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1. Preliminaries

In these lectures I want to discuss, with some indications of proofs, some of the elementary
facts in the theory of Eisenstein series. Although the discussion can be carried out in more
generality it is most convenient, in the context of this institute, to take for discrete group
an arithmetically defined subgroup Γ of the group G of real points of a reductive group GC

defined over Q whose connected component G0
Q has no rational character. It is also necessary

to suppose that the centralizer of a maximal Q split torus of G0
C meets every component

of GC. The reduction theory of Borel applies, with trivial modifications, to G; it will be
convenient to assume that Γ has a fundamental set with only one cusp. Fix a minimal
parabolic subgroup P 0

C defined over Q and a maximal Q-split torus A0
C of P 0

C so that the
standard parabolic Q-subgroups are defined. A (standard) cuspidal (percuspidal) subgroup P
is the normalizer in G of a (standard) parabolic (minimal parabolic) Q-subgroup PC of G0

C.
To each standard cuspidal subgroup P is associated a subspace AC of the Lie algebra a0C of
A0

C; this subspace will be called the split component of P . By definition the rank of P is
equal to its dimension. The set a of real points on aC will also be called the split component
of P . P is a product AMN where A is the analytic subgroup of G with the Lie algebra a, N
is the set of real points in the unipotent radical of PC, and M satisfies the same conditions
as G. We identify M with N\MN . Then Γ ∩ P ⊆ MN and Θ = Γ ∩ N\Γ ∩MN is an
arithmetically defined subgroup of M . Assume that for each standard cuspidal subgroup P
it also has a fundamental domain with only one cusp.

First appeared in Algebraic Groups and Discontinuous subgroups, AMS, Proc. of Symp. in Pure Math.,
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2 ROBERT P. LANGLANDS

Suppose P and P ′ are two standard cuspidal subgroups with the split components a and a′

respectively. If there is an element of Ω, the Weyl group (over Q) of a0C, taking aC to a′C we
shall say that P and P ′ are associate; let Ω(a, a′) be the set of distinct linear transformations
from aC to a′C obtained by restricting such an element of Ω to AC. The relation of being
associate is an equivalence relation. The normalizer of A(A′) in G leaves M(M ′) invariant
and consequently acts on the centre Z(Z ′) of the universal enveloping algebra of the Lie
algebra of M(M ′) and on the set X(X′) of homomorphisms of Z(Z ′) into C. The orbits in
X(X′) under this action are finite. If P and P ′ are associate, Z and Z ′ are isomorphic and
there is a natural one-to-one correspondence between orbits in X and X′. Every element of Z
defines an unbounded operator on L2

0(Θ\M), the space of cusp forms on Θ\M . If ξ ∈ X let

V (ξ) =
{
ϕ ∈ L2

0(Θ\M)
∣∣ Xϕ = ξ(X)ϕ for all X ∈ Z

}
and if Ξ is an orbit in X let

V (Ξ) =
∑
ξ∈Ξ

V (ξ).

V (Ξ) is a closed subspace of L2
0(Θ\M) invariant under M and

L2
0(Θ\M) =

⊕
Ξ

V (Ξ).

If Ξ′ is the orbit in X′ corresponding to Ξ the space V (Ξ′) may be defined in a similar fashion.
V = V (Ξ) and V ′ = (Ξ′) are said to be associate. We shall call such a V a simple admissible
subspace. The symbol W will denote the space of functions on a fixed maximal compact
subgroup K of G spanned by the matrix elements of some irreducible representation of K.

2. Partial decomposition of L2(Γ\G)

If V is a simple admissible subspace of L2
0(Θ\M) let E(V,W ) be the set of all continuous

functions Φ on NA(Γ ∩ P )\G such that Φ(mg) belongs to V for all g and Φ(gk−1) belongs
to W for all g. E(V,W ) is a finite-dimensional Hilbert space with the inner product

(Φ,Ψ) =

∫
Θ\M×K

Φ(mk)Ψ(mk) dmdk.

Let D(V,W ) be the space of all continuous functions on N(Γ∩P )\G such that ϕ(mg) belongs
to V and ϕ(gk−1) belongs to W for each g and such that the projection of the support of ϕ
on NM\G is compact.

Lemma 1. If ϕ ∈ D(V,W ) then

ϕ̂(g) =
∑

Γ∩P\Γ

ϕ(γg)

belongs to L2(Γ\G).

The proof of this lemma requires the result in §6 of Godement’s lecture on cusp forms.
Suppose {P} is the set of all standard cuspidal subgroups associate to a given one and

{V } =
{
V (P )

∣∣ P ∈ {P}
}
is a collection of associate simple admissible subspaces. Let

L
(
{P}, {V },W

)
be the closed subspace of L2(Γ\G) spanned by the functions ϕ̂(·) with ϕ in

D
(
V (P ), {V },W

)
for some P in {P}.
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Lemma 2. L2(Γ\G) is the orthogonal direct sum of the spaces L
(
{P}, {V },W

)
and for a

fixed {P} and {V },
⊕

W L
(
{P},W

)
is invariant under G.

This lemma is fairly easy consequence of Lemma 3 which will be stated below. To some
extent it reduces the problem of decomposing L2(Γ\G) to that of decomposing each of the
spaces L

(
{P}, {V },W

)
.

3. Eisenstein series

If P belongs to {P} let aC be the split component of P . Let Λ be the generic symbol for a
linear function on aC. We can write any ϕ in D(V,W ) as a Fourier integral

(1) ϕ(g) =
1

(2π)q

∫
ReΛ=Λ0

exp
(
Λ
(
H(g)

)
+ ρ
(
H(g)

))
Φ(Λ, g) |dΛ|.

Here Φ(·), which I call the Fourier transform of ϕ, is an entire function on the dual of aC
with values in E(V,W ) and Φ(Λ, g) is the value of Φ(Λ) at g. The dimension of aC is q; ρ is
one-half the sum of the positive roots; and a(g) = expH(g) if g = na(g)mk, n ∈ N , a(g) ∈ A,
m ∈M , k ∈ K. If (Λ0, α) > (ρ, α) for every positive root α then

ϕ̂(g) =
1

(2π)q

∫
ReΛ=Λ0

∑
Γ∩P\Γ

exp
(
Λ
(
H(γg)

)
+ ρ
(
H(γg)

))
Φ(Λ, γg) |dΛ|.

To study the map ϕ→ ϕ̂ we shall, for an arbitrary Φ in E(V,W ), study the series∑
Γ∩P\Γ

exp
(
Λ
(
H(γg)

)
+ ρ
(
H(γg)

))
Φ(γg).

This series is of interest for all functions Φ on NA(Γ ∩ P )\G such that, for each g, Φ(mg) is
an automorphic form, in the sense of Harish-Chandra, on Θ\M which is square integrable on
Θ\M and Φ(gk−1) belongs to some space W . It is called an Eisenstein series. Denote its
sum by E(g,Φ,Λ). For each g and Φ this function is defined and holomorphic in the domain{
Λ
∣∣ Re(Λ, α) > (ρ, α) for all α > 0

}
. One of the basic facts in the theory of Eisenstein

series is that it can be continued to all of the dual space of aC as a meromorphic function.
This has first to be done when Φ belongs to one of the spaces E(V,W ) and for the moment
we concentrate on that.

Lemma 3. If P ′ is another standard cuspidal subgroup of rank g then

(a)

∫
Γ∩N ′\N ′

E(ng,Φ,Λ) dn = 0

if P and P ′ are not associate. However, if P and P ′ are associate

(b)

∫
Γ∩N ′\N ′

E(ng,Φ,Λ) dn =
∑

s∈Ω(a,a′)

exp
(
sΛ
(
H ′(g)

)
+ ρ
(
H ′(g)

))(
M(s,Λ)Φ

)
(g)

where M(s,Λ) is a linear transformation from E(V,W ) to E(V ′,W ) analytic as a function of
Λ in

{
Λ
∣∣ Re(Λ, α) > (ρ, α) for α > 0

}
. Here V ′ is associate to V .
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In order to gain some understanding of this lemma we consider the case that P is the
standard cuspidal subgroup, P ′ = P , and Φ is a constant function. The sum on the right of
(b) is then a sum over the Weyl group. The left side equals∫

Γ∩N\N

∑
Γ∩P\L

exp
(
Λ
(
H(γng)

)
+ ρ
(
H(γng)

))
Φ(γng) dn

or ∑
Γ∩P\Γ/Γ∩N

µ(Γ ∩N ∩ γ−1Pγ\N ∩ γ−1Pγ)

∫
N∩γ−1Pγ\N

exp
(
Λ
(
H(γng)

)
+ ρ
(
H(γng)

))
Φ(γng) dn.

We consider the integrals in this sum individually. Using the Bruhat decomposition to write
γ as pnWu, we see that the integral equals

exp
(
Λ
(
H(p)

)
+ ρ
(
H(p)

)){∫
N∩n−1

W PnW \N
exp
(
Λ
(
H(nWng)

)
+ ρ
(
H(nWng)

))
dn

}
Φ(g).

The expression in brackets equals

exp

(
Λ
(
AdnW

(
H(g)

))
+ ρ
(
H(g)

))∫
N∩n−1

W pnW \N
exp

(
Λ
(
H(nWn) + ρ

(
H(nWn)

)))
dn

and we are done. Observe that if, as we suppose, the measure of Γ ∩ N\N is one then
M(1,Λ) = I.

4. Some functional analysis

Combining Lemma 3 with the Fourier inversion formula we obtain a formula which is basic
for everything to follow.

Corollary. Suppose P and P ′ are associate standard cuspidal subgroups, V and V ′ are
associate admissible subspaces, ϕ belongs to D(V,W ), and ψ belongs to D(V ′,W ) If the Haar
measure on G is suitably chosen, then

(2)

∫
Γ\G

ϕ̂(g)ψ
∧
(g) dg =

1

(2π)q

∫
ReΛ=Λ0

∑
s∈Ω(a,a′)

(
M(s,Λ)Φ(Λ),Ψ(−sΛ)

)
|dΛ|.

Of course Λ0 must be such that (Λ0, α) > (ρ, α) if α is a positive root of A. Simple
approximation arguments now show that if ϕ(g) can be represented in the form (1) with a
function Φ(·), with values in E(V,W ), which is defined and analytic in a tube over a ball

of radius R with R > (ρ, ρ)1/2 and behaves well at infinity then ϕ̂(·) is defined and square
integrable and the formula (2) is valid. In particular Φ(·) could be taken to lie in H

(
E(V,W )

)
,

the space of all functions analytic in some such tube which go to zero at infinity faster than
the inverse of any polynomial.

Let P 1, . . . , P r be the elements of {P}, let V i = V (P i) and set

H =
r⊕

i=1

H
(
E(V i,W )

)
.
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Let Φ(·) =
(
Φ1(·), . . . ,Φr(·)

)
, where Φi(·) is a function in H

(
E(V i,W )

)
, be the symbol for

a generic element of H. It is clear that we can define a linear map Φ(·) → ϕ̂(·) of H into
L
(
{P}, {V },W

)
.

Suppose that, for 1 ⩽ i ⩽ r, fi(·) is a complex valued function defined, bounded, and
analytic in the tube T i

R over some ball of radius R > (ρ, ρ)1/2 with center 0 in the dual of aiC
and fi(sΛ) = fi(Λ) if s ∈ Ω(ai, aj). Set

fΦ(·) =
(
f1(·)Φ1(·), . . . , fr(·)Φr(·)

)
.

The following lemma is quite useful.

Lemma 4. If
max
1⩽i⩽r

sup
Λ∈T i

R

∣∣fi(Λ)∣∣ = k

then there is a bounded operator λ(f) on L
(
{P}, {V },W

)
of norm at most k such that if

Ψ(·) = fΦ(·) then ψ̂ = λ(f)ϕ̂.

Suppose Φ(·) =
(
Φ1(·), . . . ,Φr(·)

)
and Ψ(·) =

(
Ψ1(·), . . . ,Ψr(·)

)
are two arbitrary elements

in H. Then (ϕ̂, ψ̂) is equal to
r∑

i=1

r∑
j=1

1

(2π)q

∫
ReΛi=Λi

0

∑
s∈Ω(ai,aj)

(
M(s,Λi)Φi(Λ

i),Ψj(−sΛi)
)
|dΛi|.

Denote this expression by
(
Φ(·),Ψ(·)

)
. It is easily verified that(

fΦ(·),Ψ(·)
)
=
(
Φ(·), f ∗Ψ(·)

)
if f ∗(·) =

(
f ∗
1 (·), . . . , f ∗

r (·)
)
and f ∗

i (·) is defined by f ∗
i (Λ) = fi(−Λ). Consequently(

f ∗fΦ(·),Φ(·)
)
⩾ 0.

If ℓ > k there is a function g(·) satisfying the same conditions as f(·) such that ℓ2 −
f ∗
i (Λ)fi(Λ) = g∗i (Λ)gi(Λ), 1 ⩽ i ⩽ r. Consequently

ℓ2
(
Φ(·),Φ(·)

)
−
(
fΦ(·), fΦ(·)

)
=
(
gΦ(·), gΦ(·)

)
⩾ 0.

The lemma is an easy consequence of this inequality. In particular take

fi(Λ) =
(
µ− (Λ,Λ)

)−1

with µ > (ρ, ρ). Then λ(f) is self-adjoint with a dense range; consequently the operator
A = µ − λ(f)−1 is a self-adjoint operator, usually unbounded, on L

(
{P}, {V },W

)
. If

Ψi(Λ) = (Λ,Λ)Φi(Λ), 1 ⩽ i ⩽ r, then Aϕ̂ = ψ̂. The resolvent R(z, A) = (z − A)−1 is an
analytic function of z off the infinite interval

(
−∞, (ρ, ρ)

]
.

5. A theorem

Theorem. For each i and each j and each s in Ω(ai, aj) the function M(s,Λ) is meromorphic
on the dual of aiC. For each Φ in ξ(V i,W ) the function E(·,Φ,Λ) with values in the space of
continuous functions on Γ\G is meromorphic on the dual of aiC. If s ∈ Ω(ai, aj), t ∈ Ω(aj, ak)
and Φ ∈ E(V i,W ) the functional equations

M(ts,Λ) =M(t, sΛ)M(s,Λ),

E
(
g,M(s,Λ)Φ, sΛ

)
= E(g,Φ,Λ)
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are satisfied.

The first, and most difficult, step in the proof of this theorem is to show that it is true
when dim ai = 1 for one, and hence all, i. Most of the important ideas in this case have been
described by Selberg in his talk at the International Congress.

6. In which the number of variables is one

If dim ai = 1 then r is 1 or 2. If z is a complex number let Λi(z) be such that
(
αi,Λi(z)

)
=

z(αi, αi)1/2 if αi is the unique simple root of ai. Let E = E(V 1,W ) or E(V 1,W )⊕ E(V 2,W )
according as r is 1 or 2. If r = 1, there is an s in Ω(a1, a1) different from the identity; let
M(z) =M

(
s,Λ1(z)

)
. If r = 2 and s is in Ω(a1, a2) then sΛ1(z) = −Λ2(z). In this case let

M(z) =

(
0 M

(
s−1,Λ2(z)

)
M
(
s,Λ1(z)

)
0.

)
In both cases M(z) is a linear transformation of E . If Φ = (Φ1) or (Φ1,Φ2) belongs to E let

E(g,Φ, z) =
∑
i

E
(
g,Φi,Λ

i(z)
)
.

The theorem may be restated as:

Theorem.

(i) E(·,Φ, z) and M(z) are meromorphic in the complex plane,
(ii) M(z)M(−z) = I,
(iii) E

(
g,M(z)Φ,−z

)
= E(g,Φ, z).

If (i) and (ii) are true and P is any maximal standard cuspidal subgroup then∫
Γ∩N\N

E
(
ng,M(z)Φ,−z

)
− E(ng,Φ, z) dn = 0.

It follows from this that the integrand is a cusp form. Since on the other hand it is by
construction orthogonal to the cusp forms it must vanish identically. Thus (iii) is also true.
The space H may be regarded as a space of functions, each of which is defined on some

strip of the form |Re z| < (ρ, ρ)1/2 + ϵ, ϵ > 0, by setting

Φ(z) =
⊕
i

Φi

(
Λi(z)

)
.

Φ(·) takes values in E . If c is close to but greater than (ρ, ρ)1/2

(ϕ̂, ψ̂) =
1

2πi

∫ c+i∞

c−i∞

(
Φ(z),Ψ(−z)

)
+
(
M(z)Φ(z),Ψ(z)

)
dz.

If c1 > Reλ > c then
(
R(λ2,Λ)ϕ̂ψ̂

)
is the sum of

(3)
1

2λ

{(
Φ(λ),Ψ(−λ)

)
+
(
M(λ)Φ(λ),Ψ(λ)

)}
and

(4)
1

2πi

∫ c1+i∞

c1−i∞

1

λ2 − z2

{(
Φ(z),Ψ(−z)

)
+
(
M(z)Φ(z)Ψ(z)

)}
dz.
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If Φ(z) = exp z2Φ and Ψ(z) = exp z2Ψ with Φ and Ψ in E then (4) is an entire function of λ
and (3) is equal to

(exp 2λ2/2λ)
{
(Φ,Ψ) +

(
M(λ)Φ,Ψ

)}
.

Consequently M(λ) is analytic wherever
(
R(λ2, A)ϕ̂, ψ̂

)
is. In particular it is analytic for

Reλ > 0, λ /∈
(
0, (ρ, ρ)1/2

]
.

Now we want to show that E(·,Φ, z) is analytic in this region also. If f(g) is a continuous
function on G with compact support such that f(kgk−1) = f(g) for all k in K there is an
entire function π(f, z) with values in the space of linear transformations of E such that the
convolution of E(g,Φ, z) and f(g) is E

(
g, π(f, z)Φ, z

)
. As a consequence it is enough to show

that if ψ(g) is any continuous function on Γ\G with compact support then∫
Γ\G

E(g,Φ, z)ψ(g)dg

is analytic in this region. In doing this we are free to modify E(g,Φ, z) outside of the support
of ψ. If Φ =

⊕
i Φi then

E(g,Φ, z) =
∑
i

∑
Γ∩Pi\Γ

F
(
γg,Φi,Λ

i(z)
)

with

F (g,Φi,Λ
i) = exp

(
Λi
(
H i(g)

)
+ ρ
(
H i(g)

))
Φi(g).

According to a principal stated by Borel in his lectures on reduction there is a number
x such that, for 1 ⩽ i ⩽ r, the inverse image in G of the support of ψ is contained

in
{
g
∣∣∣ αi
(
H i(g)

)
< x(αi, αi)1/2

}
. Let F ′′(g,Φi, z) equal F

(
g,Φi,Λ

i(z)
)
if αi

(
H i(g)

)
<

x(αi, αi)1/2 and let it equal −F
(
g,Φi(z),−Λi(z)

)
otherwise. Here Φi(z) is defined by

M(z)Φ =
⊕
i

Φi(z).

Set
E ′′(g,Φ, z) =

∑
i

∑
Γ∩Pi\Γ

F ′′(γg,Φi, z).

The functions E(g,Φ, z) and E ′′(g,Φ, z) are equal on the support of ψ.
It is easy to compute the Fourier transform of F ′′(g,Φi, z). The argument of §4 allows us

to show that E ′′(g,Φ, z) is in L2(Γ\G) and that the inner product
(
E ′′(·,Φ, λ), E ′′(·,Ψ, µ)

)
is equal to

(λ+ µ)−1
{
expx(λ+ µ)(Φ,Ψ)− exp

(
−x(λ+ µ)

)(
M(λ)Φ,M(µ)Ψ

)}
+ (λ− µ)−1

{
expx(λ− µ)

(
Φ,M(µ)Ψ

)
− expx(µ− λ)

(
M(λ)Φ,Ψ

)}
.

Call this expression ω(λ, µ; Φ,Ψ). Suppose E ′′(g,Φ, λ) is defined at λ = λ0 and that
ω(λ, µ; Φ,Φ) is analytic in λ and µ for |λ− λ0| < R, |µ− λ0| < R. Since∣∣∣∣ ∂n∂λnE ′′(·,Φ, λ0)

∣∣∣∣2 = ∂2n

∂λn∂µnω(λ0, λ0; Φ,Φ)
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we easily show that
∞∑
n=0

(λ− λ0)
n

n!

∂n

∂λn
E ′′(·,Φ, λ0)

converges for |λ− λ0| < R so that E ′′(·,Φ, λ) is an analytic function of λ in this region with
values in L2(Γ\G). It is easy to convince oneself that if M(λ) is a meromorphic function of λ
satisfying M(λ)M(−λ) = I then ω(λ, µ; Φ,Ψ) is a meromorphic function of λ and µ whose
only singularities are on the lines λ = λ0 or µ = λ0 where λ0 is a singularity of M(λ). In
verifying this use the relation M∗(λ) =M(λ). Because of this remark our only responsibility
is to show that M(λ) is meromorphic in the entire complex plane and satisfies the stated
functional equation. However the functions E ′′(g,Φ, z) will still be used in an auxiliary role.

If λ = σ + iτ then ω(λ, λ; Φ,Ψ) which equals

(1/2σ)
{
exp 2xσ(Φ,Ψ)− exp(−2xσ)

(
M(λ)Φ,M(λ)Ψ

)}
+ (1/2iτ)

{
exp 2ixτ

(
Φ,M(λ)Ψ

)
− exp(−2ixτ)

(
M(λ)Φ,Ψ

)}
.

is a positive semidefinite form in Φ and Ψ. As a consequence∥∥M(λ)
∥∥ ⩽ max

{√
2 exp 2xσ,

4σ

|τ |
exp 2xσ

}
.

We conclude first of all that if U is a set of the form a ⩽ τ ⩽ b, 0 < σ ⩽ c, with ab > 0,
then

∥∥M(λ)
∥∥ is bounded uniformly for λ in U . This allows us to estimate E(g,Φ, λ) for λ

in U and then, utilizing the close relation between E(g,Φ, λ) and E ′′(g,Φ, λ), to show that∥∥E ′′(·,Φ, λ)
∥∥ is uniformly bounded for λ in U . Unfortunately the analysis required for these

two steps is rather elaborate and cannot be reproduced here. It may be found in §5 of my
notes on Eisenstein series. To continue we observe that this implies, by the very definition of
ω(λ, λ,Φ, τ), that, for each Φ and Ψ, ω(λ, λ; Φ,Ψ) is bounded in U . This can only be so if

lim
σ↓0

M∗(σ + iτ)M(σ + iτ) =M(σ − iτ)M(σ + iτ) = I

and
lim
σ↓0

M−1(σ − iτ)−M(σ + iτ) = 0

uniformly for t ∈ [a, b]. Roughly speaking this means that M(iτ) =M−1(−iτ) for τ real. In
any case, by an appropriate variant of the Schwarz reflection principle we can show that if we

set M(λ) = M−1(−λ) for Reλ < 0, λ /∈
[
−(ρ, ρ)1/2, 0

]
then M(λ) can be extended across

the imaginary axis to be meromorphic everywhere but in the interval
[
−(ρ, ρ)1/2, (ρ, ρ)1/2

]
.

Finally it must be shown thatM(λ) is also meromorphic in the interval
[
−(ρ, ρ)1/2, (ρ, ρ)1/2

]
.

Since the proof of this is also based on §5 of my notes I shall not present it here.

7. In which the number of variables is usually two

In the proof of the functional equations for Eisenstein series in one variable there are two
main points: to show that the functionM(z) is meromorphic and satisfies the stated functional
equation and to construct the functions E ′′(g,Φ, z) and find the expression ω(λ, µ; Φ,Ψ) for
the inner product of two such functions. In the general case the first step is to show that
the functions M(s,Λ) are meromorphic everywhere and satisfy the equations of the theorem.
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After this one can proceed in two ways. Either one can find the analogues of the function
E ′′(g,Φ, z) and the expression ω(λ, µ; Φ,Ψ) as we shall do now or one can proceed in a more
direct fashion to continue analytically the functions E(g,Φ,Λ) as is done at the end of §6 of
the notes referred to before. Since in proceeding the first way I work from rather rough notes
you may prefer the second upon which a little more reliance can be placed. I present the first
because it introduces a number of ideas and formulas likely to be of use in the attempt to
obtain in the general case a trace formula in the sense of Selberg.

α 3 = ρ

α 2

α1

III

I

II

The first step is based on familiar ideas. It will probably be easier to understand if we discuss
it in a very simple case. Let G = SL(3,R), let Γ = SL(3,Z), and let {P} consist of one
group, the group P of upper triangular matrices in G. In the diagram α1 and α2 are the
simple roots of a, α3 = ρ = 1

2
(α1 + α2 + α3) is the other positive root, and I is the region

(Λ, αi) > (ρ, αi), i = 1, 2. The union of I and II is the convex hull of I and its reflection in the
line (α1,Λ) = 0. The region III plays the same role as II with the line (α1,Λ) = 0 replaced
by (α2,Λ) = 0. Let A be the tube over I, B the tube over the union of I and II, and C the
tube over the union of I and III. The functions M(s,Λ) are at first defined only in A.

Let si, i = 1, 2, be the reflection corresponding to the root αi. For reasons to be discussed
later M(si,Λ) depends only on the projection of Λ on the orthogonal complement of the
line (Λ, αi) = 0 and is a meromorphic function of Λ. Suppose we could show that, for all s,
M(s,Λ) is meromorphic in B and satisfies there the relation

(5) M(ss1,Λ) =M(s, s1Λ)M(s1,Λ).

Suppose we could also show the analogous facts for s2. Then, for example,

M(s1s2,Λ) =M(s1, s2Λ)M(s2,Λ)

in A. Since the right side is meromorphic in the entire two-dimensional complex plane so is
the left. An easy induction can be used to show that M(s,Λ) is meromorphic everywhere for
each s and that the functional equations are satisfied.

How then do we continueM(s,Λ) over B and prove (5). Suppose that for any Φ in E(V,W )
we could analytically continue, E(·,Φ,Λ) over all of B (except perhaps for some poles) and
show that

(6) E
(
·,M(s1,Λ)Φ, s1Λ

)
= E(·,Φ,Λ)

in this region. If N is the group of upper triangular unipotent matrices and Ω is the Weyl
group of G∫

Γ∩N\N
E(ng,Φ,Λ) dn =

∑
s∈Ω

exp
(
sΛ
(
H(g)

)
+ ρ
(
H(g)

))(
M(s,Λ)Φ

)
(g)
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and∫
Γ∩N\N

E
(
ng,M(s1,Λ)Φ, s1Λ

)
dn

=
∑
s∈Ω

exp
(
ss1Λ

(
H(g)

)
+ ρ
(
H(g)

))(
M(s, s1Λ)M(s1,Λ)Φ

)
(g).

The left-hand sides of these equations are meromorphic and equal in B. As a consequence the
functions M(s,Λ) are all meromorphic in the same region and the equations (5) are satisfied.
As a further simplification we shall in proving (6) assume that E(V,W ) is the space of

constant functions. The space a is the set of diagonal matrices D(x1, x2, x3) of trace zero.
Suppose α1 is the linear function x1 − x2. Let

∗P be the group of all matrices in G of the
form x11 x12 x13

x21 x22 x23
0 0 x33

.
∗N is the group of all such matrices with x12 = x21 = 0 and x11 = x22 = x33 = 1. ∗M is the
group of all such matrices with x13 = x23 = 0 and x33 = ±1 and ∗Θ = Γ ∩ ∗N\Γ ∩ ∗P is an
arithmetic subgroup of ∗M . Moreover

†P = ∗N\P ∩ ∗N∗M

is a percuspidal subgroup of ∗M . We can choose †V and †W bearing the same relation to †P
as V and W bear to P so that E(†V, †W ) is also the space of constant functions. There is a
natural map Φ → †Φ of E(V,W ) onto E(†V, †W ). a is the direct sum of ∗a =

{
D(x, x,−2x)

}
and †a =

{
D(x,−x, 0)

}
and †a may be regarded as the split component of †P . The restriction

†s1 of s1 to †a belongs to the Weyl group of †a. Corresponding to †s1 there is a function
M(†s1,

†Λ) on the dual of †aC with values in the space of linear transformations of E(†V, †W ).
Because the dimension of a is one we know that M(†s1,

†Λ) is meromorphic everywhere in
the dual space of †aC. The dual space of aC is of course isomorphic to the sum of the dual
spaces of ∗aC and †aC. Thus we may decompose a general Λ as a sum ∗Λ + †Λ. A careful
study of the computations following the statement of Lemma 3 reveals that if Φ corresponds
to †Φ then M(s1,Λ)Φ corresponds to M(†s1,

†Λ)†Φ. This is the fact with which we started.
By definition

E(g,Φ,Λ) =
∑

Γ∩P\Γ

exp
(
Λ
(
H(γg)

)
+ ρ
(
H(γg)

))
Φ(γg)

=
∑

Γ∩ ∗P\Γ

 ∑
Γ∩P\Γ∩ ∗P

exp
(
Λ
(
H(δγg)

)
+ ρ
(
H(δγg)

))
Φ(δγg)

.
Consider the inner sum with the argument γg replaced by g and let g = namk, n ∈ ∗N ,
m = m(g) ∈ ∗M , a ∈ ∗A, and k in K. It equals

exp
(
∗Λ
(∗H(g)

)
+ ρ
(∗H(g)

)) ∑
∗Θ∩ †P\∗Θ

exp

(
†Λ
(
†H(θm)

)
+ ρ
(
†H(θm)

))
†Φ(θm)


or

exp
(
∗Λ
(∗H(g)

)
+ ρ
(∗H(g)

))
E(m, †Φ, †Λ).
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Consequently

E(g,Φ,Λ) =
∑

Γ∩ ∗P\Γ

exp
(
∗Λ
(∗H(γg)

)
+ ρ
(∗H(γg)

))
E
(
m(γg), †Φ, †Λ

)
.

It can be shown that the series on the right converges at any point of B at which it is
defined and that it represents a meromorphic function in B. The relation (6) is an immediate
consequence of the known relation

E
(
m,M(†s1,

†Λ)†Φ, †s1
†Λ
)
= E(m, †Φ, †Λ).

8. A combinatorial lemma

Before defining the functions E ′′(g,Φ,Λ) we had best discuss a simple combinatorial lemma.
V will be a Euclidean space; V ′ will be its dual; {λ1, . . . , λp} will be a basis of V ′ such that
(λi, λj) ⩽ 0 if i ̸= j; and {µ1, . . . , µp} will be a basis of V ′ dual to {λ1, . . . , λp}. Suppose
p is an ordered partition of {1, . . . , p} into r = r(p) nonempty subsets Fu, 1 ⩽ u ⩽ r. If
i ∈ Fu let µi

p be the projection of µi on the orthogonal complement of the space spanned by{
µj
∣∣ j ∈ Fv, v < u

}
and let λip, 1 ⩽ i ⩽ p, be such that (λip, µ

j
p) = δij. A point Λ in V ′ will

be called singular if, for some i and some p, (Λ, µi
p) = 0 or (Λ, λip) = 0 and a point H in V

will be called singular if λip(H) = 0 for some i and some p. Suppose Λ in V ′ is not singular.

Define the function ϕΛ
p on V by the condition that ϕΛ

p (H) = 0 unless λip(H)(µi
p,Λ) < 0 for

all i when ϕΛ
p (H) = 1. Define the function ψΛ

p by the condition that ψΛ
p (H) = 0 unless

λip(H) > 0 for i in F1 and λip(H)(µi
p,Λ) < 0 for i not in F1 when ψΛ

p (H) = 1. Let aup be the

number of elements in Fu; let b
Λ
p be the number of i such that (µi

p,Λ) < 0, and let cΛp be the

number of i in
⋃r

u=2 Fu such that (µi
p,Λ) < 0. Set

αΛ
p = bΛp +

r∑
u=1

(aup + 1), βΛ
p = 1 + cΛp +

r∑
u=2

(aup + 1).

Lemma 5. If H is not singular then∑
p

(−1)α
Λp
ϕΛ
p (H) =

∑
p

(−1)β
Λ
p ψΛ

p (H)

if (λi,Λ) < 0 for some i and∑
p

(−1)α
Λ
p ϕΛ

p (H) = 1 +
∑
p

(−1)β
Λ
p ψΛ

p (H)

if (λi,Λ) > 0 for all i.

It is a pleasant exercise to prove this lemma.

9. L2(Γ\G) as the bed of Procrustes

Suppose a = ai0 and Φ ∈ E(V i0 ,W ) (the notation is that of §4). Suppose Λ in the dual of
aC is such that for all i and all s in Ω(a, ai) the point Re(sΛ) is not singular in the sense of the
previous paragraph. Take V to be ai and λ1, . . . , λp to be the simple roots of ai. Suppose also
that Re(Λ, α) > (ρ, α) if α is a positive root of a. Choose a point H0 in the split component
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of the standard percuspidal subgroup such that α(H0) is very large for every positive root
and let H i

0 be its projection on ai. For each i let F ′′
i (g,Φ,Λ) be the function∑

s∈Λ(a,ai)

∑
p

(−1)α
Re(sΛ)
p ϕ

Re(sΛ)
p

(
H i(g)−H i

0

)
exp

(
sΛ
(
H i(g)

)
+ ρ
(
H i(g)

))((
M(s,Λ)Φ

)
(g)
)
.

Since the functions ψ
Re(sΛ)
p

(
H i(g)−H i

0

)
are zero on{

g ∈ G

∣∣∣∣ µj
(
H i(g)−H i

0

)
< 0, 1 ⩽ j ⩽ p

}
the lemma shows that F ′′

i (g,Φ,Λ) is zero almost everywhere on this set unless i = i0 and that

F ′′
i0
(g,Φ,Λ)− exp

(
Λ
(
H i0(g)

)
− ρ
(
H i0(g)

))
Φ(g)

is zero almost everywhere on this set. Set

E ′′(g,Φ,Λ) =
r∑

i=1

∑
Γ∩Pi\Γ

F ′′
i (γg,Φ,Λ).

It is a consequence of the above remarks and the minimum principle stated by Borel in his
lectures on reduction theory that if U is any compact set in Γ\G the point H0 may be so
chosen that

E ′′(g,Φ,Λ) = E(g,Φ,Λ)

almost everywhere on U .
It is an easy matter to compute the Fourier transform of the functions F ′′

i (g,Φ,Λ). The
arguments of §4 may be used to show that E ′′(g,Φ,Λ) is square integrable. The relation (2)
may be used to evaluate (

E ′′(g,Φ,Λ), E ′′(g,Ψ,M)
)

if Ψ lies in E(V i′0 ,W ) and M in the dual of A′
C = A

i′0
C satisfies the same conditions as Λ. If

αp =
∑r

u=1(a
u
p + 1) the result is

r∑
j=1

∑
s∈Ω(a,aj)

∑
t∈Ω(ai,aj)

∑
p

(−1)αp
exp(tΛ + sM)(Hj

0)∏p
m=1(µ

m
p , tΛ + sM)

(
M(t,Λ)Φ,M(s,M)Ψ

)
.

The notation is poor because the linear functions µm
p depend, of course, on j. Since it can be

shown that the functional equations for the functions M(t,Λ) imply that this expression is
an analytic function of Λ and M wherever all the functions M(t,Λ) and M∗(s,M) are, we
can proceed as in the rank one case to complete the proof of the theorem.

10. More Eisenstein series

Once one knows that the functions E(g,Φ,Λ) and M(s,Λ) are meromorphic everywhere
one can try to use the formula

(ϕ̂, ψ̂) =
1

(2π)q

∫
ReΛ=Λ0

∑(
M(s,Λ)Φ(Λ),Ψ(−sΛ)

)
|dΛ|

to analyze the space L
(
{P}, {V },W

)
. In order to get some idea of what actually happens let

us look at a particular case. We shall study the case that G = SL(3,R), Γ = SL(3,Z), P is
the percuspidal subgroup introduced in §7, and V andW , and hence E(V,W ), are the space of
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constant functions. As a preliminary let us look at the same situation with SL(3,R) replaced
by SL(2,R) and with the other objects of our attention modified accordingly. Godement
has already done this in his first lecture. However, he was not concerned with the discrete
spectrum in L

(
{P}, {V },W

)
and we shall be.

To remind you of the notation:

N =

{(
1 x
0 1

) ∣∣∣∣∣ x ∈ R

}
;

AR =

{(
α 0
0 α−1

) ∣∣∣∣∣ α ∈ R×

}
;

K =

{(
cos θ sin θ

− sin θ cos θ

) ∣∣∣∣∣ θ ∈ R

}
.

Take dn = dx, da = |α|−1dα, dk = dθ/2π, and take dg to be such that∫
G

ϕ(g) dg =

∫
N

dn

∫
AR

da

∫
K

dk|α|−2ϕ(nak).

Then the inner product of ϕ̂ and ψ̂ is equal to

(a)
1

2πi

∫
Re z=z0

Φ(z)Ψ(−z) + ξ(z)

ξ(1 + z)
Φ(z)Ψ(z) dz (z0 > 1).

Here Φ(z) = Φ
(
Λ(z)

)
where Λ(z) is the linear function such that Λ(Hα) = z if

Hα =

(
1 0
0 −1

)
.

In the present situation Φ(·) is a scalar-valued function so inner products are replaced by
products and if s is the nontrivial element of the Weyl group M

(
s,Λ(z)

)
is a scalar-valued

function equal to ξ(z)/ξ(1 + z) if

ξ(z) = π−z/2Γ(z/2)ζ(z).

Using the residue theorem we see that the expression (a) is the sum of two terms

(b)
1

2πi

∫
Re z=0

Φ(z)Ψ(−z) + ξ(z)

ξ(z + 1)
Φ(z)Ψ(z) dz

and

(c)
1

ξ(2)
Φ(1)Ψ(1).

The estimates of §6 justify this application of the residue theorem. We immediately
see that L

(
{P}, {V },W

)
is the direct sum of two subspaces Li

(
{P}, {V },W

)
, i = 0, 1.

L0

(
{P}, {V },W

)
is the space of constant functions and the inner product of the projection

of ϕ̂ and ψ̂ on this space is given by (c). The inner product of the projection of ϕ̂ and ψ̂ on
L1

(
{P}, {V },W

)
is given by (b) which equals

1

π

∫ ∞

−∞

1

2

{
Φ(iy) +

ξ(−iy)
ξ(1− iy)

Φ(−iy)
}
· 1
2

{
Ψ(iy) +

ξ(−iy)
ξ(1− iy)

Ψ(−iy)
}
dy.
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As a consequence L1

(
{P}, {V },W

)
is isometric to the space of all functions Υ square

integrable on the imaginary axis with respect to the measure dy/π, which satisfy

Υ(−iy) = ξ(iy)

ξ(1 + iy)
Υ(iy).

The term (c) comes from the pole of ξ(z)/ξ(1 + z) at z = 1. As it happens E(g,Φ, z) also
has a pole at z = 1; to see what the residue is we observe that

(a)

∫
Γ∩N\N

Res
z=1

E(ng,Φ, z) dn = Res
z=1

∫
Γ∩N\N

E(ng,Φ, z) dn.

This of course is equal to

Res
z=1

{
exp
((

Λ(z) + ρ
)(
H(g)

))
+

ξ(z)

ξ(1 + z)
exp
((

−Λ(z) + ρ
)(
H(g)

))}
Φ =

1

ξ(2)
Φ

if Φ(g) ≡ Φ. Thus

Res
z=1

E(g,Φ, z)− 1

ξ(2)
Φ

is a cusp form. Since it is also orthogonal to all cusp forms it must be zero.
The analogue of the expression (a) when G = SL(3,R) is

(d)
1

(2π)2

∫
ReΛ=Λ0

∑
s∈Ω

M(s,Λ)Φ(Λ)Ψ(−sΛ)|dΛ|

with

M(s,Λ) =
∏
α>0
sα<0

ξ
(
Λ(Hα)

)
ξ
(
1 + Λ(Hα)

)
(for notation, see my lecture on the volume of fundamental domains).

Λ0

γ1

γ2

γ3

δ1

δ2

δ3

α1

α2

α3 = ρ
ΛHα1 = 1

ΛHα2 = 1 ΛHα3 = 1

The only singularities of the functions M(s,Λ) which meet the tube over the positive Weyl
chamber are simple poles on the lines Λ(Hαi

) = 1, i = 1, 2, 3. If Φ(Λ) vanishes on these three
lines then (d) is equal to

(e)
1

(2π)2

∫
ReΛ=0

∑
s∈Ω

M(s,Λ)Φ(Λ)Ψ(−sΛ)|dΛ|.
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Call the closed subspace generated by the functions ϕ̂ corresponding to Φ(·) of this sort
L2

(
{P}, {V },W

)
. As before, L2

(
{P}, {V },W

)
is isometric to the space of square-integrable

functions on the (real) plane, ReΛ = 0, which satisfy certain functional equations. Under this
isometry convolution by K-invariant functions on G becomes multiplication by scalar-valued

functions. The inner product of the projection of any ϕ̂ and ψ̂ on L2

(
{P}, {V },W

)
is given

by (e).
The difference between (d) and (e) is nothing but the inner product of the projection

of ϕ̂ and ψ̂ on the orthogonal complement of L2

(
{P}, {V },W

)
. If si is the complex line

Λ(Hαi
) = 1, 1 ⩽ i ⩽ 3, then by the residue theorem the difference will be a sum of three

integrals taken respectively over the real lines ReΛ = γi in si. To describe the exact form of
the integrals we need a little notation. Let Ω(si, sj) be the set of distinct affine transformations
from si to −sj obtained by restricting those elements of Ω which take si to −sj . The difference
we spoke of can be written as

(f)
3∑

i=1

3∑
j=1

∑
s∈Ω(si,sj)

1

2π

∫
ReΛ=γi

M(s,Λ)Φ(Λ)Ψ(−sΛ)|dΛ|.

Here M(s; Λ) is a certain scalar valued function on si. In a moment I shall give the explicit
form of these functions. First we observe that Ω(s1, s2) contains exactly one element ρ, the
restriction to s1 of the reflection in Λ(Hα1) = 0, that Ω(s1, s2) contains exactly one element
σ, the restriction to s1 of the reflection in Λ(Hα3) = 0, and that Ω(s1, s3) contains exactly
one element τ , the restriction to s1 of the rotation through an angle of 2π/3. From these
three elements we can obtain for each i and j the unique element of Ω(si, sj). For example,
the unique element of Ω(s3, s2) is σρτ

−1. Observe that, for example, τρ takes s1 to s3. If Λ is
in s1 and Λ(Hβ3) +

1
2
= z the number in the second row and third column of the following

table is M(σρτ−1, τρΛ). The other entries are interpreted accordingly.

ρ σ τ

ρ 1
ξ(2)

1
ξ(2)

ξ(−z− 1
2)

ξ(−z+ 3
2)

1
ξ(2)

ξ( 1
2
−z)

ξ( 3
2
−z)

σ 1
ξ(2)

ξ(z− 1
2)

ξ(z+ 3
2)

1
ξ(2)

1
ξ(2)

ξ( 1
2
+z)

ξ( 3
2
+z)

τ 1
ξ(2)

ξ(z+ 1
2)

ξ(z+ 3
2)

1
ξ(2)

ξ(−z+ 1
2)

ξ(−z+ 3
2)

1
ξ(2)

ξ( 1
2
−z)

ξ( 3
2
−z)

ξ( 1
2
+z)

ξ( 3
2
+z)

The matrix defined by this table is of rank one.
The integral (f) is the sum of

(g)
3∑

i=1

3∑
j=1

∑
s∈Ω(si,sj)

1

2π

∫
ReΛ=δi

M(s,Λ)Φ(Λ)Ψ(−sΛ) |dΛ|
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and

(h)
1

ξ(2)ξ(3)
Φ(ρ)Ψ(ρ).

The points δi are shown on the diagram. Correspondingly, the orthogonal complement of
L2

(
{P}, {V },W

)
in L

(
{P}, {V },W

)
is the direct sum of

L1

(
{P}, {V },W

)
and

L0

(
{P}, {V },W

)
and the inner product of the projections of ϕ̂ and ψ̂ on these two spaces are given respectively
by (g) and (h). L0

(
{P}, {V },W

)
is just the space of constant functions. There is an isometry

of L1

(
{P}, {V },W

)
with a subspace of the direct sum of the spaces of square-integrable

functions on ReΛ1 = δ1 and ReΛ1 = δ2 which is such that convolution by K-invariant
functions corresponds to multiplication by scalar valued functions.
The functions E(g,Φ,Λ) also have poles on the lines si. To compute the residue of

E(g,Φ,Λ) on the line s1 we combine our earlier result for SL(2,R) with the formula of §7.
The result is

1

ξ(2)

∑
Γ∩ ∗P\Γ

exp
(
∗Λ
(∗H(γg)

)
+ ρ
(∗H(γg)

))
Φ =

1

ξ(2)
E ′(g,Φ,∗ Λ),

an Eisenstein series belonging to the cuspidal subgroup ∗P . The Eisenstein series on the left
is, unlike those we have dealt with up to now, not an Eisenstein series associated to a cusp
form. An automatic consequence of the above is that the function defined by the sum on the
left is everywhere meromorphic.

Denote the residue of E(g,Φ,Λ) on si, by Ei(g,Φ,Λ). Then∫
Γ∩N\N

Ei(ng,Φ,Λ) dn =
3∑

j=1

∑
s∈Ω(si,sj)

exp
(
sΛ
(
H(g)

)
+ ρ
(
H(g)

))(
M(s,Λ)Φ

)
(g).

Since the matrix introduced above is of rank one this implies that

E2(g,Φ, σρΛ) =
ξ
(
−z − 1

2

)
ξ
(
−z + 3

2

)E1(g,Φ,Λ),

E3(g,Φ, τρΛ) =
ξ
(
1
2
− z
)

ξ
(
3
2
− z
)E1(g,Φ,Λ).

In the general case one can show that L
(
{P}, {V, },W

)
is a direct sum

g⊕
i=1

Li

(
{P}, {V },W

)
with g equal to the rank of the elements of {P}. In the course of doing this one sees that all
Eisenstein series define functions which are everywhere meromorphic and satisfy functional
equations of the expected type. The spectrum of Li

(
{P}, {V },W

)
is again continuous of

dimension i. Beyond this, however, the situation is very foggy.



Compiled on July 3, 2024.


	1. Preliminaries
	2. Partial decomposition of L2(G)
	3. Eisenstein series
	4. Some functional analysis
	5. A theorem
	6. In which the number of variables is one
	7. In which the number of variables is usually two
	8. A combinatorial lemma
	9. L2(G) as the bed of Procrustes
	10. More Eisenstein series

