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I. EINLEITUNG

Obwohl der Zweck dieser Arbeit ist, einige elementare und anschauliche Begriffe ein-
zuführen, und ihre grundlegenden geometrischen Eigenschaften zu untersuchen, liegt im
Hintergrund ein ferneres Ziel, ohne das die vorliegenden Untersuchungen vielleicht amüsant
wären, aber nichts weiter. Die Physiker haben in dem Begriff der Universalität und die
dynamische Erklärung ihrer Ursprünge den Mathematikern ein großartiges Problem ge-
schenkt, denn es fehlt dieser Erklärung nicht nur das nötige technische Fundament, sondern
in mancher Hinsicht jedes strenge mathematische Verständnis.
Obwohl sich die Universalität auf weiten Gebieten der Physik und der Technologie

zeigt, treten die wesentlichen Probleme schon bei reinen mathematischen Modellen der
statistischen Mechanik auf. In dieser Einleitung handelt es sich nur um die Perkolation, wo
man fast sofort auf diese Probleme, und zwar in reiner Form, stößt.
Wir betrachten ein Schachbrett, jedoch nicht notwendigerweise mit 8 × 8 Quadraten,

sondern mit n× n, wobei n eine beliebige ganze Zahl ist. Ein Zustand s auf dem Brett ist
eine Färbung der Quadrate, wobei jedes Quadrat entweder schwarz oder weiß angestrichen
wird. Dieser Zustand läßt eine horizontale Überquerung zu, wenn es möglich ist, an der
linken Seite auf einem schwarzen Quadrat anfangend, zu der gegenüberliegenden Seite, der
rechten, überzugehen, indem man auf schwarzen Quadraten bleibt, und von einem Quadrat
zu einem anderen nur dann übertritt, wenn die beiden gleichfarbig sind und aneinander
längs einer gemeinsamen Seite angrenzen.
Es sei 0 6 p 6 1 eine reelle Zahl. Wir führen eine Wahrscheinlichkeit π auf die Menge

aller Zustände ein, indem wir π(s) gleich pa(1 − p)b setzen, wenn der Zustand s aus a
schwarzfarbigen Quadraten und b weißfarbigen Quadraten besteht. Die Wahrscheinlichkeit
π
(n)
h (p) einer horizontalen Überquerung ist dann die Summe der Wahrscheinlichkeiten π(s)
derjenigen Zustände, die eine horizontale Überquerung zulassen. Die folgende Aussage ist
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ein Hauptsatz der mathematischen Theorie, den wir Kesten und anderen Mathematikern
verdanken ([1])

Satz. Es existiert eine Zahl 0 < pc < 1, die kritische Wahrscheinlichkeit, so daß:
(1) wenn p < pc, gilt

lim
n→∞

π
(n)
h (p) = 0;

(2) wenn p > pc, gilt
lim
n→∞

π
(n)
h (p) = 1;

(3) wenn p = pc, gilt

0 < lim
n→∞

π
(n)
h (p) 6 lim

n→∞
π
(n)
h (p) < 1

Die erste Frage, die sich stellt, und die wir zur Zeit nicht beantworten können, ist ob

(1.1) lim
n→∞

π
(n)
h (pc)

existiert. Es sei A(n) die Ableitung der Funktion π(n) von p am Punkt pc. Eine zweite Frage
ist, ob es eine Konstante ν gibt, so daß

(1.2) lim
n→∞

A(n)

n1/ν

existiert. Der Grund dieser Frage liegt nicht auf der Hand. Sie ist von der Erfahrung
mit allerlei physikalischen und mathematischen Untersuchungen, sowie von numerischer
Forschung der Perkolation selbst, nahegelegt.
Man erwartet eine bejahende Antwort nicht allein auf diese zwei Fragen, sondern auch auf

eine dritte, die aber nur einen Sinn hat, wenn die Grenzwerte (1.1) und (1.2) existieren. Wir
haben der Einfachheit halber nur die Perkolation auf einem rechteckigen Gitter eingeführt,
und die Wahrscheinlichkeit eines Zustandes durch eine möglichst einfache Formel definiert.
Der Satz gilt jedoch für jede vernünftige Definition der zwei-dimensionalen Perkolation, und
wir können erwarten, daß die Antwort auf die zwei Fragen (1.1) und (1.2) auch allgemein
positiv sein wird. Die dritte Frage wäre dann, ob ν unabhängig vom Modell ist, und das
wird auch erwartet. Obwohl wir diese Fragen eine nach der anderen gestellt haben, als ob
eine beantwortet werden muß, bevor wir die nächste stellen könnten, liegt es nahe, sie alle
gleichzeitig zu behandeln. Die Renormierungsgruppenerklärung dieses Phänomens verlangt
sogar, daß wir auf diese Weise verfahren.
Diese Erklärung ist dynamisch, und bezieht sich auf einen Raum, eine Abbildung dieses

Raumes in sich selbst, und einen Fixpunkt der Abbildung. Leider erweisen sich gewöhnli-
cherweise diese Gegenstände als schlüpfrig, so daß sie kaum mathematisch anfaßbar sind.
Insbesondere wird der Raum, der, wie ein Unkundiger denken könnte, allem zugrunde
liegt, kaum erwähnt. Der Raum muß allerdings unendlich-dimensional sein. In dieser Arbeit
werden Gegenstände dieser Art eingeführt, die als endlich-dimensionale Annäherungen zu
dem gesuchten dynamischen System dienen sollten. Ich leiste jedoch keine Gewähr, daß
sie sich als zweckmäßig herausstellen werden. Die Probleme der strengen mathematischen
Begründung der Renormierungsgrupperklärung können nicht auf Anhieb gelöst werden. Sie
müssen von vielen Seiten angegriffen werden. Außerdem überzeugt man sich nur mit Mühe,
daß die eingeführten Begriffe den Tatsachen wirklich entsprechen. In dieser Hinsicht sind
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die numerischen Untersuchungen der Arbeit ([2]) ermunternd, besonders weil sie Eigen-
schaften der Grenzwerte limπ(n)(pc) ans Licht gebracht haben, die vorher, wenn geahnt,
kaum beachtet wurden. Diese Eigenschaften werden zur Zeit von mir und meinen Kollegen,
Philippe Pouliot und Yvan Saint-Aubin in Montreal, untersucht. Die entsprechenden nu-
merischen Unterlagen, sowie die Ergebnisse anderer numerischen Untersuchungen, die die
Zweckmäßigkeit der in der vorliegenden Arbeit angegebenen Definitionen belegen, hoffen
wir innerhalb kurzer Zeit zu veröffentlichen.
Trotz solcher großen Ziele ist mein gegenwärtiger Zweck viel bescheidender, eine vielleicht

nützliche Dualität der endlichen Modelle zu begründen. Ich möchte dennoch, bevor wir uns
diesen endlichen Modellen zuwenden, erklären, in welchem Sinn sie eventuell alle Fragen
beantworten.
Im Abschnitt II führen wir eine Aufteilung des Rands eines Quadrats Q der Seitenlänge

1 in 4` Intervalle der gleichen Länge ein. Die Menge dieser Intervalle nennen wir A`. Es sei
n eine ganze Zahl, die durch ` teilbar ist, und betrachten ein n× n-Brett. Die Quadrate,
die entlang einer Seite liegen, sind dann natürlicherweise in ` Mengen mit n

`
Elementen

aufgeteilt. Also ist jedem der 4` Intervalle eine Menge von n
`
Quadraten zugeordnet. Zwei

dieser Mengen können sich nur an den Ecken schneiden. Es sei Mα, die dem Intervall α
zugeordnete Menge. Wir ordnen jedem Zustand s eine Funktion ys auf An ×An mit Werten
aus {0, 1} zu. Es ist ys(α, α) = 1 für jedes α, und ys(α, β) ist 0, wenn α und β benachbart
sind. Es ist sonst ys(α, β) = 1, dann und nur dann, wenn man aus einem schwarzen Quadrat
inMα ein schwarzes Quadrat inMβ erreichen kann, ohne die oben beschriebenen Spielregeln
zu verletzen. Man tritt also von einem schwarzen Quadrat zu einem längs einer gemeinsamen
Seite benachbarten schwarzen Quadrat und bricht sich auf diese Weise von Quadrat zu
Quadrat eine Bahn.
Es sei p = pc und sei π die entsprechende Wahrscheinlichkeit auf die Menge der Zustände.

Wir definieren eine Wahrscheinlichkeit πn
` auf die Menge Y` der möglichen Funktionen,

indem wir setzen,
πn
` (y) =

∑
ys=y

π(s).

Wir können erwarten, daß
(1.3) lim

n→∞
πn
` (y) = η`(y)

für jedes y existiert. Auf diese Weise erhalten wir ein Wahrscheinlichkeitsmaß η` im Raum
Π`, der im nächsten Abschnitt eingeführt wird. Es ist klar, daß ηk = Γ`

k(η`), wenn Γ`
k die in

demselben Abschnitt eingeführten Vergröberung ist.
Wir werden auch Abbildungen Θ` definieren, und ein zentrales Problem, das in dieser

Arbeit nicht berührt wird, ist, zu zeigen, daß Θ` einen Fixpunkt ν` in Π` besitzt. Die Punkte
ν` sollen die Punkte η` annähern, und zwar in dem Sinn, daß für jedes k
(1.4) lim

`→∞
Γ`
k(ν`) = ηk

ist. Es ist in dieser Gleichung vorausgesetzt, daß ` nur durch k teilbare Werte annimmt. Da
diese Gleichung für jedes Modell gelten sollen, werden man daraus schließen können, daß
die Maße ηk unabhängig vom Modell sind. Man will die Gleichung (1.4) sogar verwenden,
um die Existenz der Grenzwerte in (1.3) zu zeigen.
Die Gültigkeit der Gleichung (1.2) wird dann aus der Eigenschaften der Tangential-

abbildungen dΘ` am Punkt ν` abgeleitet werden. Diese sind jedoch zur Zeit alle nur
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verwegenen Hoffnungen, und ich begnüge mich in der vorliegenden Arbeit mit dem Beweis
einiger einfacher formeller Eigenschaften der Abbildungen Θ`. Ab jetzt wird nicht mehr
von der wahren Perkolation die Rede sein, nur von den endlichen Modellen. Insbesondere
bezieht sich die ganze Zahl n nicht mehr auf das Schachbrett.
Wenn den in dieser Arbeit dargelegten Ideen alle Klarheit nicht mangelt, ist es dank

der vielen Besprechungen mit Claude Pichet, Philippe Pouliot und Yvan Saint-Aubin in
Montreal. Ich danke ihnen.

II. BESCHREIBUNG DER MODELLE

II.A. Die Mengen und die Wahrscheinlichkeiten. Jeder natürlicher Zahl ` ist eins
unserer Modelle zugeordnet. Die grundlegenden Gegenstände im Modell sind eine endliche
Menge Y` und eine geschlossene Untermenge Π` der Menge aller Wahrscheinlichkeitsmaße
auf Y`, sowie Abbildungen Θ` = Θ

(n)
` von Π` in sich selbst. Die Zahl n ist auch eine

natürliche Zahl, die wir nicht jedesmal in der Bezeichnung explizit erwähnen, damit Platz
für andere Indizes übrigbleibt. Es ist jedoch nicht die Zahl n der Einleitung. Zum Zweck der
Dualität, der diese Arbeit hauptsächlich gewidmet ist, führt man eine zweite Abbildung Θ∗

`

ein. Das Hauptziel ist in der Tat, zu zeigen, daß diese Abbildungen wirklich dual sind. Wir
nehmen allerdings gleichzeitig die Gelegenheit wahr, einige zu weiteren Untersuchungen
nötige Definitionen anzugeben.
Es sei Q ein Quadrat der Seitenlänge 1. Wir teilen jede Seite in ` Intervalle der gleichen

Länge 1
`
auf, um, da das Quadrat vier Seiten hat, eine Menge A` zu bekommen mit 4`

Elementen. Diese Intervalle nennen wir Strecken. Ein Element aus der Menge Y` wird
eine Menge von Verbindungen zwischen Paaren von Strecken sein, also eine Funktion auf
A` × A`, die nur die Werte 0 und 1 nimmt. Bevor wir die Bedingungen beschreiben, die
diesen Funktionen auferlegt werden, führen wir einige Terminologie ein.
Es sei R der Rand des Quadrats Q. Auf R sind zwei Orientierungen möglich. Eine Reihe

α1, . . . , αr heißt zyklisch, falls diese Strecken alle verschieden sind, und man ihnen in der
gegebenen Reihenfolge begegnet, wenn man den Rand in der durch eine der Orientierungen,
gleich welche gegebenen, Richtung durchläuft. Ein offenes Intervall (α, β) ist die Menge aller
Strecke außer α und β selbst, denen man begegnet, wenn man der Rand in einer gegebenen
Richtung von α bis β durchläuft. Das Intervall ist folglich nicht eindeutig bestimmt. Um
eins der zwei möglichen Intervalle zu bestimmen, kann man eine Strecke angeben, die es
enthält. Ein geschlossenes Intervall [α, β] wird ähnlich definiert, nur daß es auch α und β
enthält. Halboffene Intervalle sind auch möglich.

Definition II.A.1. Die Menge Y` ist die Menge aller Funktionen y auf A`×A` mit Werten
aus {0, 1}, die die folgenden Bedingungen erfüllen:
(1) Für jedes α ∈ A` gilt y(α, α) = 1.
(2) Für alle α und β gilt y(α, β) = y(β, α).
(3) Wenn α und β benachbart sind, gilt y(α, β) = 0.
(4) Wenn α, β, γ, δ zyklisch ist, α und β nicht benachbart sind, und wenn darüber

hinaus y(α, γ) = y(β, δ) = 1, dann gilt y(α, β) = 1.

Die Bedingung (3) ist etwas künstlich, aber ohne sie wäre die dynamischen Eigenschaften
der Abbildung Θ` nicht die erwünschten. Die Bedingung (4) hat einen offensichtlichen
geometrischen Ursprung in der zwei-dimensionalen Perkolation. Zwei Wege müssen sich
kreuzen, wenn einer von α nach γ führt, und der andere von β nach δ. Wenn man alle
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möglichen Permutationen der Reihe α, β, γ, δ in Betracht zieht, folgert man leicht aus der
Bedingung (4) daß jedes nicht benachbarte Paar aus der Reihe verbunden ist.
Als erste Begründung dieser Definition ist gezeigt worden, daß die unten eingeführte

Abbildung Θ
(2)
2 einen Fixpunkt ν2 besitzt, der nicht allzuweit vom Punkt η2 liegt. Die dazu

nötigen numerischen Untersuchungen sind jedoch etwas umständlich, und werden in dieser
Arbeit nicht besprochen werden.
Es sei Π(Y`) die Menge aller Wahrscheinlichkeitsmaße auf Y`. Diese Menge ist allerdings

ein topologischer Raum. Das dynamische System, das die Renormalisierungsgruppe für die
Perkolation in einem endlich-dimensionalen Raum annähernd nachahmen sollte, will man
zuerst mittels einer Abbildung auf den ganzen Raum Π(Y`) definieren. Aber diese allzu
einfache Definition erweist sich als nicht zweckmäßig, weil die Folgen der wichtigen FKG-
Ungleichung dabei verlorengehen. Um diese zu behalten, schränken wir uns vom Anfang
an auf einen Unterraum Π` von Π(Y`) ein, und prüfen nach, daß unsere Abbildungen den
Rahmen dieses Raumes nicht sprengen.
Die Menge Y` ist geordnet. Es gilt y > y′, wenn für jedes Paar α und β gilt, y(α, β) >

y′(α, β). Eine Funktion f auf Y` heißt zunehmend, wenn f(y) > f(y′) ist, falls y > y′ ist.

Definition II.A.2. Der topologische Raum Π` ist der Unterraum aller Wahrscheinlich-
keitsmaße π aus Π(Y`) der Art, daß für alle zunehmenden Funktionen f und g auf Y`

gilt

(2.a.1)
∫

fg dπ >
∫

f dπ

∫
g dπ.

Es ist klar, daß wenn die Bedingung (2.a.1) für zunehmende Funktionen gilt, dann gilt sie
auch für abnehmende Funktionen. Außerdem, wenn a und b zwei Konstante mit demselben
Vorzeichen sind und die Bedingung für f und g gilt, dann gilt sie auch für f + a und g
sowie für af und bg.
Der Raum Π` enthält zwei einfach definierbare Maße. Es seien y+ die Funktion, für die

y+(α, β) = 1 für jedes nicht benachbarte Paar, und y− die Funktion, für die y−(α, β) = 0
ist, wenn α 6= β. Das Maß π+ ist auf y+ konzentriert, und π− auf y−.

Hilfssatz II.A.3. Es seien 0 6 α, β 6 1 und α+ β = 1. Wenn π in Π` liegt, dann liegen
απ+ + βπ und απ− + βπ auch in Π`.

Es sei ν = απ± + βπ. Die Differenz∫
fg dν −

∫
f dν

∫
g dν

ist größer oder gleich der Summe der folgenden Ausdrücke

α

∫
f dπ±

∫
g dπ± + β

∫
f dπ

∫
g dπ

und

−α2

∫
f dπ±

∫
g dπ± − αβ

∫
f dπ

∫
g dπ± − αβ

∫
f dπ

∫
g dπ± − β2

∫
f dπ

∫
g dπ

Weil α− α2 = β − β2 = αβ ist, ist die Summe gleich αβ mal

f(y±)g(y±)− f(y±)

∫
g dπ − g(y±)

∫
f dπ +

∫
f dπ

∫
g dπ.
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Wir vereinfachen diesen Ausdruck und erhalten∫ {
f(y±)− f

}
dπ

∫ {
g(y±)− g

}
dπ > 0.

II.B. Die Abbildungen. Die Abbildungen werden anfangs auf dem Niveau der Mengen Y`

eingeführt, und dann auf die Räume Π` übertragen. Die Übertragung auf die Räume Π(Y`)
ist ohne weiteres möglich, für die Räume Π` muß die Bedingung (2.a.1) jedesmal nachgeprüft
werden. Es seien k und ` zwei natürliche Zahlen der Art, daß k|`. Wir definieren eine
Vergröberung Γ = Γ`

k, die Y` in Yk schickt. Jede Strecke α′ aus A` ist in einer eindeutig
bestimmten Strecke α aus Ak enthalten. Es sei y′ eine Funktion aus Y`. Wir definieren
y = Γy′ durch die Bedingung, daß y(α, β) dann und nur dann gleich 1 ist, wenn α und β
nicht benachbart sind, und es Strecken α′ ⊂ α und β′ ⊂ β gibt, so daß y′(α′, β′) = 1. Der
nächste Hilfssatz braucht kaum erwähnt zu werden, da sein Beweis klar ist. Wir bemerken
nur, wenn α′ ⊂ α, β′ ⊂ β, γ′ ⊂ γ, und δ′ ⊂ δ, und wenn ferner α, β, γ, δ zyklisch ist, dann
ist auch α′, β′, γ′, δ′ zyklisch.

Hilfssatz II.B.1. Die Funktion y gehört zu Yk

Diese Abbildung ergibt auch in der üblichen Weise eine Abbildung der Menge Π(Y`) in
Π(Yk), die wir auch mit Γ = Γ`

k bezeichnen. Der nächste einfache Hilfssatz erlaubt uns, sie
als eine Abbildung von Π` in Πk zu betrachten.

Hilfssatz II.B.2. Das Bild von Π` liegt in Πk.

Es sei π das Bild von π′. Wenn f und g zwei zunehmende Funktionen auf Yk sind, dann
sind ihre Urbilder f ′ und g′ zunehmende Funktionen auf Y`. Es gilt folglich,∫

fg dπ =

∫
f ′g′ dπ′ >

∫
f ′ dπ′

∫
g′ dπ′ =

∫
f dπ

∫
g dπ.

Wir führen auch eine Abbildung Φ = Φ`
n` ein, die das n2-fache Produkt Z = Y` × · · · ×Y`

in Yn` abbildet. Da jedes Wahrscheinlichkeitsmaß π′ auf Y` ein Wahrscheinlichkeitsmaß π′′

auf Z definiert, weil Z ein Produktraum ist, können wir dem Maß π′ ein Maß π zuordnen,

π(y) =
∑

Φ(y′′)=y

π′′(y′′).

Wir setzen Φ(π′) = Φ`
n`(π

′) = π. Die Abbildung
Φ : Z → Yn`

läßt sich aber nicht ohne Umstand definieren.
Wir stellen uns vor, das große Quadrat Q sei aufgeteilt in n2 kleinen Quadraten Qij,

1 6 i, j 6 n. Der Raum Z kann definiert werden als

Z =
n∑

i,j=1

Y(i,j),

wobei Y(i,j) = Y` für alle i und j. Ein Element von Z ist folglich ein Punkt,
y′ = ( yi,j | 1 6 i, j 6 n ).

Es sei Ai,j = A`, nur daß es jetzt als eine Menge von Strecken auf dem Rand von Qi,j

betrachtet werden sollte. Als solche gehören sie entweder zum Inneren von Q oder zu
seinem Rand. Wir nennen sie deswegen entweder innere oder äußere Strecken. Jede der vier
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Seiten des Randes ist folglich mittels dieser kleinen Strecken aufgeteilt in n` Intervallen
der gleichen Länge. Die Menge der 4n` Strecken, die auf dem Rand liegen, ist mit An`

identifiziert.
Um das Bild Φ(y′) zu definieren, führen wir zusätzliche Mengen yi,j ein. Wenn α und β in

Ai,j liegen und nicht benachbart sind, dann ist yi,j(α, β) = yi,j(α, β). Wenn sie benachbart
sind, gilt yi,j(α, β) = 1, dann und nur dann, wenn entweder α oder β inner ist, und es einen
Zyklus (α, γ, β, δ) gibt, für den yi,j(α, γ) = yi,j(β, δ) = 1.

Hilfssatz II.B.3. Es sei (α, β, γ, δ) einen Zyklus in Ai,j der Art, daß yi,j(α, γ) = yi,j(β, δ) =
1. Wenn α und β nicht benachbart sind, oder wenn eine dieser beiden Strecken eine innere
Strecke ist, gilt yi,j(α, β) = 1.

Da weder α und γ noch η und δ benachbart sein können, ist die Aussage klar. Es seien α
und β zwei Strecken aus An`. Ein zulässiger Weg, der von α nach β führt ist eine Reihe,

(i0, j0), (i2, j2), . . . , (i2r, j2r),

und eine Reihe,
α−1, α1, . . . , α2r+1,

die die folgenden Bedingungen erfüllen:
(2.b.1) Für 0 6 k < r seien i′ = i2k und i′′ = i2k+2. Es seien j′, j′′ ähnlich definiert.

Dann ist α2k+1 in Ai′,j′ und in Ai′′,j′′ enthalten. Es gilt ferner α−1 = α ∈ Ai0,j0 und
α2r+1 = β ∈ Ai2r,j2r .

(2.b.2) Für 0 6 k < r ist α2k+1 eine innere Strecke.
(2.b.3) Für 0 6 k 6 r gilt yi,j(α2k−1, α2k+1) = 1.
Es sei y die Funktion auf An`, die so definiert wird, daß y(α, β) = 1, dann und nur wenn

es einen zulässigen Weg gibt, der von α nach β führt. Die Funktion y wird definiert, indem
man y(α, β) = y(α, β) setzt, für nicht benachbarte α und β, und y(α, β) = 0, wenn α und
β benachbart sind.

Satz II.B.4. Die Funktion y gehört zu Yn`.

Dieser Satz ist eine unmittelbare Folge des Satzes III.A.1, des Abschnitts III.
Wenn wir diesen Satz annehmen, können wir die Abbildung Φ auf Z definieren, Φ(y′) = y,

und folglich die Abbildung Φ von Π(Y`) in Π(Yn`).

Hilfssatz II.B.5. Das Bild von Π` liegt in Πn`.

Wenn die Bedingung (2.a.1) für π′′ gilt, dann gilt sie auch für π. Es genügt also, zu
beweisen, wenn sie für π′ gilt, dann gilt sie auch für π′′. Da Z ein Produkt ist, ist das eine
sofortige Folge des nächsten Hilfssatzes und eines einfachen Induktionsarguments.

Hilfssatz II.B.6. Es seien π1 und π2 Maße auf geordneten Mengen X1 und X2. Wenn die
Ungleichung (2.a.1) für π1 und π2 gilt, dann gilt sie auch für das Produkt π = π1 × π2.

Es seien f und g zwei zunehmende Funktionen auf X1 × X2. Dann gilt∫
fg dπ =

∫
f(x1, x2)g(x1, x2) dπ1 dπ2

=

∫ {∫
f(x1, x2)g(x1, x2) dπ1

}
dπ2.
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Weil f(x1, x2) und g(x1, x2) für gegebenes x2 zunehmende Funktionen von x1 sind, ist der
Ausdruck rechts größer denn oder gleich∫ {∫

f(x1, x2) dπ1

}{∫
g(x1, x2) dπ1

}
dπ2 =

∫
F (x2)G(x2) dπ2,

wobei die Definition der zwei Funktionen F und G klar ist. Da sie auch zunehmend sind,
gilt ∫

F (x2)G(x2) dπ2 >
∫

F (x2) dπ2

∫
G(x2) dπ2 =

∫
f dπ

∫
g dπ.

Die Abbildungen, die von Hauptinteresse sind, weil sie die Menge Π` in sich selbst abbilden,
sind

Θ = Θ` = Θ
(n)
` = Γn`

` · Φ`
n`.

II.C. Dualität. Für gewisse Zwecke braucht man einen Begriff der Dualität, und das
Hauptziel dieser Arbeit ist, die Grundzüge der Dualität zu beschreiben, und insbesondere
die Existenz einer zu Θ dualen Abbildung Θ∗ zu zeigen. Wir führen zunächst eine Dualität
auf der Menge Y` ein. Es sei y ∈ Y`. Wir definieren eine Funktion ŷ auf A` × A`, indem
wir ŷ(α, γ) = 1 setzen, dann und nur dann, wenn es keinen Zyklus (α, β, γ, δ) gibt, für den
y(β, δ) = 1. Sonst ist ŷ(α, γ) = 0. Folglich gilt ŷ(α, γ) = 1, dann und nur dann, wenn α von
γ durch keine Verbindung aus y getrennt wird. Insbesondere ist ŷ(α, α) = 1 für jedes α.
Die Funktion ŷ gehört der Menge Y` nicht an, da ŷ(α, β) immer gleich 1 ist, wenn α und
β benachbart sind. Deshalb führen wir eine zweite zusätzliche Funktion y∗ ein, indem wir
y∗(α, β) gleich ŷ(α, β) setzen, wenn α und β nicht benachbart sind, und sonst gleich 0. Die
Funktion y∗ heißen wir zur Funktion y dual.

Satz II.C.1.
(1) Die Funktion y∗ gehört zu Y`.
(2) Die zu y∗ duale Funktion ist y.

Dieser Satz ist eine unmittelbare Folge des Satzes III.B.1. Es sei ∆ = ∆` die Abbildung,
die y nach y∗ schickt. Dem Satz zufolge ist ∆ eine Involution der Menge Y`. Wenn y1 > y2
ist, ist ∆(y1) 6 ∆(y2), so daß die zugeordnete Abbildung von Π(Y`) in sich selbst die Menge
Π` in sich selbst abbildet. Wir betrachten ∆ = ∆` hauptsächlich als eine Abbildung auf Π`.

Hilfssatz II.C.2. Es gilt Γ`
k∆` = ∆kΓ

`
k.

Die Gleichung dieses Hilfssatzes, der die Verträglichkeit der Vergröberung mit der Dualität
behauptet, schreiben wir normalerweise der Kürze halber Γ∆ = ∆Γ. Es sei y′ ∈ Yk. Wir
setzen y = Γ(y′). Wir betrachten y∗ = ∆(y) einerseits und z = Γ∆(y′) anderseits und zeigen,
daß z = y∗.
Es seien α und β zwei Strecken aus Ak. Wir nehmen an, daß α 6= β ist, und daß α und

β nicht benachbart sind, denn die Gleichung z(α, β) = y∗(α, β) ist sonst trivial. Wenn
z(α, β) = 1, existieren zwei Intervalle α′ ⊂ α und β′ ⊂ β, für die ∆(y′)(α′, β′) = 1. Wenn
aber α, γ, β, δ zyklisch ist, und γ′ ⊂ γ, δ′ ⊂ δ, dann ist α′, γ′, β′, δ′ auch zyklisch, und
folglich y′(γ′, δ′) = 0. Hieraus folgt, weil γ′ und δ′ beliebige Unterstrecken von γ und δ sind,
daß y(γ, δ) = 0. Da α, γ, β, δ eine beliebige zyklische Reihe, in der α und β getrennt sind,
sein kann, gilt ferner y∗(α, β) = 1.
Auf der anderen Seite, wenn z(α, β) = 0 ist, dann ist ∆(y′)(α′, β′) = 0 für jedes Paar

α′ ⊂ α und β′ ⊂ β. Folglich existiert eine zyklische Reihe α′, γ′, β′, δ′ der Art, daß
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y′(γ′, δ′) = 1. Wir brauchen jedoch mehr, insbesondere sind γ′ und δ′ zu unserem Zweck
untauglich, wenn eins oder das andere in α oder β enthalten ist. Wir brauchen ein Paar
{γ′, δ′}, das diese Gleichung erfüllt und der Art, daß α′, γ′, β′, δ′ für jedes α′ ⊂ α und jedes
β′ ⊂ β zyklisch ist. Denn γ′ ist dann in einer Strecke γ aus Ak enthalten, und δ′ in einer
Strecke δ, und die Reihe α, γ, β, δ ist notwendigerweise zyklisch. Weil y(γ, δ) = 1 ist, gilt
y∗(α, β) = 0.
Um das Paar {γ′, δ′} zu erhalten, fixieren wir β′ und wählen ein provisorisches Paar

{γ′, δ′} der Art, daß y′(γ′, δ′) = 1 ist, und so daß die Menge aller α′ ⊂ α, die zusammen mit
β′, γ′ und δ′ eine zyklische Reihe α′, γ′, β′, δ′ bilden, maximal ist. Die Vereinigung aller
dieser α′ ist offensichtlich ein zusammenhängendes Intervall. Wenn sie nicht α selbst ist,
dann ist entweder γ′ oder δ′ in α enthalten und an die Vereinigung angrenzend. Dies gelte
für γ′. Wir wenden die Bemerkung des vorhergehenden Absatzes auf das Paar {γ′, β′} an,
um die Existenz eines Paares {γ′

1, δ
′
1} zu folgern, für das y′(γ′

1, δ
′
1) = 1 ist, und die Reihe

γ′, γ′
1, β′, δ′1 zyklisch ist. Wir können das offene Intervall (γ′, β′) so wählen, das es jedes in

Betracht kommende α′ sowie δ′ und δ′1 enthält. Die Strecke γ′
1 liegt dann außerhalb dieses

Intervalls. Wenn γ′
1, γ′, δ′1, δ′ zyklisch ist, gilt y′(γ′

1, δ
′) = 1 wegen der Definition II.A.1, so

daß wir δ′1 durch δ′ ersetzen können. Wir können folglich unter allen Umständen annehmen,
daß δ′1 im Intervall [δ′, β′) enthalten ist. Dann ist jedoch für das Paar {γ′

1, δ
′
1} die Menge der

zugelassenen α größer als die entsprechende Menge für {γ′, δ′}, was unserer provisorischen
Wahl widerspricht. Die Vereinigung ist daher α. Um das Argument zu beenden, wählen wir
nochmals ein provisorisches {γ′, δ′} mit y′(γ′, δ′) = 1, aber so daß die Menge aller β′ ⊂ β
der Art, daß α′, γ′, β′, δ′ zyklisch für alle α′ ⊂ α ist, maximal ist. Dann beweist man wie
vorher, daß die Vereinigung dieser β′ gleich β ist. Somit wird der Hilfssatz bewiesen.
Das Analogon des Hilfssatzes für die Abbildung Φ ist leider nicht gültig, und wir sind

genötigt, eine zweite Abbildung Φ∗ zu definieren, die mit der Gleichung Φ∗∆ = ∆Φ im
Sinn formuliert wird. Zwecks der Definition dieser Abbildung führen wir einige zusätzliche
Begriffe ein. Die ganzen Zahlen ` und n sind wieder vorgegeben, und Φ∗ soll zunächst eine
Abbildung der Menge Z in Yn` sein. Da ∆ eine Involution ist, ist es uns erlaubt, nicht
Φ∗((yi,j)) direkt zu definieren, sondern Φ∗

(
(y∗i,j)

)
. Die Funktionen yi,j bleiben trotzdem

die zentralen Gegenstände, und nicht y∗i,j, sondern ŷi,j die im Vordergrund zu behaltenden
dualen Gegenstände. Alle diese Begriffe werden auch später in leicht abgeänderter Gestalt
und in einem leicht abgeänderten Rahmen vorkommen.

Schleifen. Eine Schleife ist eine vier-tupel (α, α′, β, β′) aus einem der Menge Ai,j, in dem
α und β die Hauptgegenstände sind, und α′ und β′ nur zusätzlich. Die Strecken α und β
müssen beide innere sein. Es sind ferner α und α′ sowie β und β′ benachbarte Paare. Eine
Schleife heißt zulässig, wenn α und α′ mit β und mit β′ durch ŷi,j verbunden sind. Es sind
nur die zulässigen Schleifen, die im folgenden gebraucht werden. Die Strecken in einem Paar
{α, α′} oder {β, β′} werden oft gespannt geheißen.

Enden. Ein Ende besteht aus drei Strecken {α, α′, β}, und α und α′ bilden darin ein
gespanntes Paar. Sie müssen benachbart sein. Das Element β ist eine äußere Strecke. Das
Element α muß dagegen eine inneres sein. Zulässige Enden sind von zweierlei Art.
(a) Alle drei Strecken liegen in demselben Ai,j. Es gilt ŷi,j(α, β) = ŷi,j(α

′, β) = 1.
(b) Die Strecke α gehört gemeinsam zu zwei aneinander angrenzenden Quadraten Qi,j

und Qi′,j′. Die Strecke α′ liegt in Ai′,j′ und ist eine äußere. Die Strecke β ist ein
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Nachbar von α in Ai,j. Der Fall, daß (i′, j′) = (i, j), ist auch möglich, aber von
keinem Interesse. Dann ist β = α′, und solche Ende erweisen sich als überflüssig.

Knoten. Ein Knoten {α, α′, β, β′} besteht aus vier Strecken. Es sind wieder beide Paare
{α, α′} und {β, β′} benachbart. Knoten sind alle zulässig und von dreierlei Art.
(a) Alle vier Strecken im Knoten sind innere, und entweder α = β und α′ = β′ oder

α = β′ und α′ = β.
(b) Die Strecken α und β sind innere, und α = β. Sie sind zwei aneinander angrenzenden

Quadraten Qi,j und Qi′,j′ gemeinsam. In entarteten Fällen können diese Quadrate
gleich sein. Die Strecke α′ gehört zum Quadrat Qi,j und β′ zum Quadrat Qi′,j′.

(c) Alle vier Strecken sind innere. Die Strecken α und α′ gehören zu einem Quadrat
Qi,j, und die Strecken β und β′ gehören zu einem zweiten Quadrat Qi′,j′, das das
erste an eine Ecke berührt, so daß die beiden Quadrate einen einzigen gemeinsamen
Punkt besitzen. Dieser Punkt gehört zu allen vier Strecken.

Mittels dieser zusätzlichen Begriffe definieren wir jetzt die Abbildung Φ∗. Wir führen den
Begriff eines breiten zulässigen Weges ein, der von einer Strecke α aus An` zu einer Strecke β
führt. Wir setzen ŷ(α, β) = 1, dann und nur dann, wenn es einen zulässigen breiten Weg
gibt, der von α nach β führt. Aus ŷ leiten wir y∗ ab, indem wir Verbindungen zwischen
benachbarten Punkten aufheben, und setzen Φ∗

(
(y∗i,j)

)
= y∗. Ein breiter zulässiger Weg,

der von α nach β führt ist eine Reihe
C−1, . . . , C2r+1,

in der jedes Glied eine Schleife, ein Ende, oder ein Knoten ist, außer wenn r = −1 ist.
Wenn r = −1 ist, gehören α und β zu demselben Quadrat Qi,j. In diesem Fall ist

C−1 = {α, β} und es wird verlangt, daß ŷi,j(α, β) = 1. Das erste Glied der Reihe ist sonst
ein zulässiges Ende

C−1 = {α = α−1, α0, α
′
0}.

Die Glieder C2i, 0 6 i 6 r, sind alle Knoten,
C2i = {α2i, α

′
2i, α2i+1, α

′
2i+1}.

Die Glieder C2i+1, 0 6 i < r, sind zulässige Schleifen,
C2i+1 = {α2i+1, α

′
2i+1, α2i+2, α

′
2i+2}.

Es ist schließlich C2r+1 ein zulässiges Ende,
C2r+1 = {α2r+1, α

′
2r+1, α2r+2 = β}.

Die Definition von y∗ haben wir schon erklärt. Der Wert von y∗(α, β) ist gleich ŷ(α, β),
außer wenn α und β benachbart sind. Der nächste Satz ist zusammen mit dem Satz II.B.4
das Hauptergebnis dieser Arbeit.

Satz II.C.3. Die Funktion y∗ gehört zu Yn` und ist der Funktion Φ
(
(yi,j)

)
dual.

Diese Behauptung ist eine unmittelbare Folge des Satzes III.A.4. Die Abbildung Θ∗ von
Y` in sich selbst ist die Verkettung Γ · Φ∗. Die Abbildung Φ kann auch als eine Abbildung
der Menge Π(Y`) in Π(Yn`) betrachtet werden. Der nächste Hilfssatz wird genau wie der
Hilfssatz II.B.5 bewiesen.

Hilfssatz II.C.4. Das Bild von Π` unter Φ∗ liegt in Πn`.
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II.D. Beispiele. Obwohl alle in den Begriff der Dualität eingehenden Definitionen elementar
sind, sind sie auch leicht mißverständlich. Folglich ist es nützlich, sie sowie ihren Zweck
an Hand einiger Beispiele zu veranschaulichen. Auf der Abbildung 1 wird ein einfacher
zugelassener breiter Weg gezeigt. Es ist klar, wie er alle möglichen Wege von unten nach
oben blockiert. Das wesentliche Glied ist die Schleife im inneren Quadrat, an die zwei
Enden gebunden werden. Ein Weg, der von unten ankommt, kann zum Beispiel die Strecke
α erreichen. Diese Strecke ist jedoch im inneren Quadrat B mit keiner Strecke oberhalb
des Paares {α, δ} verbunden, und im linken Quadrat A mit keiner Strecke oberhalb des
Paares {α, ε}, so daß der Weg nicht weiter nach oben hin eindringen kann, und zunächst
nach unten zurückkehren muß, um anderswo eine wirkliche Bresche zu suchen. Wenn ein
zulässiger Weg über äußere Strecken führen könnte, findet sich vielleicht an ε oder η eine
Bresche. Da solche Wege nicht zugelassen werden, brauchen wir in A und C nur Enden
und nicht Schleifen.

β

αε

γ

δ

η

A B C

Abbildung 1

Obgleich in der Definition einer Schleife, eines Endes oder eines Knotens die zwei
Strecken α und α′ nicht symmetrisch auftreten, spielen sie in der Tat dieselben Rollen, denn
{α, α′, α′, α} ist eine zulässige Schleife, die α und α′ umtauscht.
Obgleich wir Verbindungen zwischen benachbarten Strecken ausgeschlossen haben, sind

einige fast entartete Schleifen sehr wichtig. Das sind Schleifen {α, α′, β, β′}, für die α = β
und α′ und β′ die zwei Nachbarn von α sind. Auf der Abbildung 2.a werden fünf Strecken
auf einer inneren Seite abgebildet. Obwohl die Strecken α, γ, und ε mit außerhalb des Bilds
liegenden Strecken im ersten Quadrat A verbunden sind, und β und δ mit Strecken derselben
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Art in B, besteht keine Möglichkeit diese Strecken über die im Bild gezeigten Strecken zu
verbinden. Dementsprechend kann ein Teil eines breiten zugelassen Weges angelegt werden,
wie auf der Abbildung 2.b. Es ist jedoch wohl möglich, daß dieser Teilweg, der sich zwischen
den sich nicht einander berührenden, von außen ankommenden Verbindungen schlängelt,
nicht bis zum Rand ausgebaut werden kann.

α

β

γ

δ

ε

Abbildung 2.a

Auf der Abbildung 2.b werden drei Schleifen A, B, C gezeigt. Die werden aneinander
angebunden mittels Knoten der Art (a), und der zustande kommende breite Weg führt vom
gespannten Paar {α, β} zum gespannten Paar {δ, ε}.



DUALITÄT BEI ENDLICHEN MODELLEN DER PERKOLATION 13

C

A

B

Abbildung 2.b

Um den Grund zu erklären, warum die anderen Arten von Knoten und Enden eingeführt
werden, betrachten wir den Fall ` = 1. Die Menge Y1 besteht aus vier Elementen. Die
werden wir gewöhnlicherweise wie auf der Abbildung 3 zeichnen. Das erste Element (3.a)
enthält keine nichttriviale Verbindung. In (3.b) und (3.c) ist eine einzige nichttriviale
Verbindung vorhanden, die einander gegenüberliegenden Strecken verbindet. In (3.d) sind
alle einander gegenüberliegenden Strecken verbunden. Also im Gegensatz zu (3.b) und (3.c)
sind zwei nichttriviale Verbindungen vorhanden statt einer einzigen. Nur im Fall (3.d) ist
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die Funktion y ungleich der Funktion y. Die Funktion (3.d) ist zur Funktion (3.a) dual. Die
Funktionen (3.b) und (3.c) sind dagegen selbstdual.
Wir betrachten die Abbildung Φ = Φ1

2. Auf der Abbildung (4.a) werden die vier Zustände
yi,j, 1 6 i, j 6 2, gezeigt. Das Bild y = Φ

(
(yi,j)

)
enthält offensichtlich keine nichttriviale

Verbindung. Die dualen Zustände werden auf der Abbildung (4.b) gezeigt. Es muß gezeigt
werden, warum Φ∗ angewandt auf diese Zustände die Funktion liefert, die alle nichtbenach-
barten Strecken verbindet. Wenn dagegen Φ auf diese Zustände angewandt wird, erhalten
wir diejenige Funktion, die folgende nichttriviale Verbindungen enthält und keine andere:
(γ, η′); (γ, δ′); (δ, ε); (δ, γ′). Wenn der Satz II.C.3 gilt, muß Φ∗ und (4.a) eine Funktion
liefern, die alle nichtbenachbarten Paare außer (δ′, η) und (γ′, ε′), die wenigstens eine der
vier senkrechten Strecken γ, γ′, δ, δ′ enthalten, verbindet, die aber keine Verbindung von
ungleichen waagerechten Strecken enthält.

3a 3b

3c 3d

Abbildung 3

Wir behandeln zunächst Φ∗ und (4.a) und erklären wie die horizontalen Verbindungen
entstehen. Weil γ und α′ sowie δ und β benachbart sind, sind {α, α′, γ} und {β, β′, δ}
zulässige Enden. Die werden gebunden durch den Knoten {α, α′, β, β′} der Art (c). Folglich
sind γ und δ verbunden. Um γ mit δ′ zu verbinden, legen wir einen breiten Weg an, der
mit dem Ende {γ, α, α′} beginnt. Mittels des Knotens {α, α′, β, β} binden wir dieses Ende
an die zulässige Schleife {β′, β, β, δ}. Da δ eine äußere Strecke ist und β eine innere Strecke
ist, ist {δ, β, δ′} ein zulässiges Ende, das wir durch einen entarteten Knoten eine der Art
(b) an die Schleife {β′, β, β, δ} binden können. Folglich sind γ und δ′ verbunden. Daß die
Verbindung von δ mit γ′ auch vorhanden ist, wird ähnlich gezeigt. Eine letzte horizontale
Verbindung, die noch fraglich ist, ist die von δ′ mit γ′. Von δ′ aus erreichen wir auf dem
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Weg nach γ das gespannte Paar {α, α′}. Dieses Paar ist auch in der zulässigen Schleife
{α, α′, α′, γ} gespannt. Mittels des entarteten Knotens {γ, α′, γ, α′} der Art (b) wird diese
Schleife an das Ende {γ′, α′, γ} gebunden.
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α

β

γ

α’

β’ δ

Abbildung 4.a

η η’

γ

γ’ δ

δ’

ε ε’

Abbildung 4.b
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Die Verbindung von γ mit η′ entsteht, indem man mit dem Ende {γ, α, η} beginnt, und
es mittels des trivialen Knotens {α, η′, α, η′} an das Ende {α, η, η′} bindet. In derselben
Weise erhält man die Verbindung von δ mit ε.
Damit eine gegebene äußere Strecke Glied einer nichttrivialen Verbindung sei, muß sie

entweder schon in dem sie enthaltenden Quadrat nicht trivial mit einer zweiten Strecke
verbunden sein, was bei ` = 1 ausgeschlossen ist, oder zu einem Ende gehören. Die
waagerechten Strecken in (4.a) gehören nur zu zulässigen Enden der Art (b). Für die
Strecken ε′ und η kann das entsprechende Ende nicht fortgesetzt werden. Für η′ und ε kann
es auf nur eine Weise fortgesetzt werden, und führt dann entweder zu γ oder jeweils zu δ.
Wenn wir Φ∗ auf (4.b) anwenden, bekommen wir alle Verbindungen, die bei (4.a) vor-

handen sind. Darüber hinaus bekommen wir wegen der Symmetrie bezüglich der zweien
Richtungen, der horizontalen und der vertikalen, alle vertikalen Verbindungen. Wenn wir
(4.b) in einer der mittleren Achsen spiegeln, enthalten die vier sich daraus ergebenden
Elemente aus Y1 alle Verbindungen, die in (4.a) vorhanden sind. Folglich sind im größeren
äußeren Quadrat alle Verbindungen zwischen nichtbenachbarten horizontalen und vertikalen
Strecken auch vorhanden.
Da der Fall ` = 1 und n = 2 zu Mißverständnissen führen kann, weil wir besonders bei der

Anwendung von Φ∗ auf (4.a) alle entstehenden Verbindungen aus fast gar nichts aufgebaut
haben, betrachten wir auch den Fall ` = 1, n = 3 und Funktionen (yi,j), 1 6 i, j 6 3, die
denen in (4.a) und (4.b) ähnlich sind. Die werden in den Abbildungen (5.a) und (5.b)
aufgezeichnet.
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α

Abbildung 5.a
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η η ′

γ

δ

εε′

Abbildung 5.b
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Die Abbildung Φ = Φ1
3 bildet (5.a) an die Funktion ab, die keine nichttriviale Verbindung

enthält. Das Bild von (5.b) ist dagegen die Funktion, die alle möglichen Verbindungen
enthält, außer denen, die ε oder η mit einer anderen Strecke verbinden. Folglich nach dem
Satz II.B.3 enthält das Bild von (5.a) bezüglich Φ∗ nur die Verbindungen zwischen γ und
η′ und zwischen δ und ε′ und sonst keine nichttriviale Verbindung. Die Verbindung von η′

mit γ entsteht, indem man mit dem Ende {η′, α, η} der Art (b) beginnt, und mittels eines
trivialen Knotens es an das Ende {γ, η, α} bindet. Im Gegensatz zu (4.a) und Φ1

2 kommen
keine andere Verbindungen zustande. Daß Φ∗ angewandt auf (5.b) die Funktion ergibt, die
alle nichttrivialen Verbindungen enthält ist weniger erstaunlich, und leicht einzusehen.

III. ZUSÄTZLICHE THEORETISCHE ENTWICKLUNGEN

III.A. Unregelmäßiges Aufhäufen. Dem quadratischen Aufhäufen, das verwendet wird,
um Θ zu definieren, fehlt eine gewisse Geschmeidigkeit, da es sich als günstig erweist, die
Beweise mittels eines Induktionsarguments durchzuführen. Zu diesem Zweck wollen wir die
kleinen Quadrate einzeln dem großen Haufen hinzufügen. Wir stellen uns vor, die ganze
Ebene sei regelmäßig aufgeteilt in Quadrate, so daß um jeden ganzzahligen Gitterpunkt
in der Ebene ein zunächst leeres Quadrat der Seitenlänge 1 liegt, in das wir eine Fliese
einlegen können. Eine endliche Anzahl solcher eingelegten Fliesen, oder die entsprechende
Vereinigung von Quadraten, wird einfach zusammenhängend genannt, wenn sie erhalten
wird, indem man mit einem gedeckten Quadrat beginnt, und gewisse zu beschreibende
Gesetze einhaltend die anderen eins nach dem anderen hinzufügt. Diese Gesetze schreiben
vor, wie die neue Fliese der alten Konfiguration von Fliesen angelegt werden kann. Im
wesentlichen wird es verlangt, daß der Rand des Haufens bei jedem Schritt eine einfach
zusammenhängende Kurve bleibt, wie er beim ersten Schritt, bei dem der Haufen aus
einem einzigen Quadrat besteht, ist. Wir beschreiben alle zugelassenen Hinzufügungen eines
Quadrats einer schon vorhandenen zugelassenen Konfiguration. Damit wir leicht auf diese
Beschreibung hinweisen können, stellen wir uns vor, daß die neue Fliese um den Punkt (0, 0)
eingelegt wird, und die Möglichkeiten nur bis auf Drehungen und Spiegelungen beschrieben
werden. Dann können wir annehmen, daß das Quadrat um den Punkt (−1, 0) schon besetzt
ist.

(i) Keins der drei Quadrate an den Punkten (0, 1), (1, 0), und (0,−1) ist schon besetzt.
Dann gibt es zwei wesentlich verschiedene Möglichkeiten.
(a) Weder (−1, 1) noch (−1,−1) ist schon von einer Fliese gedeckt.
(b) Der Punkt (−1,−1) ist gedeckt, und der Punkt (−1, 1) nicht gedeckt.
(c) Beide Punkte (−1,±1) sind schon gedeckt.

(ii) Der Punkt (0, 1) ist schon gedeckt, aber weder das Quadrat an dem Punkt (1, 0)
noch das am Punkt (0,−1) ist schon besetzt.
(a) Weder der Punkt (−1,−1) noch der Punkt (1, 1) ist schon von einer Fliese

gedeckt.
(b) Der Punkt (−1,−1) ist schon von einer Fliese gedeckt; der Punkt (1, 1) aber

nicht.
(c) Beide Punkte (−1,−1) und (1, 1) sind schon gedeckt.

(iii) Die Punkte (0, 1) und (0,−1) sind schon gedeckt; der Punkt (1, 0) aber nicht gedeckt.
(a) Weder der Punkt (1,−1) noch der Punkt (1, 1) ist schon gedeckt.
(b) Der Punkt (1,−1) ist schon von einer Fliese gedeckt, der Punkt (1, 1) aber

nicht.



DUALITÄT BEI ENDLICHEN MODELLEN DER PERKOLATION 21

(c) Beide Punkte (1,−1) und (1, 1) sind schon gedeckt.
Es muß bei jeder neu eingelegten Fliese bewiesen oder verlangt werden, daß der Rand

einfach zusammenhängend bleibt, und insbesondere, daß keine Fliesen einander allein an
einer Ecke berühren, ohne daß wenigstens eins der anderen zwei Quadrate, zu denen diese
Ecke gehört, auch schon besetzt ist. Deshalb wird es vorausgesetzt oder leicht bewiesen in
den einzelnen Fällen:

(i) Keiner der zweien Punkte (1,±1) ist schon gedeckt.
(ii) Der Punkt (1,−1) ist noch nicht gedeckt. Der Punkt (−1, 1) ist dagegen notwendi-

gerweise, da wir bisher die Gesetze eingehalten haben, schon gedeckt.
(iii) Die Quadrate an den Punkten (−1,±1) müssen schon besetzt sein. Es ist klar, daß

wir das ursprüngliche quadratische Aufhäufen von n2 Quadraten auf diese Weise
erhalten können.

Das neu besetzte Quadrat hat vier Seiten, die wir nach einem offensichtlichen Prinzip mit
So, Su, S` und Sr bezeichnen. Einige dieser Seiten gehören zum Rand des alten Haufens. In
jedem Fall wird eine zusammenhängende Menge dieser Seiten an ein Intervall aus dem Rand
des alten Haufens geklebt, und der Rand des neuen Haufens besteht aus der Vereinigung
der übriggebliebenen Teile der Ränder des Quadrats und des alten Haufens. Er ist folglich
eine einfach zusammenhängende Kurve. Wie bei dem quadratischen Aufhäufen stellen wir
uns vor, daß der Rand jedes Quadrats Q im Haufen aufgeteilt in 4` Strecken der gleichen
Länge ist. Es sei AQ die Menge dieser Strecken. Der Begriff einer äußeren oder einer inneren
Strecke ändert sich bei dem Übergang vom alten Haufen H zum neuen H′. Damit wir die
Entwicklung der Wege und insbesondere der breiten Wege dabei verfolgen können, müssen
wir im voraus vorschreiben, welche Strecken in den Rändern der verschiedenen Quadrate
bei wiederholter Hinzufügung noch eines Quadrats innere Strecken des Haufens werden
können. Zu diesem Zweck sei für jedes Q eine Untermenge IQ von AQ vorgegeben. Wir
nehmen an, daß bei jedem Schritt die zusammengeklebten Strecken alle in der Vereinigung⋃

Q

IQ

liegen. Folglich können nur Strecken aus dieser Vereinigung innere werden. Für ein quadra-
tisches Aufhäufen ist jedes IQ implizit als die Menge aller inneren Strecken aus AQ definiert.
Wir werden an den entsprechenden Stellen den Zweck der Menge IQ genauer erklären.
Für einen gegebenen Haufen H sei S die Vereinigung aller Strecken aus allen AQ, Q ⊂ H,

die zum Rand gehören, also die Vereinigung aller äußeren Strecken. Es sei IS die Menge
aller Strecken die gleichzeitig äußere sind und zu einer der Mengen IQ, Q ⊂ H gehören.
Wir nehmen an, daß für jedes Q im Haufen eine Funktion yQ in Y` vorgegebenen ist. Sie
wird als Funktion auf AQ betrachtet. Mittels dieser vorgegebenen Funktionen werden vier
Funktionen yS, yS, ŷS, und y∗S auf S×S mit Werten in {0, 1} definiert. Die Funktion yS wird
aus yS abgeleitet, indem man den Wert von yS allein an benachbarten Paaren abändert,
wo er dann 0 wird. Genau so wird auch y∗S aus ŷS abgeleitet, so daß in der Tat nur zwei
Funktionen definiert werden müssen.
Wir definieren yS mittels der Menge

{
yQ

∣∣ Q ⊂ H
}
, in genau derselben Weise, wie wir

Φ(y′) durch {yi,j} definierten. Die Funktionen yQ werden aber etwas anders definiert. In
der Tat sind die Mengen IQ zu nichts anderem als zu diesem Zweck eingeführt worden. Die
Funktion yQ unterscheidet sich von der Funktion yQ nur an benachbarten Paaren. Damit
yQ(α, β) = 1 muß entweder α oder β in IQ liegen, und ferner muß es einen Zyklus (α, γ, β, δ)
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geben, für den yQ(α, γ) = 1 und yQ(β, δ) = 1. Die Funktionen yQ sind folglich definiert nicht
allein mit Bezug auf den zu betrachtenden Haufen, sondern auch auf weitere vergrößerte
Haufen. Mittels dieser Funktionen führen wir den Begriff eines zulässigen Weges ein. Es ist
yS(α, β) = 1, dann und nur dann, wenn es einen zulässigen Weg gibt, der von α ∈ S nach
β ∈ S führt. Um den nächsten Satz auszudrücken, brauchen wir eine Definition, die erst im
nächsten Abschnitt angegeben wird.

Satz III.A.1. Die Funktion yS erfüllt die Bedingungen (3.b.1) und (3.b.4). Die Funktion
yS ist folglich eine Menge von Verbindungen im Sinne des nächsten Abschnitts.

Die Funktion yS wird mit Hilfe des Begriffes eines zugelassenen breiten Weges eingeführt.
Wie bei einem quadratischen Aufhäufen werden breite Wege aus Schleifen, Enden, und
Knoten zusammengesetzt. Diese Begriffe müssen jedoch leicht abgeändert werden, damit
wir ein Induktionsverfahren durchführen können. Insbesondere müssen die Mengen IQ in
Betracht gezogen werden. Da ähnliche Begriffe nochmals im nächsten Abschnitt eingeführt
werden müssen, begnügen wir uns damit, daß wir die Unterschiede hervorheben.

Schleifen. Eine Schleife {α, α′, β, β′} besteht jetzt aus Strecken, die zu einem gemeinsamen
AQ gehören. Die zusätzliche Bedingung ist, daß die Schleife nur dann zugelassen wird, wenn
yQ(α, α

′) = 0 und yQ(β, β
′) = 0 sind.

Enden. In einem Ende {α, α′, β} muß yQ(α, α
′) = 0 sein.

Knoten. Sie sind wieder von drei Arten. Für die Arten (a) und (b) kommt keine neue
Bedingung hinzu. Für einen Knoten der Art (c) bilden die vier Strecken die Arme eines
Kreuzes, und α ist zu α′ orthogonal, sowie β zu β′. Es müssen allerdings wenigstens drei der
dieses Kreuz berührenden Quadrate zum Haufen gehören, aber es ist gleichgültig welche.
Im Gegensatz zum quadratischen Aufhäufen gehören vielleicht nicht alle vier das Kreuz
umgebenden Quadrate zum Haufen. Es wird jedoch verlangt, daß α und α′ zu einem
gemeinsamen Quadrate Q gehören, und β und β′ zu einem gemeinsamen P.
Um diese Definition teilweise zu erklären, beweisen wir einen einfachen Hilfssatz.

Hilfssatz III.A.2. Es sei y ∈ Y`. Es seien α und β zwei benachbarte Strecke aus A`, die
durch ŷ mit einem gemeinsamen γ verbunden sind. Dann gibt es kein Paar {γ, δ} der Art,
daß (α, β, γ, δ) ein Zyklus ist, und y(α, δ) = 1 und y(β, δ) = 1.

Wir nehmen an, es existiert ein solches Paar. Man beweist den Hilfssatz, indem man
bemerkt, daß β und δ einerseits in dem Intervall [α, γ] enthalten werden müssen, das β
enthält, und andererseits in dem Intervall [β, γ], das α enthält. Dies ist ein Widerspruch.
Als unmittelbare Folge dieses Lemmas bekommen wir ein zweites.

Hilfssatz III.A.3. Es seien Q ∈ H und α und β zwei benachbarte Strecken in AQ. Es
sei vorausgesetzt, daß es eine Strecke ε ∈ Q, die ungleich α und β ist, gibt, für die die
Gleichungen ŷQ(ε, α) = 1 und ŷQ(ε, β) = 1 gelten. Dann ist yQ(α, β) = 0.

Wenn (α, β, γ, δ) ein Zyklus ist, dann ist entweder ε 6= γ oder ε 6= δ. Wenn zum Beispiel
ε 6= γ, gibt es eine Reihenfolge, in der die Menge {α, β, γ, ε} ein Zyklus wird. Diese
Hilfssätze erlauben uns, alle Konstruktionen für ein quadratisches Aufhäufen als spezielle
Fälle derselben Konstruktionen für ein unregelmäßiges Aufhäufen zu betrachten. In der
Tat sind die zusätzlichen Bedingungen für Schleifen und Enden überflüssig. Sie erweisen
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sich nur im nächsten Abschnitt als unentbehrlich. Wir haben es dennoch vorgezogen, sie an
dieser Stelle einzuführen.
Diese neuen Definitionen gestatten uns eine neue Definition eines breiten zugelassenen

Weges, und schließlich der Funktion ŷS. Bei der Aussage des nächsten Satzes greifen wir zu
den Definitionen des nächsten Abschnitts vor.

Satz III.A.4. Die Funktion ŷS ist zur Funktion yS dual.

Der Satz selbst wird als Folge des Satzes III.B.3 im Abschnitt III.C bewiesen werden. Wir
schließen sofort aus dem Satz, daß y∗S eine Menge von Verbindungen im Sinn des nächsten
Abschnitts ist.

III.B. Mengen von Verbindungen. Wir betrachten einen Kreisrand oder allgemeiner
eine einfach geschlossene Kurve. Diese Kurve teilen wir in geschlossene Intervalle auf, die
wir Strecken nennen. Es sei S die Menge der Strecken. Es wird immer angenommen, daß
S wenigstens zwei Elemente enthält. Normalerweise durchschneiden sich zwei Strecken
entweder überhaupt nicht oder in einem einzigen Punkt. Wenn ausnahmsweise S nur zwei
Strecken enthält, dann haben diese Strecken zwei Endpunkte gemeinsam.
Der Begriff eines Zyklus aus S ist klar. Er bedeutet eine Reihe (α, β, γ, δ) von vier Strecken

aus S in der Reihenfolge, in der man ihnen begegnet, wenn man die Kurve in einer oder
der anderen Richtung durchläuft. Eine Menge von Verbindungen in S ist eine Funktion yS
auf S × S mit folgenden Eigenschaften:
(3.b.1) Jede Strecke ist mit sich selbst verbunden, so daß yS(α, α) = 1.
(3.b.2) Keine Strecke ist mit einem Nachbarn verbunden, so daß yS(α, β) = 0, wenn α und

β benachbart sind.
(3.b.3) Wenn (α, β, γ, δ) ein Zyklus ist, und yS(α, γ) sowie yS(β, δ) gleich 1 sind, dann ist

yS(α, β) = 1, außerdem wenn α und β benachbart sind.
Jeder Menge von Verbindungen yS können wir eine duale Menge ŷS zuordnen. Wie vorher,

setzen wir ŷS(α, γ) gleich 1 dann und nur dann, wenn es keinen Zyklus (α, β, γ, δ) gibt,
in dem yS(β, δ) = 1 ist. Anschaulicher ausgedrückt besagt diese Bedingung, daß α und γ
durch keine Verbindung aus yS getrennt werden. Die Funktion ŷS selbst ist nicht die duale
Funktion, da es vielleicht die zweite Bedingung einer Menge von Verbindungen nicht erfüllt.
Die duale Funktion selbst, y∗S, erhalten wir, indem wir alle Verbindungen von benachbarten
Strecken aufheben. Es gilt also y∗S(α, β) = ŷS(α, β), wenn α und β nicht benachbart sind.
Dagegen gelten für ein benachbartes Paar die Gleichungen,

ŷS(α, β) = 1,

y∗S(α, β) = 0.

Wir ziehen es jedoch vor, mit ŷS zu arbeiten, und werden oft von ihr als von der zu yS
dualen Menge reden. Der nächste Satz wird im Abschnitt IV bewiesen werden.

Satz III.B.1.
(1) Die Funktion y∗S ist eine Menge von Verbindungen.
(2) Die zu y∗S duale Menge ist yS.

Es ist gewöhnlicherweise vorteilhaft, einer Menge von Verbindungen ein zweites und ein
drittes Datum hinzuzufügen. Der in dieser Weise zustande kommende Gegenstand wird
auch eine Menge von Verbindungen genannt. Um die neuen Objekte von den alten zu
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unterscheiden, statten wir das entsprechende Symbol mit einem Querstrich aus. Das erste
Datum ist eine Untermenge IS von S; das zweite ist eine Menge zS von Kurzverbindungen.
Diese Menge zS ist eigentlich eine Funktion auf S × S der Art, daß zS(α, β) = 0 ist, außer
wenn α und β benachbart sind. Die Kurzverbindungen verbinden deshalb nur benachbarte
Strecken. Außer dieser ersten Bedingung ist der Menge zS eine zweite Bedingung auferlegt.
Es sei (α, β, γ, δ) ein Zyklus, für den yS(α, γ) = yS(β, δ) = 1 ist. Wenn α und β benachbart
sind und eine in IS liegt, dann verlangen wir, daß zS(α, β) = 1. Die Menge yS erhält man,
indem man den Verbindungen in yS die Verbindungen in zS hinzufügt. Die Funktion yS
erfüllt die folgende Bedingung:
(3.b.4) Wenn (α, β, γ, δ) ein Zyklus ist, und yS(α, γ) sowie yS(β, δ) gleich 1 sind, dann ist

yS(α, β) = 1, außer wenn α und β benachbart sind, und beide außerhalb IS liegen.
Sie erfüllt dagegen die Bedingung (3.b.2) nicht. In gewisser Hinsicht ist es vorteilhaft

nur mit der Menge yS zu arbeiten. Ihr werden nur die triviale Bedingung (3.b.1) sowie die
Bedingung (3.b.4) auferlegt. Ihre Werte auf benachbarten Elementen sind beliebig bis auf
die Beschränkungen, die aus Bedingung (3.b.4) folgen. Die Bedingung (3.b.2) ist für die
Perkolation wichtig, den kombinatorischen Konstruktionen dagegen eher nutzlos und lästig.
Alle in yS und zS enthaltene Auskunft ist auch in yS enthalten.
Wir stellen uns einen Kreis vor, in dem ein Durchmesser ausgezeichnet ist. Die Enden des

Durchmessers schneiden den Kreisrand in zwei Kurvenbögen. Die Vereinigung des Durch-
messers und eines Bogens ist eine einfach geschlossene Kurve. Es sei S und T Aufteilungen
der beiden in dieser Weise zustande kommenden geschlossenen Kurven. Wir nehmen an,
daß der Durchmesser selbst eine Vereinigung von Strecken ist, die gleichzeitig zu S und zu T
gehören. Es seien Q = S ∩ T die Menge dieser gemeinsamen Strecken und R die Menge der
Strecken, die im Rand enthalten sind. Dann ist R = S 4 T . Die Strecken aus Q nennen wir
innere, und die aus R nennen wir äußere. Die Menge R ergibt eine Aufteilung des Randes.
Es seien yS und yT zwei Mengen von Verbindungen. Wir wollen diese zwei Mengen zusam-

menkleben, um eine dritte Menge yR auf R zu bilden. Statt yR unmittelbar zu definieren,
definieren wir yR. Aus dieser Menge bekommen wir yR, indem wir alle Verbindungen von
Nachbarn aufheben, und zR, indem wir nur die Verbindungen von benachbarten Elementen
in Betracht ziehen. Wir setzen voraus, daß die Menge Q zu dem Durchschnitt IS ∩ IT gehört.
Die Menge IR sei IS 4 IT .
Es seien α und β zwei Strecken aus R. Ein zulässiger Weg, der von α nach β führt, ist

eine Reihe
α = α0, . . . , αr, αr+1 = β,

in der α1, . . . , αr alle innere Strecken sind. Ferner muß jedes Paar {αi, αi+1}, 0 6 i 6 r,
entweder durch yS oder durch yT verbunden sein. Für i = 0 oder i = r, ist die Verbindung
in yS oder yT je nachdem, ob die entsprechende Strecke α oder β in S oder T liegt. Es ist
auch möglich, daß r = 0. Dann ist der Weg eine unmittelbare Verbindung zwischen α und
β aus einer der zweien Mengen yS und yT . Der nächste Satz wird in V.D bewiesen.

Satz III.B. Die Funktion yR erfüllt die Bedingung (3.b.1) und die Bedingung (3.b.4)
bezüglich der Menge IR.

Wir wollen die zwei Mengen ŷS und ŷT unabhängig zusammenkleben. Die zu diesem
Zweck nötige Definition ist leider etwas umständlich und verlangt die Einführung einiger
zusätzlicher Definitionen, mit denen wir in einem anderen Zusammenhang schon vertraut
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sind, so daß wir nicht weiter versuchen werden, die Begriffe anschaulich zu machen. Die
zusätzlichen Bedingungen sind jetzt unentbehrlich.

Schleifen. Eine Schleife ist eine vier-tupel {α, α′, β, β′} aus S oder T , in dem α und β die
Hauptgegenstände sind, und α′ und β′ nur zusätzlich. Die Strecken α und β müssen beide
innere sein. Es sind ferner α und α′ sowie β und β′ benachbarte Paare. Wenn yS und yT
vorgegeben sind, heißt eine Schleife zulässig, wenn α und α′ mit β und β′ verbunden sind,
entweder durch ŷS oder ŷT , je nachdem ob das jeweilige Paar in S oder in T liegt. Es müssen
ferner die Gleichungen yP (α, α

′) = 0 und yP (β, β
′) = 0 gelten, wobei P gleich S oder T ist,

je nach der Lage des Paares. Es sind die zulässigen Schleifen, die von Hauptinteresse sind.
Die Elemente in einem Paar {α, α′} oder {β, β′} werden oft gespannt geheißen.

Enden. Ein Ende besteht aus drei Strecken {α, α′, β}, und α und α′ bilden darin ein
gespanntes Paar. Sie sind benachbart. Das Element β ist ein äußeres. Das Element α muß
dagegen ein inneres sein. Zulässige Enden sind von zweierlei Arten. Es sei P gleich S oder
T , je nachdem wo β liegt.
(a) Es gilt ŷP (α, β) = ŷP (α

′, β) = 1. Es gilt yP (α, α′) = 0.
(b) Die Strecke α′ ist eine äußere und β ist ein Nachbar von α. Wenn β 6= α′ sind diese

zwei Strecken in R notwendigerweise benachbart, bis auf den Fall, daß α die einzige
innere Strecke ist. Dann wird diese Bedingung zusätzlich verlangt.

Der Fall, daß β = α′ ist, ist von geringem Interesse, denn dieses Ende erweist sich als
überflüssig. Obwohl bei den Enden sowie bei den Schleifen α und α′ oder β und β′ nicht
symmetrisch auftreten, wird die Symmetrie wieder hergestellt mittels der Definition eines
Knotens.

Knoten. Ein Knoten {α, α′, β, β′} besteht aus vier Strecken. Es sind wieder beide Paare
{α, α′} und {β, β′} benachbart. Knoten sind alle zulässig und von zweierlei Art.
(a) Alle vier Strecken im Knoten sind innere, und entweder α = β und α′ = β′ oder

α = β′ und α′ = β.
(b) Die Strecken α und β sind innere, und α = β. Die Strecken α′ und β′ sind dagegen

äußere.
Es seien α und β zwei äußere Strecken. Ein breiter zulässiger Weg, der von α nach β

führt, ist zunächst eine Reihe
C−1, . . . , C2r+1,

der gewisse näher zu beschreibende Bedingungen auferlegt werden. Es bestehen zwei
Möglichkeiten. Eine ist trivial. Die ganze Zahl r = −1, die Strecken α und β liegen beide
entweder in R ∩ S oder in R ∩ T , und sie sind verbunden durch die jeweilige Menge ŷP von
Verbindungen, wobei P gleich S oder T ist. Es gilt also ŷP (α, β) = 1. Das einzige Element
C−1 der Reihe ist das Paar {α, β}. Wir reden von einer unmittelbaren Verbindung. Sonst
ist r > 0. Das erste Glied der Reihe ist ein zulässiges Ende

C−1 = {α = α−1, α0, α
′
0}.

Die Glieder C2i, 0 6 i 6 r, sind alle Knoten,
C2i = {α2i, α

′
2i, α2i+1, α

′
2i+1}.

Die Glieder C2i+1, 0 6 i < r, sind zulässige Schleifen,
C2i+1 = {α2i+1, α

′
2i+1, α2i+2, α

′
2i+2}.
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Es ist schließlich C2r+1 ein zulässiges Ende,
C2r+1 = {α2r+1, α

′
2r+1, α2r+2 = β}.

Diese Beschreibung eines zulässigen breiten Weges ist etwas umständlich, und es ist norma-
lerweise einfacher statt allen Schleifen, Enden und Knoten, die Reihe,

α = α−1, α0, α
′
0, . . . , α2i, α

′
2i, α2i+1, α

′
2i+1, . . . , α2r+1, α

′
2r+1, α2r+2 = β

anzugeben. Wir setzen ŷR(α, β) = 1, dann und nur dann, wenn es einen breiten zulässigen
Weg gibt, der von α nach β führt. Es wäre nach wie vor genauer von einem von ŷS, ŷT ,
yS, und yT zugelassenen Weg, oder wenigstens von einem von yS und yT zugelassenen, zu
reden. Wir erlauben uns jedoch etwas Nachlässigkeit in den Redewendungen.
Als Beispiel eines etwas entarteten breiten Weges, betrachten wir zwei benachbarte äußere

Strecken, α ∈ S und β ∈ T . Es sei γ ihr gemeinsamer Nachbar in Q. Dann ist
C−1 = {α, γ, β}
C0 = {γ, α, γ, β}
C1 = {α, γ, β}

ein breiter zugelassener Weg, der von α nach β führt. Folglich sind zwei solche Elemente
immer durch yR verbunden. Allgemeiner gilt

Satz III.B.3. Die Menge ŷR ist zur Menge yR dual.

Dieser Satz wird in V.D bewiesen. Damit wir diesen Satz sowie die vorhergehenden auf das
Aufhäufen verwenden können, brauchen wir zwei Hilfssätze. In diesen Hilfssätzen wird der
Begriff einer Schleife leicht abgeändert. Eine Schleife oder Ende im schwachen Sinn erfüllte
dieselben Bedingungen wie eine Schleife oder ein Ende, nur daß im zweiten gespannten
Paar beide Elemente äußere sein können. Übertriebenerweise nennen wir {α, α′, β, β′}
eine zulässige Schleife im sehr schwachen Sinn, wenn beide gespannte Paare nur äußere
Elemente enthalten. Diese ungeschickt benannten Begriffe werden sehr selten verwendet.
Nichtsdestoweniger sind die nächsten zwei Hilfssätze für die Beweise der Hauptergebnisse
unentbehrlich und ermöglichen das Verwenden des Induktionsverfahrens. Sie erklären die
Einführung der Mengen IS und IT und die Bedingung, die einem gespannten Paar in einer
zugelassenen Schleife oder in einem zugelassenen Ende auferlegt wird. Ein zugelassenes Ende
oder eine zugelassene Schleife in R wird aufgebaut als Kette von zugelassenen Schleifen,
Enden und Knoten in S und T .

Hilfssatz III.B.4. Es seien α, β, und β′ drei Strecken aus R. Es sei vorausgesetzt, daß es
einen zulässigen Weg,

C−1, . . . , C2r+1,

gibt, der von α nach β führt, sowie einen zulässigen Weg
D−1, . . . , D2s+1,

der von α nach β′ führt. Es sei weiter angenommen, daß yR(β, β
′) = 0. Es werden zwei

Möglichkeiten unterschieden:
(1) Die Strecken β und β′ gehören beide entweder zu IS oder zu IT . Dann existiert eine

Reihe,
E−1, . . . , E2t+1,
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die genau so gebildet ist, wie ein zulässiger breiter Weg, der am Punkt α anfängt,
nur daß das letzte Glied E2t+1 nicht ein Ende, sondern eine Schleife, zulässig im
schwachen Sinn,

E2t+1 = {γ2t+1, γ
′
2t+1, β, β

′},
oder in Ausnahmefällen, daß t = −1, ein zulässiges Ende, wieder im schwachen
Sinn,

E2t+1 = {γ−1, β, β
′},

ist. Es ist γ−1 = α.
(2) Die Strecke β gehört zu IS und die Strecke β′ zu IT . Es sei γ der zu β und β′

gemeinsame Nachbar in Q. Dann existiert eine Reihe ähnlicher Art, in der das letzte
Glied eine zulässige Schleife

E2t+1 = {γ2t+1, γ
′
2t+1, γ, β}

oder
E2t+1 = {γ2t+1, γ

′
2t+1, γ, β

′}
ist, und im Ausnahmefall t = −1, ein Ende

E−1 = {γ−1, γ, β}
oder

E−1 = {γ−1, γ, β
′}

Wir betonen, daß im ersten Teil des Hilfssatzes, wenn zum Beispiel β und β′ beide
zu S gehören, dann ist yS(β, β′) = 0, und ferner im zweiten Teil ist yS(γ, β) = 0 oder
yS′(γ, β′) = 0, je nachdem welches Paar {γ, β} oder {γ, β′} in E2t+1 auftritt. Der zweite
Hilfssatz unterscheidet sich kaum vom ersten. Da er dem gesamten Beweis so wichtig ist,
schreiben wir ihn trotzdem vollständig auf.

Hilfssatz III.B.5. Es seien α, α′, β, und β′ vier Strecken aus R. Es seien α und α′ sowie
β und β′ benachbart. Es gelten folgende Gleichungen:

ŷR(α, β) = ŷR(α
′, β) = ŷR(α, β

′) = ŷR(α
′, β′) = 1;

yR(α, α
′) = yR(β, β

′) = 0

(1)Wenn α und α′ zu einem gemeinsamen IP , P = S oder P = T , und β und β′ zu
einem gemeinsamen IP ′ gehören, existiert eine Reihe,

E−1, . . . , E2t+1,

die genau so gebildet wird, wie ein zulässiger breiter Weg, bis auf das erste und das
letzte Glied. Diese sind zulässige Schleifen im schwachen Sinn und folgenderweise
gestaltet:

E−1 = {α, α′, γ0, γ
′
0};

E2t+1 = {γ2t+1, γ
′
2t+1, β, β

′}.
Ausnahmsweise, wenn t = −1, ist E−1 eine Schleife im sehr schwachen Sinn.
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(2)Wenn die Strecke β zu IS gehört und die Strecke β′ zu IT , und die Strecken α und
α′ dagegen zu derselben Menge S, sei γ der zu β und β′ gemeinsame Nachbar in
Q. Dann existiert eine Reihe ähnlicher Art, in der das letzte Glied eine zulässige
Schleife

E2t+1 = {γ2t+1, γ
′
2t+1, γ, β}

oder
E2t+1 = {γ2t+1, γ

′
2t+1, γ, β

′}
ist, und im Ausnahmefall t = −1, eine Schleife

E−1 = {γ−1, γ
′
−1, γ, β}

oder
E−1 = {γ−1, γ

′
−1, γ, β

′}
zulässig im schwachen Sinn.

Es kommt allerdings noch ein dritter Fall vor, wenn α und β zu S gehören und α′ und
β′ zu T . Die Aussage muß dann entsprechend geändert werden. Dies überlassen wir dem
Leser. Es stellt sich heraus, daß wir noch was beweisen müssen, um das Induktionsverfahren
erfolgreich durchzuführen. Obwohl wir yR, yR und IR eingeführt haben, haben wir die
Funktion yR mit Hilfe der Funktion yR definiert, und nicht umgekehrt wie für yQ. Es
erweist sich, daß die durch yR und IR definierte Funktion nicht immer die durch zulässige
Wege definierte Funktion ist, auch wenn vorausgesetzt wird, daß yS und yT durch yS, yT ,
IS, und IT definiert werden. Ein einfaches Beispiel wird auf der Abbildung 6 gezeigt. Es
gehören α und β zu IR, und yR(γ, δ) ist 0, wenn γ 6= δ. Der Weg von α nach β kann bei
wiederholter Zusammenklebung wichtig werden. Die Abweichung der beiden Definitionen
von yR voneinander wird uns in der Mitte des nächsten Abschnitts einige Schwierigkeiten
bereiten. Die folgende Bedingung bleibt leider beim Zusammenkleben nicht erhalten, und
wir brauchen einen Ersatz.
(3.b.5) Es sei yS eine Menge von Verbindungen und IS eine zusätzliche Menge in S. Es sei

{β, β′} ein benachbartes Paar aus S mit β ∈ IS. Es sei ferner α ungleich β oder β′, und
ŷS(α, β) = 1 und ŷS(α, β

′) = 1. Dann gilt yS(β, β′) = 0. Es gilt auch yS(β, β
′) = 0,

wenn weder β noch β′ zu IS gehört.
Wenn wir yS aus yS ableiten, dann hat diese Bedingung zur Folge, daß yS wiederum aus

yS und IS abgeleitet werden kann.

Hilfssatz III.B.6. Es sei die Anzahl der Elemente in S wenigstens 4, und es gelte die
Bedingung (3.b.5) für das Paar {β, β′} und jedes α. Wenn yS(α, β) = 1, existiert ein Zyklus
(α, β, γ, δ) in S, für den yS(α, β) = 1 und yS(γ, δ) = 1.

Auf der einfach zusammenhängenden Kurve, die S aufteilt, beginnen wir am Nachbarn
zu α auf der β gegenüberliegenden Seite, und gehen wir von α weg, bis wir die letzte Strecke
δ erreichen, für die ŷS(α, δ) = 1. Die Strecke γ wird bezüglich β ähnlich definiert. Wenn
y(α, β) = 1 ist, folgt es aus der Bedingung (3.b.5), daß die Reihe (α, β, γ, δ) zyklisch ist. Da
yS und ŷS dual sind, gelten folgende Gleichungen

yS(α, δ) = yS(α, γ) = yS(β, γ) = yS(β, δ) = 1.

Somit wird der Hilfssatz bewiesen.
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α

β

Abbildung 6

Um uns auf die Aussage des nötigen Hilfssatzes, der einen Ersatz zur Bedingung (3.b.5)
liefert, vorzubereiten, wollen wir zu einer genauen geometrischen Vorstellung der breiten
Wege, die in den zweien Hilfssätzen III.B.4 und III.B.5 auftreten, gelangen. Diese Vorstellung
ist auch nützlich für einen Haufen, auf den wir bald zurückkommen werden. Eine (schwach)
zulässige Schleife hat zwei natürlich definierte Seiten. Es seien {α, α′} und {β, β′} die zwei
gespannten Paare der Schleife. Die Bezeichnung sei so gewählt, daß sie nicht berücksichtigt,
welche Strecken innere und welche äußere sind. Es wird vielmehr verlangt, daß {α, α′, β′, β}
zyklisch ist. Dann ist eine Seite {α, β} und die andere {α′, β′}. Wir stellen uns also die
Schleife als ein Band vor, das sich vom Paar {α, α′} zum Paar {β, β′} streckt. Die den
Schleifen aus einer Reihe

W = E−1, . . . , E2t+1

entsprechenden Bänder werden in einer natürlichen Weise ausgefüllt von den Knoten, oder
eigentlich von den Knoten der Art (b) und (c), denn die Knoten der Art (a) tragen nichts
bei. Das Ergebnis ist ein langes Band mit zwei Rändern.
Ein Knoten der Art (b) trägt ein eingesetztes Dreieck mit Ecken α = β, α′ und β′

dem Band bei. Die Seiten der zwei Schleifen, die die gemeinsame innere Strecke α = β
enthalten, werden zusammengenäht, und zwischen die Seiten, die α′ und β′ enthalten, wird
die Seite (α′, β′) des Dreiecks eingenäht. Die Seiten (α, α′) und (β, β′) des Dreiecks werden
also direkt an die entsprechenden Enden der Schleifen angenäht. Ein Knoten der Art (c),
der nur für Haufen auftritt, trägt dem Band ein rechteckiges Stück bei. Die Strecken seien,
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in zyklischer Reihenfolge um ihren gemeinsamen Punkt, die Strecken α, α′, β′, β. Die Seiten
(α, α′) und (β, β′) werden an die Enden der zwei Schleifen angenäht, und die freien Seiten
sind (α, β) und (α′, β′). Wenn, wie beim zweiten Teil des Hilfssatzes III.B.4, die letzte
Schleife das Paar {β, β′} nicht erreicht, so daß, zum Beispiel, das letzte angespannte Paar
in E2t+1 gleich {γ, β} ist, dann nähen wir noch ein Stück an das Band, ein Dreieck (β, β′, γ).
Die Seiten (β, β′) und (γ, β′) bleiben frei, und die Naht ist an der Seite (γ, β).
Auf diese Weise ergibt der breite Weg W im Satz III.B.5 ein Band mit zwei Rändern und

zwei Enden. Die Enden sind (α, α′) und (β, β′). Ein breiter Weg wie der, der im Hilfssatz
III.B.4 beschrieben ist, ergibt dagegen ein Band, dessen eines Ende in einen Zipfel an der
Strecke α entartet. Wir betonen, daß bei dieser geometrischen Denkweise die Strecken
als Punkte vorzustellen sind, so daß das Band nur mit Vorsicht als ein Gegenstand in
derselben Ebene wie die Quadrate dargestellt werden kann. In beiden Fällen bestimmt das
Band eine zyklische Reihenfolge auf der Menge der Strecken in seinem vollständigen Rand.
Außerdem ist der Begriff von zwei benachbarten Strecken auf diesem Rand klar. Intuitiv
ist es klar, daß yR-Verbindungen ein auf diese Weise gebildetes Band nicht durchqueren
können. Insbesondere, wenn {α, α′} ein gespanntes Paar an einem Ende des Bandes ist, gilt
yR(α, α

′) = 0. Diese Aussage ist der Inhalt des Hilfssatzes III.B.7; sie ist leider keine Folge
des Satzes III.B.3, und muß zusätzlich bewiesen werden.
Bei den Hilfssätzen III.B.4 und III.B.5 kommen zwei Arten breiter Wege vor. Bei der

ersten ist yS(β, β′) = 0 oder yT (β, β′) = 0, denn die Schleife
E2t+1 = {γ2t+1, γ

′
2t+1, β, β

′}
wäre sonst nicht zulässig. Von der zweiten haben wir nur verlangen können, daß für die
letzte Schleife, die beispielsweise folgende Gestalt hat,

E2t+1 = {γ2t+1, γ
′
2t+1, γ, β

′},
yT (γ, β

′) = 0 sei. Der nächste Hilfssatz liefert einen zweckmäßigen Ersatz für die Bedingung
(3.b.5), da er bürgt, daß yR(β, β

′) = 0 ist, wenn eine Kette vorhanden ist, die wie die in
den Hilfssätzen III.B.4 und III.B.5 aus zulässigen Schleifen und Enden gebaut wird, ohne
daß jedoch im voraus verlangt wird, daß yR(β, β

′) = 0 sei. Es genügt, eine Kette wie im
Hilfssatz III.B.4 zu betrachten, und der Hilfssatz betrifft implizit diesen Fall. Wenn es um
eine Kette wie im Hilfssatz III.B.5 geht, können wir dann eines der gespannten Elemente α
oder α′ auslassen. Die Strecke α ist natürlich eine äußere. In der Aussage unterscheiden wir
der Klarheit halber zwei Fälle, obwohl der Schluß immer derselbe ist.

Hilfssatz III.B.7.
(1) Die Strecken β und β′ gehören beide zu S oder zu T . Es sei

W = E−1, . . . , E2t+1

ein zulässiger breiter Weg, der mit einer Schleife
E2t+1 = {γ2t+1, γ

′
2t+1, β, β

′},
oder im Ausnahmefall t = −1 mit einem Ende

E2t+1 = {γ−1, β, β
′},

endet. Dann gilt yR(β, β′) = 0.
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(2) Es liegen β in S und β′ in T , und γ sei ihr gemeinsamer Nachbar in Q. Es sei
W = E−1, . . . , E2t+1

ein zulässiger breiter Weg, der mit einer Schleife
E2t+1 = {γ2t+1, γ

′
2t+1, γ, β

′},
oder im Ausnahmefall t = −1 mit einem Ende

E2t+1 = {γ−1, γ, β
′},

endet. Dann gilt wieder yR(β, β′) = 0.

Es ist eher der entsprechende Hilfssatz für unregelmäßige Haufen, den wir brauchen.
Seine Aussage befindet sich im nächsten Abschnitt. Den Hilfssatz III.B.7 selbst werden wir
im Abschnitt V.F beweisen.

III.C. Zurückführung der Beweise auf Mengen von Verbindungen. Die Dualität,
also der Satz III.B.1, wird direkt im nächsten Abschnitt behandelt. Es handelt sich im
vorliegenden Abschnitt darum, die Sätze III.A.1 und III.A.4 aus den Sätzen III.B.2 und
III.B.3 abzuleiten. Beide Sätze besagen nichts, wenn der Haufen H aus einem einzigen
Quadrat besteht. Es kommt folglich darauf an, die Gültigkeit der Sätze für einen Haufen H′

nachzuprüfen, wenn H′ aus H und einem hinzugelegten Quadrat Q besteht, und die Sätze
für H gelten. Zu diesem Zweck werden wir die Sätze III.B.2 und III.B.3 anwenden. Es seien
S die Menge der äußeren Strecke von H und T die Menge der äußeren Strecken von Q.
Dann ist Q die Menge der zusammengeklebten Strecken und R die Menge der äußeren
Strecken für H′. Es seien IS der Durchschnitt

S ∩
⋃
H

IP

und IT = IQ. Als Induktionsannahme setzen wir unter anderem voraus, daß die Funktionen
yS, yS, ŷS und y∗S, von denen nur yS und ŷS unabhängig definiert werden müssen, die durch
die Mengen

{
yP

∣∣ P ∈ H
}
,
{
IP

∣∣ P ∈ H
}
, und

{
zP

∣∣ P ∈ H
}
definierte Funktionen sind,

und beweisen, daß yR, yR, ŷR, und y∗R dann die durch die entsprechenden Mengen für H′

definierten Funktionen sind.
Daß der Satz III.A.1 eine unmittelbare Folge des Satzes III.B.2 ist, ist klar, denn die

Definitionen der entsprechenden Gegenstände yS sind offensichtlich verträglich. Dagegen
müssen wir, um den Satz III.A.4 aus dem Satz III.B.3 abzuleiten, die Definitionen der
Funktionen ŷS, die in den beiden Sätzen verwendet werden, genauer ansehen. Die breiten
zugelassenen Wege,

W = C−1, . . . , C2r+1,

werden bei den zwei Sätzen anders definiert, und es muß gezeigt werden, daß wenn ein
breiter zugelassener Weg in dem einen Sinn vorhanden ist, der von α nach β führt, dann
steht auch ein Weg im zweiten Sinn zur Verfügung. Wir werden auch in derselben Weise
die Reihen, die in den Hilfssätzen III.C.1 und III.B.7 vorkommen, vergleichen, denn wir
wollen den Hilfssatz III.C.1, der unten angegeben wird, aus dem Hilfssatz III.B.7 ableiten.
Erstens ist es nicht sofort klar, daß eine von yS zugelassene Schleife oder ein von yS

zugelassenes Ende durch eine Kette von
{
yP

∣∣ P ∈ H
}
zugelassenen Schleifen, Enden und

Knoten ersetzt werden kann. Zu diesem Zweck beweisen wir die Hilfssätze III.B.4 und
III.B.5 mittels Induktion. Sie erlauben uns in dem Induktionsverfahren, jede Schleife oder
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Ende bezüglich S schrittweise abzuändern, indem wir rückwärts durch die hinzugefügten
Quadrate durchgehend diese Schleife oder dieses Ende aus Schleifen und Enden in den
einzelnen Quadraten aufbauen, und dann, um das Induktionsverfahren einen Schritt weiter
vorwärtszubringen, die entsprechende Möglichkeit für das Paar R und H′ nachprüfen.
Es muß folglich untersucht werden, ob die durch die Knoten erlaubten Verbindungen

zwischen Ketten in H oder in S und Ketten in Q wirklich dieselben sind, und darüber
hinaus, ob sie äquivalent den Verbindungen durch Knoten in dem Haufen H′ sind. Diese
Untersuchung ist auch ein Teil des ersten Verfahrens, des schrittweisen Aufbauens von
Schleifen und Enden, dessen Möglichkeit in einer streng systematischen Darlegung als Sätze,
die mittels Induktion zu beweisen wären, formuliert würden. Diese Sätze wären den Sätzen
III.B.4 und III.B.5 ähnlich, nur daß die Aussagen noch umständlicher wären. Folglich ziehen
wir es vor, sie nicht ausdrücklich anzugeben, obwohl wir gelegentlich diejenigen Stellen
hervorheben werden, die dem Nachprüfen dieser Möglichkeit gewidmet sind.
Einen Hilfssatz möchten wir dennoch ausdrücklich angeben. Er entspricht dem Hilfssatz

III.B.7; er bezieht sich aber auf einen unregelmäßigen Haufen und die durch die Menge
{yQ} definierte Funktion y. In der Aussage verliert das Symbol Q vorübergehend seine
Bedeutung als hinzugelegtes Quadrat.

Hilfssatz III.C.1. Es sei
W = E−1, . . . , E2r+1,

eine Kette, die alle Bedingungen eines zulässigen breiten Wegs erfüllt, nur daß das letzte
Glied E2r+1 eine der folgenden Gestalten hat.

(1) Es endet mit einem gespannten Paar {β, β′}, in dem β und β′ beide äußere sind,
sie zu einem gemeinsamen Quadrat Q gehören, und yQ(β, β

′) = 0 ist.
(2) Es endet mit einem gespannten Paar {γ, β′}, in dem ein Element β′ ein äußeres ist,

das zweite γ ein inneres, und yQ(γ, β
′) = 0 ist, wenn Q das diese beiden Elemente

enthaltende Quadrat ist. Es sei β eine dritte äußere Strecke, die eine Ecke gemeinsam
mit γ und β′ besitzt.

(3) Es endet mit einem gespannten Paar {γ, γ′}, in dem beide Elemente inner sind. Sie
gehören zu einem Quadrat Q, für das yQ(γ, γ′) = 0. Es seien weiter β und β′ zwei
verschiedene äußere Strecken, so daß alle vier Strecken β, β′, γ, γ′ eine gemeinsame
Ecke haben.

Dann gilt y(β, β′) = 0.

Wir bemerken, daß es wohl möglich ist, daß γ und β zu keinem gemeinsamen Quadrat
gehören. Wir heben hervor, daß der Weg mit einem Ende {α, γ1, γ′

1}, in dem α eine äußere
Strecke ist, beginnt. Dieser Hilfssatz wird auch mittels Induktion bewiesen; er ist allerdings
auch im schrittweisen Aufbauen der Ketten von Schleifen und Enden verwickelt. Da zu
seinem Beweis kein Aufbauen explizit nötig ist, können wir diesen Beweis nach dem restlichen
Beweis angeben. Genauer erklärt, um bei den Beweisen von den Sätzen und III.A.3, sowie
bei den Beweisen der implizit zur Hilfe herangezogenen Verallgemeinerungen der Hilfssätze
III.B.4 und III.B.5, von H auf H′ überzugehen, verwenden wir den Hilfssatz auf H allein.
Folglich ist es gestattet, bei den Beweisen aller anderen Sätze und Hilfssätze für H′ diesen
einen Hilfssatz auf H zu verwenden.
Zum Zweck des schrittweisen Aufbauens der Ketten ist es sonst vorteilhaft, mindestens

für die Vorstellungskraft weniger anstrengend, die verschiedenen im Abschnitt III.A be-
schriebenen Fälle einzeln zu behandeln, obwohl wir in der Tat insgesamt zwei fragliche
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Konfigurationen auszeichnen können, die allein problematisch sind. Bei den anderen ist
dennoch der erste Teil des Hilfssatzes III.C.1 unentbehrlich. Die problematischen Fälle
treten auf, erstens, wenn in H′ drei Quadrate eine gemeinsame Ecke besitzen, und nur
zwei von diesen Quadraten zu H gehören, und zweitens, wenn vier Quadrate in H′ eine
Ecke gemeinsam haben, und nur drei von diesen Quadraten zu H gehören. Diese Konfi-
gurationen sind fraglich, entweder weil in H Knoten der Art (c) vorhanden sind, die bei
dem Zusammenkleben von ŷS und ŷT nicht unmittelbar verwendet werden, oder weil im
Kreuz von Strecken um die gemeinsame Ecke die zwei Strecken, die in S benachbart sind
und Zusammenklebungen vermitteln, in keinem gemeinsamen Quadrat enthalten sind, und
deswegen beim Zusammenkleben in den Haufen keine direkte Rolle spielen.

α

α′

β

β′γ

Abbildung 7

Bei dem Fall (i) kommt nur eine einzige fragliche Konfiguration vor, und zwar bei den
Fällen (i.b) und (i.c). Es genügt (b) allein zu behandeln. Es sei α die letzte unten liegende
Strecke in Sr(−1, 0), der rechten Seite des Quadrats am Punkt (−1, 0). Alle Strecken aus
Sr(−1, 0) liegen in S und in Q. Es sei α′ ihr Nachbar in Sr(−1,−1). Es liegt α′ in S ∩ R.
Es seien β = α, betrachtet aber als Strecke in T ∩Q, und β′ sein Nachbar in Su(0, 0). Die
Strecke β′ liegt in T ∩R. Es sind α und β innere, α′ und β′ äußere. Folglich ist {α, α′, β, β′}
ein möglicher Knoten für das Zusammenkleben von ŷS und ŷT , wenn yS(α, α

′) = 0 und
yQ(β, β

′) = 0. Im Haufen H gehören α und α′ dagegen zu keinem gemeinsamen Quadrat.
Die Strecken und die betreffenden Quadrate werden auf der Abbildung 7 gezeigt.
Wir nehmen an, es kommen zwei Schleifen oder Enden im breiten von yS und yT

zugelassenen Weg vor, die durch diesen Knoten zusammengebunden werden. Es sei γ der zu
α und α′ gemeinsame Nachbar in Su(−1, 0)∩So(−1,−1). Wenn wir die Induktionsannahme
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für H, also die Möglichkeit des Aufbauens einer Kette von Schleifen, Knoten und Enden aus
H mit denselben Anfangspunkten und Endpunkten wie denen der zusammengebundenen
Schleifen und Enden, voraussetzen und darüber hinaus die Hilfssätze III.B.4 und III.B.5
oder eigentlich ihre H betreffenden Verallgemeinerungen anwenden, bekommen wir eine
Kette, deren letztes Glied eine zugelassene Schleife oder ein zugelassenes Ende ist, für das
das gespannte Paar {α, α′} entweder durch {α, γ} oder {α′, γ} ersetzt wird. Im ersten Fall
können wir es mit dem darauf folgenden Element, einer Schleife oder einem Ende, durch den
Knoten {α, γ, α, β′} der Art (b) verbinden und im zweiten durch den Knoten {α′, γ, α, β′}
der Art (c). Diese sind Knoten in H′. Wir heben hervor, daß im ersten Fall yP(α, γ) = 0,
P = S(−1, 0) ist und im zweiten yP(α

′, γ) = 0, P = S(−1,−1). Folglich ist es möglich,
insofern nur diese erste Art von fraglichen Knoten vorhanden ist, das erwünschte Aufbauen
durchzuführen.
Wir wiederholen, bei dem Übergang von S zu H ist fraglich ein Knoten, der eine Schleife

bezüglich S mit einer Schleife bezüglich T (oder Q) verbindet, wenn die erste Schleife
mit dem gespannten Paar {α, α′} endet, und die zweite mit {α, β′}. Wir wenden den
Hilfssatz III.B.4, oder eigentlich seine nicht angegebene Verallgemeinerung auf H an, um
die Existenz eines diese Schleife ersetzenden zulässigen Teil eines breiten Weges zu zeigen,
der entweder mit dem gespannten Paar {γ, α} endet oder mit dem Paar {γ, α′}. Im ersten
Fall ist α′ unnütz; die Verbindung kommt mittels des Knotens {α, γ, α, β′} zustande; im
zweiten mittels {α′, γ, α, β′}. Dagegen beim Paar S und T wird die direkte Verbindung
zwischen {γ, α′} und {β, β′}, die in H′ vorhanden ist, vermittelt. Bezüglich H ist nämlich
{γ, α′, α} ein zugelassenes Ende, so daß, wenn wir aus der äußeren Strecke ε oder aus einem
Paar {ε, ε′} von inneren Strecken in H auf einem Teil eines breiten Weges das Paar {γ, α′}
erreichen können, dann können wir aus ε oder {ε, ε′} das Paar {α′, α} auf einer Schleife oder
auf einem Ende in S erreichen. Wenn wir uns vergewissern, daß yS(α, α

′) = 0 ist, können
wir den entsprechenden Teil des breiten Weges in H durch diese Schleife oder dieses Ende
ersetzen. Der Hilfssatz III.C.1 wird gerade zu diesem Zweck eingeführt. Da er einen Teil der
Induktionsannahme ausmacht, kann er, genauer sein zweiter Teil, hier angewandt werden.
Eine zweite fragliche Konfiguration tritt beim Fall (1.b) auf, wenn zwei Schleifen oder

Enden in S mittels eines entarteten Knotens {α, α′, α, α′} der Art (b) (bezüglich des Paares
S und T ) zusammengebunden werden. Wenn wir die Schleifen oder Enden durch Ketten
ersetzen, wie nach der Induktionsannahme möglich ist, dann enden die betreffenden Glieder
dieser Ketten entweder mit dem gespannten {α, γ} oder {α′, γ}. Wenn beide Glieder mit
demselben angespannten Paar enden, dann können wir sie ohne weiteres mit einem Knoten
der Art (a) oder mit einem entarten Knoten der Art (b) bezüglich H′ zusammenbinden.
Wenn eins der Paare α enthält, und das andere α′, dann ist {γ, α, γ, α′} der nötige Knote
in H′, und er ist wieder der Art (b) aber nicht entartet. Wir können schließen, daß diese
fragliche Konfiguration die Gleichheit der beiden yR nicht beeinträchtigt.
Somit wird gezeigt, daß insofern es sich um die Konfiguration der Abbildung 7 handelt,

die Verbindungen, die bezüglich R, S, und T entstehen, dieselben sind, wie die, die bezüglich
{yP} entstehen. Es können jedoch bei dieser Konfiguration Schleifen oder Enden bezüglich
R auftreten, für die die Analoga der Hilfssätze III.B.4 und III.B.5 bezüglich H′ nicht
ohne weiteres Folgen von diesen zwei Hilfssätzen allein sind. Diese sind diejenigen, in
denen das letzte angespannte Paar gleich {α′, β′} ist, und werden wichtig, wenn das auf
der Abbildung 7 fehlende Quadrat eingelegt wird. Im Gegensatz zu S und T , für die die
gemeinsame Ecke dieser zwei Strecken zu einem einzigen inneren Intervall α gehört, gehört
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sie in H′ zu zweien, nämlich α und γ. Wenn wir die zwei in Betracht kommenden Hilfssätze
auf S und T anwenden, bekommen wir Ketten, die mit einer Schleife enden, in der entweder
{α, β′} oder {α, α′} gespannt sind. Im ersten Fall kann dieses gespannte Paar unmittelbar
mit {α′, β′} mittels des Knotens {β′, α, β′, α′} der Art (b) verbunden werden, so daß nichts
verloren geht, und wir uns mit diesem Paar begnügen können.
Im zweiten Fall sieht man, warum die Aussagen der Analoga der Hilfssätze umständlicher

wären. Denn wenn wir zurückgehen durch die hinzugekommenen Quadrate (nicht in der
Reihenfolge, in der sie angelegt werden, sondern in der umgekehrten) um die Kette für H′

aufzubauen, müßten wir vielleicht zunächst eine Reihe von Schleifen und Knoten einführen,
die mit dem gespannten Paar {α, α′} enden. Aber danach, wenn wir dem Schritt erreichen,
bei dem entweder der Punkt (−1, 0) oder der Punkt (−1,−1) erst gedeckt wird, ist {α, α′}
nicht mehr zugelassen, und wir führen schließlich eine Reihe ein, die mit dem Paar {γ, α}
oder dem Paar {γ, α′} endet. Es muß folglich bei den verallgemeinerten Hilfssätzen III.B.4
und III.B.5 nicht wie in den ursprünglichen zwei Möglichkeiten vorgesehen werden, sondern
drei, die den drei an die gemeinsame Ecke angrenzenden Quadraten entsprechen.
Die zweite fragliche Konfiguration ist allerdings diejenige, bei der wir diese neu erhaltene H′

das Quadrat Q′ am Punkt (0,−1) hinzufügen, um H′′ zu bekommen, und es ist zweckmäßig
sie so zu behandeln, denn in den vorhergehenden Absätzen sind die nötigen Bezeichnungen
schon vorhanden. Es seien S ′ und T ′ die Aufteilungen des Randes von H′ und des neu
hinzugekommenen Quadrats Q′. Die Knoten bezüglich S ′ und T ′, die für H′ und Q′ nicht
unmittelbar verwendbar sind, sind der Art (a) und verbinden Schleifen, die mit dem Paar
{α′, β′} enden. Wenn es sich um das Zusammenbinden einer Kette aus S ′ und eines Elements
aus T ′ handelt, haben wir oben den Fall, bei dem die Hilfssätze III.B.4 und III.B.5 eine mit
dem Paar {α, β′} endende Kette ergeben, schon behandelt. Beim zweiten Fall müssen wir
erst in H′ die neue Kette bilden, die mit {γ, α} oder mit {γ, α′} endet. Wenn sie mit {γ, α}
endet, verwenden wir im neuen Haufen H′′ den Knoten {γ, α, β′, α} der Art (c). Wenn sie
mit {γ, α′} endet, verwenden wir den Knoten {α′, γ, α′, β′}.
Wenn es sich dagegen um zwei zusammenzubindende Ketten aus S ′ handelt, dann können

die neuen Glieder beiden mit einem der drei Paare {α, β′}, {α, γ}, oder {α′, γ} enden. Die
können dann entweder mittels eines Knotens der Arten (a), (b) oder (c) zusammengebunden
werden.
Umgekehrt kann eine Schleife in Q′, in der {α′, β′} gespannt ist, mit etlichen zulässigen

Schleifen in H′ gebunden sein, und zwar mit Schleifen, die mit den drei gespannten Paaren
{α, β′}, {α, γ}, {α′, γ} enden. Jede dieser Schleifen wäre das letzte Glied eines breiten
Weges, dem wir ein Ende hinzufügen können, um breite Wege zu bekommen, die α′ oder β′

in S ′ mit der Anfangsstrecke des Weges verbinden.
Zum Beispiel, wenn das gespannte Paar {α, β′} ist, so daß der Weg die Anfangsstrecke

mit β′ verbindet, können wir ihm das Ende {α, β′, α′} in S ′ hinzufügen, um einen Weg zu
bekommen, der die Anfangsstrecke mit α′ und β′ verbindet. Bezüglich S ′ und T ′ kann dann
der Weg, der mit {α′, β′} endet, direkt mittels des trivialen Knotens {α′, β′, α′, β′} der Art
(a) an den Weg in T ′ gebunden werden. Es muß jedoch bewiesen werden, damit dieser Weg
zugelassen wird, daß yS′(α′, β′) = 0. Da die Schleife, mit der wir anfingen, zulässig war, ist
diese Gleichheit eine Folge des zweiten Teils des Hilfssatzes III.C.1.
Wenn der Weg in H′ mit {α, γ} endet, dann muß er zweimal verlängert werden, einmal

nach α′ und einmal nach β′, und wir brauchen den dritten Teil des Hilfssatzes. Wenn er
mit {γ, α′} endet, dann wird der Weg erst nach α und dann weiter nach β′ verlängert.
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Wir wenden uns jetzt zum Beweis des Hilfssatzes III.C.1. Da der Hilfssatz leer ist, wenn
der Haufen aus einem einzigen Quadrat besteht, betrachten wir einen Haufen H, für den er
gilt, und einen Haufen H′, der aus H und einem hinzugelegten Quadrat Q besteht. Wir
wenden den Hilfssatz III.B.7 auf die sich durch die Ränder der H definierenden Quadrate
ergebende Aufteilung S des Randes von H und auf die Aufteilung T = AQ des Randes
von Q, sowie die durch S und T definierte Aufteilung R des Randes von H′, an. Wegen
der vorhergehenden Darlegung können wir die Kette W des Hilfssatzes, die bezüglich H′

definiert ist, durch eine ähnliche Kette bezüglich S, T und R mit denselben Endpunkten α,
β, und β′ ersetzen.
Das dazu verwendete Verfahren haben wir ausführlich dargelegt. Die gesamte Kette

wird aufgeteilt in kürzere Ketten, und jede kurze Kette bestimmt eine Schleife bezüglich S
oder T . Zum Beispiel, bei der ersten Konfiguration haben wir eine Kette von Schleifen und
Knoten, die mit dem Paar {γ, α′} endet, mit einer Schleife, die mit {α, α′} endet, ersetzt.
Bei der zweiten fraglichen Konfiguration haben wir in S ′ den Teil des breiten Weges, der

mit {α, β′}, {α, γ}, oder {α′, γ} endet, verlängert, um eine Kette zu bekommen, die eine
Schleife in S ′ definiert. Diese Schleifen sind wegen des Hilfssatzes III.C.1, auf H angewandt,
alle zulässig. Folglich, wenn wir zum Paar S und T übergehen, liefert der Weg W einen
ähnlichen zugelassenen Weg bezüglich S und T . Auf diesen Weg wenden wir wiederum den
Hilfssatz III.B.7 an, um die Aussage des Hilfssatzes III.B.1 für H′ zu erhalten.
Der erste Teil des Hilfssatzes ist klar, denn wenn β und β′ zu einem gemeinsamen P

gehören, ist der Schluß eine unmittelbare Folge des Hilfssatzes III.A.3. Für die anderen Teile
liegen alle betreffenden Strecken auf zwei oder drei Quadraten. Wir führen das Anhäufen
aus nur bis zum Punkt, wo der Haufen alle diese Quadrate enthält. Dieser Haufen sei H′, und
der vorhergehende sei H. Diese Bezeichnung haben wir schon benutzt bei der Besprechung
der fraglichen Konfiguration. Dem Weg W folgen wir in H′ zurück, bis er H′ verläßt, wo
wir ihn abschneiden, notfalls die erste Schleife der neuen Kette mit einem Ende ersetzend,
damit diese neue Kette als breiter Weg betrachtet werden kann. Ohne Beschränkung der
Allgemeinheit können wir annehmen, dieser neue Weg sei W selbst.
Die möglichen Konfigurationen der Strecken im zweiten Teil des Hilfssatzes werden in

der Abbildung 8 gezeigt.

8a 8b
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β′
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Abbildung 8
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Für den zweiten Teil des Hilfssatzes ist die Konfiguration (8.a) nicht fraglich im obigen
Sinn. Die Strecken γ und β′ gehören zu einem Quadrat P, und Q und P werden beim Über-
gang von H zu H′ zusammengeklebt längs einer Seite, die γ enthält. Es kann angenommen
werden, daß Q das neu hinzukommende Quadrat ist. Die Aussage III.C.1 ist eine direkte
Folge des Hilfssatzes III.B.7.
Bei der Konfiguration (8.b) ist Q entweder das β enthaltende Quadrat oder das β′

enthaltende Quadrat. Wenn es β enthält, wenden wir den Hilfssatz III.C.1 auf H an, um zu
folgern, daß yS(α, β) = 0 ist. Wir schließen dann aus dem Hilfssatz III.B.7, daß yR(β, β

′) = 0
ist. Wenn Q die Strecke β′ enthält, können wir den Hilfssatz III.B.7 direkt anwenden.
Beim dritten Fall dagegen, bilden die drei betreffenden Quadrate die erste fraglichen

Konfiguration, und wir verwenden die in der Beschreibung dieser Konfiguration benutzten
Bezeichnungen statt der des Hilfssatzes selbst. Wenn das letzte angespannte Paar in W das
Paar {γ, α′} ist, können wir den Hilfssatz für H anwenden, um zu schließen, daß yS(α, α

′) = 0
ist. Dann wenden wir den Hilfssatz III.B.7 auf das Paar S und T an, um zu schließen, daß
yR(α

′, β′) = 0 ist. Wenn sie mit {γ, α} endet, dann wenden wir den Hilfssatz für H an, um
nochmals zu zeigen, daß yS(α, α

′) = 0. Aus dieser Gleichung folgt wieder, daß yR(α
′, β′) = 0

ist. Wenn dagegen das letzte angespannte Paar {α, β′} ist, können wir den Hilfssatz III.B.7
direkt anwenden.
Nun haben wir den schwierigsten Teil des Beweises, wo das Argument ziemlich dicht

geworden ist, hinter uns, und haben den Punkt erlangt, wo wir nur die Sätze III.B.2 und
III.B.3 zeigen müssen. Diese zwei Sätze beziehen sich allein auf Menge von Verbindungen
auf Kreisrändern oder geschlossenen Kurven, und von Haufen wird nicht mehr die Rede
sein.

α

β

γ

δ

Abbildung 9

Man sieht von der Abbildung 9 warum die zusätzliche Bedingung (3.b.4) und die Mengen
IS und IT wesentlich sind. Wenn man die Funktion y für das Aufhäufen von drei Quadra-
ten mittels Induktion bildet, indem man zuerst Q1 und Q2 zusammenklebt, wie auf der
Abbildung 9, und dann das Ergebnis mit Q3 zusammenklebt. Die Verbindung von α mit β
wird nur erhalten, wenn man gleich beim ersten Schritt γ und δ verbindet. Weil γ und δ
beim letzten Schritt innere Strecken sind, müssen sie schon beim ersten als Mitglieder von
IQ2 ausgezeichnet werden.



38 ROBERT P. LANGLANDS

IV. DUALITÄT

IV.A. Beweis des Hilfssatzes III.B.1. Um den ersten Teil des Satzes III.B.1 zu beweisen,
müssen wir nur die Bedingung (3.b.3) nachprüfen. Wir setzen y = yS und y∗ = y∗S. Es
seien y∗(α, β) und y∗(α′, β′) beide gleich 1, und die Reihe α, α′, β, β′ sei zyklisch. Diese
vier Punkte in der gegebenen Reihenfolge teilen die Menge S in vier Intervallen [α, α′],
[α′, β], [β, β′], und [β′, α] auf. Wenn y(γ, δ) = 1, liegen γ und δ in ein und demselben dieser
Intervalle. Hieraus folgt sofort, daß ŷ(α, α′) = 1.
Der zweite Teil der Aussage ist kaum schwieriger. Es ist erstens klar, daß die Gleichung

y(γ, δ) = 1 die Gleichung y∗∗(γ, δ) = 1 zur Folge hat. Es sei y(γ, δ) = 0. Wir folgern aus
dieser Gleichung, daß y∗∗(γ, δ) = 0.
Es seien A und B die zwei Intervalle (γ, δ). Dann definiert die Reihe (γ,A, δ, B) eine

Orientierung in S. Bezüglich dieser Orientierung sei α die letzte Strecke aus A und β die
erste aus B, die an γ durch y verbunden sind. Es kann sein, daß α oder β gleich γ ist. Wir
definieren α′ ∈ A und β′ ∈ B in derselben Weise, aber bezüglich δ statt γ. Da y(γ, δ) = 0
kommt α nicht nach α′, und β′ nicht nach α′. Wenn α′′ ∈ [α, α′] ⊂ A und β′′ ∈ [β, β′] ⊂ B
liegen, gilt y∗(α′′, β′′) = 1. Folglich ist y∗∗(γ, δ) = 0.

V. BEWEISE

V.A. Erste Abänderungen. Wir haben die Aussagen der Sätze in einer Reihenfolge
angegeben, die die für unsere Modelle grundlegenden Ergebnisse hervorhebt, indem diese
Ergebnisse an die erste Stelle gesetzt, und die anderen erst nachher erklärt werden. Da
diese zusätzlichen Sätze, die sich auf das Zusammenkleben von Mengen von Verbindungen
beziehen, eigentlich nur Hilfssätze sind, wären sie als erste zu beweisen. Wir haben es jedoch
vorgezogen, ihre Folgerungen erst für unsere Modelle abzuleiten, und kommen jetzt zu den
Beweisen der Sätze selbst. Um während dieser Beweise nicht ständig vorgreifen zu müssen,
schicken wir ihnen einige noch elementarere Lemmas voraus.
Die Richtschnur unseres Vorgehens ist, alle Aussagen mittels zweckmäßigen Induktions-

verfahren ständig auf die einfachsten Fälle zurückzuführen. Der Übergang von den endlichen
Modellen zu Haufen hat uns die nötige Geschmeidigkeit gewährt, und der Begriff einer
Menge von Verbindungen hat uns erlaubt, einen Haufen zu vergrößern, indem wir ihm
schrittweise einzelne Quadrate hinzufügen. Wir brauchen darüber hinaus ein Mittel, das
uns erlaubt, die Anzahl der Elemente in den zu betrachtenden Mengen von Verbindungen
zu vermindern, indem wir einige Strecken zweckmäßig zusammenkleben oder aufheben, und
gleichzeitig die Verbindungen neu definieren. Es wird jedesmal zu beweisen sein, wenn die
Sätze III.B.2 und III.B.3 nach der Abänderung gültig sind, dann gelten sie auch für die
ursprünglichen Mengen. Wir werden bei den Beweisen der drei Hilfssätze III.B.4, III.B.5
und III.B.7 ähnlich verfahren.
Wie bei den Sätzen handelt es sich zunächst um zwei Gegenstände, die Mengen von

Verbindungen yS, yT , ihre dualen Gegenstände ŷS und ŷT sowie IS, IT und zwei Mengen
von Kurzverbindungen. Diese zusätzlichen Verbindungen definieren die Mengen yS und yT .
Wir geben zunächst eine Reihe von zulässigen Abänderungen an. Die oft umständlichen

Beweise der Zulässigkeit werden, wenn nicht ausführlich, doch mit vielen Einzelheiten
durchgeführt, damit wenigstens der Verfasser sich selbst von ihrer Stichhaltigkeit überzeugt.
Es ist nämlich bei den Argumenten leicht, diese oder jene Möglichkeit zu übersehen, und
die Gefahr deshalb groß, daß ihnen ein Fehler unterläuft.
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Es sind nichtsdestoweniger allgemeine und sehr ähnliche Verfahren, die wir verwenden bei
diesen Abänderungen. Bei den ersten Abänderungen, die in diesem Abschnitt beschrieben
werden, werden weder die Streckenmenge R noch die zusammengeklebten Mengen von
Verbindungen yR und ŷR verändert. Die Mengen S und T und die Mengen von Verbindun-
gen yS und yT werden jedoch abgeändert. Die abgeänderten Mengen S ′ und T ′ werden
erhalten, indem wir Strecken aus Q = S ∩ T entweder aufheben oder zusammenkleben.
Die abgeänderten Mengen yS′ und yT ′ werden verschieden definiert. Nachdem sie definiert
worden sind, ergeben sich yS′ und yT ′ , indem wir alle Verbindungen zwischen benachbarten
Strecken in yS′ und yT ′ ausstreichen. Die Mengen IS′ und IT ′ werden jeweils als IS ∩ S ′ und
IT ∩ T ′ definiert. Die dualen Mengen zu yS′ und yT ′ seien ŷS′ und ŷT ′.
Es seien y′R und yR die Zusammenklebungen der abgeänderten Mengen. Es wird in jedem

Fall klar sein, daß y′R = yR. Dagegen wird die Gleichheit
(5.a.1) ŷ′R = ŷR

gewöhnlicherweise nicht ohne weiteres klar. Der Beweis wird jedoch jedesmal elementar
sein, da es sich um eine anschauliche geometrische Aussage handelt. Alle Beweise sind
ähnlich, und, damit wir uns nicht ständig wiederholen, beginnen wir mit einem Umriß des
allgemeinen Beweisverfahrens.
Die Gleichheit (5.a.1) wird bewiesen, indem man zeigt, daß ŷ′R ⊂ ŷR und ŷR ⊂ ŷR. Es sei

zunächst
W ′ : α = α−1, α0, α

′
0, . . . , α2r+1, α

′
2r+1, α2r+2 = β

ein breiter von den Mengen ŷS′ , ŷT ′ , yS′ , yT ′ zugelassener Weg, der von α nach β führt. Wie
vorher drücken wir uns oft kürzer aus und nennen einen breiten Weg dieser Art von yS′

und yT ′ zugelassen.
Um zu beweisen, daß die Menge ŷ′R in ŷR enthalten ist, ändern wir W ′ schrittweise, um

einen breiten Weg zu bekommen, der von yS und yT zugelassen wird, und der von α nach β
führt. Es geht darum, die von ŷS nicht zugelassenen Schleifen oder Enden aufzuheben und
sie durch anderen zugelassenen Schleifen und Enden zu ersetzen, um einen breiten, von den
Mengen yS und yT zugelassener Weg, zu bekommen.
Ein Ende {αi, αj, α

′
j}, i = j ± 1 oder eine Schleife {αi, α

′
i, αj, α

′
j} heißt problematisch,

wenn es nicht gleichzeitig zu ŷS und ŷS′ oder zu ŷT und ŷT ′ gehört. Die genaue Beschreibung
dieses Begriffs ist in jedem Fall verschieden. Wir betrachten innerhalb W ′ Ketten von
problematischen Schleifen,

K = αk, α
′
k, . . . , α`, α

′
`,

wobei Ketten, die mit einem Ende beginnen oder enden, auch betrachtet werden. Die ganze
Zahl k ist ungerade und ` gerade. Diese Ketten werden durch Ketten von Schleifen und
Enden ersetzt, die bezüglich yS und yT zulässig sind. Die Schleifen und Enden außerhalb
dieser Ketten werden nicht problematisch sein und werden folglich bezüglich yS und yT
zulässig. Der auf diese Weise zusammengelegte breite Weg W wird α und β verbinden.
Somit wird bewiesen, daß ŷ′R ⊂ ŷR.
Ein umgekehrtes Verfahren wird uns erlauben, breite von yS und yT zugelassene Wege

durch von yS′ und yT ′ zugelassene Wege zu ersetzen, und somit die Gleichheit (5.a.1) bei
jeder Art Abänderung zu folgern. Nachdem wir die Abänderungen eingeführt und bewiesen
haben, daß sie die Gültigkeit des Satzes III.B.3 nicht beeinflussen, werden wir nachprüfen,
daß sämtliche Abänderungen die wichtige Bedingung (3.b.4) nicht beeinträchtigen. Aus
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einem strengen logischen Gesichtspunkt, müßte es vorher bewiesen werden, daß diese
Bedingung auch für yR gilt, da diese Tatsache während der Beweise angenommen ist. In
dieser Hinsicht sind wir nachlässig gewesen. Da die Bedingung (3.b.1) trivial ist, ist die
Gültigkeit des Satzes III.B.2 auch nicht von den Abänderungen beeinträchtigt.

Abänderung A.1. Die erste Abänderung ist einfach. Wenn γ eine innere Strecke, die mit
keiner anderen Strecke verbunden ist, dann können wir γ aufheben, um neue Streckenmengen
S ′ = S \{γ} und T ′ = T \{γ} sowie neue Mengen von Verbindungen yS′ und yT ′ zu erhalten,
ohne daß die Zusammenklebungen yR und ŷR sich verändern. Bei dieser Abänderung wird
allerdings vorausgesetzt, daß γ nicht die einzige innere Strecke ist. Es ist ohne weiteres klar,
daß y′R, die sich daraus ergebende Zusammenklebung der neuen Mengen yS′ und yT ′ , gleich
yR ist.
Für die Zusammenklebung der Mengen ŷS′ und ŷT ′ sind dagegen einige Bemerkungen nötig.

Die Funktion ŷS verbindet einige Strecken aus S mit γ. Diese Verbindungen sind natürlich
keine Verbindungen in ŷS′. Sonst besteht ŷS′ aus den Verbindungen in ŷS. Die Menge ŷT ′

wird in derselben Weise aus ŷT erhalten. Einige Schleifen und Enden werden problematisch
genannt. Eine von yS oder yT zugelassene Schleife oder Ende heißt problematisch, wenn es
γ enthält. Eine von yS′ oder yT ′ heißt dagegen problematisch, wenn es einen Nachbarn von
γ enthält. Es seien γ′ und γ′′ die zwei Nachbarn von γ in S und δ′ und δ′′ seine Nachbarn in
T . Gewöhnlicherweise ist γ′ gleich δ′ und γ′′ gleich δ′′. Nur wenn γ′ und δ′ äußere Strecken
sind, sind sie verschieden.
Es sei {α, α′, γ, γ′} eine von yS zugelassene problematische Schleife. Es sei vorausgesetzt,

daß weder α noch α′ gleich γ ist. Dann sind γ′ und γ′′ nicht durch yS verbunden, und
deshalb auch nicht durch yS′ . Eine Verbindung in yS, die α oder α′ von γ′′ trennt, würde es
auch von γ trennen. Folglich ist {α, α′, γ′′, γ′} von yS′ zugelassen. Die Schleifen, für die α
oder α′ gleich γ ist, brauchen nicht ersetzt zu werden. Wenn zum Beispiel α = γ, dann ist
α′ entweder γ′ oder γ′′. Wenn α′ = γ′ ist die neue Schleife {γ′′, α′, γ′′, γ′} gewiß zugelassen.
Sie kann jedoch einfach ausgelassen werden, wie übrigens die alte Schleife auch. Wenn
α′ = γ′′ ist, verbindet diese Schleife zwei Schleifen, die durch zwei in S ′ oder T ′ liegende
und entweder unmittelbar oder mittels eines Knotens der Art (b) aneinander anschließende
Schleifen ersetzt werden, so daß die durch diese Schleife zustande kommende Verbindung
unnütz ist.
Wenn umgekehrt {α, α′, γ′′, γ′} von yS′ zugelassen wird, so daß yS′(γ′, γ′′) = 0, und wenn

{α, α′} 6= {γ′′, γ′} ist, dann werden {α, α′, γ, γ′} und {α, α′, γ′′, γ} von yS zugelassen. Man
verfährt ähnlicherweise mit den Enden. Dabei müssen auch Enden {γ′, γ, γ′}, falls sie
vorkommen, nicht übersehen werden.
Wir legen yS-zulässige und yT -zulässige oder yS′-zulässige und yT ′-zulässige Enden und

Schleifen zusammen, um ŷR und ŷ′R zu erhalten. Um zu zeigen, daß ŷ′R = ŷR ist, ersetzen wir
systematisch in von yS zugelassenen breiten Wegen alle Schleifen und Enden, die ein gespann-
tes Paar {γ, γ′} oder {γ, γ′′} enthalten, durch Schleifen oder Enden, die {γ′, γ′′} enthalten
oder, wenn es erlaubt ist, lassen wir sie aus. Wenn die Schleifen durch yT zugelassen sind,
wenn sie also Strecken nur aus der Menge T enthalten, wird das Paar {γ, γ′} durch {δ′, δ′′}
ersetzt. Umgekehrt ersetzen wir Schleifen oder Enden, die {γ′, γ′′} oder {δ′, δ′′} enthalten,
mit Schleifen und Enden die γ enthalten. Wir bemerken, daß bei diesem Verfahren die
Knoten leicht abgeändert werden müssen. Wenn zum Beispiel γ′ und δ′ äußere sind, dann ist
ein Knoten der Art (a), der {γ, γ′′} mit sich selbst verbindet, durch einen Knoten der Art
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(b), der {γ′, γ′′} mit {δ′, δ′′} verbindet, zu ersetzten. Da γ nicht die einzige innere Strecke
ist, ist in diesem Fall notwendigerweise γ′′ = δ′′

Abänderung A.2. Eine zweite Abänderung ähnlicher Art kann definiert werden, wenn γ
eine innere Strecke ist, die mittels yT mit keiner Strecke außer sich selbst verbunden ist.
Im Gegensatz zu der ersten Abänderung kann γ jedoch mittels yS mit anderen Strecken
in S verbunden werden. Die erste Abänderung ist folglich ein spezieller Fall der zweiten.
Die zweite ist nicht schwieriger, und ihre ausschlaggebende Rolle beim Beweis kann leicht
verkannt werden. Die Strecke γ wird nochmals ausgehoben, um S ′ und T ′ zu bekommen,
und yT ′ genau wie vorher definiert. Die Menge von Verbindungen yS′ erhält man, wenn man
alle Verbindungen mit γ aushebt, und neue Verbindung einführt, indem man yS′(α, β) = 1
setzt, wenn α und β in S liegen, und yS(α, γ) = 1 und yS(β, γ) = 1 ist. Im Gegensatz zur
Abänderung A.1 ist es möglich, nicht nur daß einige Verbindungen in ŷS abhandenkommen,
sondern daß auch neue Verbindungen entstehen, weil die Verbindungen durch yS von γ mit
anderen Strecken ausgestrichen werden.
Die eigentliche Gefahr ist, daß neue Verbindungen entstehen, denn eine Verbindung

zwischen α und β, die vorher durch ŷS nicht verbunden waren, können durch ŷS′ verbunden
sein, wenn jede yS-Verbindung, die sie trennt, γ mit einer zweiten Strecke verbindet, und
wenn keine neu entstandene yS′-Verbindung, die die Strecken α und β voneinander trennt,
existiert.
Es seien α und β durch ŷS′ verbunden, nicht aber durch ŷS. Es seien I1 und I2 die zwei

offene Intervalle (α, β) in S. Die Strecke γ gehöre I1. Dann existiert ein δ ∈ I2, das mit γ
durch yS verbunden ist. Es kann dagegen keine Strecke γ1 ∈ I1 außer γ geben, die mit einer
Strecke aus I2 verbunden ist. Die Folge ist, daß es einen zulässigen breiten Weg gibt, der
von α nach β führt. Der Klarheit halber schreiben wir diesen Weg vollständig auf. Es sei γ′

der Nachbar von γ zur Seite α und γ′′ der Nachbar zur Seite β.
C−1 = {α, γ′, γ},
C0 = {γ, γ′, γ, γ′},
C1 = {γ, γ′, γ, γ′′},
C2 = {γ, γ′′, γ, γ′′},
C3 = {γ, γ′′, β}.

C1 ist eine Schleife in T . Wenn wir statt einer einfachen Verbindung ein zulässiges Ende
{α, β, β′} hätten, könnten wir eine ähnliche Reihe bilden, die aber, statt mit einem zulässigen
Ende zu enden, mit einer zulässigen Schleife,

C3 = {γ, γ′′, β, β′},
enden würde. Schleifen werden ähnlich behandelt.
Wie bei der ersten Abänderung ist es sofort klar, daß yS′ und yT ′ eine Zusammenklebung

y′R ergeben, die gleich yR ist. Der Beweis, daß ŷR′ = ŷR ist, ist auch dem Beweis derselben
Gleichung für die erste Abänderung ähnlich. Wie wir schon bemerkt haben, ist einige
Vorsicht jedoch angebracht, da bei den breiten Wegen, die in der Konstruktion von ŷR′

vorkommen, noch problematischer sein können.
Es sei {α, α′, γ, γ′} eine von yS zugelassene problematische Schleife. Auch in diesem Fall

sind γ′ und γ′′ nicht durch yS verbunden. Eine Verbindung in yS könnte α oder α′ von γ′′

trennen, aber nur dann, wenn es eine Verbindung der Strecke γ mit einer zweiten Strecke
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ist. Diese sind jedoch gerade die Verbindungen, die aufgehoben werden, um yS′ zu bilden.
Da α und α′ nicht durch yS von γ′ getrennt sind, kann eine neu entstandene Verbindung
sie auch nicht von γ′′ trennen. Folglich wird {α, α′, γ′′, γ′} von yS′ zugelassen.
Die von yS′ zugelassenen Schleifen und Enden können aus zwei Gründen problematisch

sein. Diejenigen, die problematisch sind, weil sie Verbindungen zwischen Strecken aus S ′

enthalten, die in ŷS′ liegen und nicht in ŷS, sind schon behandelt worden. Die anderen
werden wie bei der Abänderung A.1 behandelt. Bei der Abänderung A.2 ist es möglich, daß
{α, α′, γ′′, γ′} von yS′ zugelassen ist, ohne daß {α, α′, γ, γ′} und {α, α′, γ′′, γ} beide von yS
zugelassen werden. Eine dieser Schleifen ist aber notwendigerweise zugelassen, und eine
reicht.

Abänderung A.3. Die dritte Art Abänderung wird vorgenommen, wenn ein benachbartes
Paar {γ1, γ2} in Q durch yS verbunden ist. In diesem Fall werden S ′ und T ′ erhalten, indem
wir γ1 und γ2 zu einer einzigen Strecke γ zusammenkleben. Die abgeänderten Mengen yS′

und yT ′ werden definiert, so daß
yS′(α, β) = yS(α, β), yT ′(α, β) = yT (α, β),

wenn weder α noch β in {γ1, γ2} liegt. Man setzt yS′(α, γ) = 1, wenn entweder yS(α, γ1)
oder yS(α, γ1) gleich 1 ist, und sonst gleich 0. Der Wert von yT ′(α, γ) wird ähnlicherweise
definiert. Bei dieser Abänderung ist es auch klar, daß y′R = yR.
Wenn weder α ∈ S noch β ∈ S in {γ1, γ2} liegt, ist ŷS′(α, β) = ŷS(α, β). Ferner gilt die

Gleichung ŷS′(α, γ) = 1, dann und nur dann, daß ŷS(α, γ1) = 1 oder ŷS(α, γ2) = 1 ist. Die
neue Menge ŷT ′ wird genau so aus ŷT abgeleitet. Da yS(γ1, γ2) = 1 werden die Schleifen und
Enden, in denen γ1 und γ2 gespannt sind, nicht von yS zugelassen. Ein gespanntes Paar
{δ, γ1} oder {δ, γ2} in einer von yS zugelassenen Schleife oder in einem zugelassenen Ende
wird durch {δ, γ} ersetzt, und die damit zustande kommenden Schleifen und Enden werden
von yS′ zugelassen. Umgekehrt wird ein gespanntes Paar {δ, γ} in einer von yS zugelassenen
Schleife oder in einem von yS zugelassenen Ende durch ein Paar {δ, γi} ersetzt. Der Index
ist entweder 1 oder 2 und so gewählt, daß δ und γi benachbart sind. Es ist ausdrücklich zu
bemerken, daß die dabei entstehenden Schleifen oder Enden zulässig sind, denn eine Strecke,
die durch ŷS′ mit δ und γ verbunden ist, ist notwendigerweise durch ŷS mit derjenigen der
Strecken γ1 und γ2, die zu δ benachbart ist, verbunden, wenn yS′(δ, γ) = 0 ist. Die von yT ′

zugelassenen Schleifen und Enden, sowie die von yT zugelassenen Schleifen und Enden, in
denen γ1 und γ2 nicht gespannt sind, werden ähnlich behandelt.
Schleifen und Enden, die von yT zugelassen sind, und in denen γ1 und γ2 gespannt sind,

können jedoch in einem breiten Weg vorkommen. Diese sind auf den ersten Blick besonders
problematische Schleifen und Enden, weil man denken könnte, wegen der Abänderung
würde der Weg hier unterbrochen. Es sei zum Beispiel E = {α, γ1, γ2} ein zugelassenes
Ende. Eine darauf folgende Schleife im breiten Weg kann keine Schleife von Verbindungen
in ŷS sein. Folglich ist sie eine Schleife, deren Strecken in T liegen. Die Strecken eines darauf
folgenden Ende müßten auch in T liegen. Es sei zum Beispiel D = {γ1, γ2, β, β′} eine von
yT zugelassene Schleife. Die Zulässigkeit von D und E hat zur Folge, daß auch {α, β, β′}
ein zulässiges Ende ist, weil zum Beispiel eine Verbindung, die β von α trennte, würde
notwendigerweise eine der Strecken α und β von γ1 oder γ2 trennen. Die Kette

α, γ1, γ2, γ1, γ2, β, β
′
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kann daher durch das Ende {α, β, β′} ersetzt werden. Man verfährt auch so, wenn E eine
Schleife ist oder D ein Ende.
Es bleibt jedoch zu beweisen, daß alle diese Abänderungen zulässig in dem Sinn sind,

daß sie die Bedingung (3.b.4) nicht beeinträchtigen. Bei der Abänderung A.1 ist das ohne
weiteres klar. Bei der Abänderung A.2 ist nur der Übergang von yS zu yS′ fraglich. Es
sei (α1, β1, γ1, δ1) ein Zyklus in S ′ und zwar der Art, daß yS′(α1, γ1) = 1 ist, nur weil α1

und γ1 beide durch yS mit γ verbunden sind. Wenn aus demselben Grund yS′(β1, δ1) = 1
ist, ist die Gleichung yS′(α1, β1) = 1 für ein nicht benachbartes Paar {α1, β1} sofort klar.
Sonst bestehen zwei Möglichkeiten, entweder (α1, β1, γ, δ1) ist ein Zyklus oder (γ1, β1, γ, δ1)
ist ein Zyklus. Wenn die erste Möglichkeit gilt, ist die Gleichung yS′(α1, β1) = 1 für nicht
benachbarte α1 und β1 eine Folge der Bedingung (3.b.3) für yS. Allgemeiner gilt in beiden
Fällen wegen (3.b.4) die Gleichheit yS(β1, γ) = 1. Folglich ist yS′(α1, β1) = 1.
Daß die Mengen yS′ und yT ′, die man von der dritten Art Abänderung bekommt, auch

die Bedingung (3.b.4) nicht verletzen, ist ziemlich klar.

V.B. Weitere Abänderungen. Die Abänderungen, die wir im vorigen Abschnitt be-
schrieben haben, hatten keinen Einfluß weder auf die Menge yR noch auf die Menge ŷR.
Die Abänderungen, die wir in diesem Abschnitt beschreiben, werden auch bei dem Indukti-
onsverfahren verwendet. Im Gegensatz jedoch zu den vorigen, sind die neuen Mengen R′

nicht gleich R, und die neuen Mengen yR′ und ŷR′ verschieden von den alten, yR und ŷR, so
daß es bewiesen werden muß, wenn yR′ und ŷR′ dual sind, dann sind auch yR und ŷR dual.
Bei diesen Abänderungen werden nur äußere Strecken aufgehoben oder zusammengeklebt,
so daß die sich daraus ergebenden Folgen für Schleifen und Enden leichter überschaubar
sind. Es kann auch in allen Fällen leicht nachgeprüft werden, daß die Mengen yS′ und yT ′

die Bedingung (3.b.4) erfüllen.

Abänderung B.1. Es seien γ′ und γ′′ zwei verschiedene äußere Strecken in S, die mit
einander durch yS verbunden sind. Das Intervall [γ′, γ′′] sei so definiert, daß es keine innere
Strecke enthält. Wir setzen erstens voraus, daß keine Strecke aus

(γ′, γ′′) ⊂ [γ′, γ′′]

mit einer Strecke aus dem Komplement von [γ′, γ′′] verbunden ist. Unter dieser Annahme
heben wir die Vereinigung der Strecken im Intervall (γ′, γ′′) auf, um eine neue Streckenmenge
S ′ zu bekommen. Wir setzen
(5.b.1) yS′(α, β) = yS(α, β),

wenn α ∈ S ′ und β ∈ S ′ sind.
Hieraus folgt sofort, daß unter derselben Annahme

(5.b.2) ŷS′(α, β) = ŷS(α, β).

Weder die Menge T noch die Menge yT wird geändert.
Die Menge R′ wird auch erhalten, in dem man alle Strecken in (γ′, γ′′) aufhebt. Sie ist

also S ′ 4 T . Es gilt offensichtlich die Gleichung yR′(α, β) = yR(α, β), wenn beide Seiten
definiert sind. Wenn α dem Intervall (γ′, γ′′) gehört und β dem Intervall [γ′, γ′′], dann ist
yR(α, β) = yS(α, β) und ŷR(α, β) = ŷS(α, β). Wenn β außerhalb dieses Intervalls liegt, ist
yR(α, β) = 0 und ŷR(α, β) = 0.
Es sei vorausgesetzt, daß ŷR′ die zu yR′ duale Menge ist. Wir wollen daraus schließen, daß

ŷR zu yR dual ist, also daß ŷR(α, β) = 0, dann und nur dann, wenn es eine yR-Verbindung
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gibt, die α von β trennt. Wenn α in (γ′, γ′′) liegt, ist das klar, denn ŷS ist zur Menge yS
dual. Insbesondere, wenn β außerhalb [γ′, γ′′] liegt, ist

ŷR(α, β) = ŷS(α, β) = 0,

und die Verbindung von γ′ mit γ′′ gehört zu yR und zu yS. Es sei schließlich weder α noch
β im Intervall (γ′, γ′′). Der erwünschte Schluß ergibt sich dann aus der Annahme, daß ŷR′

zu yR′ dual ist.
Es ist nützlich, die Abänderung B.1 unter allgemeineren Umständen einzuführen. Es sei

γ eine gegebene innere Strecke. Wir lassen yS-Verbindungen zwischen γ und Elementen aus
(γ′, γ′′) zu. Der einzige Unterschied zum vorhergehenden Argument ist dann, daß ŷS(α, β)
für α und β in (γ′, γ′′) gleich 0 sein kann, weil ein drittes Element zwischen ihnen mit γ
verbunden ist. Da dieses Element in R mit γ′ und γ′′ verbunden ist, können wir wie vorher
schließen.

Abänderung B.2. Es sei γ eine Strecke aus Q, daß äußeren Strecken sowohl aus S wie
aus T benachbart ist. Es liegt also γ am Rand der Menge Q. Wir nehmen an, daß γ durch
yS mit äußeren Strecken aus S und durch yT mit äußeren Strecken aus T verbunden ist.
Sei ε diejenige Strecke aus S, die mit γ verbunden ist, und deren Abstand von γ in R so
klein wie möglich ist, und η die entsprechende Strecke aus T . Im Ausnahmefall, daß Q eine
einzige Strecke enthält, müssen wir auch das Ende von γ bestimmen, von dem wir Abstände
messen.
Wir wollen S und T abändern, indem wir die Strecken in (ε, γ) aus S und die Strecken in

(η, γ) aus T aufheben, um Mengen S ′ und T ′ zu bekommen. Die Menge R wird dementspre-
chend geändert. Die Mengen von Verbindungen yS′ und yT ′ werden durch die Gleichungen

yS′(α, β) = yS(α, β),

yT ′(α, β) = yT (α, β),

definiert, wenn die linke Seite überhaupt definiert sein sollte. Es gelten dann auch die
Gleichungen,

ŷS′(α, β) = ŷS(α, β),

ŷT ′(α, β) = ŷT (α, β),

unter derselben Bedingung.
Es ist klar, daß

yR′(α, β) = yR(α, β),

wenn α und β in R′ liegen. Wir nehmen an, daß ŷR′ zu yR′ dual ist, und folgern daraus, daß
auch ŷR zu yR dual ist. Es sei (ε, η) das Intervall zwischen ε und η, das γ berührt. Wenn
weder α noch β in diesem Intervall liegt, dann ist ŷR(α, β) = ŷR′(α, β), weil die Strecken
aus (ε, η) auf keinem breiten Weg zwischen α und β liegen. Da eine yR-Verbindung, die α
von β trennt, auch eine yR′-Verbindung ist, ist ŷR(α, β) dann und nur dann gleich 0, wenn
α und β durch eine yR-Verbindung getrennt sind, und die Dualitätsbedingung in diesem
Fall erfüllt.
Wenn α in (ε, η) liegt, und β außerhalb [ε, η], dann trennt die yR-Verbindung von ε mit η

die Strecke α von β. Es existiert ferner kein breiter Weg, der von α nach β führt. Erstens ist
das einzige Ende, das mit α beginnt, das Ende {α, γ, γ′}, wobei γ′ der Nachbar von γ in S,
jeweils in T , ist. Wir nehmen an, α gehöre zu S. Dieses Ende kann unmöglich der erste
Teil eines breiten Weges sein, das zu β führt, denn die einzigen Glieder, die in einer nicht
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trivialen Weise an dieses Ende gelegt werden können, sind Enden {β′, γ, γ′} oder {β′, γ, γ′′},
wobei γ′′ der Nachbar von γ in T ist und β′ notwendigerweise zum Intervall [γ′′, η] gehört.
Folglich gilt ŷR(α, β) = 0. Der Leser wird bemerkt haben, daß die zusätzliche Bedingung,
die wir Enden der Art (b) auferlegt haben, in diesem Argument unentbehrlich ist.
Dagegen wenn β in [γ′′, η] liegt, und von keiner yT -Verbindung zwischen zwei Elementen

aus [γ′′, η] von γ getrennt ist, ist
α, γ, γ′, γ, γ′′, β

ein breiter zugelassener Weg, der von α nach β führt. Folglich ist ŷR(α, β) = 1. Sonst ist
ŷR(α, β) = 0. Wenn β ∈ [ε, γ′] ist, und wenn es auch von keiner yS-Verbindung zwischen
zwei Elementen aus [ε, γ′] von α getrennt ist, ist es unmittelbar mit α durch ŷS verbunden,
und deshalb auch durch ŷR. Es trennt auch keine yR-Verbindung α von β. Somit wird die
Dualität von yR und ŷR bewiesen.

Abänderung B.3. Eine dritte Abänderung ganz ähnlicher Art kann vorgenommen werden,
wenn vorgegeben sind:

(1) zwei benachbarte innere Strecken γ1 ∈ S und γ2 ∈ T ;
(2) zwei äußere Strecke γ′

1 und γ′
2 aus S sowie γ′′

1 und γ′′
2 aus T ,

die die folgenden Bedingungen erfüllen:
(1) γ1 und γ2 sind weder in S noch in T verbunden;
(2) in S ist γ′

1 mit γ1 und γ′
2 mit γ2, und in T ist γ′′

1 mit γ1 und γ′′
2 mit γ2 verbunden;

(3) es seien (γ′
1, γ

′
2) sowie (γ′′

1 , γ
′′
2 ) so definiert, daß sie aus lauter äußeren Strecken

bestehen, dann ist keine Strecke aus (γ′
1, γ

′
2) mit einer Strecke außerhalb [γ′

1, γ
′
2]

verbunden, und keine Strecke aus (γ′′
1 , γ

′′
2 ) mit einer Strecke außerhalb [γ′′

1 , γ
′′
2 ].

In diesem Fall schneiden wir alle Strecke aus (γ′
1, γ

′
2) und (γ′′

1 , γ
′′
2 ) aus, um S ′, T ′ und R′

zu bekommen. Die Funktionen yR′ und ŷR′ werden genau wie bei der Abänderung B.1
erhalten, und es wird auch genau so bewiesen, daß die Aussage III.B.3 für S und T aus
dieser Aussage für S ′ und T ′ folgt.

V.C. Widerspiegelung. Es ist nützlich, eine vorbereitende Abänderung der Mengen yS
und yS gleich am Anfang vorzunehmen, bevor wir das Zusammenkleben beginnen. Es sei
γ eine gegebene innere Strecke. Wir führen mittels γ eine Menge y′S sowie eine Menge y′S
ein, und werden leicht zeigen können, daß die sich durch Zusammenklebung von y′S und yT
ergebende Menge y′R gleich der Menge yR ist, und die Menge ŷ′R gleich ŷR.
Wir setzen y′S(α, β) = 1, wenn yS(α, γ) = 1 und yS(β, γ) = 1 ist. Da die Menge IS

unverändert bleibt, gilt die Durchschneidungsbedingung für y′S, wenn sie für yS gilt. Es
seien (α1, β1, γ1, δ1) zyklisch und y′S(α1, γ1) = y′S(β1, δ1) = 1. Wenn die Verbindungen von
α1 mit γ1 und von β1 mit δ1 schon in yS liegen, dann ist α1 auch durch yS und folglich
durch y′S mit β1 verbunden. Wenn beide Verbindungen nur mittelbar, durch γ, zustande
kommen, dann kommt auch eine Verbindung von α1 mit β1 durch γ zustande. Wenn
dagegen weder β1 noch δ1 gleich γ ist, und die Verbindung von α1 mit γ1 mittelbar, dann ist
entweder (α1, β1, γ, δ1) oder (γ1, β1, γ, δ1) zyklisch, und folglich wegen der Bedingung (3.b.4)
ist yS(β1, γ) = 1, so daß α1 und β1 mittels γ miteinander verbunden sind.
Die Menge ŷ′S ist etwas kleiner als die Menge ŷS, obwohl sie darin enthalten ist. Es fehlen

ihr nämlich einige Verbindungen mit γ. Wenn α und β mit γ verbunden sind, und wenn
(α, γ, β, δ) zyklisch ist, dann ist δ von γ durch die neue Verbindung von α mit β getrennt,
so daß ŷ′S(δ, γ) = 0. Da die yS-Verbindungen von α und β mit γ, die Möglichkeit einer
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von ŷS zugelassenen Schleife oder eines von ŷS zugelassenen Endes, die γ und δ enthalten,
ausschließen, ist der mögliche Verlust dieser Verbindungen folgenlos. Für die drei Hilfssätze
III.B.4, III.B.5, und III.B.7, bei denen es sich nur um yR und zugelassene breite Wege
handelt, ist diese Abänderung auch gestattet.

V.D. Beweise der Sätze III.B.2 und III.B.3. Es sei N die Anzahl der Elemente in
der Vereinigung S ∪ T . Wir verwenden ein Induktionsverfahren, in dem N als Indukti-
onsparameter dient. Beim Beweis der Sätze können wir alle beschriebenen Abänderungen
verwenden, auch diejenigen, die wir durch die Vertauschung von S und T erhalten. Wenn
wir irgendwelche dieser Abänderungen vornehmen können, sind wir wegen der Induktionsan-
nahme sofort fertig. Als erste Vereinfachung verwenden wir wiederholte Widerspiegelungen,
so daß wir schließlich annehmen können, daß wenn γ eine innere Strecke ist, dann folgt die
Gleichung yS(α, β) = 1 aus den Gleichungen yS(α, γ) = 1 und yS(β, γ) = 1. Eine ähnliche
Annahme gelte auch für yT .
Wir können weiter annehmen, daß entweder Q = S ∩ T eine einzige Strecke enthält, oder

daß jede innere Strecke mittels yS und mittels yT mit einer zweiten Strecke verbunden ist.
Jede Strecke, mit der yS eine innere Strecke verbindet, liegt allerdings in S, während yT
sie mit einer Strecke in T verbindet. Wir nehmen schließlich an, daß keine benachbarten
inneren Strecken verbunden sind, weder durch yS noch durch yT .
Obwohl die Aussage III.B.3 ohne Voraussetzung der Gültigkeit der Aussage III.B.2 genau

gesehen für uns keinen Sinn hat, beweisen wir zunächst jene Aussage, und prüfen diese
nur nachher oder nebenbei nach. Wir beweisen zuerst den Satz III.B.3 im Fall, daß es eine
einzige innere Strecke γ gibt, und diese mittels yT mit keiner zweiten Strecke verbunden ist.
Dann gelten folgende Gleichungen:
(5.d.1) wenn α ∈ R ∩ S und β ∈ R ∩ S,

yR(α, β) = yS(α, β);

(5.d.2) wenn α ∈ R ∩ T und β ∈ R ∩ T ,
yR(α, β) = yT (α, β),

ŷR(α, β) = ŷT (α, β);

(5.d.3) wenn α ∈ R ∩ S und β ∈ R ∩ T ,
yR(α, β) = 0.

Jede dieser Gleichungen, bis auf die zweite Gleichung (5.d.2), ist sofort klar. Wenn diese
zweite Gleichung nicht gälte, gäbe es ein Paar {α, β} aus T , und zulässige Enden {α, γ, γ′}
und {β, γ, γ′′}, wobei γ′ und γ′′ Nachbarn von γ sind, so daß ŷT (α, β) gleich 0 wäre. Wenn
γ′ = γ′′ ist, dann kann yT die Strecken α und β nicht trennen. Folglich gilt ŷT (α, β) = 1,
was ein Widerspruch ist. Wenn γ′ 6= γ′′, dann kann allein eine Verbindung von γ mit einer
zweiten Strecke die Strecke α von β trennen, und diese Verbindungen werden von den
Voraussetzungen ausgeschlossen.
Für α und β in R ∩ S kann dagegen ŷR(α, β) = 1 sein, ohne daß ŷS(α, β) = 1 ist, aber

nur dann, wenn γ durch yS mit einer zweiten Strecke verbunden ist. Wir bestimmen eine
Richtung auf dem Kreisrand. Es seien, bezüglich dieser Richtung, α′ die erste und β′ die
letzte der Strecken aus R∩S, die durch yS mit γ verbunden sind. Dann ist ŷR(α, β) = 1 und
ŷS(α, β) = 0, wenn α vor α′ auftritt, und β nach β′, und wenn ferner ŷS(α, γ) = ŷS(β, γ) = 1
ist. Bis auf eine triviale Vertauschung von α und β können sonst diese beiden Gleichungen
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nicht gleichzeitig gelten. Diese Paare sind gerade diejenigen, deren Elemente durch die
Verbindungen in yS zwischen γ und einem zweiten Element aus S ∩ R getrennt werden,
nicht aber durch die Verbindungen in yR.
Ein erster einfacher Fall, immer noch unter der sehr beschränkenden Annahme, daß

Q aus γ allein besteht, das in T mit keiner zweiten Strecke verbunden wird, kann gleich
erledigt werden. Wenn R ∩ S eine einzige Strecke α enthält, dann ist ŷR(α, β) = ŷT (γ, β)
für jedes β ∈ T , weil jede Strecke β aus T , die durch ŷT mit γ verbunden ist, auch mit
seinen Nachbarn verbunden ist. Der Satz III.B.3 ist folglich trivial und nichts besagend,
weil für jedes β aus R ∩ T die Gleichung yR(α, β) = yT (γ, β) = 0 gilt. Der Satz III.B.2 ist
auch in diesem Fall trivial. Infolgedessen setzen wir bei der weiteren Behandlung des Falles
yT (γ, δ) ≡ 0, δ 6= γ, voraus, daß R ∩ S wenigstens zwei Strecken enthält.
Nur der Fall, daß α ∈ R∩S liegt und β ∈ R∩T , ist aus der vorhergehenden Besprechung

nicht klar. In allen anderen Fällen ist gezeigt worden, daß ŷR(α, β) = 0 ist, dann und nur
dann, wenn α und β durch yR getrennt sind. Für α ∈ R∩S und β ∈ R∩T gilt die Gleichung
ŷR(α, β) = 1, dann und nur dann, daß ein breiter zugelassener Weg,
(5.d.4) α, γ, γ′, γ, δ′, β,

vorhanden ist, denn jeder längere Weg läßt eine Verkürzung zu. Es sei γ′′ der zweite
Nachbar von γ in S. Wenn γ einen zweiten Nachbarn in T besitzt, sei es δ′′. Wegen der
Voraussetzungen, sind ŷT (β, δ

′) und ŷT (β, δ
′′) gleich 1, wenn ŷT (β, γ) = 1 ist. Ein breiter

Weg der Art (5.d.4) existiert dann und nur dann, wenn β nicht von γ durch yT getrennt
ist, und α durch yS weder von γ noch von γ′. Der Bemerkung im nächsten Absatz zufolge
ist ŷR(α, β) dann und nur dann gleich 0, wenn α von γ durch yS getrennt ist, oder wenn
β von γ durch yT . Das heißt, wenn α und β durch yR getrennt sind, denn eine trennende
Verbindung liegt entweder in yS oder in yT und trennt eine der beiden Strecken von γ.
Damit es nicht übersehen wird, heben wir hervor, daß wenn α nicht von γ getrennt ist,

dann kann es unmöglich von γ′ und γ′′ gleichzeitig getrennt sein. Das ist sofort klar bis
auf den Fall, daß beide trennende Verbindungen die Strecke γ selbst mit anderen Strecken
verbinden. Dann müssen wir die vorbereitenden Widerspiegelungen in Betracht ziehen.
Der Satz III.B.2 ist im allgemeinen trivial, wenn es eine einzige innere Strecke gibt, und

sie durch yT mit keiner zweiten Strecke verbunden ist. Zwei durch yR verbundene Strecken
liegen dann entweder beide in R∩ S oder R∩ T . Folglich wenn (α1, β1, γ1, δ1) ein Zyklus ist,
und

yR(α1, γ1) = yR(β1, δ1) = 1

gilt, dann liegen alle vier Elemente entweder in R ∩ S oder in R ∩ T . Die Bedingung (3.b.4)
für yR ist infolgedessen eine Folge derselben Bedingung für yS und yT .
Wir nehmen jetzt an, daß jede innere Strecke durch yS und durch yT mit anderen Strecken

verbunden ist. Es seien α und β zwei miteinander verbundene innere Strecken, so gewählt,
daß die Anzahl der Strecken im Intervall (α, β) so klein wie möglich ist. Das Intervall
(α, β) ist natürlich so gewählt, daß es aus Strecken in Q besteht. Es sei yS(α, β) = 1. Wenn
γ im Intervall (α, β) liegt, kann γ durch yS mit keiner zweiten Strecke verbunden sein.
Sonst wäre es mit α oder β verbunden, was unserer Wahl von α und β widersprechen
würde. Wegen der Möglichkeit der Abänderungen A.2, können wir folglich annehmen, daß
das Intervall (α, β) leer ist. Dann sind α und β benachbart, und die Abänderung A.3 ist
möglich. Da wir voraussetzten, wir hätten jede mögliche Abänderung vorgenommen, um
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die Induktionsannahme anzuwenden, folgern wir, daß keine innere Strecke mit einer zweiten
inneren Strecke verbunden ist.
Es seien α1, . . . , αs die äußeren Strecken in S, die durch yS mit einer inneren Strecke

verbunden sind. Wir zählen sie in zyklischer Reihenfolge auf. Es sei Qi, diejenigen Strecken
aus Q, die mit αi verbunden sind. Die Menge Q ist die Vereinigung der Mengen Qi, 1 6 i 6 s.
Weil wir sonst eine allgemeine Abänderung der Art B.1 vornehmen könnten, können wir
annehmen, daß wenn Qi ∩Qi′ nicht leer ist, dann i′ = i± 1 ist, und αi und αi′ benachbart.
Unter diesen Umständen enthält Qi ∩ Qi′ genau eine Strecke. Es können höchstens zwei
Strecken zu einem gegebenen Qi gehören. In derselben Weise definieren wir β1, . . . , βt in T
und Q′

j, 1 6 j 6 t, mit ähnlichen Eigenschaften. Dann ist αi dann und nur dann mit βj

verbunden, wenn Qi ∩Q′
j nicht leer ist.

Wegen der Möglichkeit der Abänderungen B.2 können wir annehmen, daß die erste
Strecke aus Q1 den Strecken α1 und β1 benachbart ist, und die letzte innere Strecke, die
in Qs und Q′

t liegen muß, den Strecken αs und βt benachbart. Aus der Möglichkeit einer
Abänderung B.3 schließen wir, daß alle äußeren Strecken aus S in {α1, . . . , αs} liegen, und
alle äußeren Strecken aus T in {β1, . . . , βt}.
Wenn s = t = 1 prüft man leicht nach, daß ŷR zu yR dual ist, denn es gilt

yR(α1, β1) = ŷR(α1, β1) = 1.

Aus Symmetriegründen betrachten wir also nur zwei Fälle: s > 1, t = 1 und s > 1, t > 1.
Im ersten Fall verbindet yR jedes nicht benachbarte Paar, und ŷR verbindet kein nicht
benachbartes Paar. Folglich sind sie zueinander dual. Das ist auch so im zweiten Fall, wenn
Q eine einzige Strecke enthält. Wenn yR so einfach ist, ist die Aussage III.B.2 auch ohne
weiteres klar.
Wir betrachten also den zweiten Fall unter der zusätzlichen Voraussetzung, daß es

wenigstens zwei innere Strecken gibt. Wenn Q1 sowie Q′
1 wenigstens zwei Strecken enthalten,

dann dient die erste dieser Strecken zu keinem Zweck, und kann, ohne daß yR oder ŷR
beeinflußt wären, ausgelassen werden. Wir können folglich annehmen, daß Q1 ein einziges
Element γ enthält. Wenn Q2 die Menge Q1 enthält, ist α1 durch yR von allen Strecken
in R außer sich selbst und seinen Nachbarn α2 und β1 getrennt. Es ist auch in S selbst
von allen Strecken außer sich selbst und seinen Nachbarn getrennt. Ferner sind die yR-
Verbindungen, in denen α1 vorkommt, überflüssig, da die Gleichung yR(α1, β) = 1 die
Gleichung yR(α2, β) = 1 zur Folge hat. Der breite Weg

α1, γ, α1, γ, β1, β1

verbindet α1 und β1. Folglich gilt ŷR(α1, β1) = 1. Es gibt keinen breiten Weg, der mit α1

beginnt und nicht mit α1 selbst, α2, oder β1 endet. Wir folgern erstens, daß die Dualität,
insofern sie α1 betrifft, gültig ist, und zweitens, daß wir α1 aufheben können, ohne die
trennenden Verbindungen oder die Werte von yR und ŷR sonst zu stören. Folglich können
wir die Induktionsannahme anwenden, um die Aussage III.B.3 zu erhalten.
Um die Aussage III.B.2 in diesem Fall zu zeigen, bemerken wir zunächst, daß wir

nur Zyklen, in denen α1 vorkommt, behandeln müssen, denn die anderen werden von
der Induktionsannahme gedeckt. Das sonst nach der Aushebung vielleicht genierende
benachbarte Paar {α2, β1} ist sowieso verbunden. Es sei Q1 = {γ}. Weil yR(α1, β) = yS(γ, β)
für β ∈ R ∩ S ist, und yR(α1, β) = yT (γ, β) für β ∈ R ∩ T , folgt die Bedingung (3.b.4) für
yR, sofern sie α1 betrifft, aus derselben Bedingung für yS und yT .
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Wir nehmen zuletzt an, daß Q1 ∩ Q2 leer ist. Wenn Q2 die Menge Q′
1 nicht trivial

durchschneidet, dann kann α1 in allen trennenden yR-Verbindungen wieder durch α2 ersetzt
werden, und das schon verwendete Argument ergibt das erwünschte Ergebnis, und zwar die
erwünschten Ergebnisse, denn die Aussage III.B.2 folgt wieder aus dem hervorgehenden
Argument. Der einzige Fall also, den wir noch behandeln müssen, ist derjenige, für den
Q1 = Q′

1 ist, und ein einziges Element enthält. In diesem Fall ist ŷR(α1, β) = 1 nur für β
gleich αi oder βi, i = 1, 2. Es ist α1 nur mit sich selbst und β1 durch yR verbunden und
mit sich selbst, α2, β1, und β2 durch ŷR. Die Verbindung von α2 mit β2 trennt es von jeder
anderen Strecke. Die Verbindung von α1 mit β1 trennt dagegen keine Strecken. Hieraus
schließen wir nochmals, daß die Dualität, sofern α1 darin vorkommt, gilt, und daß wir α1

aufheben können, ohne die die anderen Strecken betreffende Lage zu ändern. Wir wenden
die Induktionsannahme auf die geänderten Mengen an. Somit wird Satz III.B.3 schließlich
bewiesen. Um den Satz III.B.2 zu beweisen, heben wir am besten α1, β1, und die Strecke in
Q1 alle aus.

V.E. Beweis der Hilfssätze III.B.4 und III.B.5. Obwohl diese zwei Sätze in ähnlicher
Weise bewiesen werden, ziehen wir es vor, zunächst den Hilfssatz III.B.4 zu beweisen, denn
die dazu nötigen Bezeichnungen sind einfacher. Es seien

U = (C−1, . . . , C2r+1),

V = (D−1, . . . , D2s+1),

die zwei in Betracht kommenden breiten Wege. Wir betrachten alle möglichen Abänderungen,
und zeigen, wenn die Aussage III.B.4 nach der Abänderung gilt, gilt sie auch vor der
Abänderung. Dann können wir, genau wie bei den vorhergehenden Beweisen, die Aussage
auf relativ einfache Fälle zurückführen. Wir bemerken sofort, daß bei den zweien vorliegenden
Sätzen sowie bei dem Satz III.B.7, die Widerspiegelungen ohne weiteres vorgenommen
werden können, da sie die breiten Wege nicht beeinflussen.
Bei jeder Abänderung ersetzen wir einige problematische Schleife oder Ende in U und

V , um breite von den neuen Mengen von Verbindungen zugelassene Wege U ′ und V ′ zu
bekommen. Wir verwenden die Induktionsannahme, um eine Reihe

W ′ = (E ′
−1, . . . , E

′
2t′+1)

zu erhalten. In dieser Reihe ersetzen wir, wenn es nötig ist, die problematischen Schleifen
und Enden, wobei allerdings, wenigstens wenn es um Abänderungen der Art A handelt,
auch das letzte gespannte Paar geändert werden kann, und bekommen schließlich eine
Reihe,

W ′′ = (E ′′
−1, . . . , E

′′
2t′′+1),

die oft schon die von dem Hilfssatz verlangte Reihe W ist. Unter gewissen Umständen
müssen dennoch weitere Ersetzungen vorgenommen werden, um W aus W ′′ abzuleiten.
Für Abänderungen A.1 und A.2 können wir die Zulässigkeit dieses Verfahrens fast sofort

der Beschreibung der betreffenden Abänderung ablesen. Der Fall (2) des Satzes ist vielleicht
etwas fraglich, wenn bei der Abänderung es gerade γ ist, die weggeworfen wird. Denn das
letzte angespannte Paar, dessen Existenz im Satz behauptet wird, enthält γ. Es sei γ′ der
Nachbar von γ in Q, und {γ′, β} das letzte gespannte Paar in E ′

2t′+1. Wenn β in T liegt,
können wir einfach γ′ durch γ in E ′

2t′+1 ersetzen, um E2t+1 zu erhalten. Wenn dagegen β in
S liegt, und es sich um die Abänderung A.2 handelt, dann kann yS(β, γ) = 1 sein. Folglich
ist diese unmittelbare Ersetzung nicht zugelassen. Wenn yS(β, γ) = 1, ist yS(γ′, γ) = 0. Es
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sind ferner die anderen Glieder γ2t′+1 und γ′
2t′+1, oder im Ausnahmefall γ−1, von E ′

2t′+1 nicht
von γ getrennt. Wir können folglich das Paar {β, γ′} durch {γ, γ′} ersetzen. Diese Ersetzung
zusammen mit den nötigen Ersetzungen der anderen Schleifen und Enden ergibt aber einen
Weg, der zunächst im Sand verläuft, denn er endet am inneren Diameter, an dem Paar
{γ, γ′}. Um {γ, β′} zu erreichen, können wir aber dann eine weitere Schleife {γ′, γ, β′, γ}
in T hinzufügen, denn in T ist die Strecke γ mit keiner anderen verbunden, und folglich
ŷT (γ

′, β′) = 0.
Daß das Verfahren auch auf die Abänderungen A.3 verwendbar ist, läßt sich leicht

nachprüfen. Alle Schleifen und Enden in U und V , in denen γ1 und γ2 gespannt sind, werden
erst, mittels des während der Einführung dieser Veränderung beschriebenen Verfahrens,
durch verkürzte Schleifen und Enden ersetzt, die dieses Paar vermeiden, und die neuen
dabei erhaltenen Wege durch von yS′ und yT ′ zugelassene breite Wege U ′ und V ′ ersetzt.
Das weiter zu verwendende Verfahren, das W ′ und W ergibt, bietet kaum Schwierigkeiten.
Wir betrachten trotzdem den Fall (2) etwas näher, unter der Annahme, daß das zusammen-

geklebte Intervall γ am Ende des Durchmessers liegt. Sei, zum Beispiel, {γ2t′+1, γ
′
2t′+1, β, γ}

das letzte Glied der Reihe W ′. Es ist gleichgültig, ob seine Elemente S oder T gehören.
Liegen sie in T . Es sei γ1 der Nachbar von β in {γ1, γ2}. Da β mit γ durch yT nicht
verbunden ist, ist es weder mit γ1 noch mit γ2 verbunden. Wegen der Bedingung (3.b.4)
und der Definition der Abänderung ist weder γ2t′+1 noch γ′

2t′+1 von γ1 durch yT getrennt,
weil eine trennende Verbindung notwendigerweise eine Verbindung mit γ2 wäre, und diese
Verbindung würde das jeweilige Element γ2t′+1 oder γ′

2t′+1 von β trennen. Der Ausnahmefall,
daß t = −1, wird ähnlich behandelt.
Wenn bei der Abänderung B.1 entweder die Strecke β oder die Strecke β′ außerhalb

[γ′, γ′′] liegt, dann liegen sie beide außerhalb (γ′, γ′′), und die Aussage III.B.4 für S und
T ist eine unmittelbare Folge derselben Aussage für S ′ und T ′, denn ein breiter Weg, der
mit {β, β′} endet, kann in das Intervall (γ′, γ′′) nicht eindringen. Wenn dagegen eine dieser
Strecken in (γ′, γ′′) liegt, dann liegt die andere, sowie α, in [γ′, γ′′]. Die Strecke β liege
in (γ′, γ′′). Dann ist r = −1 und C−1 ist entartet, eine direkte Verbindung in ŷS von α mit β.
Wenn β′ auch im offenen Intervall (γ′, γ′′) enthalten ist, ist s = 1 und D−1 entartet. Die
Aussage folgt also sofort, wie auch im Fall, daß α in (γ′, γ′′) liegt. Wenn {α, β′} in {γ′, γ′′}
enthalten ist, dann ist entweder α = β′, ein trivialer Fall, oder α 6= β′. In beiden Fällen ist
ŷS(α, β

′) = 1, so daß es eine unmittelbare Verbindung von α mit β′ gibt, obwohl der Weg
V selbst kompliziert sein könnte. Wegen der Existenz dieser direkten Verbindung ist die
Aussage klar.
Bei der Abänderung B.2 ist ein Intervall (ε, η) ausgezeichnet. Es ist das Intervall, in

dem alle Abstände gemessen werden. Es liegt entweder jede der Strecken α, β, und β′ im
Intervall [ε, η], oder eine liegt außerhalb dieses Intervalls und dann liegen alle im Komplement
von (ε, η). Im zweiten Fall ist die Aussage III.B.4 eine Folge derselben Aussage für die
abgeänderten Mengen. Es seien also alle drei Strecken in [ε, η]. Dann kann W mit der Hand
konstruiert werden, ohne auf die Beschaffenheit von U und V genauer zu achten.
Es sei zum Beispiel α ∈ [ε, γ′]. Wenn β und β′ auch in [ε, γ′] liegen, dann ist {α, β, β′}

zulässig im schwachen Sinn. Wenn β und β′ in [η, γ′′] liegen, ist
W = {α, γ′, γ}, {γ, γ′, γ, γ′′}, {γ, γ′′, β, β′}

ein möglicher Weg. Wenn schließlich β und β′ Nachbarn von γ sind, ist
W = E−1 = {α, β, γ}
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die erwünschte Reihe.
Unter den Umständen, die eine Abänderung der Art B.3 gestatten, läuft alles innerhalb

drei verschiedener Mengen ab:
(1) des Intervalls [γ′

1, γ1] in S, das γ′
2 nicht enthält, und des entsprechenden Intervalls

[γ′′
1 , γ1] in T ;

(2) des Intervalls [γ′
2, γ2] in S, das γ′

1 nicht enthält, und des entsprechenden Intervalls
[γ′′

2 , γ2] in T ;
(3) der zwei übriggebliebenen Intervalle [γ′

1, γ
′
2] und [γ′′

1 , γ
′′
2 ] und des Paares {γ1, γ2}.

Die zwei ersten Fälle werden wie vorher behandelt, die Aussage wird auf die entsprechende
Aussage für S ′ und T ′ zurückgeführt.
Beim letzten Fall können die Wege U und V entweder direkt sein, oder das gespannte

Paar {γ1, γ2} enthalten. Wenn der Weg auf diese Weise durch {γ1, γ2} vermittelt ist, ist
weder γ1 noch γ2 durch yS (jeweils yT ) von β (jeweils β′) getrennt. Es ist folglich leicht,
W aufzubilden, wenn U und V entweder beide direkt oder beide vermittelt sind. Seien
dagegen, zum Beispiel, U direkt und V vermittelt. Es sind dann die drei Strecken α, β, und
β′ entweder alle in [γ′

1, γ
′
2] oder alle in [γ′′

1 , γ
′′
2 ] enthalten. Wir nehmen an, daß sie alle in dem

ersten dieser Intervalle enthalten sind. Wenn ŷS(α, β
′) = 1 wäre, oder wenn ŷS(β, γ1) = 1

und ŷS(β, γ2) = 1 wären, wäre eine der folgenden breiten Wege möglich:
W = {α, β, β′};

oder
W = {α, γ1, γ2}, {β, β′, γ1, γ2}.

Wenn ŷS(α, β
′) = 0 ist, ist α von β′ durch yS getrennt. Diese Verbindung kann jedoch β′

weder von γ1 noch von γ2 trennen, und kann ferner α nicht von β trennen. Da β und β′

benachbart sind, liegt folglich β zwischen α und β′, und diese trennende yS-Verbindung
verbindet β zu einer zweiten Strecke jenseits α. Sie trennt deshalb α von γ1 und γ2, was auch
unmöglich ist. Somit ist bewiesen, daß bei dem Beweis des Satzes III.B.4 die Abänderung
B.3 erlaubt ist.
Bei dem weiteren Beweis verfahren wir wie im Abschnitt V.D. Wir erledigen zuerst einige

triviale Fälle. Damit unsere Bezeichnungen eindeutig bleiben, umnennen wir die Strecke α
des Satzes auf ε.
Wir nehmen zunächst an, daß Q aus einem einzigen Element γ besteht. Es seien γ′

und γ′′ seine Nachbarn in S, und δ′ und δ′′ seine Nachbarn in T . Wenn U und V direkte
Verbindungen sind, läßt sich W ohne weiteres konstruieren. Es sind sonst nur zwei Fälle,
die problematisch sein könnten. Wir beschreiben zwei typische Beispiele.
Erstens ist es möglich, daß α und β unmittelbar durch ŷS verbunden sind, und β′ ∈ S

mit α durch einen breiten Weg V verbunden ist. Als gespanntes Paar in diesem Weg könnte
{γ, γ′} vorkommen. Wenn β′ nicht durch yS von α getrennt ist, ist

W = {α, β, β′}
ein möglicher Weg. Wenn aber β′ und α getrennt sind, dann ist β′ auch von γ getrennt.
Das ist ein Widerspruch.
Es ist auch möglich, daß α mit β ∈ T durch einen Weg, in dem {γ, δ′} gespannt ist,

verbunden ist, und mit β′ ∈ T durch einen Weg verbunden ist, in dem {γ, δ′′} gespannt ist.
Wenn β nicht von δ′′ getrennt ist, oder β′ nicht von δ′, ist entweder

W = {α, γ, γ′′}, {γ, γ′′, γ, δ′′}, {γ, δ′′, β, β′}
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oder
W = {α, γ, γ′}, {γ, γ′, γ, δ′}, {γ, δ′, β, β′}

ein möglicher Weg. Im allgemein ist jedoch γ′ nicht durch yS von γ′′ getrennt, wenn
ŷS(α, γ

′) = 1 und ŷS(α, γ
′′) = 1, so daß wir das Paar {γ, γ′} und {γ, γ′′} mittels der Schleife

{γ, γ′, γ, γ′′} auf jeden Fall verbinden können.
Wir führen jetzt die Bezeichnungen, die wir vorher verwendet haben, ein, und nehmen

an, daß es wenigstens zwei innere Strecken gibt. Die ganzen Zahlen s und t werden auch
wie vorher definiert. Der Fall s = t = 1 kommt bei den Sätzen III.B.4 und III.B.5 nicht in
Betracht. Auf jeden Fall ist er ganz trivial. Der Fall s = 1, t > 1 räumen wir zunächst ab,
obwohl wir nachher den Fall s > 1, t > 1 in derselben Weise behandeln werden.
Am einfachsten beschreiben wir die möglichen Tripel {α, β, β′}. Es sei zuerst β = βj und

β′ = βj′ , j′ = j+1, in T . Die Strecke α muß dann in S liegen. Es ist ferner der Durchschnitt
Q′

j ∩ Q′
j′ leer, weil es angenommen worden ist, daß yR(β, β

′) = 0. Es seien γ′ und γ′′ die
aneinander liegenden Strecken aus Q′

j und Q′
j′. Als Weg W wählen wir

{α, γ′, γ′′}, {γ′, γ′′, β, β′}.
Wenn β ∈ S liegt und β′ ∈ T , und sie benachbart sind, dann ist notwendigerweise unter
den jetzt obwaltenden Umständen yR(β, β

′) = 1, so daß dieser Fall nicht auftritt, und nicht
nur für s = 1, sondern für beliebige s und t.
Es seien also s > 1, t > 1, und β = βj in S, β′ = βj′ , j′ = j + 1, in T . Wir führen γ′ und

γ′′ wie vorher ein, und zwar, so daß γ′′, γ′, α1, . . . , αr zyklisch ist. Es sei i′ der letzte Index,
für den γ′ ∈ Qi′, und i′′ der erste, für den γ′′ ∈ Qi′′. Dann ist α = αi, für i′ 6 i 6 i′′, aber
sonst beliebig. Da i′′ − i′ 6 1, ist die Auswahl nicht gerade ergiebig. Auf jeden Fall können
wir W wie vorher konstruieren.
Somit wird der Hilfssatz III.B.4 bewiesen. Es ist klar, daß der Hilfssatz III.B.5 in genau

derselben Weise bewiesen werden kann. Folglich beschreiben wir seinen Beweis nicht, und
wenden uns dem Beweis des Hilfssatzes III.B.7 zu.

V.F. Beweis des Hilfssatzes III.B.7. Dieser Hilfssatz wird natürlich auch mittels eines
Induktionsverfahren bewiesen. Bei dem zweiten Teil ist β ∈ S und β′ ∈ T ; um jedes
Mißverständnis zu vermeiden, sei dann ε ihr gemeinsamer Nachbar in Q. Dann ist das
letzte gespannte Paar in der Schleife E2t+1 das Paar {ε, β}, und das Symbol γ bleibt frei.
Als erster Schritt muß jede Abänderung nochmals betrachtet werden, aber hinsichtlich der
neuen Aussage. Da wir ferner bei den Abänderungen die Möglichkeit einer Vertauschung
von S und T benutzt haben, um die Anzahl der Fälle in Schranken zu halten, müssen wir
uns jetzt die nichtsymmetrischen Fälle genauer ansehen. Es genügt, in den Voraussetzungen
die Möglichkeit, daß β′ ∈ S und β ∈ T , auch zuzulassen.
Im allgemeinen bleibt der Wert von yR(β, β

′) bei Abänderungen der Art A unangetastet.
Es muß nachgeprüft werden, ob die neue Kette W ′, die entsteht, wenn alle problematischen
Enden und Schleifen ersetzt werden, so endet, daß der Satz III.B.7 auf sie angewendet
werden kann. Nur die zweite Hälfte des Satzes ist in dieser Hinsicht fraglich. Bei der zweiten
Hälfte ist es wohl möglich, daß die Konstruktionen, die beim Übergang zu W ′ eingeführt
worden sind, auch auf die letzte Schleife oder das letzte Ende E2t+1 vorgenommen werden
müssen.
Wir betrachten zunächst die Abänderungen A.1 und A.2. Wenn γ ungleich ε ist, ist auch

der zweite Teil klar. Wenn dagegen γ = ε ist, dann können wir annehmen, {γ′, δ′} sei das
Paar {β, β′}. Dann ist die letzte Schleife in W gewiß problematisch. Sie wird jedoch, nach
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dem allgemeinen Verfahren durch eine Schleife, in der {γ′, γ′′} oder {δ′, δ′′} gespannt ist,
ersetzt. Folglich ist

yR(β, β
′) = y′R(β, β

′) = 0.

Eine Abänderung der Art A.3 bietet überhaupt kein Problem, denn, wenn es sich um den
zweiten Teil des Satzes händelt, ist ε = γ und, wenn zum Beispiel β ∈ S ist, ist yS′(β, γ) = 0,
dann und nur dann, wenn

yS(β, γ1) = yS(β, γ2) = 0

ist. Dagegen können wir nur behaupten, daß die Gleichung yT ′(α, γ) = 0 die Gleichungen
yT (α, γ1) = 0 und yT (α, γ2) = 0 zur Folge hat. Dies aber reicht.
Bei einer Abänderung der Art B.1 spielt sich wie beim Beweis des Satzes III.B.4 alles

entweder im Intervall [γ′, γ′′] oder im Komplement des Intervalls (γ′, γ′′) ab. Die Aussage
III.B.7 für S und T ist im ersten Fall trivial und im zweiten eine Folge der Aussage für S ′

und T ′.
Bei einer Abänderung der Art B.2 sind es das Intervall [ε, η] und das Komplement des

Intervalls (ε, η), in denen sich alles abspielt. Wenn sich alles innerhalb des Intervalls [ε, η]
abspielt und β und β′ beide zu S oder zu T gehören, dann ist yR(β, β′) gleich yS(β, β

′),
jeweils yT (β, β

′). In diesem Fall ist folglich yR(β, β
′) = 0 laut Voraussetzung, denn W

ist zulässig. Wenn β ∈ S liegt und β′ ∈ T , dann ist nach Voraussetzung yR(β, β
′) = 0,

denn jeder Weg von β nach β′ würde über γ führen, und entweder ist yS(γ, β) = 0 oder
yT (γ, β

′) = 0, weil sonst wäre β = ε und β′ = η, was keinen Platz für α übrig läßt, wenigstens
wenn vorausgesetzt wird, daß (ε, η) nicht leer ist. Wenn sich alles außerhalb (ε, η) abspielt,
können wir die Aussage für R′ unmittelbar anwenden.
Eine Abänderung der Art B.3 behandeln wir wie beim Beweis des Satzes III.B.4. Drei

Fälle werden unterschieden. Die zwei ersten Fälle werden wie die Abänderung B.2 behandelt;
die Aussage ist sowieso eine unmittelbare Folge der Aussage für R′. Beim dritten Fall ist
{β, β} entweder gleich {γ′

1, γ
′
2} oder gleich {γ′′

1 , γ
′′
2}, oder kein Weg W kann eine Schleife, in

der {γ1, γ2} gespannt ist, enthalten. Im zweiten Fall ist W entartet,
W = {α, β, β′},

und die Aussage eine Folge der Zulässigkeit dieses Endes. Wenn W nicht entartet ist, muß
{γ1, γ2, β, β′} eine zugelassene Schleife sein, und das ist nur möglich, wenn yS(β, β

′) = 0,
jeweils yT (β, β′) = 0, ist. Es muß darüber hinaus α in S liegen, wenn {β, β′} in T enthalten
ist, und umgekehrt. Hieraus folgt leicht, daß es keinen Weg gibt, der von β nach β′ führt.
Wenn I1 und I2 die zwei Intervalle sind, in denen der Punkt zwischen γ1 und γ2 den
Durchmesser aufteilt, dann würde er eine zulässige Verbindung enthalten, die zwei Strecken,
eine in I1 und eine in I2, verbindet. Eine Verbindung dieser Art existiert aber nicht. Folglich
ist yR(β, β′) = 0.
Wir nehmen jetzt an, daß alle möglichen Abänderungen vorgenommen worden sind,

und betrachten zuerst den Fall, daß Q aus einem einzigen Element γ besteht. Es kann
yR(β, β

′) = 1 sein, nur wenn jede der Strecken β und β′ durch yS oder yT mit γ verbunden
ist. Wenn es so ist, kann der Weg des Satzes unmöglich existieren.
Dasselbe Argument kann allgemein angewendet werden, um die zweite Hälfte der Aussage

zu beweisen. Auch die erste Hälfte, denn wenn alle möglichen Abänderungen, sowie alle
möglichen Widerspiegelungen schon vorgenommen worden sind, kann yR(β, β

′) = 1 sein,
nur wenn yS(β, β

′) jeweils yT (β, β′) schon gleich 1 ist.
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