalent to the representation πΛ
studied by Harish-Chandra [2(c)].

Now set ψ(g1, g2) =
(
K(g1, g2)ψ0, ψ0

)
. This function satisfies (i) ψ(ng, 1) = ψ(g, 1) if

n ∈ N ′, (ii) ψ(pg, 1) = ψ(g, 1) if p ∈ P−, (iii) ψ(ag, 1) = ξ(a)ψ(g, 1) if a ∈ A, (iv) ψ(ga, 1) =

ξ(a)
−1
ψ(g, 1) if a ∈ A ∩ K, and (v) ψ(g, 1) is a holomorphic function on W . But Harish-

Chandra ([2(c)], p. 22) has shown that there is essentially only one function with these

properties; so ψ(g, 1) = δψΛ(g). δ = ψ(1, 1) and ψΛ(g) =
(
ζ(g)ϕ0, ϕ0

)
eλ(Λ(g)). Here ζ is a

representation of Gc with highest weight Λ0 and λ = Λ−Λ0; moreover Λ0 is so chosen that λ
vanishes on hc ∩ k′c. ϕ0 is a unit vector belonging to the weight Λ0. The function µ−1(g−1, 0)

is a holomorphic function on W with values in Kc. It may be lifted to a function on W̃ , the

universal covering space of W , with values in K̃c, the universal covering group of Kc. K̃c

is the product of a simply connected, complex abelian group C with Lie algebra c and a

semi-simple group. Mapping W̃ into K̃c, projecting on C, and then taking the logarithm one

obtains Γ(g) which lies in c. Thus Γ(g) is a single-valued function on W̃ but a multiple-valued
function on W .

Certainly δ ̸= 0 if H2(σ) ̸= {0}. In particular, if Xβ is a root vector belonging to the
positive root β, if X−β belongs to −β and Hβ = [Xβ,−X−β] then ([2(d)], p. 612) H2(σ) ̸= {0}
if 2β−1(Hβ)

(
Λ(Hβ) + ρ(Hβ)

)
< 0 for every totally positive root β. ρ is one-half the sum of

the positive roots.

3. It will now be supposed that 2β−1(Hβ)
(
Λ(Hβ) + ρ(Hβ) + 2ρ+(Hβ)

)
< 1 for every totally

positive root β; ρ+ is one-half the sum of the totally positive roots. Then ([2(d)], p. 610)
ψΛ(g) is integrable and, since σ is irreducible, K(g, 1) is integrable. Let H∞(σ) be the space
of functions in H(σ) such that f ∗(z)G(z)f(z) is bounded. Then, if f(z) is in H∞(σ),∫

B

K(z1, z2)G(z2)f(z2) dz2
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converges. To verify that it equals f(z1) it is sufficient to show that H2(σ) contains all
polynomials for then the argument of Godement in [7] applies. To do this it is sufficient

to show that G(z) is integrable over B. This is the same as showing that
∥∥σ−1(g−1, 0)

∥∥2 is
integrable over G. Let A+ be the connected group with Lie algebra ap0 ([2(d)], p. 583). Then
every element of G may be written as k1ak2 with k1, k2 ∈ K and a ∈ A+. Moreover∥∥σ−1(g−1, 0)

∥∥2 =
∥∥σ−1(a−1, 0)

∥∥2 =
∥∥∥σ(h(a)

)∥∥∥2
([2(d)], p. 599). But

∥∥∥σ(h(a)
)∥∥∥2 = tr

(
σ
(
h2(a)

))
which is known to be integrable. Let

L2(Γ, σ) be the space of measurable functions on B, whose values are column vectors of length
d, such that σ−1(γ, z)f(γz) = f(z) for all z in B and all γ in Γ and

∫
F
f ∗(z)G(z)f(z) dz is

finite, where F is a fundamental domain for Γ in B. Then

f(·) −→
∫
B

K(·, z)G(z)f(z) dz

defines the orthogonal projection of L2(Γ, σ) onto H(Γ, σ). Now∫
B

K(z1, z2)G(z2)f(z2) dz2 =

∫
F

∑
Γ

K(z1, γz2)σ
∗−1(γ, z2)G(z2)f(z2) dz2

provided
∑

ΓK(z1, γa2)σ
∗−1(γ, z2) is uniformly absolutely convergent for z1 and z2 in F . To

verify this it is sufficient to show that
∑

ΓK(g1, g2γ) converges uniformly absolutely in some
neighborhood of each point (g′1, g

′
2) in G×G. Since σ is irreducible it is enough to consider

the series
∑

Γ

∣∣ψΛ(g1γg
−1
2 )
∣∣. Writing g = k1ak2 we have ([2(d)], pp. 598–600)∣∣ψΛ(g)

∣∣ ⩽ ∣∣∣(ζ(k−1
1 )ϕ0, ζ(a)ζ(k2)ϕ0

)
eλ(Γ(a))

∣∣∣
⩽ eλ(Γ(a))χΛ0

(
h(a)

)
.

Let ϕ be the mapping of G onto the symmetric space G/K and let r be the metric on G/K.
Every element of G may be written as a product g = k1ak2 with k1, k2 ∈ K and with a ∈ A+

such that log a ∈ a+p0 =
{
X ∈ ap0

∣∣ α(X) ⩾ 0 for all positive roots α
}

. To be more precise
one introduces an order on the linear functions on ap0 , extends ap0 to a Cartan subalgebra of
g, extends the ordering, and takes the positive roots of this subalgebra with respect to the
resulting order. Although it is not a priori uniquely determined by g we set a(g) = a. We
want to show that if ϵ > 0 is given it is possible to choose ϵ1 so that if h1 and h2 are in G

and r
(
ϕ(h1), ϕ(h2)

)
< ϵ1 then

∣∣∣∣ν(log
(
a(h1)

)
− log

(
a(h2)

))∣∣∣∣ ⩽ ϵ∥ν∥ for any linear functional

ν on ap0 . It is enough to establish this for a basis of the space of linear functionals which
may be supposed to consist of the highest weights of certain representations of G restricted
to ap0 . Let π be such a representation which may be supposed to satisfy π

(
θ(g)

)
= π∗−1(g)

if θ is the Cartan involution of G leaving K fixed. Then g → π(g)π∗(g) defines an imbedding
of G/K in a manner which we shall pretend is isometric in the space of positive definite
Hermitian matrices with the Riemannian metric d2Y = tr(Y −1dY Y −1dY ). So it is enough
to show that if P1 and P2 are positive definite matrices with maximum eigenvalues λ1, λ2
then |log λ1/λ2| < ϵ if r(P1, P2) < ϵ (cf. [2(i)], p. 280). If P1 = AA∗ and P2 = A(δije

αi)A∗,

α1 ⩾ α2 ⩾ · · · ⩾ αn, then r(P1, P2) =
(∑n

i=1 α
2
i

)1/2
. Let ∥x∥ = 1 and ∥A∗x∥2 = λ1; then, if

y = A∗x, λ2 ⩾
∑n

i=1 e
αiy2i ⩾ eαnλ1. Similarly λ1 ⩾ e−α1λ2; so −α1 ⩽ log λ1/λ2 ⩽ −αn.
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As a consequence there are positive numbers c and δ < 1 such that if

U(g′) =
{
g
∣∣∣ r(ϕ(g), ϕ(g′)

)
< δ
}

then

e
λ
(
Γ(a(g′))

)
χΛ0

(
h
(
a(g′)

))
⩽ c

∫
U(g′)

e
λ
(
Γ(a(g))

)
χΛ0

(
h
(
a(g)

))
dg.

Let U1 and U2 be compact neighborhoods of g′1 and g′2 respectively. There is an integer N such
that for g1 ∈ U1 and g2 ∈ U2 any point in G belongs to at most N of the sets U(g1γg

−1
2 ), γ ∈ Γ.

Finally given ϵ > 0 there is a positive number M such that if VM =
{
g
∣∣∣ r(ϕ(g), ϕ(1)

)
⩾M

}
then ∫

VM

e
λ
(
Γ(a(g))

)
χΛ0

(
h
(
a(g)

))
dg < ϵ.

For all but a finite set Γ1 of elements of Γ, U1γU
−1
2 ⊆ G− VM+1. Thus∑

γ /∈Γ1

exp

(
λ
(

Γ
(
a(g1γg

−1
2 )
)))

χΛ0

(
h
(
a(g1γg

−1
2 )
))

⩽ cNϵ

which was to be shown.
The kernel

∑
ΓK(z1, γz2)σ

∗−1(γ, z2) is continuous; thus if {ωi}, i = 1, . . . , N(Γ, σ), is an
orthonormal basis for H(Γ, σ),∑

K(z1, γz2)σ
∗−1(γ, z2) =

N(Γ,σ)∑
i=1

ωi(z1)ω
i∗(z2).

But

N(Γ, σ) =

N(Γ,σ)∑
i=1

∫
F

∑
j,ℓ

ωiℓ(z)Gij(z)ωij(z) dz;

consequently

N(Γ, σ) =

∫
F

tr

∑
γ

K(z, γz)σ∗−1(γ, z)G(z)

 dz.

Following Selberg [5] this may be written∑
{γ}

∑
Γγ\Γ

∫
F

tr
{
K(z, β−1γβz)σ∗−1(β−1γβ, z)G(z)

}
dz.

The outer sum is over a set of representatives of the conjugacy classes of Γ; the inner sum is
over a set of coset representatives of the centralizer Γγ of γ in Γ. Rewrite the last sum as∑

{γ}

∑
Γγ\Γ

∫
F

tr
{
σ−1(β, z)K(βz, γβz)σ∗−1(γβ, z)G(z)

}
dz

=
∑
{γ}

∫
Fγ

tr
{
K(z, γz)σ∗−1(γ, z)G(z)

}
dz.



THE DIMENSION OF SPACES OF AUTOMORPHIC FORMS 7

Fγ is a fundamental domain for Γγ in B. Replace these integrals by integrals over fundamental
domains F ′

γ for Γγ acting on G to the right to obtain∑
{γ}

∫
F ′
γ

tr
{
K
(
g−1(0), γg−1(0)

)
σ∗−1

(
γ, g−1(0)

)
G
(
g−1(0)

)}
dg

=
∑
{γ}

∫
F ′
γ

tr
{
K(gγg−1, 1)

}
dg.

According to [5] this equals∑
{γ}

ν(Gγ/Γγ)

∫
Sγ

tr
{
K(gγg−1, 1)

}
dsγ;

Gγ is the centralizer of γ in G; Sγ = G/Gγ; and the measures are so normalized that
dg = dsγ dgγ. ν(Gγ/Γγ) is the volume of a fundamental domain for Γγ acting to the left (or
right) in Gγ. It is of some importance to observe that every integral appearing is absolutely
convergent. If γ is in Γ set

χ(γ) =

∫
Sγ

tr
{
K(gγg−1, 1)

}
dsγ.

Apart from the arbitrariness of the invariant measure on Sγ, χ(γ) depends only on the
conjugacy class of γ in G. By the Schur orthogonality relations

χ(γ) = d

∫
Sγ

∫
K

(
K(kgγg−1k−1, 1)ψ0, ψ0

)
dk dsγ

= dδ

∫
Sγ

∫
K

ψΛ(kgγg−1k−1) dk dsγ.

4. The first step in the evaluation of these integrals is to calculate dδ. Now∥∥∥(K(g, 1)ψ0, ψ0

)∥∥∥2 =

∫
G

∣∣∣(K(g, 1)ψ0, ψ0

)∣∣∣2 dg
=

∫
G

∫
K

∣∣∣(σ(k)K(g, 1)ψ0, ψ0

)∣∣∣2 dk dg
= d−1

∫
G

∥∥K(g, 1)ψ0

∥∥2 dg
= d−1

∫
G

(
K∗(g, 1)K(g, 1)ψ0, ψ0

)
dg

= d−1
(
K(1, 1)ψ0, ψ0

)
= d−1δ

which shows that dδ =
∥∥ψΛ(g)

∥∥−2
since

∥∥∥(K(g, 1)ψ0, ψ0

)∥∥∥2 = δ2
∥∥ψΛ(g)

∥∥2. But
∥∥ψΛ(g)

∥∥−2

has been calculated by Harish-Chandra ([2(d)], p. 608); it equals

c(G)
∏
β∈P

∣∣∣(Λ(Hβ) + ρ(Hβ)
)
/ρ(Hβ)

∣∣∣,
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where P is the set of positive roots and c(G) is a constant independent of Λ. To calculate
c(G) take σ(k) = (det k)−1, k ∈ Kc, so that Λ = −2ρ+; this is permissible since, as will be
seen in a moment, 2β−1(Hβ)

(
−2ρ+(Hβ) + ρ(Hβ)

)
< 0 for every totally positive root β. Then∥∥ψΛ(g)

∥∥−2
= c(G)

∏
β∈P

∣∣∣(−2ρ+(Hβ) + ρ(Hβ)
)/
ρ(Hβ)

∣∣∣ = c(G)

since
∏

β∈P

∣∣−2ρ+(Hβ) + ρ(Hβ)
∣∣ =

∏
β∈P

∣∣ρ(Hβ)
∣∣. To see this observe that ([2(b)], p. 749)

one could choose as a set of positive roots the positive roots with root vectors in kc and the
negatives of the totally positive roots. Let ρ′ be one-half the sum of the positive roots in this

new order. Then ρ′ = ρ− 2ρ+ and 2β−1(Hβ)ρ′(Hβ) = −2
(
−β(H−β)

)−1
ρ′(H−β) < 0 since −β

is positive in this new order if β is totally positive. There is an element s in the normalizer
of hc in Gc which takes the positive roots in the original order into the positive roots in the
new order; in particular ρ′(H) = ρ

(
s−1(H)

)
. Now[

H, s(Xα)
]

= s
([
s−1(H), Xα

])
= α

(
s−1(H)

)
s(Xα) = s(α)(H)s(Xα)

and
H ′
s(α) = [X ′

s(α), X
′
−s(α)] =

[
s(Xα), s(X−α)

]
= s(Hα).

Now [H ′
s(α), X

′
s(α)] = s[Hα, Xα] = α(Hα)X ′

s(α). So if all Xα are so normalized that α(Hα) = 2

then H ′
s(α) = Hs(α). Consequently∣∣∣∣∣∣

∏
β∈P

ρ′(Hβ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∏
β∈P

ρ′(H ′
s(β))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∏
β∈P

ρ′
(
s(Hβ)

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
∏
β∈P

ρ(Hβ)

∣∣∣∣∣∣.
On the other hand ψ(g) = det

(
µ(g−1, 0)

)
satisfies (i) ψ(pg) = ψ(g) if p ∈ P−, (ii)

ψ(gk) = ψ(kg) = det−1(k)ψ(g) if k ∈ Kc, (iii) ψ(g) is holomorphic on W , and (iv) ψ(1) = 1.
This is enough to ensure that ψ(g) = ψΛ(g). Thus∥∥ψΛ(g)

∥∥2 =

∫
G

∣∣ψ(g)
∣∣2 dg

=

∫
B

∣∣∣det
(
µ(g, 0)

)∣∣∣2∣∣∣det
(
µ(g, 0)

)∣∣∣−2∏
i

dxi dyi

= v(B).

v(B) is the Euclidean volume of B. In conclusion

χ(1) = (−1)b/v(B)
∏
β∈P

((
Λ(Hβ) + ρ(Hβ)

)
/ρ(Hβ)

)
,

with b equal to the complex dimension of B.
It will be useful at this point to establish some notation. The universal covering groups of

G and Kc have been denoted by G̃ and K̃c. If G1 is a subgroup of G then G̃1 is the group

of all elements in G̃ lying over G1. Elements of G̃ will be denoted by g̃ and γ̃ and their

projection in G by g and γ; similarly k̃ ∈ K̃c projects on k. If N is a simply-connected

subgroup of G then N is isomorphic to the connected component of the identity in Ñ so the
same symbol will be used for corresponding elements in the two groups. Finally g̃γ̃g̃−1 will
be written gγ̃g−1.



THE DIMENSION OF SPACES OF AUTOMORPHIC FORMS 9

Every element of Γ is semi-simple [1]; this implies in particular that G0
γ, the connected

component of the identity in Gγ, is of finite index in Gγ. The measure on Gγ will be so
normalized that, on G0

γ , dgγ = dg0γ . Then if the measure on S0
γ = G/G0

γ is normalized in the
usual manner

χ(γ) = dΛ[Gγ : G0
γ]

−1

∫
S0
γ

∫
K

ψΛ(kgγg−1k−1) dk ds0γ

with dΛ = dδ. But ψΛ may be lifted to a function on G̃ and χ(γ) may be written as

(3) dΛ[Gγ : G0
γ]

−1

∫
S0
γ

∫
K

ψΛ(kgγ̃g−1) dk ds0γ.

Recall that ψΛ(g̃) =
(
ζ(g)ϕ0, ϕ0

)
eλ(Γ(g̃)). Revising the notation slightly denote the linear

functions λ and Λ associated to the representation σ by λ′ and Λ′ and let λ be an arbitrary
linear function on hc vanishing on hc ∩ k′c and, accordingly, let Λ = Λ0 + λ. dΛ and ψΛ(g̃),
but not ψΛ(g), are still defined. Let us now see for which functions λ the integral converges.

The function µ(g, z) on G×B may be lifted to a function µ(g̃, z) on G̃×B with values

in K̃c which satisfies µ(g̃1, g2z)µ(g̃2, z) = µ(g̃1g̃2, z). Perhaps the simplest way to see this

is to observe that if z = p, p ∈ P+, then p−1 is in W̃ = P−K̃cB
−1 ([2(c)], p. 5) and so is

p−1g−1 = p−k̃
−1p−1

+ , p+ ∈ B; then µ(g̃, z) = k̃. In particular µ(k̃1g̃k̃2, 0) = k̃1µ(g̃, 0)k̃2 so that

Γ(k̃1g̃k̃2) = Γ(k̃1) + Γ(g̃) + Γ(k̃2).

Now write g̃ = k̃1ak̃2 with a = exp
(∑s

i=1 ti(Xγi +X−γi)
)

([2(d)], p. 599).

It is possible to choose a basis {c1, . . . , ck} for c so that the coordinates of Γ(k̃1) and Γ(k̃2)
are purely imaginary and those of Γ(a) are of the form

∑
i log(cosh ti)aij with aij ⩾ 0. If

the basis is chosen from i(c ∩ k) the first condition is satisfied. The second will be satisfied
if we choose a basis so that the projection of Hγi , i = 1, . . . , s, on the centre has positive
coordinates ([2(d)], p. 600). It will be enough to show that this can be done when the group
is simple and c has dimension 1. But 2ρ+(Hγi) > 0, i = 1, . . . , s, and 2ρ+(H) is determined
solely by the projection of H on c since it is the trace of the representation of kc on p+. Since
Hγi ∈ ik the assertion is proved. It will be shown below that for fixed γ̃ the imaginary parts
of the coordinates of Γ(gγ̃g−1) remain bounded as g varies over G; consequently the integral
over S0

γ converges absolutely if Re
{
λ(ci) − λ′(ci)

}
⩽ 0 and represents a function of λ which

is continuous on this set and holomorphic in its interior. Thus it will be sufficient to evaluate
the integral (3) when λ(ci) is real and very much less than zero.

We now establish the unproved assertion. The notation of [2(d)] will be used. In showing
that the imaginary parts of the coordinates of Γ(gγ̃g−1) are bounded we may suppose that

g̃ = k̃1 exp(X)k̃2 with X ∈ ap0 and k̃1 and k̃2 in some fixed compact subset of K̃. Suppose

π(k̃) is the result of projecting k̃ on the centre of K̃c and then taking the logarithm. Then

Γ(gγ̃g−1) = π

(
µ−1
(

exp(X)k̃2γ
−1k̃−1

2 exp(−X), 0
))

= −π
(
µ
(
exp(−X), 0

))
− π

(
µ
(
γ, k−1

2 exp(−X)(0)
))

− π
(
µ
(
exp(X), k2γ

−1k−1
2 exp(−X)(0)

))
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The first term gives no contribution to the imaginary part. µ(γ, z) is defined for z in an open
subset of p+ containing the closure of B; so it is possible to define µ(γ̃, z) on the same set.
Since it is continuous it takes the closure of B into a compact set. Thus only the third term
causes trouble. So we consider µ

(
exp(X), z

)
letting z vary over B.

The calculations will be simplified if we first prove a lemma. Every element X of p+
determines a linear transformation from p− to kc, namely T (X)Y = [X, Y ] if Y ∈ p−.

Introduce on p− and kc the Hermitian inner product −B
(
Y1, θ̃(Y2)

)
then

Lemma 2. B is the set of vectors X in p+ for which 2I − T ∗(X)T (X) is positive definite.

If k is in K then
T
(
k(X)

)
= Ad(k)T (X) Ad(k−1)

and
T ∗(k(X)

)
T
(
k(X)

)
= Ad(k)T ∗(X)T (X) Ad(k−1);

moreover X is in B if and only if k(X) is in B. So in proving the lemma we may replace X
by any element equivalent to it under the adjoint action of K. Suppose X is in B then X
may be supposed equal to

∑s
i=1 aiXγi with −1 < ai < 1. Any element of p− may be written

as

Y =
s∑
i=1

biX−γi +
∑
i

∑
α∈Pi

bαX−α +
∑
i<j

∑
α∈Pij

bαX−α.

Then

[X, Y ] =
s∑
i=1

aibi[Xγi , X−γi ] +
∑
i

∑
α∈Pi

aibα[Xγi , X−α] +
∑
i,j

∑
α∈Pij

aibα[Xγi , X−α].

It is easily seen that B
(
Xα, θ̃(Xβ)

)
= 0 unless α = β and that [Xγi , Y ] is orthogonal to

[Xγj , Y ] if i ̸= j. Moreover θ̃
(
[Xγi , X−α]

)
= [X−γi , Xα] and

−B
(
[Xγi , X−α], [X−γi , Xβ]

)
= −B

([
[Xγi , X−α], X−γi

]
, Xβ

)
= −B

(
[Hγi , X−α], Xβ

)
= α(Hγi)B(X−α, Xβ).

Since α(Hγi) = 0, 1, or 2 it follows that
∥∥T (X)Y

∥∥2 < 2∥Y ∥2. Conversely, suppose X ∈ p+

and
∥∥T (X)Y

∥∥2 < 2∥Y ∥2 for every Y in p−. If X =
∑s

i=1 aiXγi with ai real, as may be

assumed, then
∥∥[X,X−γi ]

∥∥2 = 2a2i ∥X−γi∥2, so that |ai| < 1. It follows that X is in B.
Similar calculations now show that if

X0 =
∑
i=1

aiXγi +
∑
i

∑
α∈Pi

bαXα +
∑
i<j

∑
α∈Pij

bαXα

is in B then |ai| < 1, i = 1, . . . , s.
The original assertion will be proved if we show that the imaginary coordinates of

π

(
µ
(

exp
(
t(Xγi +X−γi)

)
, z
))
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remain bounded as z varies over B. Let z = exp(X0) with X0 as above and set g(t) =
exp
(
t(Xγi +X−γi)

)
. Write

X0 =
∑
α∈Si

aαXα + aiXγi +
∑
α/∈Si
α ̸=γi

aαXα = X1 +X2 +X3

where Si is the set of roots which vanish on Hγi . Then

g(t) exp(X0) = exp(X1)g(t) exp(X2) exp(X3).

Here g(t) and exp(X2) belong to the complex group whose Lie algebra is spanned by Hi, Xγi ,
and X−γi . A simple calculation in SL(2,C) shows that

g(t) = exp
(
a(t)Xγi

)
exp
(
b(t)Hγi

)
exp
(
c(t)X−γi

)
with

a(t) = (ai cosh t+ sinh t)(ai sinh t+ cosh t)−1

b(t) = − log(ai sinh t+ cosh t)

c(t) = sinh t(ai sinh t+ cosh t)−1.

Finally
exp
(
c(t)X−γi

)
exp(X3) = exp(X3) exp(X4)

with X4 = Ad
(
exp(−X3)

)(
c(t)X−γi

)
; so X4 = c(t)X−γi +

∑
cαXα. The sum is over the

positive compact roots. This implies that exp(X4) is the product of an element in K ′
c, the

semi-simple component of K̃c, and an element in P−. So

π
(
µ
(
g(t), z

))
= π

(
exp
(
b(t)Hγi

))
= − log(ai sinh t+ cosh t)π

(
exp(Hγi)

)
.

The coordinates of π
(
exp(Hγi)

)
are real and, since |ai| < 1,

Re(ai sinh t+ cosh t) > 0;

so
−π

2
< Im

(
log(ai sinh t+ cosh t)

)
<
π

2
.

It will be seen that for λ(ci) ≪ 0 and γ̃ semi-simple the double integral in (3) is absolutely
convergent; consequently in our analysis the integral over K may be omitted and γ need not
belong to Γ.

5. It will be convenient in the evaluation of the integrals (3) to omit at first any detailed
estimates. These will be discussed in the next paragraph. Suppose that γ is a regular element
in G and let γ belong to the centralizer B of the Cartan subalgebra j of g. According to
[2(e)] it may be supposed that θ(j) = j. Hence j = j1 + j2 with j1 = j ∩ k and j2 = j ∩ p. The
case that j2 = {0} will be treated first. Then B ⊆ K and it may be supposed that j = h.
Gγ ⊆ K and the measure on Gγ is so normalized that the total measure of G0

γ is 1. The

integration over S0
γ in (3) may then be replaced by an integration over G; as will be seen

below the integral is then a continuous function of γ̃ as γ̃ varies over the regular elements

in K̃. Harish-Chandra has shown that if TΛ is the character of the representation πΛ then

TΛ(f) = dΛ

∫
G

dg

{∫
G̃

f(g̃1)ψΛ(gg̃1g
−1) dg̃1

}
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when f is an infinitely differentiable function with compact support. If the support of f
is contained in the set of regular elements in GKG−1 the order of integration may be
reversed. Another formula for TΛ(f) is implicit in the papers [2(c)] and [2(e)]. However

before introducing this it must be observed that B̃ is connected and thus every element of B̃
can be written as the exponential of an element in h. In particular, let γ̃ = exp(H). Then
TΛ(f) is obtained by integrating f against a continuous function whose value at γ̃ is∏

α∈P

(
e

1
2
α(H) − e−

1
2
α(H)

)
−1∑

s∈w

ϵ(s)esΛ(H)+sρ(H).

P is the set of positive roots; w is the Weyl group of Kc; and ϵ(s) = ±1 according as s is
the product of an even or odd number of reflections. It should be observed that the second
hypothesis of Section 10 of [2(e)] does not hold here. So it is necessary to prove Lemma 43
using Fourier integrals rather than series. The value of χ(γ) obtained agrees with (2) since
Bγ is reduced to a point with v(Bγ) = 1, Pγ is empty, and wγ is reduced to {1}.

Retaining the assumption that γ̃ is regular it will now be supposed that j2 ̸= {0}. Define
the subgroups M and N as on page 212 of [2(g)] with j replacing h0 then ([2(g)], p. 216)∫

G/G0
γ

ψΛ(gγ̃g−1) ds0γ =

∫
K×M×N

ψΛ(kmnγ̃n−1m−1k−1)dk dmdn,

if the Haar measures on M and N are suitably normalized. It should be observed that,

contrary to the assertion in [2(e)], the centralizer B̃ in G̃ of a Cartan subalgebra is not

always commutative. Thus, if γ̃ belongs to B̃ one must consider
∫
G/B0 f(gγ̃g−1) dg and not∫

G/B
f(gγ̃g−1) dg; B is the projection of B̃ on G and B0 is the connected component of the

identity in B. The theorems of [2(h)] used later must be interpreted with this observation in
mind. It is not difficult (cf. [2(a)], p. 509) to see that the above integral equals

ξ(Xi)
−1(γ)

∫
K×M×N

ψΛ(knmγ̃m−1) dk dmdn

with ξ(Xi)(γ) equal to the determinant of the restriction of I − ad(γ) to n, the Lie algebra of
N . It can be assumed that j2 is contained in ap0 . Then, in the notation of [2(d)], for some ℓ
either ν−1(Xγℓ) or ν−1(X−γℓ) is in nc. Since the order on j2 is arbitrary suppose that ν−1(Xγℓ)
is in nc.

ν−1(Xγℓ) =
1

2
(Xγℓ −X−γℓ −Hγℓ)

and 2iν−1(Xγℓ) = X is in g and thus in n. Let N1 =
{

exp(tX)
∣∣ −∞ < t <∞

}
; N1 is a

closed subgroup of N , so that the above integral may be written

ξ−1(γ)

∫
K×M×N1\N

{∫ ∞

−∞
ψΛ

(
k exp(tX)nmγ̃m−1k−1

)
dt

}
dk dmdn.

To show that χ(γ) = 0 it is sufficient to show that the inner integral is identically zero; this
will be done using Cauchy’s integral theorem. Recall that

ψΛ

(
k exp(tX)nmγ̃m−1k−1

)
=
(
ζ(k)ζ

(
exp(tX)

)
ζ(nmγm−1k−1)ϕ0, ϕ0

)
eλ(Γ(g))
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with g = exp(tX)nmγ̃m−1. The first term is clearly an entire function of t.

Γ(g) = −π
(
µ
(
mγ̃m−1n−1, exp(−tX)(0)

))
− π

(
µ
(
exp(−tX), 0

))
.

For m, γ̃, and n fixed the first term is defined, bounded, and analytic in t so long as
exp(−tX)(0) is in B. If it is observed that the subgroup of Gc whose Lie algebra is spanned
by Hγℓ , Xγℓ , and X−γℓ is the homomorphic image of SL(2,C) then the calculations may be
performed in this group. Now

X =

(
−i i
−i i

)
exp(tX) =

(
1 − ti ti
−ti 1 + ti

)
and (

1 + ti −ti
ti 1 − ti

)
=

(
1 −it(1 − ti)−1

0 1

)(
(1 − ti)−1 0

0 (1 − ti)

)(
1 0

it(1 − ti)−1 1

)
.

Thus exp(−tX)(0) = −it(1 − it)−1Xγℓ is in B if
∣∣it(1 − ti)−1

∣∣ < 1 or Im(t) > −1
2

and

−π
(
µ
(
exp(−tX), 0

))
= log(1 − ti)π

(
exp(Hγℓ)

)
is analytic in the half-plane Im(t) > −1

2
. Moreover, in this region∣∣∣ψΛ

(
k exp(tX)nmγ̃m−1k−1

)∣∣∣ ⩽ c
(
1 + |t|

)n|1 − ti|λ(Hγℓ
)

⩽ c
(
1 + |t|

)−2

if λ(Hλℓ) ≪ 0. n is a positive integer. Here and in what follows c is used as a generic symbol
for a positive constant. Cauchy’s integral theorem may now be applied.

Suppose γ̃ is singular. γ̃ belongs to the centralizer of at least one Cartan subgroup j of
g; j may be taken such that θ(j) = j. Let gγ be the centralizer of γ̃ in g, then θ(gγ) = gγ.
Consequently gγ is the direct sum of an abelian algebra a and a semi-simple algebra g1.
Let j1 be a fundamental Cartan subalgebra of g1 ([2(g)], p. 236). Then j1 + a is a Cartan
sub-algebra of g which may be supposed to equal j. Let B0 be the connected component of
the centralizer of j in G. Then∫

G/B0

f(g∗) dg∗ =

∫
G/G0

γ

ds0γ

∫
G0

γ/B
0

f
(
(gg0)

∗) dg∗0
=

∫
G/G0

γ

ds0γ

∫
G1/B1

f
(
(gg1)

∗) dg∗1
if G1 is the connected group with Lie algebra g1 and B1 = B0 ∩ G1. The measures are so
normalized that dg = dg∗ db and dg0γ = dg∗0 db, db being the Haar measure on B0. Moreover

G0
γ is the homomorphic image of G1 × A where A is the connected group with Lie algebra a.

The measure on G0
γ is so normalized that∫

G0
γ

f(g0γ) dg
0
γ =

∫
G1×A

f(g1a) dg1 da.

Finally let B0
1 be the connected component of the identity in B1 and write the above integral

as

[B1 : B0
1 ]−1

∫
G/G0

γ

ds0γ

∫
G0

1/B
0
1

f
(
(gg1)

∗) dg∗1.
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Choose γ̃1 close to the identity in B so that γ̃γ̃1 is regular then

(4) [B1 : B0
1 ]

∫
G/B0

f(gγ̃γ̃1g
−1) dg∗ =

∫
G/G0

γ

ds0γ

∫
G1/B0

1

f(gγ̃g1γ̃1g
−1
1 g−1) dg∗1.

If G1 is any connected semi-simple group with finite center, B1 the centralizer of a Cartan

subalgebra j1 of g1, and m(g̃1) a function on G̃1, the universal covering group of G1, then a

function can be defined on B̃1 by

ϕm(γ̃1) = ∆1(γ̃1)

∫
G0

1/B
0
1

m(g1γ̃1g
−1
1 ) dg∗1

when the integral exists. To obtain ∆1(γ̃1) map G̃1 into the simply connected complex
group whose Lie algebra is the complexification of g1; let γ̃1 go into γ1 and set γ1 = exp(H1)
with H1 in the complexification of j1. Then ∆1(γ̃1) = e−ρ1(H1)

∏
α∈P (eα(H1) − 1); P1 is the

set of positive roots with respect to some order on j1 and ρ1 is one-half the sum of the

roots in P1. For every α ∈ P1, Hα defines an invariant differential operator Dα on B̃1; set
D1 =

∏
α∈P Dα. Harish-Chandra [2(h)] has shown that if m(g̃1) is infinitely differentiable

with compact support then
lim
γ1→1

D1ϕm(γ̃1) = am(1).

a is a constant independent of m and a ̸= 0 if j1 is fundamental. To be more precise ϕm(γ̃1)
is defined if γ̃1 is regular and the limit is taken on the set of regular elements.

Apply this result formally to equation (4) with f(g) = dΛψΛ(g) and m(g̃1) = dΛψΛ(g̃γ̃g̃1g
−1).

If B0 is not compact the left side is 0 and one obtains∫
G/G0

γ

dΛψΛ(gγ̃g−1) ds0γ = 0,

so that χ(γ) = 0 if γ has no fixed point in B. If B0 is compact it may be supposed that j = h
and that j1 = j ∩ g1. In this case B1 is connected. If γ̃γ̃1 = exp(H +H1) then

a

∫
G/G0

γ

dΛψΛ(gγ̃g−1) ds0γ

= lim
H1→0

D1


∏

α∈P
α/∈P1

(
e

1
2
α(H+H1) − e−

1
2
α(H+H1)

)
−1∑

s∈w

ϵ(s)esΛ(H+H1)+sρ(H+H1)

,
if the total measure of B0 is 1 as will be assumed and if an order on j1 is so chosen that the
positive roots are just the positive roots of j whose root vectors lie in g1,c. The denominator
is regular at H1 = 0 and is invariant under the Weyl group of g1,c. Thus, as on page 159 of
[2(h)] the right side equals∏

α∈P
α/∈P

(
e

1
2
α(H) − e−

1
2
α(H)

)
−1

lim
H1→0

D1

{∑
s

ϵ(s)esΛ(H+H1)+sρ(H+H1)

}
.
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The second term equals

ω1

∑
w1/w

ϵ(s)
∏
α∈P1

(
sΛ(Hα) + sρ(Hα)

)
esΛ(H)+sρ(H);

w1 is the Weyl group of kc ∩ g1,c and ω1 is its order. The sum is over a set of representatives
of cosets of w1 in w. It remains to calculate a. Since, as is easily seen, every non-compact
positive root of g1,c is totally positive, G1 is locally isomorphic to the product of a compact
group and the group of pseudo-conformal mappings of a bounded symmetric domain Bγ . Λ1

and ψΛ1(g̃1) may be defined in the same manner as Λ and ψΛ(g); the compact component
causes no difficulty [2(c)]. Apply the limit formula of Harish-Chandra to dΛ1ψΛ1(g̃1) to obtain

adΛ1 = lim
H1→0

D1

∑
s∈w1

ϵ(s)esΛ1(H1)+sρ1(H1)


= ω1

∏
α∈P1

(
Λ1(Hα) + ρ1(Hα)

)
if the total measures of B0

1 is 1 as may be assumed. If the measure on G1 is normalized in
the same way as that on G, then

dΛ1 = (−1)bγ/v(Bγ)
∏
α∈P1

((
Λ1(Hα) + ρ1(Hα)

)
/ρ1(Hα)

)
if bγ is equal to the complex dimension of Bγ. The constant a is now easily determined.
Setting P1 = Pγ, ρ1 = ργ, and w1 = wγ the value of (3) is found to be

(−1)bγ

v(Bγ)

∑
wγ/w

ϵ(s)
∏

α∈Pγ

(
sΛ(Hα) + sρ(Hα)

)
esΛ(H)+sρ(H)

[Gγ : G0
γ]

−1
∏

α∈Pγ
ργ(Hα)

∏
α∈P
α/∈Pγ

(
e

1
2
α(H) − e−

1
2
α(H)

)
and (2) is established. It should be observed that since the total measure of both B0 and B0

1

must be 1 the measure on A, and thus on G0
γ, is completely determined.

6. The prime task of this section is to justify the above application of the limit formula of
Harish-Chandra. The truth of the other unproved statements above will become evident in
the course of the justification so there is no need to mention them explicitly again. G will

now denote a connected semi-simple group with finite centre and G̃ will denote its universal
covering group. All the other standard symbols will also refer to G.

In particular ap will be a maximal abelian subalgebra of p. If {Hi} is a basis for ap and

if g̃ = k̃1 exp(H)k̃2 with H =
∑s

i=1 tiHi set ti = ti(g). The family
(
ti(g)

)
is not uniquely

determined by g. Let ω(k), for k ∈ K, be the determinant of the restriction of I − Ad(k) to
p; then

Lemma 3. There are positive constants ϵ, c, and q such that

exp

 s∑
i=1

∣∣ti(gkg−1)
∣∣ ⩾ c

∣∣ω(k)
∣∣q exp

ϵ s∑
i=1

∣∣ti(g)
∣∣.
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If A = (Aij) is any matrix set ∥A∥ =
(∑

i,j|Aij|2
)1/2

and if g ∈ G let ∥g∥ =
∥∥Ad(g)

∥∥
where Ad(g) is the matrix of the adjoint of g with respect to a basis of g orthonormal with
respect to the inner product −B

(
X, θ(Y )

)
. It is easy to verify that

(5) c1 exp

β1 s∑
i=1

∣∣ti(g)
∣∣ ⩾ ∥g∥ ⩾ c2 exp

β2 s∑
i=1

∣∣ti(g)
∣∣

for some positive constants c1, c2, β1, and β2. Now it is sufficient to verify the lemma
for g = a = exp(H). If Ad(k) = (sij) with respect to a basis which diagonalizes ap then
∥aka−1∥2 =

∑
i,j e

λij(H)s2ij. The λij are linear functions on ap. For a fixed k with ω(k) ̸= 0

this must approach infinity with
∑s

i=1|ti| ([2(h)], p. 743). Let S(H) be the set of pairs (ij)
for which λij(H) > 0 then ∑

(ij)∈S(H)

s2ij ̸= 0

unless ω(k) = 0. Moreover, for some small positive number ϵ(H), (ij) ∈ S(H) implies
λij(H) > 3ϵ(H)

∑s
i=1|ti|. Let M =

{
H =

∑s
i=1 tiHi

∣∣ ∑s
i=1|ti| = 1

}
. If H is in M there is a

neighbourhood U(H) of H in M such that if H ′ is in U(H) and t > 0 then

∥∥exp(tH ′)k exp(−tH ′)
∥∥2 ⩾ exp

ϵ(H)t
s∑
i=1

|t′i|

 ∑
(ij)∈S(H)

s2ij

.
Since

∑
(ij)∈S(H) s

2
ij vanishes only when ω(k) vanishes the theorem of  Lojasiewicz [4] implies

that there are positive constants c(H) and q(H) such that ∑
(ij)∈S(H)

s2ij

1/2

⩾ c(H)
∣∣ω(k)

∣∣q(H)

for all k. All that is left is to observe that M is compact.

Suppose γ̃ is a semi-simple element of G̃. Define Gγ , G
0
γ , G1, and so on, as before. It is no

longer necessary, however, to suppose that j1 is fundamental. Then

[B1 : B0
1 ]

∫
G/B0

f(g∗) dg∗ =

∫
G/G0

γ

ds0γ

∫
G1/B0

1

f
(
(gg1)

∗) dg∗1.
If ∆1(γ̃1) and D1 are defined as above we are to show that

(6)

lim
γ1→1

D1∆1(γ̃1)

∫
G/G0

γ

ds0γ

∫
G1/B0

1

(gγ̃g1γ̃1g
−1
1 g−1) dg∗1

= a

∫
G/G0

γ

ψ(gγ̃g−1) ds0γ.

γ̃1 is chosen so that γ̃γ̃1 is regular and the limit is taken in the manner previously indicated.
Of course it will be necessary to impose some conditions on the function ψ. If ψ is infinitely
differentiable with compact support then for γ̃1 in some compact neighbourhood of the
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identity the inner integral on the left, a function on G/G0
γ, vanishes outside some fixed

compact set U ([2(h)], Thm. 1). Moreover

D1∆1(γ̃1)

∫
G1/B0

1

ψ(gγ̃g1γ̃1g
−1
1 g−1) dg∗1

converges uniformly on U to aψ(gγ̃g−1) ([2(h)], Thms. 2 and 4). This shows the validity
of (6) for functions with compact support. To establish it for another function ψ it would be
sufficient to show that for any ϵ > 0 there is a sequence

{
ψi(g̃)

}
of infinitely differentiable

functions with compact support such that

(i) lim
i→∞

D1∆1(γ̃1)

∫
G/B0

ψi(gγ̃γ̃1g
−1) dg∗ = D1∆1(γ̃1)

∫
G/B0

ψ(gγ̃γ̃1g
−1) dg∗

uniformly in γ̃1 and

(ii) lim
i→∞

∫
G/G0

γ

ψi(gγ̃g
−1) ds0γ =

∫
G/G0

γ

ψ(gγ̃g−1) ds0γ.

γ̃1 is, of course, to lie in a fixed compact neighbourhood of the identity and be such that γ̃γ̃1
is regular.

In order to establish the existence of {ψi} it is sufficient to assume that ψ is infinitely
differentiable and that there is a sufficiently large constant α such that, for any left-invariant

differential operator D on G̃,
∣∣Dψ(g̃)

∣∣ ⩽ c(D)∥g∥−α.
Once it has been verified that this condition is satisfied by ψΛ(g̃) when λ is real and

λ(Hγi) ≪ 0 there will no longer be any need to refer specifically to this function. For

convenience, if X ∈ g we denote the differential operator d
dt
f
(
g̃ exp(tX)

)∣∣∣
t=0

by X. It may

be supposed that D =
∏k

i=1Xi so that

DψΛ(g̃) = D
{(
ζ(g)ϕ0, ϕ0

)
eλ(Γ(g̃))

}
=
∑
σ

Dσ′
(
ζ(g)ϕ0, ϕ0

)
Dσe

λ(Γ(g));

σ runs over the subsets of {1, . . . , k} and Dσ =
∏

i∈σXi with the order of the Xi’s left

unchanged. σ′ is the complement of σ. Now Dσ′
(
ζ(g)ϕ0, ϕ0

)
=
(
ζ(g)

∏
i∈σ′ ζ(Xi)ϕ0, ϕ0

)
, so

that there is no doubt that ∣∣∣Dσ′
(
ζ(g)ϕ0, ϕ0

)∣∣∣ ⩽ c(D′
σ)∥g∥α1

with some constant α1. To find Dσe
λ(Γ(g̃)) we must differentiate

exp

λ
Γ

g̃∏
i∈σ

exp(tiXi)





with respect to each of the variables and evaluate the result at the origin. But

Γ

g̃∏
i∈σ

exp(tiXi)

 = −π

µ
∏′

i∈σ

exp(−tiXi)g
−1, 0


,
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the prime indicating that the order of the factors is reversed, and this equals

−π
(
µ(g̃−1, 0)

)
− π

µ
∏′

i∈σ

exp(−tiXi), g
−1(0)


.

There is an open neighbourhood U of the identity in Gc and an open neighbourhood V of B,
the closure of B, such that h ∈ U implies h−1(V ) ⊆ p+. Consequently µ(h−1, z) is defined
and analytic on U × V . So is π

(
µ(h−1, z)

)
and its derivatives at the identity are bounded

functions on B. Thus ∣∣∣Dσe
λ(Γ(g̃))

∣∣∣ ⩽ c(Dσ)
∣∣∣eλ(Γ(g̃))∣∣∣;

but
∣∣∣eλ(Γ(g̃))∣∣∣ ⩽ c(λ) exp

(∑s
i=1

∣∣ti(g)
∣∣λ(Hγi)

)
([2(d)], p. 600). Thus, if λ(Hγi) ≪ 0, i =

1, . . . , s, ∣∣∣Dσe
λ(Γ(g̃))

∣∣∣ ⩽ c(Dσ) exp

−α2

s∑
i=1

∣∣ti(g)
∣∣

with α2 large and positive. These remarks and formula (5) show that the assumption is
satisfied.

We shall need a non-decreasing sequence
{
ϕi(g̃)

}
of infinitely differentiable functions

on G̃ with compact support satisfying conditions: (α) limi→∞ ϕi(g̃) = 1, (β) there is a non-

decreasing sequence {Ui} of open sets which exhausts G̃ such that ϕi(g̃) ≡ 1 on Ui, (γ) if D

is a left-invariant differential operator on G̃ then
∣∣Dϕi(g̃)

∣∣ ⩽ c(D) for all i and g̃. We write,

after Iwasawa, G̃ = KHN . If {Xi} is a basis for g and if (aij) is the matrix of Ad(hn) with
respect to this basis then

Xif(k̃hn) =
∑
j

aji
d

dt
f
(
k̃ exp(tXj)hn

)
=
∑
j

qjif(k̃hn;Yj, Zj)

if Xj = Yj + Zj, Yj ∈ k and Zj ∈ h + n. If D1 is a left-invariant differential on K̃ and D2 a
right-invariant differential operator on HN then f(g̃;D1, D2) is the result of the successive

applications of these two operators to f considered as a function on K̃ ×HN . In particular,

f(k̃hn; 1, Zj) =
d

dt
f(k̃hn;Di

1, D
i
2)

∣∣∣∣
t=0

.

Iterating we obtain

Df(k̃hn) =
∑
j

gi(hn)f(k̃hn;Di
1, D

i
2);

gi(hn) is a polynomial in the coefficients of Ad(hn). If X ∈ h + n and X = X1 +X2, X1 ∈ h,
X2 ∈ n, then

d

dt
f
(
exp(tX)hn

)
=

d

dt
f
(
exp(tX1)hn

)
+
d

dt
f
(
h exp

(
th−1(X2)

)
n
)
.
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Consequently

Df(k̃hn) =
∑
i

gi(hn, h
−1)f(k̃hn;Di

1, D
i
2, D

i
3);

Di
1 acts on K̃, Di

2 on H, and Di
3 on N . Moreover gi(hn, h

−1) is a polynomial in the
coefficients of Ad(hn) and Ad(h−1). The functions ϕi(g̃) are to be constructed as products

ϕi(k̃hn) = ϕ1
i (k̃)ϕ2

i (h)ϕ3
i (n). Since the coefficients gj(hn, h

−1) are independent of k̃ we need

only require that
{
ϕ1
i (k̃)

}
satisfy (α), (β), and (γ). This requirement is easily satisfied

since K̃ is the product of a vector group and a compact group. H is a vector group and
the coefficients gi(nh, h

−1) are exponential polynomials on H so we need only require that{
ϕ2
i (h)

}
satisfy (α) and (β) and that the derivatives of ϕ2

i (h) go to zero faster than any
exponential polynomial uniformly in i. N is a closed subset of the space of endomorphisms
of g and the functions gj(hn, h

−1) are polynomials in the coefficients of Ad(n). Thus the
functions ϕ3

i (n) can be obtained as the restriction to N of a sequence of functions on a vector
group which satisfies (α) and (β) and is such that the derivatives of the functions go to zero
faster than any inverse polynomial uniformly in i.

Now set ψi(g̃) = ϕi(g̃)ψ(g̃). To establish (i) it is sufficient to show that for any invariant

differential operator v on B̃

(7) lim
i→∞

v∆(γ̃)

∫
G/B0

ψi(gγ̃g
−1) dg∗ = v∆(γ̃)

∫
G/B0

ψ(gγ̃g−1) dg∗

uniformly in γ̃ on any bounded subset (i.e. a subset with compact closure in B̃) of the set of

regular elements in B̃. ∆(γ̃) is defined in the same manner as ∆1(γ̃1). To obtain (i) from this
relation it is sufficient to set v = D1 and to observe that ∆1(γ̃1)∆

−1(γ̃γ̃1) is regular at γ̃1 = 1.
If M and N are the groups introduced on p. 212 of [2(g)] then

∆(γ̃)

∫
G/B0

ψ(gγ̃g−1) dg∗ = ∆(γ̃)ξ(Xi)
−1(γ̃)

∫
K×M×N

ψ(knmγ̃m−1k−1) dk dmdn.

Let S be a finite set of invariant differential operators on B and let ℓ be the maximum
degree of the operators in S. Let δ belong to S and let D be a left-invariant differential

operator on G̃. Then δ determines in an obvious fashion a left invariant differential operator

on G̃ which will be denoted δ′. Then∣∣∣δ(Dψ(knmγ̃m−1k−1)
)∣∣∣ =

∣∣Ad(km)(δ′)Dψ(knmγ̃m−1k−1)
∣∣

⩽ ∥km∥ℓc(D)∥nmγm−1∥−α

and ∣∣∣δ(Dψ(knmγ̃m−1k−1)
)
− δ
(
Dψi(knmγ̃m

−1k−1)
)∣∣∣ ⩽ ∥km∥ℓc(D)∥nmγm−1∥−α.

Moreover there is an increasing sequence {Vi} of open sets in N ×M which exhaust N ×M ,
so that the left side of the latter inequality is zero if (n,m) ∈ Vi.

Recall that B0 is the connected component of the identity of the centralizer in G of a Cartan
subalgebra j and that θ(j) = j. An examination of the form of the matrices of Ad(mγm−1) and
Ad(n) with respect to a basis which diagonalizes j ∩ p shows that ∥nmγm−1∥ ⩾ ∥mγm−1∥.
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Thus ∥nmγm−1∥−α ⩽ ∥mγm−1∥−α1∥nmγm−1∥−α2 if α1 + α2 = α. Now γ̃ may be written as

γ̃−γ̃+ with γ̃− ∈ B̃ ∩ K̃ and γ̃+ ∈ exp(j ∩ p). Then

∥mγm−1∥ ⩾ ∥γ−1
+ ∥−1∥mγ−m−1∥ ⩾ c

∣∣ω−(γ−)
∣∣q∥γ−1

+ ∥−1∥m∥ϵ.
Here ω−(γ−) is the determinant of the restriction of I − Ad(γ−) to m ∩ p and c, q, and ϵ are
positive constants. Thus

∥km∥ℓ∥nmγm−1∥−α ⩽ c
∣∣ω−(γ−)

∣∣q(α2−α1)∥γ−1
+ ∥α1−α2∥m∥ϵ(α2−α1)+ℓ∥n∥−α2 .

Consequently

(8)

∫
K×M×N

∣∣∣δ(Dψ(knmγ̃m−1k−1)
)∣∣∣ dk dmdn

is at most

c(D)
∣∣ω−(γ−)

∣∣q(α2−α1)∥γ̃−1
+ ∥α1−α2

∫
M

∥m∥ϵ(α2−α1)+ℓ dm

∫
N

∥n∥−α2 dn

and

(9)

∫
K×M×N

∣∣∣δ(Dψ(knmγ̃m−1k−1)
)
− δ
(
Dψi(knmγ̃m

−1k−1)
)∣∣∣ dk dmdn

is at most

c(D)
∣∣ω−(γ−)

∣∣q(α2−α1)∥γ−1
+ ∥α1−α2

∫
V ′
i

∥m∥ϵ(α2−α1)+ℓ∥n∥−α2 dmdn.

Now it can be shown (cf. [2(g)], Cor. 1 to Lemma 6) that the integral over N in (8) converges
if α2 is sufficiently large. Then, fixing α2, we can choose α1 so large that the first integral
converges. Moreover, by the dominated convergence theorem, the integrals in (8) converge to
zero as i approaches infinity. We conclude first of all that

ϕψ(γ̃) = ∆(γ̃)

∫
G/B0

ψ(gγ̃g−1) dg∗

is defined on B̃′ =
{
γ̃ ∈ B̃

∣∣∣ ω−(γ−) ̸= 0
}

and is the uniform limit on compact subsets of B̃′

of the sequence
{
ϕψi

(γ̃)
}

.

There is a finite set {v1, . . . , vw} of invariant differential operators on B̃ such that any
other v, may be written as v =

∑w
j=1 vjuj where the uj are invariant under the Weyl group of

gc ([2(f)], p. 101). For each uj there is a left-invariant and right-invariant differential operator

Dj on G̃ so that ujϕψi(γ̃) = ϕDjψi(γ̃) ([2(h)], p. 155). Then

vϕψi(γ̃) =
w∑
j=1

vjϕDjψi(γ̃).

The right side is a sum of terms of the form

ϕ(γ̃)

∫
K×M×N

δ
(
Dψi(knmγ̃m

−1k−1)
)
dk dmdn.

ϕ(γ̃) is a regular function on B̃; δ is one of a finite set of invariant differential operators on

B̃; and D is a left-invariant and right-invariant differential operator on G̃. As a consequence



THE DIMENSION OF SPACES OF AUTOMORPHIC FORMS 21

of the estimates above the sequence {vϕψi(γ̃)} converges uniformly on compact subsets of B̃′

and it must converge to vϕψ(γ̃). So∣∣vϕψ(γ̃) − vϕψi(γ̃)|⩽|ω−(γ−)
∣∣q(α2−α1)c(v, i)

on any fixed bounded subset of B̃′. Moreover limi→∞ c(v, i) = 0. The proof of (7) can now
be completed by an argument essentially the same as that on pp. 208–211 of [2(g)]. There is
no point in reproducing it. If we show that

(10)

∫
G/G0

γ

ψ(gγ̃g−1) ds0γ

is absolutely convergent then a simple application of the dominated convergence theorem
suffices to establish (ii). Choose a maximal abelian subspace of g1 ∩ p and extend it to a
Cartan subalgebra j1 of g1, then j = j1 + a is a Cartan subalgebra of g and θ(j) = j. We again
introduce the groups M and N . If n is the Lie algebra of N let n1 = n∩ g1 and let N1 be the
connected group with Lie algebra n1. If n2 =

(
I − Ad(γ)

)
n then, according to Lemma 7.0 of

[1], every element of N may be written uniquely in the form exp(Y2)n1 with n1 ∈ N1 and
Y2 ∈ n2. Then if B+ is the connected group with Lie algebra j∩ p every element of G may be
written uniquely as g = k exp(X) exp(Y2)n1b+ with X ∈ m∩ p, m being the Lie algebra of M ,
and b+ ∈ B+ (cf. [2(h)], p. 215). Let ϕ0(n1b+) be a non-negative function on N1B+ such that∫

N1B+

ϕ0(n1b+) dn1 db+ = 1,

and set ϕ(g) =
∥∥exp(X) exp(Y2)

∥∥βϕ0(n1b+) if g = k exp(X) exp(Y2)n1b+. Here β is a suitably
chosen non-negative constant. Then a function may be defined on G/G0

γ by

ϕ(s0γ) =

∫
G0

γ

ϕ(ggγ) dgγ;

s0γ is the coset containing g. We shall show that if β is sufficiently large then ϕ(s0γ) is greater

than some fixed positive constant for all s0γ. It may be assumed that g = k exp(X) exp(Y2).
If Kγ is the connected group with Lie algebra k ∩ gγ and if gu = k′ exp(X ′) exp(Y ′

2)n′
1b

′
+,

u ∈ Kγ, then

ϕ(s0γ) =

∫
Kγ×N1×B+

ϕ(gun1b+) du dn1 db+

=

∫
Kγ

∥∥exp(X ′) exp(Y ′
2)
∥∥βe−2ρ1(log b′+) du.

Suppose f1(z1) and f2(z2) are two non-negative functions of the variables z1 and z2 and z1 and
z2 are subject to some relation. We shall write f1 ≻ f2 if there is a positive constant c and a
non-negative constant β such that cfβ1 (z1) ⩾ f2(z2) for all pairs (z1, z2) satisfying the given
relation. The assertion will be proved if it is shown that

∥∥exp(X ′) exp(Y ′
2)
∥∥ ≻ e2ρ1(log b

′
+). If

H+ ∈ j ∩ p then 2ρ1(H
+) is the trace of the restriction of Ad(H+) to n1.

Since
∥∥exp(X) exp(Y )

∥∥ =
∥∥exp(X ′) exp(Y ′

2)n′
1b

′
+

∥∥ it is easily seen, after choosing a basis

of g which diagonalizes j ∩ p, that
∥∥exp(X) exp(Y )

∥∥ ⩾
∥∥exp(X ′)b′+

∥∥. If a− is a maximal
abelian subalgebra of m ∩ p then a− + (j ∩ p) is a maximum abelian subalgebra ap of p. Let
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X ′ = k−(H−) with H− ∈ a− and k− ∈M ∩K and let b′+ = exp(H+) with H+ ∈ j∩ p. If α is
the restriction of a root to ap then

log
∥∥exp(X)b′+

∥∥ ⩾
∣∣α(H− +H+)

∣∣;
since the restrictions of the roots to ap span the space of linear functions on ap, there is a
constant c such that for any linear function λ

c∥λ∥ log
∥∥exp(X ′)b′+

∥∥ ⩾
∣∣λ(H− +H+)

∣∣.
Since a− ∩ (j ∩ p) = {0} it is now clear that∥∥exp(X) exp(Y2)

∥∥ ≻ ∥b′+∥ and
∥∥exp(X) exp(Y2)

∥∥ ≻
∥∥exp(X ′)

∥∥.
From this one easily deduces that

∥∥exp(X) exp(Y2)
∥∥ ≻

∥∥exp(Y ′
2)n′

1

∥∥. If n′
1 = exp(Y ′

1)
and exp(Y ′

2) exp(Y ′
1) = exp(Y ′) with Y ′

1 ∈ n1 and Y ′ ∈ n then the four variables (Y ′
1 , Y

′
2),

Y ′,
(

Ad
(
exp(Y ′

1)
)
,Ad

(
exp(Y ′

2)
))

and Ad
(
exp(Y ′)

)
are polynomial functions of each other

(cf.[2(h)], pp. 737–738 and the reference cited there.) Consequently∥∥exp(Y ′)
∥∥ ≻

∥∥exp(Y ′
1)
∥∥ and

∥∥exp(Y ′)
∥∥ ≻

∥∥exp(Y ′
2)
∥∥,

so that ∥∥exp(X) exp(Y2)
∥∥ ≻

∥∥exp(Y ′
1)
∥∥ and

∥∥exp(X) exp(Y2)
∥∥ ≻

∥∥exp(Y ′
2)
∥∥.

However, if n′
1b

′
+u

−1 = u′b−1
+ n−1

1 then

k exp(X) exp(Y2)n1b+ = k′ exp(X ′) exp(Y ′
2)u′

and the argument may be reversed. Consequently
∥∥exp(X ′) exp(Y ′)

∥∥ ≻ ∥b′+∥ ≻ e2ρ1(log b
′
+).

The absolute convergence of (10) will be established if it is shown that∫
G

∣∣ψ(gγ̃g−1)
∣∣ϕ(g) dg

converges. However this integral equals∫
K×M×N×B+

∣∣ψ(kmnγ̃n−1m−1k−1)
∣∣ϕ(kmnb+) dk dmdn db+.

If n = exp(Y2)n1 as before then dn = dY2 dn1 where dY2 is the Euclidean measure on n2 and
this integral equals∫

K×M×n2

∣∣∣ψ(km exp(Y2)γ̃ exp(−Y2)m−1k−1
)∣∣∣ ∥∥m exp(Y2)

∥∥βdk dmdY2.

The integrand is less than or equal to

c
∥∥∥(m exp(Y2)γ exp(−Y2)γ−1m−1

)
mγm−1

∥∥∥−α∥m∥β
∥∥exp(Y2)

∥∥β
which is at most

c
∥∥exp(Y2)γ exp(−Y2)γ−1

∥∥−α1∥m∥2α1+β∥mγm−1∥−α2
∥∥exp(Y2)

∥∥β
if α1 + α2 = α, α1, α2 ⩾ 0. It follows from Lemma 8 of [2(h)] that ∥mγm−1∥ ≻ ∥m∥ and
from Lemma 2 of that paper that∥∥exp(Y2)γ exp(−Y2)γ−1

∥∥ ≻ 1 + ∥Y2∥.
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Thus if α is sufficiently large the integrand is less than or equal to a multiple of(
1 + ∥Y2∥

)−β1∥m∥−β2

with β1 and β2 large. Consequently the integral converges. It should be observed that γ̃ is
fixed so that uniform estimates like that of Lemma 3 are not necessary.

Princeton University and the Institute for Advanced Study.
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