EXTERIOR DIFFERENTIAL SYSTEMS AND VARIATIONS OF HODGE STRUCTURES

PHILLIP GRIFFITHS

Abstract

Aside from the classical case of abelian varieties and K3 surfaces, the period matrices of algebraic varieties varying in a family are subject to differential constraints; i.e., they satisfy a PDE system. We will explain two algebro-geometric consequences of the integrability conditions of this PDE system. We will also discuss a related, potentially quite interesting, conjecture.

Outline

I. Exterior differential systems (EDS)
II. Period domains
III. Universal characteristic cohomology of period domains
IV. Codimension estimates of Noether-Lefschetz loci

I. Exterior differential systems (EDS)

- M is a manifold
- $A^{*}(M)$ is the differential graded algebra of C^{∞} differential forms on M

Definitions. (i) An $E D S$ is given by a graded, differential ideal

$$
\mathcal{J} \subset A^{*}(M) ;
$$

(ii) An integral manifold (solution) is given by $f: X \rightarrow M$ satisfying

$$
f^{*}(\varphi)=0, \quad \varphi \in \mathcal{J} ;
$$

(iii) A Pfaffian system is the EDS generated by sections of a sub-bundle $I \subset T^{*} M$.

[^0]In this talk, all EDS's will be Pfaffian systems. Associated to I is the distribution $I^{\perp}=W \subset T M$. Integral manifolds satisfy

$$
f_{*}: T X \rightarrow W
$$

If locally I is generated by

$$
\theta^{\alpha}=\sum_{i} A_{i}^{\alpha}(y) d y^{i}
$$

then integral manifolds are solutions of

$$
\left\{\begin{aligned}
\theta^{\alpha} & =0 \\
d \theta^{\alpha} & =0 .
\end{aligned}\right.
$$

This is a PDE system for $y^{i}(x)$ where f is locally given by $x \rightarrow y^{i}(x)$.
Example. $\operatorname{dim} M=2 n+1$ and I is a line bundle locally generated by a 1 -form θ with $\theta \wedge(d \theta)^{n} \neq 0$. By Pfaff's theorem, locally we may choose coordinates $\left(x_{1}^{1}, \ldots, x^{n}, u, u_{1}, \ldots, u_{n}\right)$ and a generator θ so that

$$
\theta=d u-u_{i} d x^{i}
$$

Integral manifolds have dimension $\leqq n$, and those of dimension n on which $d x^{1} \wedge \cdots \wedge d x^{n} \neq 0$ are locally 1 -jet graphs

$$
x \rightarrow\left(x, u(x), \partial_{x^{i}} u(x)\right) .
$$

Example. Any PDE system

$$
F_{\lambda}\left(\partial_{x^{i}} u^{\alpha}(x), u^{\alpha}(x), x^{i}\right)=0
$$

can be written as an EDS

- $M=\left\{\left(p_{i}^{\alpha}, u^{\alpha}, x^{i}\right): F_{\lambda}\left(p_{i}^{\alpha}, u^{\alpha}, x^{i}\right)=0\right\}$
- $\theta^{\alpha}=d u^{\alpha}-\left.p_{i}^{\alpha} d x^{i}\right|_{M}$.

Then the usual solutions are locally n-dimensional integral manifolds on which $d x^{1} \wedge \cdots \wedge d x^{n} \neq 0$.

Symmetries of an EDS are diffeomorphisms that preserve J as

$$
\left\{\begin{aligned}
f: M & \rightarrow M \\
f^{*}(\mathcal{J}) & =\mathcal{J}
\end{aligned}\right.
$$

These include
$\binom{$ Point }{ transformations }$\subset\binom{$ gauge }{ transformations }$\subset\binom{$ contact }{ transformations }.

The last are the customary ones used; they have the fewest invariants and the most basic. EDS's provide a geometric method for studying PDE's. The equivalence method of E. Cartan is a "quasi-algorithm" for finding the invariants.

Remark for later use: W is bracket generating if

$$
W+[W, W]+[W,[W, W]]+\cdots=T M
$$

In this case, if X_{1}, \ldots, X_{m} is a local framing for W the operator

$$
\sum_{i} X_{i}^{2}
$$

is hypoelliptic; it behaves like an elliptic operator but with less regularity.

Definition. The characteristic cohomology groups are defined by

$$
H_{\mathcal{J}}^{*}(M)=: H_{d}^{*}\left(M, A^{*}(M) / \mathcal{J}\right) .
$$

If $f: X \rightarrow M$ is an integral manifold we have

$$
f^{*}: H_{\mathfrak{J}}^{*}(M) \rightarrow H^{*}(X)
$$

Example. For the contact system, locally

$$
H_{\mathfrak{J}}^{q}(M)= \begin{cases}\mathbb{C} & q=0 \\ 0 & 0<q<n \\ \operatorname{dim}=\infty & \text { for } q=n\end{cases}
$$

The characteristic cohomology groups measure those topological properties of maps $f: X \rightarrow M$ that arise as a consequence of f satisfying a PDE system.

Example. For a determined PDE system, $H_{J}^{n-1}(M)=$ "conservation laws".
For $\varphi \in H_{\mathcal{J}}^{n-1}(M)$

$$
\int_{X_{t}} f^{*}(\varphi) \text { is independent of } t .
$$

Definition. An integral element is $E \subset T_{x} M$ such that

$$
\left.\varphi(x)\right|_{E}=0
$$

for all $\varphi \in \mathcal{J}$.
We think of E as an infinitesimal solution to the EDS. There is a notion of ordinary integral elements. The Cartan-Kähler theorem states that in the real analytic case every ordinary integral element is tangent to a local integral manifold. We set $m_{0}=\max _{E} \operatorname{dim} E$ for E ordinary. Locally, in the case where \mathfrak{J} is "unmixed" one has

$$
H_{\mathfrak{J}}^{q}(M)= \begin{cases}0 & 0<q<m_{o}-l \\ \operatorname{dim} & \infty \text { when } q=m_{0}\end{cases}
$$

where $l=$ codimension of the complex characteristic variety.

II. Period domains

Given: (H, Q), where H is a vector space over \mathbb{Q}, and a non-degenerate form

$$
\left\{\begin{array}{l}
Q: H \otimes H \rightarrow \mathbb{Q} \\
Q(u, v)=(-1)^{n} Q(v, u) .
\end{array}\right.
$$

Definitions. A Hodge structure of weight n is given by either
(i) $\quad H_{\mathbb{C}}=\underset{p+q=n}{\oplus} H^{p, q}, \quad H^{q, p}=\bar{H}^{p, q}$;
(ii) $\quad 0 \subset F^{n} \subset \cdots \subset F^{0}=H_{\mathbb{C}}, \quad F^{p} \oplus \bar{F}^{n-p+1} \xrightarrow{\sim} \mathbb{C}$.

These are equivalent by

$$
H^{p, q}=F^{p} \cap \bar{F}^{q}, \quad F^{p}=\underset{p^{\prime} \geqq p}{\oplus} H^{p^{\prime}, q^{\prime}}
$$

We set $C=(\sqrt{-1})^{p-q}$ on $H^{p, q}, h^{p, q}=\operatorname{dim} H^{p, q}$ and $f^{p}=\sum_{p^{\prime} \geqq p} h^{p^{\prime}, q^{\prime}}$. The Hodge structure is polarized if the Hodge-Riemann bilinear relations

$$
\left\{\begin{array}{l}
Q\left(F^{p}, F^{n-p+1}\right)=0 \\
Q(C u, \bar{u})>0 \quad u \neq 0
\end{array}\right.
$$

are satisfied.
Definitions. (i) The period domain

$$
D=\left\{\begin{array}{c}
\text { set of polarized } \\
\text { HS's with given } h^{p, q}
\end{array}\right\}
$$

(ii) The compact dual

$$
\check{D}=\left\{\begin{array}{l}
\text { set of flags with given } f^{p} \text { and } \\
\text { satisfying the } 1^{\text {st }} \text { bilinear relation }
\end{array}\right\} .
$$

Symmetry groups: We set

$$
G=\operatorname{Aut}(H, Q)=\mathbb{Q} \text {-algebraic group }
$$

and have $G_{\mathbb{R}}, G_{\mathbb{C}}$, and also $G_{\mathbb{Z}}$ if there is a lattice $H_{\mathbb{Z}}$ with $H=H_{\mathbb{Z}} \otimes \mathbb{Q}$.
Upon choice of a reference HS

$$
\begin{aligned}
D & =G_{\mathbb{R}} / V \\
\cap & \\
\check{D} & =G_{\mathbb{C}} / B \quad V=G_{\mathbb{R}} \cap B
\end{aligned}
$$

and

$$
\begin{aligned}
& \check{D} \subset \prod_{p} \operatorname{Grass}\left(f^{p}, H_{\mathbb{C}}\right) \\
& \cup \\
& D=\text { open subset. }
\end{aligned}
$$

Thus, \check{D} is a homogeneous projective variety and D is a homogeneous complex manifold.

Ex (most classical case): $D=\mathcal{H} \subset \mathbb{P}^{1}=\check{D}$. To each elliptic curve $=$ compact Riemann surface X of genus one, there is an associated period matrix $=$ Hodge structure on $H^{1}(X)$ as a point in $G_{\mathbb{Z}} \backslash D=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$.

The canonical EDS on \check{D}. We have $T_{F^{p}} \operatorname{Grass}\left(f^{p}, H_{\mathbb{C}}\right) \cong \operatorname{Hom}\left(F^{p}, H_{\mathbb{C}} / F^{p}\right)$ and

$$
\begin{aligned}
T \check{D} & \subset \\
\cup & \underset{p}{\oplus} \operatorname{Hom}\left(F^{p}, H_{\mathbb{C}} / F^{p}\right) \\
W & =: T \check{D} \cap\left(\underset{p}{\oplus} \operatorname{Hom}\left(F^{p}, F^{p-1} / F^{p}\right)\right) .
\end{aligned}
$$

Then the canonical EDS on \check{D} is given by

$$
I=W^{\perp} \subset T \check{D}
$$

Here, one may think of I as given by

$$
d F^{p} \subset F^{p-1} \Leftrightarrow Q\left(d F^{p}, F^{n-p+2}\right) .
$$

It has the properties:

- I is non-trivial unless $n=1$ (abelian varieties) or $n=2, h^{2,0}=1$
- the "classical cases" when D is a bounded symmetric domain;
- W bracket generating \Leftrightarrow all $h^{p, q} \neq 0$.

Example. $n=2$ and $h^{2,0}=2, h^{1,1}=n$. Then $\operatorname{dim} D=2 n+1$ and I is the contact system.

Example. When $n=3, h^{3,0}=1$, I has a local normal form. When $h^{2,1}=1$ it is

$$
\left\{\begin{array}{l}
\theta_{1}=d y^{\prime}-y^{\prime \prime} d x=0 \\
\theta_{2}=d y-y^{\prime} d x=0
\end{array}\right.
$$

in $\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ space.
Aside from these cases, I is not "elementary" - it is given by honest PDE's and not just ODE's.

Let $\Gamma \subset G_{\mathbb{R}}$ be a discrete subgroup - e.g., Γ is an arithmetic group such as $G_{\mathbb{Z}}$ when $H=H_{\mathbb{Z}} \otimes \mathbb{Q}$. Then Γ acts properly discountinuously on D and

$$
\Gamma \backslash D=\left\{\begin{array}{c}
\text { moduli space of } \\
\Gamma \text {-equivalence classes } \\
\text { of PHS's }
\end{array}\right\}
$$

is a complex analytic variety.
Definition. A variation of Hodge structure (VHS) is given by

$$
f: S \rightarrow \Gamma \backslash D
$$

where S is a complex manifold and f is a locally liftable, holomorphic mapping that is an integral manifold of I.

Example. Suppose given a family of smooth projective complex algebraic varieties $\left\{X_{s}\right\}_{s \in S}$. Then choosing a base point $s_{0} \in S$ we may identify all $H^{n}\left(X_{s}\right) \cong H^{n}\left(X_{s_{0}}\right)$ up to the action of monodromy. The PHS on the $H^{n}\left(X_{s}\right)$ gives a VHS where Γ includes the image of the monodromy group. In the most classical case

$$
\left\{\begin{aligned}
X_{s} & =\left\{y^{2}=x(x-1)(x-s)\right\} \\
S & =\mathbb{P}^{1} \backslash\{0,1, \infty\}
\end{aligned}\right.
$$

and for $\omega=d x / y=d x / \sqrt{x(x-1)(x-s)}$ the period mapping is

$$
s \rightarrow\left[\int_{\delta} \omega, \int_{\gamma} \omega\right]
$$

where

Suppose now that S is quasi-projective and Γ is an arithmetic group. Then

Classical case. $\Gamma \backslash D$ is quasi-projective, defined over a number field, and $S \rightarrow \Gamma \backslash D$ is a morphism. For example, $n=1, \operatorname{det} Q=1$, $\Gamma=S_{p}(2 g, \mathbb{Z})$ and then $\Gamma \backslash D=\mathcal{A}_{g}$ is the moduli space of principally polarized abelian varieties.

Non-classical case. $\Gamma \backslash D$ has no non-constant meromorphic functions. But the image of a VHS

$$
f: S \rightarrow \Gamma \backslash D
$$

is canonically a quasi-projective variety and $S \rightarrow f(S)$ is a morphism. In fact, $\mathcal{L}=: \otimes \operatorname{det} \mathcal{F}^{p}$ induces an ample line bundle on $f(S)$. Except in the classical cases, VHS is a relative study. The fields of definition are a pretty much unexplored territory.

III. Characteristic cohomology of period domains

For VHS's the natural global invariants come from $H_{\mathfrak{J}}^{*}(\Gamma \backslash D)$, not $H^{*}(\Gamma \backslash D)$. Here, the first part to understand is that which is independent of Γ - we may think of this as universal characteristic cohomology. By definition this is

$$
\begin{gathered}
H_{\mathfrak{J}}^{*}(D)^{G_{\mathbb{R}}}=: \quad H_{d}^{*}\left(\left(A^{*}(D) / \mathcal{J}\right)^{G_{\mathbb{R}}}\right) \\
H^{*}(\mathcal{G}, \mathfrak{v}, \mathfrak{w})
\end{gathered}
$$

where the bottom term is a Lie algebra cohomology group. The bundles $\mathcal{F}^{p} \rightarrow D$ and $\mathcal{H}^{p, q} \rightarrow D$ have natural metics induced by the polarization, and the Chern forms $c_{i}\left(\mathcal{F}^{p}\right)$ and $c_{i}\left(\mathcal{H}^{p, q}\right)$ - those determine each
other - are $G_{\mathbb{R}^{2}}$-invariant and over D satisfy

$$
\left\{\begin{array}{l}
c_{i}\left(\mathcal{H}^{p, q}\right)=0, \quad i>h^{p, q} \tag{*}\\
c\left(\mathcal{H}^{p, q}\right) c\left(\mathcal{H}^{n-p, n-q}\right)=1
\end{array}\right.
$$

where $c\left(\mathcal{H}^{p, q}\right)=\sum_{i \geqq 0} c_{i}\left(\mathcal{H}^{p, q}\right)$ is the total Chern form.
Denote by $I^{\bullet} \subset A^{*}(D)$ the algebraic ideal generated by I and \bar{I}.
Theorem. (i) $\left(A^{*}(D) / I^{\bullet}\right)^{G_{\mathbb{R}}}$ are forms of type (p, p). (ii) $H_{\mathcal{J}}^{*}(D)^{G_{\mathbb{R}}}$ is generated by the $c_{i}\left(\mathcal{F}^{p}\right)$, subject to the relations $(*)$ and

$$
(* *) \quad c_{i}\left(\mathcal{F}^{p}\right) c_{j}\left(\mathcal{F}^{n-p}\right)=0 \quad \text { if } i+j>h^{p, n-p}
$$

Remarks. $\left(A^{*}(D) / I^{\bullet}\right)^{G_{\mathbb{R}}}$ is much bigger than the part generated by the $c_{i}\left(\mathcal{F}^{p}\right)(I \neq 0)$. It is only when we put in the integrability conditions by passing to $\left(A^{*}(D) / \mathcal{J}\right)^{G_{\mathbb{R}}}$ that we have generation by the $c_{i}\left(\mathcal{F}^{p}\right)$ and the relation $(* *)$, which is a consequence of the integrability conditions. The proof of (ii) requires rather intricate representation-theoretic considerations.

For families of algebraic varieties, $(* *)$ may be formulated algebrogeometrically but there is as of now no algebro-geometric proof.

For $n=2,(* *)$ gives polynomial relations

$$
P_{k}\left(c_{1}\left(\mathcal{H}^{2,0}\right), \ldots, c_{h^{2,0}}\left(\mathcal{H}^{2,0}\right)\right)=0
$$

which lead to topological conditions on the moduli spaces of surfaces of general type.

We now consider two cases
(i) Γ is co-compact and neat; i.e., has no fixed points;
(ii) Γ is arithmetic.

In case (i), $M=\Gamma \backslash D$ is a compact, complex manifold which - except in the classical cases does not even have the homotopy type of a Kähler manifold.

Recall that we denote by m_{0} the maximum dimension of ordinary integral elements of \mathcal{J}.

Conjecture. ${ }^{1}$ In case (i), for $m \leqq m_{0}, H_{\mathcal{J}}^{m}(\Gamma \backslash D)$ has a Hodge structure of weight m. (ii) In case (ii), $H_{\mathfrak{J}}^{m}(\Gamma \backslash D)$ has a mixed structure with weights $m \leqq w \leqq 2 m$.

In order to prove (i) it seems that two ingredients must be utilized
(a) Kähler geometry modulo J;
(b) Hodge theory (harmonic forms, etc.) for hypoelliptic Laplacians.

Both of these would be interesting new developments at the interface of complex manifolds and EDS's. The first interesting case is when $n=2, h^{2,0}=2, h^{1,1}=1$. Then M is a 3 -dimensional contact manifold. Bryant has proved that

$$
\operatorname{dim} H_{\mathfrak{J}}^{1}(M)<\infty
$$

in case (i). In fact, in this case there is a proposed sketch of a proof - not verified - of (i) in the conjecture. To give some flavor of the calculations, here are the structure equations:

- $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is a local $(1,0)$ unitary coframe
- $I=\left\{\alpha_{3}\right\}$
$\left\{\begin{array}{ll}\text { । } d \alpha_{1}=\gamma_{1}^{1} \wedge \alpha_{1}+\gamma_{1}^{2} \wedge \alpha_{2}{ }^{\text {I }}+\alpha_{3} \wedge \bar{\alpha}_{2} \\ \text { । } \\ \text { । } d \alpha_{2}=\gamma_{2}^{1} \wedge \alpha_{1}+\gamma_{2}^{2} \wedge \alpha_{2} \mid \perp \alpha_{3} \wedge \bar{\alpha}_{1} \\ -d \bar{\alpha}_{3}=-\beta-\overline{\alpha_{3}}+\bar{\alpha}_{1} \wedge \bar{\alpha}_{2}, \quad \beta=\gamma_{1}^{1}+\gamma_{2}^{2} & \end{array} \quad\right.$ where $\gamma_{i}^{j}+\bar{\gamma}_{j}^{i}=0$.
Then

$$
\mathcal{J}=\left\{\alpha_{3}, \alpha_{1} \wedge \alpha_{2}\right\}+\left\{\bar{\alpha}_{3}, \bar{\alpha}_{1} \wedge \bar{\alpha}_{2}\right\} .
$$

Modulo \mathcal{J}, we have the terms in the dotted box, which look like the structure equations of a Kähler surface.

What seems to be involved here is some type of relative Kähler geometry where $\Delta_{\mathcal{J}}=\partial_{1} \partial_{\overline{1}}+\partial_{2} \partial_{\overline{2}}$ is hypoelliptic. The \mathbb{Q}-structure would presumably come from the characteristic homology groups $H_{m, J}(M, \mathbb{Q})$ together with an "J-de Rham theorem" stating that the natural pairing

$$
H_{m, \mathfrak{J}}(M) \otimes H_{\mathfrak{J}}^{m}(M) \rightarrow \mathbb{C}
$$

[^1]is non-degenerate for $0 \leqq m \leqq m_{0}$. The conjecture would imply that there is a natural map
\[

\left($$
\begin{array}{c}
\text { parameter spaces } \\
S \text { for a family } \\
\text { of algebraic varieties }
\end{array}
$$\right) \rightarrow\left($$
\begin{array}{c}
\text { sub-mixed } \\
\text { Hodge structures } \\
\text { of } H^{m}(S)
\end{array}
$$\right) .
\]

In the non-classical cases this would be an interesting new phenomenon.
In fact, if one really wants to go out on a limb, it may be asked if, in the case when Γ is an arithmetic group,

Is there a number field $k \subset \mathbb{C}$, which will depend on Γ, such that the $H_{\mathrm{J}}^{m}(\Gamma \backslash D)$ are defined over \bar{k}, meaning that there is a \bar{k}-vector space V^{m} with $V^{m} \otimes_{\bar{k}} \mathbb{C} \cong H_{\mathcal{J}}^{m}(\Gamma \backslash D)$, together with an action of $\operatorname{Gal}(\bar{k} / k)$ on V^{m} ?

In other words, in the non-classical case even though $\Gamma \backslash D$ is far from being an algebraic variety defined over a number field, might the characteristic cohomology be what replaces the l-adic cohomology in the classical case?
IV. Codimension estimates of Noether-Lefschetz loci

Bottom line. For $\zeta \in H^{2 p}(X, \mathbb{Q})$ the number of conditions to have

$$
\zeta \in \operatorname{Hg}^{p}(X)=H^{2 p}(X, \mathbb{Q}) \cap H^{p, p}(X)
$$

is $h^{p-1, p+1}+\cdots+h^{0,2 p}$. When X varies in a family $\left\{X_{s}\right\}_{s \in S}$, the N-L locus is defined as

$$
S_{\zeta}=\{s \in S:\} \in \operatorname{Hg}^{p}\left(X_{s}\right) .
$$

Then except when $p=1$ (the classical case)

$$
\operatorname{codim}_{S} S_{\zeta} \ll h^{p-1, p+1}+\cdots+h^{0,2 p}
$$

The notation "<<" is meant to suggest "much less than". This result comes about in two steps that we may summarize as follows:

- I gives $\operatorname{codim}_{S}\left(S_{\zeta}\right) \leqq h^{p-1, p+1}$
- J gives $\operatorname{codim}_{S}\left(S_{\zeta}\right) \ll h^{p-1, p+1}$.

Conclusion. If the Hodge conjecture is true, then except in the classical $p=1$ case, there are "many more" algebraic cycles than näive dimension counts suggest.

To explain a little bit of the above, in general given a manifold M and a submanifold $N \subset M$, we have for $A \subset M$

$$
\operatorname{codim}_{A}(A \cap N) \leqq \operatorname{codim}_{M}(N)=\operatorname{rank}(T M / T N)
$$

with equality if A is in general position relative to N.
Now let $W \subset T M$ and subject A to the differential constraint $T A \subset$ $\left.W\right|_{A}$; i.e., A is an integral manifold of $I=W^{\perp} \subset T^{*} M$. Assume that W is transverse to $T N$. Then

$$
\begin{equation*}
\operatorname{codim}_{A}(A \cap N) \leqq \operatorname{rank}(W / W \cap T N) \tag{*}
\end{equation*}
$$

Using $d H^{p, p} \subset H^{p-1, p+1}$ this gives

$$
\operatorname{codim}_{S}\left(S_{\zeta}\right) \leqq h^{p-1, p+1}
$$

When $p=1$, in "most" cases (non-special divisors) equality holds here ($I=0$ in this case). However, $(*)$ does not take the integrability conditions into account. In the first non-classical case $p=2$ these are the following: Set

$$
\begin{aligned}
T & =T_{s_{0}} S \\
\cup & \\
T_{\zeta} & =\left\{\theta \in T_{s_{0}} S: \theta \zeta=0 \text { in } H^{p-1, p+1}\right\} .
\end{aligned}
$$

We then have

$$
T_{\zeta} \otimes H^{4,0} \rightarrow H^{3,1}
$$

and we let σ_{ζ} be the dimension of the image of this map. Then

$$
\operatorname{codim}_{S}\left(S_{\zeta}\right) \leqq h^{1,3}-\sigma_{\zeta}
$$

This is the best general estimate. For example, it is an equality for smooth hypersurfaces $X \subset \mathbb{P}^{5}$ of degree $\geqq 6$ (to have $H^{4,0}(X) \neq 0$) containing a 2 -plane.

Example. Suppose X is a Calabi-Yau fourfold, and take the local moduli space so that

$$
T \rightarrow \operatorname{Hom}\left(H^{4,0}, H^{3,1}\right) \cong H^{3,1}
$$

is an isomorphism (e.g. $d=6$ above). Associated to ζ is a quadric in Sym $^{2} \check{T}$ defined by

$$
Q_{\zeta}\left(\theta, \theta^{\prime}\right)=Q\left(\theta \cdot \theta^{\prime}(\omega), \zeta\right)
$$

where $\theta, \theta^{\prime} \in T$ and $\omega \in H^{4,0} \cong \mathbb{C}$ is a generator. Then
If the Hodge conjecture is true and Q_{ζ} is non-singular, then X is defined over a number field.

Conclusion. The EDS $I \subset T^{*} D$, especially its integrability conditions, lead to interesting and in many cases non-classical phenomena in Hodge theory. The possible arithmetic aspects of this have yet to be explored.

The Institute for Advanced Study,

[^0]: Talk given at Durham, U.K. on May 27, 2009. Based on joint work with Jim Carlson and Mark Green and on previous work with Robert Bryant.

[^1]: ${ }^{1}$ We assume that all $h^{p, q} \neq 0$.

