EXTERIOR DIFFERENTIAL SYSTEMS AND
VARIATIONS OF HODGE STRUCTURES

PHILLIP GRIFFITHS

ABSTRACT. Aside from the classical case of abelian varieties and
K3 surfaces, the period matrices of algebraic varieties varying in
a family are subject to differential constraints; i.e., they satisfy a
PDE system. We will explain two algebro-geometric consequences
of the integrability conditions of this PDE system. We will also
discuss a related, potentially quite interesting, conjecture.

OUTLINE
I. Exterior differential systems (EDS)

II. Period domains
IIT. Universal characteristic cohomology of period domains

IV. Codimension estimates of Noether-Lefschetz loci

I. EXTERIOR DIFFERENTIAL SYSTEMS (EDS)

e M is a manifold
o A*(M) is the differential graded algebra of C'*° differential forms
on M

Definitions. (i) An EDS is given by a graded, differential ideal
JC A (M) ;
(ii) An integral manifold (solution) is given by f: X — M satisfying
fe)=0,  ¢el;

(iii) A Pfaffian systemis the EDS generated by sections of a sub-bundle
I CT*M.

Talk given at Durham, U.K. on May 27, 2009. Based on joint work with Jim
Carlson and Mark Green and on previous work with Robert Bryant.
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In this talk, all EDS’s will be Pfaffian systems. Associated to I is
the distribution I+ = W C T M. Integral manifolds satisfy

fi : TX =W

If locally I is generated by
6r = A (y)dy’
then integral manifolds are solutions of
0 =0
do* = 0.
This is a PDE system for y*(x) where f is locally given by z — y'(x).

Example. dim M = 2n + 1 and [ is a line bundle locally generated

by a 1-form 6 with 6 A (df)™ # 0. By Pfaff’s theorem, locally we may

choose coordinates (x},..., 2", u,uy,...,u,) and a generator 6 so that

0 = du — u;dx’ .
Integral manifolds have dimension < n, and those of dimension n on
which dz! A - A da™ # 0 are locally 1-jet graphs

x — (x,u(x), pu(z)) .

Example. Any PDE system
By (0pu(z), u*(z),2") =0
can be written as an EDS
o M ={(pf,u,a’) : Fx(pf, u® a') = 0}
o 0% = du® — ptdx’ | .

Then the usual solutions are locally n-dimensional integral manifolds
on which dz A -+ A dx™ # 0.

Symmetries of an EDS are diffeomorphisms that preserve J as
{ f:M—M
f9)=73

These include

Point - gauge c contact
transformations transformations transformations /
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The last are the customary ones used; they have the fewest invariants
and the most basic. EDS’s provide a geometric method for studying
PDE’s. The equivalence method of E. Cartan is a “quasi-algorithm”
for finding the invariants.

Remark for later use: W is bracket generating if
W+ W, W]+ [W,[W,W]] +---=TM .

In this case, if X;,...,X,, is a local framing for W the operator
> X!

is hypoelliptic; it behaves like an elliptic operator but with less regu-
larity.

Definition. The characteristic cohomology groups are defined by
H3 (M) =: Hy(M, A*(M)/7) .
If f: X — M is an integral manifold we have
f*Hy (M) — H*(X) .

Example. For the contact system, locally
C q=20
Hi(M)=<¢ 0 0<g<n
dim =00 forqg=n
The characteristic cohomology groups measure those topological prop-
erties of maps f : X — M that arise as a consequence of f satisfying
a PDE system.

Example. For a determined PDE system, H; ' (M) = “conservation laws”.
For ¢ € H} (M)

Xi / f*(¥) is independent of ¢.
Xt
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Definition. An integral element is E C T, M such that

p(x) =0
for all p € 7.

We think of F as an infinitesimal solution to the EDS. There is a
notion of ordinary integral elements. The Cartan-Kahler theorem states
that in the real analytic case every ordinary integral element is tangent
to a local integral manifold. We set mg = maxg dim F for E ordinary.

Locally, in the case where J is “unmixed” one has
b

0 0O<g<m,—1
mon) = { ;

dim oo when g = my

where [ = codimension of the complex characteristic variety.

II. PERIOD DOMAINS

Given: (H, @), where H is a vector space over Q, and a non-degenerate

form
{ Q- HoH—-Q
Q(u,v) = (=1)"Q(v, u).
Definitions. A Hodge structure of weight n is given by either
(i) He= & an7 HP — an;
ptg=n

i) OCF'c---cF'=He,  FPaF"PHIC
These are equivalent by

HPM=FPAF?,  FP= @ H'Y .
P'2p
We set C' = (vV=1)P"% on HP?, hP4 = dim H?? and f? = Y7 5 h"7.
The Hodge structure is polarized if the Hodge-Riemann bilinear rela-
tions

Q(F?, Fr=rtl) =
{Q(Cu,u)>0 u#0

are satisfied.

Definitions. (i) The period domain

D set of polarized _
~ | HS’s with given AP [’
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(ii) The compact dual

D set of flags with given f? and
~ | satisfying the 1%° bilinear relation

Symmetry groups: We set
G = Aut(H, Q) = Q-algebraic group
and have Gg, G¢, and also Gz if there is a lattice Hz with H = H; ®Q.

Upon choice of a reference HS

D = Gg/V
]
D = Ge¢/B V=GpnB

and 5
D c I, Grass(f?, He)
U

D = open subset.

Thus, D is a homogeneous projective variety and D is a homogeneous

complex manifold.

Ex (most classical case): D = 3 C P' = D. To each elliptic curve =
compact Riemann surface X of genus one, there is an associated period
matrix = Hodge structure on H'(X) as a point in Gz\D = SLy(Z)\ K.

The canonical EDS on D. We have T Grass(f?, He) = Hom(F?, Hc/FP)

and 3
TD C @&Hom(FP, Hc/FP)
p

U
W = TDn (§ Hom(Fp,Fp—l/Fp)> :
Then the canonical EDS on D is given by
I=W*+cTD.
Here, one may think of I as given by
dFP C FP' & Q(dFP, F"Pt3),
It has the properties:

e [ isnon-trivial unless n = 1 (abelian varieties) orn = 2, h?% =1

— the “classical cases” when D is a bounded symmetric domain;
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e I bracket generating < all h”? 2 (.

Example. n =2 and h?° = 2, h'"' =n. Then dimD = 2n + 1 and [
is the contact system.

Example. When n = 3, h3° = 1, I has a local normal form. When
h?l =1 it is

bh =dy —y'de =0

Oy =dy —y'de =0
n (z,y,9',y") space.

Aside from these cases, I is not “elementary” — it is given by honest
PDE’s and not just ODE’s.

Let I' C Gg be a discrete subgroup — e.g., I' is an arithmetic group
such as Gz when H = Hz; ® Q. Then I" acts properly discountinuously

on D and
moduli space of

['\D = { TI-equivalence classes
of PHS’s

is a complex analytic variety.

Definition. A wvariation of Hodge structure (VHS) is given by
f:S—=T\D

where S is a complex manifold and f is a locally liftable, holomorphic
mapping that is an integral manifold of I.

Example. Suppose given a family of smooth projective complex alge-
braic varieties { X }ses. Then choosing a base point sy € S we may
identify all H"(X,) = H"(X,,) up to the action of monodromy. The
PHS on the H"(X;) gives a VHS where I' includes the image of the
monodromy group. In the most classical case

{ X, = {y? = wle — 1)(w — )}
S =P\ {0,1, 00}

and for w = dz/y = dz/+/z(x — 1)(x — s) the period mapping is

e/
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where

Suppose now that S is quasi-projective and I' is an arithmetic group.
Then

Classical case. I'\D is quasi-projective, defined over a number field,
and S — T'\D is a morphism. For example, n = 1, det@Q = 1,
I' = S,(29,Z) and then I'\D = A, is the moduli space of principally

polarized abelian varieties.

Non-classical case. I'\D has no non-constant meromorphic func-
tions. But the image of a VHS

f:S—=TI\D

is canonically a quasi-projective variety and S — f(.5) is a morphism.
In fact, L =: ® det F? induces an ample line bundle on f(S). Except
in the classical cases, VHS is a relative study. The fields of definition

are a pretty much unexplored territory.

III. CHARACTERISTIC COHOMOLOGY OF PERIOD DOMAINS

For VHS’s the natural global invariants come from H;(I'\D), not
H*(I'\D). Here, the first part to understand is that which is indepen-
dent of I' — we may think of this as universal characteristic cohomol-
ogy. By definition this is

H3 (D)% = Hj ((A*(D)/9)%)
Ul
H*(G,0,t0)
where the bottom term is a Lie algebra cohomology group. The bundles
F? — D and HP? — D have natural metics induced by the polariza-

tion, and the Chern forms ¢;(37) and ¢;(HP?) — those determine each
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other — are Gg-invariant and over D satisfy

G(HP9) =0, > hra
(%)

c(FHPO)e(HPn—a) = 1

where ¢(HP9) = > "5, ¢;(HP9) is the total Chern form.
Denote by I* C A*(D) the algebraic ideal generated by I and I.

Theorem. (i) (A*(D)/I*)°% are forms of type (p,p). (i) Hj(D)%® is
generated by the ¢;(FP), subject to the relations (x) and

(%) G(F)e(FP) =0 ifitj > hPrr.

Remarks. (A*(D)/I*)% is much bigger than the part generated by
the ¢;(FP) (I # 0). It is only when we put in the integrability conditions
by passing to (A*(D)/J3)%® that we have generation by the ¢;(F7) and
the relation (xx), which is a consequence of the integrability conditions.
The proof of (ii) requires rather intricate representation-theoretic con-
siderations.

For families of algebraic varieties, (#*) may be formulated algebro-
geometrically but there is as of now no algebro-geometric proof.

For n = 2, (xx) gives polynomial relations
Pp(er(H*0), . eppo (320)) = 0

which lead to topological conditions on the moduli spaces of surfaces
of general type.

We now consider two cases

(i) I' is co-compact and neat; i.e., has no fixed points;
(ii) I' is arithmetic.

In case (i), M = '\ D is a compact, complex manifold which — except
in the classical cases does not even have the homotopy type of a Kahler
manifold.

Recall that we denote by m( the maximum dimension of ordinary

integral elements of J.
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Conjecture.' In case (i), for m < mgy, H*(T'\D) has a Hodge struc-
ture of weight m. (ii) In case (ii), H"(I'\D) has a mized structure with
weights m < w < 2m.

In order to prove (i) it seems that two ingredients must be utilized

(a) Kéhler geometry modulo J;
(b) Hodge theory (harmonic forms, etc.) for hypoelliptic Lapla-
cians.
Both of these would be interesting new developments at the interface
of complex manifolds and EDS’s. The first interesting case is when
n=2,h*" =2 h'' =1. Then M is a 3-dimensional contact manifold.

Bryant has proved that
dim Hj (M) < oo

in case (i). In fact, in this case there is a proposed sketch of a proof
— mnot verified — of (i) in the conjecture. To give some flavor of the

calculations, here are the structure equations:

® (v, (g, a3 is a local (1,0) unitary coframe
o [ ={os}

—_—_—— — — —_ —_ = — = -

where %j + 7; = 0.

das = fAag+as Aoy, B= + 73
Then
J={as,a1 Nag} +{as,a A as} .
Modulo J, we have the terms in the dotted box, which look like the
structure equations of a Kahler surface.

What seems to be involved here is some type of relative Kdhler ge-
ometry where Ay = 0,07 + 0,05 is hypoelliptic. The Q-structure would
presumably come from the characteristic homology groups H,, 5(M, Q)
together with an “J-de Rham theorem” stating that the natural pairing

Hyy(M) @ Hy* (M) — C

'We assume that all h?? # 0.
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is non-degenerate for 0 < m < my. The conjecture would imply that

there is a natural map

parameter spaces sub-mixed
S for a family — | Hodge structures
of algebraic varieties of H™(S)

In the non-classical cases this would be an interesting new phenomenon.
In fact, if one really wants to go out on a limb, it may be asked if,
in the case when I is an arithmetic group,

Is there a number field k C C, which will depend on T,
such that the Hi*(T\D) are defined over k, meaning that
there is a k-vector space V'™ with V™ @5 C = H*(T\D),
together with an action of Gal(k/k) on V'™ ?

In other words, in the non-classical case even though I'\D is far from
being an algebraic variety defined over a number field, might the char-
acteristic cohomology be what replaces the [-adic cohomology in the
classical case?

IV. CODIMENSION ESTIMATES OF NOETHER-LEFSCHETZ LOCI

Bottom line. For ( € H*(X,Q) the number of conditions to have
¢ € Hg"(X) = H*(X,Q) N H"" (X))

is PP oo 4 B0 When X varies in a family {X,}scg, the N-L
locus is defined as

Sce={seS: } e Hg"(X,) .

Then except when p = 1 (the classical case)

codimg Sy < hP~1PHE o g0

The notation “<” is meant to suggest “much less than”. This result
comes about in two steps that we may summarize as follows:

e [ gives codimg(S;) < hP~tetl

e J gives codimg(S;) < hP~HPHL
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Conclusion. If the Hodge conjecture is true, then except in the clas-
sical p = 1 case, there are “many more” algebraic cycles than naive
dimension counts suggest.

To explain a little bit of the above, in general given a manifold M
and a submanifold N C M, we have for A C M

codimy (AN N) = codimy, (N) = rank(TM/TN)

with equality if A is in general position relative to N.

Now let W C T'M and subject A to the differential constraint T'A C
W |a; i.e., A is an integral manifold of I = W+ C T*M. Assume that
W is transverse to T'N. Then

(%) codimy (AN N) < rank(W/WNTN) .
Using dHP? C HP~YPHL this gives
codimg(S;) < 1Pt

When p = 1, in “most” cases (non-special divisors) equality holds
here (I = 0 in this case). However, (x) does not take the integrability
conditions into account. In the first non-classical case p = 2 these are
the following: Set

T = TS

U

T, = {0€Ty,S:0(=0 in HP~17T1}

We then have
TC ® H4,0 N H3,1

and we let o, be the dimension of the image of this map. Then

codimg(S;) < h'? — o, .

This is the best general estimate. For example, it is an equality for
smooth hypersurfaces X C P of degree = 6 (to have H*°(X) # 0)
containing a 2-plane.

Example. Suppose X is a Calabi-Yau fourfold, and take the local
moduli space so that

T — Hom(H"", H*') = H>!
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is an isomorphism (e.g. d = 6 above). Associated to ¢ is a quadric in
Sym? T defined by

Qc(0,6) = Q0 - ' (w), ()
where 6,0 € T and w € H*® = C is a generator. Then

If the Hodge conjecture is true and Q)¢ is non-singular,
then X is defined over a number field.

Conclusion. The EDS I C T*D, especially its integrability condi-
tions, lead to interesting and in many cases non-classical phenomena
in Hodge theory. The possible arithmetic aspects of this have yet to
be explored.
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