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CHAPTER 1

Introduction

The first undisguised automorphic forms met by most of us are the modular forms. A
modular form of weight k is an analytic function on the upper half-plane which satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all integral matrices (
a b
c d

)
of determinant 1. Actually there is a supplementary condition, of no importance to us, on its
rate of growth as Im(z) → ∞. Nowadays the Siegel modular forms are met soon afterwards.
A Siegel modular form of weight k is a complex analytic function on the space of complex
n× n symmetric matrices with positive definite real part which satisfies

f
(
(AZ +B)(CZ +D)−1

)
= det(CZ +D)kf(Z)

for all integral 2n× 2n symplectic matrices(
A B
C D

)
.

For some purposes it is best to consider not f but an associated function ϕf on the
group G of real 2n× 2n symplectic matrices defined by

ϕf (g) = det(Ci+D)−kf
(
(Ai+B)(Ci+D)−1

)
if

g =

(
A B
C D

)
.

If Γ is the group of integral matrices in G then ϕf is a function on Γ\G. The functions ϕf

associated to those f which have a finite norm in the Petersson metric can be characterized in
terms of the representations of G. Associating to each h in G the operator λ(h) on L2(Γ\G)
defined by (

λ(h)ϕ
)
(g) = ϕ(gh),

we obtain a representation of G on L2(Γ\G). There is a representation πk of G on a Hilbert
space Hk and a distinguished subspace H0

k of Hk such that ϕ is a ϕf if and only if there is a
G-invariant map of Hk to L2(Γ\G) which takes H0

k to the space generated by ϕ.
This is the first hint that it might not be entirely unprofitable to study automorphic

forms in the context of the theory of group representations. The Hecke operators, which
play a major role in the study of modular forms, provide a second. To see this we have to
introduce the adèle group of 2n× 2n symplectic matrices. It will be convenient to change
the notation a little. If R is a commutative ring let GR be the group of 2n× 2n symplectic
matrices with entries from R. Thus the groups Γ and G become GZ and GR. If p is a prime,
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2 1. INTRODUCTION

finite or infinite, let Qp be the corresponding completion of Q. The adèle ring A is the set of
elements {ap} in

∏
p Qp such that ap is integral for all but a finite number of p. The diagonal

map defines an imbedding of Q in A. There is a standard topology on GA which turns it
into a locally compact group with GQ as a discrete subgroup. Let

A0 = R×
∏

p finite

Zp.

It is known that GA = GQGA0 . Any function ϕ on GZ\GR can be regarded as a function on
GQ\GA if one sets ϕ(g) = ϕ(g′2) when g = g1g2, g1 ∈ GQ, g2 ∈ GA0 , and g′2 is the projection
of g2 on GR. The functions so obtained are characterized by their right invariance under

U = 1×
∏

p finite

GZp .

If f is a function, with compact support, on

G0 =

1×
∏

p finite

GQp

 ∩GA,

which is invariant on the left and right under U , and if λ(f)ϕ is defined by

λ(f)ϕ(g) =

∫
G0

ϕ(gh)f(h) dh,

then λ(f)ϕ is invariant on the right under U if ϕ is. Thus the operators λ(f), the Hecke
operators, act on the functions on GZ\GR. If ϕ belongs to a subspace H of L2(GQ\GA)
which is invariant and irreducible under the action of GA then ϕ is an eigenfunction of all
the Hecke operators and the corresponding eigenvalues are determined by the equivalence
class of the representation of GA on H.

The theory of modular forms and the operators λ(f) is far from complete. Indeed very
little attempt has been made, so far as I can see, to understand what the goals of the theory
should be. Once it is put in the above form it is clear that the concepts at least admit of
extension to any reductive algebraic group defined over a number field. It may be possible to
give some coherency to the subject by introducing the simple principle, implicit in the work
of Harish-Chandra, that what can be done for one reductive group should be done for all.

The simplest reductive group over Q is GL(1). Since GA is abelian, the space GQ\GA is a
locally compact abelian group C, the group of idèle classes of Q. According to the Plancherel
theorem for abelian groups the characters of C can be used to decompose L2(GQ\GA) under
the action of GA and the characters of C must be regarded as the basic automorphic forms.

Since Q×
p , the multiplicative group of Qp, is contained in GA, each character χ of C

defines a character χp of Q×
p . If p does not divide fχ, the conductor of χ, χp is trivial on the

units of Q×
p . It is customary to associate to χ the L-series

L(s, χ) =
∏
p ∤fχ

1

1− χp(p)

ps

and the function

ξ(s, χ) =

(
π

fχ

)− s+α+β
2

Γ

(
s+ α + β

2

)
L(s, χ)
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if
χ∞(x) = (sgnx)α|x|β.

The number α is 0 or 1. The function ξ(s, χ) is known to be meromorphic in the entire
complex plane and to satisfy

ξ(s, χ) = ϵ(χ)ξ(1− s, χ−1)

where ϵ(χ) is a constant of absolute value 1.
For a general group L2(GQ\GA) decomposes not into a direct integral of one-dimensional

spaces but into a direct integral of Hilbert spaces on each of which GA acts irreducibly.
Can we associate to each of these Hilbert spaces an Euler product with the same analytic
properties as the functions L(s, χ)? In these lectures I would like to present a little evidence,
far from conclusive, that the answer is “yes”. Let me observe that each power of a character
is also a character, thus to χ is associated the whole collection

{
L(s, χn)

∣∣ n ∈ Z
}
, and that

Z parametrizes not only the powers of χ but also the rational representations of GL(1).
Before beginning the substantial part of these lectures let me make, without committing

myself, a further observation. The Euler products mentioned above are defined by means
of the Hecke operators. Thus they are defined in an entirely different manner than those of
Artin or Hasse-Weil. An assertion that an Euler product of the latter type is equal to one of
those associated to an automorphic form is tantamount to a reciprocity law (for one equation
in one variable in the case of the Artin L-series and for several equations in several variables
in the case of the Hasse-Weil L-series).





CHAPTER 2

Some Euler products

Suppose g is a split semisimple Lie algebra over Q and G its adjoint group. Fix a split
Cartan subalgebra h of g and choose a Chevalley basis for g with respect to h. Let M be the
lattice generated by the Chevalley basis over Z. If p is a finite prime let GZp be the stabilizer
of M × Zp in GQp . If p is the infinite prime let

GZp ⊆ GQp ≡ GR

be the maximal compact subgroup of GR corresponding to the involution associated to the
Chevalley basis. Let

U =
∏
p

GZp ⊆ GA,

be the adèle group of G. Fix a Borel subgroup B containing T , the Cartan subgroup with
Lie algebra h. It is known that

GQp = BQpGZp

for each p. For this and various other facts about reduction theory over local fields see
the article by F. Bruhat in the collection Algebraic groups and discontinuous subgroups.
As a consequence GA = BAU . Moreover BA = BQBR(BA ∩ U); hence GA = BQGRU
and GQ = BQGZ if GZ is the stabilizer of M . In particular any function on GQ\GA/U is
determined by its restriction to GR.

Let L be the space of all square integrable functions on GQ\GA which are invariant under
right translations by elements of U . Let P be a parabolic group containing B and let N be
its unipotent radical. If ϕ lies in L then∫

NQ\NA

ϕ(ng) dn

vanishes for almost all g in GA if and only if∫
NZ\NR

ϕ(ng) dn

vanishes for almost all g in GR. If these integrals vanish for almost all g for all choices of P
except G itself we say that ϕ is a cusp form. The set of cusp forms is a closed subspace L0 of
L.

If p is a prime, finite or infinite, let Hp be the algebra of all compactly supported
regular Borel measures on GQp invariant under left and right translations by elements of GZp .
Multiplication is given by convolution. If µ lies in Hp, define the operator λ(µ) on L0 by

λ(µ)ϕ(g) =

∫
GQp

ϕ(gh) dµ(h).

If µ is the measure associated with an L1 function f we shall sometimes write λ(f) instead
of λ(µ). Moreover f will be regarded as an element of Hp. If p is finite all the measures in

5



6 2. SOME EULER PRODUCTS

Hp are absolutely continuous with respect to Haar measure. There is an orthonormal basis
ϕ1, ϕ2, . . . of L0 such that each ϕi is, for all p, an eigenfunction of λ(µ) for all µ in Hp.

Fix one element ϕ of this basis. If µ belongs to Hp let λ(µ)ϕ = χp(µ)ϕ. The map
µ→ χp(µ) is a homomorphism of Hp into the complex numbers. Let me remind you of the
standard method of obtaining all such homomorphisms. Let V be the unipotent radical of
B. Now VQp\BQp is isomorphic to TQp . Thus any homomorphism w of TQp/TZp into the
complex numbers determines a homomorphism of BQp into the complex numbers which we
again denote by w. If b belongs to B let ξ(b) be the determinant of the restriction of Ad(b)
to v, the Lie algebra of V . If g lies in GQp then g can be written as a product bk with b in
BQp and k in GZp . Set

ψw(g) = w(b)
∣∣ξ(b)∣∣1/2.

The function ψw is well-defined and any other function ψ on GQp satisfying

(1) ψ(bgk) = w(b)
∣∣ξ(b)∣∣1/2ψ(g)

for all b, g, and k is a scalar multiple of ψw. If µ lies in Hp define λ(µ)ψw by(
λ(µ)ψw

)
(g) =

∫
GQp

ψw(gh) dµ(h).

The function λ(µ)ψw satisfies (1) so there is a scalar χw(µ) such that

λ(µ)ψw = χw(µ)ψw.

The map µ → χw(µ) is a homomorphism of Hp into C. All homomorphisms of Hp into
the complex numbers which are continuous in the weak topology are obtained in this way.
The homomorphism χw equals χw′ if and only if there is a σ in the Weyl group such that
w(t) = w′(tσ) for all t in TQp .

Suppose p is finite. If L is the lattice generated by the roots of h there is a homomorphism λ
from T = TQp/TZp , or from TQp , to

cL = Hom(L,Z) such that
∣∣ξα(t)∣∣ = pλ(t)(α) if α is a root.

Here ξα is the character of T associated to α. If α is a root let Hα be, in the language of
Chevalley, the copoid attached to α. Let α1, . . . , αn be the simple roots. The matrix

(Aij) =

(
(αi, αj)

(αi, αi)

)
is the Cartan matrix of g. The matrix(

(Hαi
, Hαj

)

(Hαi
, Hαi

)

)
in the transpose of (Aij) and the Cartan matrix of another Lie algebra cg. The lattice
cL′ generated by the roots of a split Cartan subalgebra ch of cg can be identified with the
lattice in hR generated by Hα1 , . . . , Hαn in such a way that the roots of ch correspond to the
elements Hα. Moreover cL can be regarded as a lattice in hR. It contains

cL′ and can in fact
be regarded as the lattice of weights of ch so hR ⊇ cL ⊇ cL′. In the same way chR may be
identified with Hom(cL,R) so chR ⊇ L′ ⊇ L if L′ is the lattice of weights of h. Let cG be the
simply connected group with Lie algebra cg and let cT be the Cartan subgroup corresponding
to ch. There is an isomorphism σ → cσ of the Weyl group of T in G with that of cT in cG
such that

cσ
(
λ(t)

)
= λ(σt), t ∈ TQp .
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If w is a homomorphism of T into the complex numbers there is a unique point g in cTC such
that w(t) = ξλ(g) for all t. Here λ = λ(t) and ξλ is the rational character of cT associated
to λ. Thus associated to each homomorphism of Hp into the complex numbers is an orbit of
the Weyl group in cTC or, as I prefer, a semisimple conjugacy class in cGC.

The automorphic form ϕ determined for each p a homomorphism χp of Hp into C. If
p is a finite prime let {gp} be the conjugacy class in cGC corresponding to χp. If π is a
finite-dimensional complex representation of cGC, we can consider the Euler product

(2)
∏
p

1

det
(
1− π(gp)

ps

) = L(s, π, ϕ).

As we shall see, this Euler product is absolutely convergent for Re(s) sufficiently large. I
do not know in general what the analytic properties of the function L(s, π, ϕ) are. I will
show, however, that for all but three of the simple groups there is at least one nontrivial
representation for which L(s, π, ϕ) is meromorphic in the whole complex plane. For some
groups there are several such representations.

Let me first introduce a Γ-factor to go with L(S, π, ϕ). If p is the infinite prime there is a
homomorphism λ of

T = TQp/TQp ∩GZp

into hR = Hom(L,R) such that
∣∣ξα(t)∣∣ = eλ(t)(α) if α is a root. Since L is a lattice in chR,

every homomorphism of T into C is of the form

w(t) = eλ(t)(X)

for some X in chC. Thus to every homomorphism of Hp into C there is associated an orbit
of the Weyl group in chC or a semisimple conjugacy class in cgC. If χp is the homomorphism
associated to the automorphic form ϕ, let {X} be the associated conjugacy class and set

1

Γ(s, π, ϕ)
= π

trace
(

s−π(X)
2

)
det

(
s− π(X)

2

)
e
γ trace

(
s−π(X)

2

)

·
∞∏
n=1

{
det

(
I +

s− π(X)

2n

)
e
− trace

(
s−π(X)

2n

)}
where γ is Euler’s constant. The function Γ(s, π, ϕ) can be expressed as a product of
Γ-functions. Set

ξ(s, π, ϕ) = Γ(s, π, ϕ)L(s, π, ϕ).

The functional equation to expect is

ξ(s, π, ϕ) = ξ(1− s, π̃, ϕ)

if π̃ is the representation contragredient to π.





CHAPTER 3

Spherical functions

Each gp that occurs in the expression on the left of (2) can be chosen to lie in cTC. To
see that the product converges in a half-plane it would be enough to show that for all λ in cL
and all p ∣∣ξλ(gp)∣∣ ⩽ pλ(ρ)

where λ is that element in the orbit of λ under the Weyl group which lies in the positive
Weyl chamber and ρ is one-half the sum of the positive roots. We can associate to each g in
cTC a point µ = µ(g) in chC so that1 ξλ(g) = pλ(µ) for all λ in cL. The point µ is not uniquely
determined by g but its real part is. If µp = µ(gp) we have to show that

Reλ(µp) ⩽ λ(ρ).

The class {gp} is associated to the homomorphism χp of Hp into C determined by ϕ. This
homomorphism has the property, not shared by all homomorphisms, that∣∣χp(f)

∣∣ ⩽ c

∫
GQp

∣∣f(g)∣∣ dg
for all f in Hp. The factor c is a fixed constant. To prove this we must recall that ϕ is a cusp
form and hence bounded. If M is a bound for ϕ and if ϕ(g0) ̸= 0 then∣∣χp(f)ϕ(g0)

∣∣ = ∣∣∣∣∣
∫
GQp

ϕ(g0h)f(h) dh

∣∣∣∣∣ ⩽M

∫
GQp

∣∣f(h)∣∣ dh
and the assertion follows.

Lemma. Suppose µ in chC is associated to the homomorphism χµ of Hp into C. If there is
a constant c such that ∣∣χµ(f)

∣∣ ⩽ c

∫
GQp

∣∣f(g)∣∣ dg
for all f , then

Reλ(µ) ⩽ λ(ρ)

for all λ.

If w is the homomorphism defined by w(t) = pλ(t)(µ), set

ψµ(g) = ψw(g).

By definition

χµ(f)ψµ(g) =

∫
GQp

ψµ(gh)f(h) dh.

1At the infinite prime we would take µ = X with X as above.

9



10 3. SPHERICAL FUNCTIONS

If

ϕµ(g) =

∫
GZp

ψµ(kg) dk,

then ϕµ(1) = 1, and ϕµ(k1gk2) = ϕµ(g) if k1 and k2 lie in GZp . Moreover it is easily verified
that

χµ(f)ϕµ(g) =

∫
GQp

ϕµ(gh)f(h) dh.

If µ satisfies the assumption of the lemma, take fg to be the characteristic function of the
double coset GZpgGZp . Then χµ(fg) is equal to χµ(fg)ϕµ(1) = ϕµ(g) times the measure of

(GZpgGZp). It follows immediately that
∣∣ϕµ(g)

∣∣ ⩽ c for all g.
To prove the lemma, it will be necessary to study the asymptotic behavior of ϕµ for

general values of µ. Let T−
Qp

be the set of t in TQp for which −λ(t) lies in the positive Weyl
chamber. Since

GQp = GZpT
−
Qp
GZp

it is sufficient to study the function ϕµ on T−
Qp

.
So far we are free to choose Haar measures in any manner we like. We so choose them on

VQp , TQp and GZp so that the total measures of VZp , TZp and GZp are 1. Then we choose the
Haar measure on GQp so that∫

GQp

f(g) dg =

∫
VQp

∫
TQp

∫
GZp

f(vtk)p−2λ(t)(ρ) dv dt dk.

Choose an f in Hp and let C be a compact set in VQp such that the support of f is contained

in CTQpGZp . There is a constant cf > 0 such that if
∣∣ξα(t)∣∣ ⩽ cf for α > 0, then

tCt−1 ⊆ GZp .

Choose a t satisfying this condition. Then

χµ(f)ϕµ(t) =

∫
VQp

∫
TQp

ϕµ(tvs)f(vs)p
−2λ(s)(ρ) dv ds

=

∫
C

∫
TQp

ϕµ(tvt
−1ts)f(vs)p−2λ(s)(ρ) dv ds

=

∫
C

∫
TQp

ϕµ(ts)f(vs)p
−2λ(s)(ρ) dv ds.

Set ϕ̃µ(t) = ϕµ(t)p
−λ(t)(ρ). Replacing the integral over C by an integral over VQp we see that

χµ(f)ϕ̃µ(t) =

∫
TQp

ϕ̃µ(ts)f̃(s) ds =

∫
T

ϕ̃µ(ts)f̃(s) ds

if f → f̃ is the Satake homomorphism of Hp into the group algebra H ′
p of T defined by

f̃(s) = p−λ(s)(ρ)

∫
VQp

f(vs) dv.

If ψ1 and ψ2 are two functions on T and c > 0, we shall say that ψ1 ≃c ψ2 if ψ1(t) = ψ2(t)
whenever

∣∣ξα(t)∣∣ ⩽ c for all positive roots α. The set of equivalence classes forms a vector
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space Wc. Let W∞ be the injective limit of the spaces Wc. If f lies in H ′
p and ψ is a function

on T , then we define λ(f)ψ by

λ(f)ψ(t) =

∫
T

ψ(ts)f(s) ds.

We can also regard λ(f) as an operator on W∞. If Φµ is the image of ϕ̃µ in W∞, then

λ(f̃)Φµ = χµ(f)Φµ for all f in Hp. Since H ′
p is a finite module over the image of Hp, the

space

W =
{
λ(f)Φµ

∣∣∣ f ∈ H ′
p

}
is a finite-dimensional subspace of W∞.

Choose t1, . . . , tn such that ∣∣ξαi
(tj)
∣∣ = p−δij .

The points λ(t1), . . . , λ(tn) are a basis of cL over Z. Let δi be the characteristic function of
{ti} and let Si and Ni be respectively the semisimple and nilpotent parts of the restriction of
λ(δi) to W . The matrices Si, Ni, where 1 ⩽ i ⩽ n, all commute. Choose a basis Ψ1, . . . ,Ψℓ

of W with respect to which S1, . . . , Sn are in diagonal form. Let

SiΨj = pγijΨj.

If ai is the smallest integer satisfying Nai+1
i = 0, then

(Si +Ni)
ℓi =

ai∑
ri=0

(
ℓi
ri

)
Sℓi−ri
i N ri

i .

Let ψ1, . . . , ψℓ be representatives of Ψ1, . . . ,Ψℓ, and choose c0 > 0 such that

ψi(ttk) ≃c0

∑
j

(sjik + nji
k )ψj(t)

if
∣∣ξα(t)∣∣ ⩽ c0 for α positive. Choose t0 such that

∣∣ξα(t0)∣∣ ⩽ c0 if α is positive. If

Ω0 =
(
ψ1(t0), . . . , ψℓ(t0)

)
, Ω(t) =

(
ψ1(t), . . . , ψℓ(t)

)
,

and ℓ1 ⩾ 0, . . . , ℓn ⩾ 0 then

Ω

t0 n∏
k=1

tℓkk

 = Ω0

n∏
k=1

(Sk +Nk)
ℓk

= Ω0


a1∑

r1=0

· · ·
ar∑

rn=0

(
ℓ1
r1

)
· · ·
(
ℓn
rn

)
S−r1
1 · · ·S−rn

n N r1
1 · · ·N rn

n


n∏

k=1

Sℓk
k

= Θ(ℓ1, . . . , ℓn)
n∏

k=1

Sℓk
k

where Θ(ℓ1, . . . , ℓn) is a row vector with entries which are polynomials in ℓ1, . . . , ℓn. Choose
µj such that λ(ti)(µj) = γij, for 1 ⩽ i ⩽ n. If

∣∣ξα(t)∣∣ ⩽ ∣∣ξα(t0)∣∣ for α positive, then

ψj(t) = pλ(t)(µj)θj
(
λ(t)

)
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where θj
(
λ(t)

)
is a polynomial in λ(t). Thus there is a constant c1 and polynomials

ξ1
(
λ(t)

)
, . . . , ξℓ

(
λ(t)

)
such that

ϕ̃µ(t) ≃c1

ℓ∑
j=1

pλ(t)(µj)ξj
(
λ(t)

)
.

For our purposes it will be necessary to know the relation between µ1, . . . , µℓ and µ and to
have a more or less explicit formula for the polynomials ξj

(
λ(t)

)
. Let cΩ be the Weyl group

of cT . For notational convenience let us use the map σ → cσ to identify cΩ and Ω, the Weyl
group of T . Let

A = {µ ∈ chR | σµ = tµ, σ, t ∈ Ω implies σ = t }.
Let ti be the image of ti in T and let

t
(1)
i , . . . , t

(bi)
i

be the distinct elements in the orbit of ti under Ω. Set

B =
{
µ ∈ chR

∣∣∣ λ(t (k)i )(µ) = λ(t
(1)
j )(µ) implies i = j and k = ℓ

}
.

Define µk1,...,kn by the condition that

λ(t
(ki)
i )(µ) = λ(ti)(µk1,...,kn) 1 ⩽ i ⩽ n

and set
C =

{
µ ∈ chR

∣∣∣ σµ = µk1,...,kn implies σt
(ki)
i = ti, 1 ⩽ i ⩽ n

}
.

The complements of A, B, and C are the union of a finite number of proper affine subspaces
of chR. Thus there is a point µ0 in A ∩B ∩ C. Choose t0 such that

(i) λ(t0)(σµ
0) = λ(t0)(τµ

0) implies σ = τ ;

(ii) λ(t0)(
cσµ0) = λ(t0)(µ

0
k1,...,kn

) implies σt
(ki)
i = ti, 1 ⩽ i ⩽ n.

Let S be the collection of points µ in chC satisfying

(i) pλ(t0)(σµ) = pλ(t0)(τµ) implies σ = τ ;

(ii) pλ(t0)(σµ) = pλ(t0)(µk1,...,kn
) implies σt

(ki)
i = ti, 1 ⩽ i ⩽ n;

(iii) pλ(t
(k)
i )(µ) = pλ(t

(ℓ)
j )(µ) implies i = j and k = ℓ.

Then S is an open, dense, and connected subset of chC.
Suppose µ lies in S. Since the coefficients of the polynomial

pi(X) =

bi∏
j=1

(
X − δ(t

(j)
i )
)

lie in the image of Hp, the equation

λ
(
pi(X)

)
Φµ =

bi∏
j=1

(
X − pλ(t

(j)
i )(µ)

)
Φµ

is satisfied. It is satisfied not only by Φµ but by every element of W . Since pi
(
δ(ti)

)
= 0, the

minimal polynomial of the restriction of λ
(
δ(ti)

)
to W divides

bi∏
j=1

(
X − pλ(t

(j)
i )(µ)

)
.
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Since this polynomial has no multiple root, Ni = 0 and

λ(δt)Ψj = pλ(t)(µj)Ψj

for all t. Here δt is the characteristic function of {t}. The point µj must be equivalent modulo
2πiL/ log p to an element in the orbit, under Ω, of µ. If not, there is a t such that

pλ(t)(σµ) ̸= pλ(t)(µj)

for any σ in Ω. This is impossible because the minimal polynomial of the restriction of λ(δt)
is divisible by

X − pλ(t)(µj)

and divides ∏
σ

(X − pλ(t)(σµ)).

Thus there is a constant cµ and constants aσ(µ) such that

ϕ̃µ(t) ≃cµ

∑
σ

aσ(µ)p
λ(t)(σµ).

We need to prove also that the constant cµ can be chosen to be independent of µ. Since
the coefficients of pi(X) are independent of µ, there is a constant c1 such that

λ
(
pi(X)

)
ϕ̃µ ≃c1

bi∏
j=1

(
X − pλ(t

(j)
i )(µ)

)
ϕ̃µ

for all µ. If

ϕ̃µ(·, k1, . . . , kn) =
n∏

i=1


∏
ji ̸=ki

1⩽ji⩽bi

 λ(δi)− pλ(t
(ji)
i )(µ)

pλ(t
(ki)
i )(µ) − pλ(t

(ji)
i )(µ)


ϕ̃µ

then

ϕ̃µ =

b1∑
k1=1

· · ·
bn∑

kn=1

ϕ̃µ(·, k1, . . . , kn)

and, for some constant c2 which does not depend on µ,

λ(δi)ϕ̃µ(·, k1, . . . , kn) ≃c2 p
λ(ti)(µk1,...,kn

)ϕ̃µ, 1 ⩽ i ⩽ n.

If
p0(X) =

∏
σ

(X − pλ(t0)(σµ))

there is a constant c3 such that

p0
(
λ(δt0)

)
ϕ̃µ(·, k, . . . , kn) ≃c3 0

and
p0
(
λ(δt0)

)
ϕ̃µ(·, k1, . . . , kn) ≃c3 p0(p

λ(t0)(µk1,...,kn
))ϕ̃µ(·, k1, . . . , kn).

Since µ lies in S,

ϕ̃µ(·, k1, . . . , kn) ≃c3 0
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unless σt
ki
i = ti, 1 ⩽ i ⩽ n, for some σ in Ω. Then µk1,...,kn = σµ. For a given σ, let

k1(σ), . . . , kn(σ) be the indices satisfying σt
(ki(σ))
i = ti and set

ϕ̃µ(·, σ) = ϕ̃µ

(
·, k1(σ), . . . , kn(σ)

)
.

There is a constant c4 such that

ϕ̃µ ≃c4

∑
σ

ϕ̃µ(·, σ)

and
ϕ̃µ(·, σ) ≃c4 aσ(µ)p

λ(t)(σµ)

for all µ in S.

The next step is to evaluate the coefficients aσ(µ). Since ϕσµ = ϕµ, the same is true of ϕ̃µ.
If µ lies in

⋂
σ σS which is an open, dense, and connected set, then∑

τ

aτ (µ)p
λ(t)(µ) ≃c4

∑
τ

aτ (σµ)p
λ(t)(τσµ).

As a consequence aτσ(µ) = aτ (σµ). Thus it is enough to evaluate a(µ) = aσ0(µ) if σ0 is the
element of the Weyl group which takes every positive root to a negative root. Since a(µ) is
an analytic function, it is enough to evaluate it when Re µ lies in the interior of the positive
Weyl chamber.

Suppose λ(t) lies in the interior of the positive Weyl chamber. Since

ϕµ(t
n) = ϕµ

(
(σ0t)

n
)
= ϕ̃µ

(
(σ0t)

n
)
p−nλ(t)(ρ)

the relation
ϕµ(t

n) =
∑
σ

aσ(µ)p
nλ(t)(σ−1

0 σµ−ρ)

is valid for sufficiently large n and

lim
n→∞

p−nλ(t)(µ−ρ)ϕµ(t
n) = aσ0(µ) = a(µ)

because Reλ(t)(µ− σµ) > 0. We shall evaluate this limit in another way and obtain a(µ).
Recall that

ϕµ(t) =

∫
GZp

ψµ(kt) dk.

Following Harish-Chandra we study this integral by means of the following easily proved
lemma.

Lemma. Suppose V is the unipotent radical of the parabolic group opposed to B. If v lies in
V Qp, let v = v(v)t(v)k(v) with v(v) in VQp, t(v) in TQp, and k(v) in GZp. Set λ(v) = λ

(
t(v)

)
.

There is a constant a such that if ψ is any integrable function on BZp\GZp then

a

∫
GZp

ψ(k) dk =

∫
V Qp

ψ
(
k(v)

)
pλ(v)(2ρ) dv.

I ask you to bear in mind for a while that a must necessarily equal∫
V Qp

pλ(v)(2ρ) dv.
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Using the lemma we see that

ϕµ(t) =
1

a

∫
V Qp

ψµ

(
t−1(v)vt

)
pλ(v)(2ρ) dv

=
1

a

∫
V Qp

ψµ(vt)p
−λ(v)(µ−ρ) dv

=
pλ(t)(µ+ρ)

a

∫
V Qp

ψµ(t
−1vt)p−λ(v)(µ−ρ) dv

=
pλ(t)(µ−ρ)

a

∫
V Qp

ψµ(v)p
−λ(tvt−1)(µ−ρ) dv

=
pλ(t)(µ−ρ)

a

∫
V Qp

pλ(v)(µ+ρ)p−λ(tvt−1)(µ−ρ) dv.

Thus

(3) a(µ) =
1

a
lim
n→∞

∫
V Qp

pλ(v)(µ+ρ)p−λ(tnvt−n)(µ−ρ) dv

if t lies in the interior of the positive Weyl chamber.

Lemma. If ν lies in the positive Weyl chamber, if λ(t) does also, and if v lies in V Qp then
λ(v)(ν) ⩽ 0 and λ(v)(ν) ⩽ λ(tvt−1)(ν).

If g lies in GQp and g = vsk, with v in TQp , s in TQp , and k in GZp set λ(g) = λ(s). It is
known that if t satisfies the condition of the lemma, then

λ(kt)(ν) ⩽ λ(t)(ν).

Since
λ(gt) = λ(g) + λ(kt),

we have
λ(g)(ν) + λ(t)(ν) ⩾ λ(gt)(ν).

Moreover
λ(t−1gt)(ν) = −λ(t)(ν) + λ(gt)(ν) ⩽ λ(g)(ν).

The second assertion of the lemma follows. If v lies in V Qp , there is a t with λ(t) in the
positive Weyl chamber such that tvt−1 lies in GZp . Since λ(tvt−1) is then zero, the first
assertion follows from the second.

If R is any open half-space in chR which is bounded by a hyperplane passing through zero
and if R is its closure, let ΣR be the set of roots lying in R, let Σ+

R be the set of positive roots
lying in R, and let Σ−

R be the set of negative roots lying in R. Let n(R) be the Lie algebra
spanned by the root vectors corresponding to roots in Σ−

R and let N(R) be the group with
Lie algebra n(R). If p is any prime, finite or infinite, we consider∫

NQp (R)

ψµ(n) dn = δR(µ).
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It has been shown by Gindikin and Karpelevich that, when p = ∞, this integral converges if
Reµ(Hα) > 0 for every positive root α and is equal to

∏
−α∈Σ−

R

π1/2Γ
(

µ(Hα)
2

)
Γ
(

1+µ(Hα)
2

) .

IfXα are the root vectors belonging to the Chevalley basis, the Haar measure is that associated
to the form which takes the value 1 on ∧

α∈Σ−
R

Xα.

We shall imitate their proof and show that the integral converges in the same region when p
is finite and is equal to

(4)
∏

−α∈Σ−
R

1− 1
pµ(Hα)+1

1− 1
pµ(Hα)

.

For the moment we shall assume this and complete our evaluation of the limit (3). Choose
ϵ > 0 such that Re(µ)− ϵρ lies in the positive Weyl chamber. Then

Re
{
λ(v)(µ+ ρ)− λ(tnvt−n)(µ− ρ)

}
is the sum of

Re
{(
λ(v)− λ(tnvt−n)

)
(µ− ϵρ) + λ(tnvt−n)(ρ− ϵρ)

}
and

Re
{
λ(v)(ρ+ ϵρ)

}
.

It follows from the lemma that the first expression is less than or equal to zero. Since∫
V Qp

pRe{λ(v)(ρ+ϵρ)} dv

is finite, we can take the limit under the integral sign in (3) to obtain

a(µ) =
1

a

∫
V Qp

pλ(v)(µ+ρ) dv

=
1

a

∏
α>0

1− 1
pµ(Hα)+1

1− 1
pµ(Hα)

Thus there is a constant c such that if
∣∣ξα(t)∣∣ ⩾ c for α positive then

(5) ϕµ(t) =
1

a

∑
σ

∏
α>0

1− 1
pσµ(Hα)+1

1− 1
pσµ(Hα)

pλ(t)(σµ−ρ).

Let ∏
α>0

(
1− 1

pν(Hα)+1

)
=
∑
s∈T

bsp
λ(s)(ν).
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Only a finite number of the coefficients are not zero. If cα is the root of ch corresponding
to α the formula (5) may be written

(6) ϕµ(t) =
1

a

∑
s

bs


∑

σ sgnσp
(λ(ts)+cρ)(σµ)∏

cα>0

(
p

cα(µ)
2 − p−

cα(µ)
2

)
p−λ(t)ρ.

This formula is valid for all µ. The relation of this formula to the Weyl character formula
need not be pointed out to the knowledgeable reader.

I do not know if it is valid for all t. However it is valid for t = 1. To prove this we show
that the right side is 1 when t = 1. First of all, it follows from the formulae for δR(µ) that

a =
∏
α>0

1− 1
pρ(Hα)+1

1− 1
pρ(Hα)

=
∏
cα>0

1− 1
p
cα(ρ)+1

1− 1
p
cα(ρ)

.

Now bs is zero unless

λ(s) =
∑
cα∈w

cα

where w is a subset of the positive roots of ch. Then cρ+λ(s) is either singular or in the orbit
of cρ under cΩ. To prove this2 we recall that Kostant has shown in lemma 5.9 of his paper on
the Borel-Weil theorem that every element in the orbit of cρ+ λ(s) is of the form cρ+ λ(s′)
with

λ(s′) = −
∑

cα∈w′

cα

and suppose that cρ+ λ(s) lies in the positive Weyl chamber. If it is nonsingular, it equals
cρ + λ with λ in the positive Weyl chamber. Then λ = λ(s). It follows immediately that
λ = λ(s) = 0. If bs is not zero, the corresponding term in brackets on the right side of (5)
is zero when t = 1 and λ(s) + cρ is singular and is ±1 when t = 1 and λ(s) + cρ is in the
orbit of cρ. In any case if, for brevity, we denote the right side of (6) by Θµ(t), then Θµ(1) is
independent of µ. Thus

Θµ(1) = Θρ(1) =
1

a

∑
σ

∏
α>0

1− 1
pσρ(Hα)+1

1− 1
pσρ(Hα)

.
Suppose σ ̸= 1. Then, for some simple root α0, σα0 = −β0 is negative and

σρ(Hβ0) = −ρ(Hα0) = −1

and the corresponding term in the above sum is zero. Thus

Θµ(1) =
1

a

∏
α>0

1− 1
pρ(Hα)+1

1− 1
pρ(Hα)

 = 1.

Since Θµ(t) is a linear combination of products of exponentials and polynomials in λ(t) it
cannot vanish in an open cone without vanishing identically. This the last formula shows it
cannot do.

We are now in a position to show that if ϕµ is bounded then

Reλ(µ) ⩽ λ(ρ)

2[Added 1970] I now notice that I made the matter unnecessarily complicated.
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for all λ. We may suppose that Reµ lies in the positive Weyl chamber. Then

Reλ(µ) ⩽ Reλ(µ),

and we need only consider λ lying in the positive Weyl chamber. It will be simpler to consider
only λ lying in the interior of the positive Weyl chamber. The assertion for points on the
boundary can be obtained by a simple limiting argument. Then if Re(σµ) ̸= Reµ, for some
σ in Ω, Reλ(σµ) < Reλ(µ).

Let w be the set of simple roots α for which Re cα(µ) = 0. Let Σ+
0 (w) be the set of all

positive roots which are linear combinations of the elements of w, and let Σ+(w) be the other
positive roots. Let G1 be the subgroup of G corresponding to the Lie algebra generated by
the root vectors associated to the elements of Σ+(w) and their negatives and let Ω1 ⊆ Ω
be the Weyl group of G1. If σ belongs to Ω and Reσ(µ) = Reµ, then σ belongs to Ω1. Set
Θ′

ν(t) equal to

1

a

∑
σ∈Ω1

 ∏
α∈Σ+(w)

1− 1
pσν(Hα)+1

1− 1
pσν(Hα)




∏
α∈Σ+

0 (w)

1− 1
pσν(Hα)+1

1− 1
pσν(Hα)

pλ(t)(σν−ρ).

Since λ(t) = λ1 + λ2 with λ1 = λ(t1) for some t1 in the adjoint group of G1 and λ2(α) = 0
for α in w, we can write Θ′

ν(t) as the product of

1

a

 ∏
α∈Σ+(w)

1− 1
pν(Hα)+1

1− 1
pν(Hα)


and 

∑
σ∈Ω1

 ∏
α∈Σ+

0 (w)

1− 1
pσν(Hα)+1

1− 1
pσν(Hα)

pλ1(σν−ρ)

pλ2(ν−ρ).

Applying the previous discussion to G1 instead of G, we see that Θ′
ν(t) is analytic at µ.

Moreover Θ′
ν(t) does not vanish, as a function of t, for λ(t) in an open cone. Set Θ′′

ν(t) =
Θν(t)−Θ′

ν(t); Θ
′′
ν(t) is also analytic at µ. As a function of t, Θ′′

µ(t) is a linear combination of

terms of the form p
(
λ(t)

)
pλ(t)(µ

′−ρ) where µ′ is an element in the orbit of µ with Reµ′ ̸= Reµ

and p
(
λ(t)

)
is a polynomial in λ(t). Thus, if λ(t) lies in the interior of the positive Weyl

chamber,
lim
n→∞

p−nλ(t)(µ−ρ)Θ′′
µ(t

n) = 0

and
lim
n→∞

p−nλ(t)(µ−ρ)ϕµ(t
n) = lim

n→∞
p−nλ(t)(µ−ρ)Θ′

µ(t
n).

Suppose ϕµ were bounded and for some λ in the positive Weyl chamber Reλ(ρ − µ) were
less than zero. Then there would exist a t such that Reλ(t)(ρ− µ) < 0 and Θ′

µ(t
n) did not

vanish identically. Then
lim
n→∞

p−nλ(t)(µ−ρ)Θ′
µ(t

n) = 0.

On the other hand if t is fixed

p−nλ(t)(µ−ρ)Θ′
µ(t

n) =

q∑
k=0

φk(n)n
k
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where φk(m) is a linear combination of exponentials eiαm with α real. We can suppose
φq(n) ̸≡ 0. Certainly

lim
n→∞

φq(n) = 0.

Let

φq(n) =
r∑

j=1

aje
iαjn

with α1, . . . , αr real and incongruent modulo 2π. Then

0 = lim
N→∞

1

N

N∑
n=1

φq(n)e
−iαjn = aj.

This is a contradiction.





CHAPTER 4

The formula of Gindikin and Karpelevich

To complete the proof of the lemma and to prepare ourselves for the next stage of the
argument, we must evaluate the functions δR(µ) in closed form. The argument is an induction
on the number of elements in Σ−

R. Since δR(µ) is certainly 1 when Σ−
R is empty, we can start

immediately with the induction step. Let C−
R and C+

R be the convex cones with vertex at the
origin generated by Σ−

R and Σ+
R respectively. Let

D+
R =

{
λ ∈ hR

∣∣ λ(µ) ⩾ 0 for all µ ∈ C+
R

}
,

D−
R =

{
λ ∈ hR

∣∣ λ(µ) ⩾ 0 for all µ ∈ C−
R

}
.

If, as before, cρ = 1
2

∑
α>0

cα, then cρ lies in the interior of D+
R and, if Σ−

R is not empty, in the
exterior of D−

R . If
R =

{
µ
∣∣ λ0(µ) ⩾ 0

}
,

then λ0 lies in the intersection of D+
R with the interior of D−

R . Joining cρ to λ0, we pass
through a point of the boundary of D−

R which lies in the interior of D+
R . Since D

−
R is polygonal,

there is a point λ1 near this boundary point which lies inside an n− 1-dimensional side of
D−

R and in the interior of D+
R . Then Σ−

R is the set of all negative roots satisfying λ1(α) ⩾ 0.
There is exactly one negative root −α0 such that λ1(−α0) = 0. Let

S =
{
µ
∣∣ λ1(µ) > 0

}
.

Then Σ−
R is the union of −α0 and Σ−

S .
To establish the formula (4) we show that

δR(µ) =
1− 1

pµ(Hα0 )+1

1− 1

pµ(Hα0 )

δS(µ).

We shall also see that the integral defining δR(µ) converges if that defining δS(µ) does and

Reµ(Hα0) > 0.

Let N
0
be the one parameter group generated by the root vector X−α0 belonging to −α0.

Let G0 be the group corresponding to the Lie algebra spanned by Xα0 , X−α0 , and Hα0 . As
usual there is a mapping of SL(2) into G0 such that the image of(

1 0
x 1

)
is exp xX−α0 and the image of (

1 x
0 1

)

21
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is exp xXα0 . The image of SL(2,Zp) is contained in GZp . If n1 = expxX−α0 , let a1 be the
identity if x lies in Zp and let a1 be the image of(

x−1 0
0 x

)
if x is not in Zp. Let n1 be the identity if x is in Zp and let n1 be the image of(

1 x−1

0 1

)
if x is not in Zp. In all cases n1 lies in n1a1GZp . Thus, if n2 lies in NQp(S),

ψµ(n2n1) = ψµ(n2n1a1) = ψµ(a1)ψµ(a
−1
1 n−1

1 n2n1a1).

Consequently∫
NQp (R)

ψµ(n) dn =

∫
N

0
Qp

{∫
NQp (S)

ψµ(n2n1) dn2

}
dn1

=

∫
N

0
Qp

ψµ(a1)

{∫
NQp (S)

ψµ(a
−1
1 n−1

1 n2n1a1) dn2

}
dn1.

Let
n =

∑
λ1(α)>0

QpXα, a =
∑

λ1(α)>0
α>0

QpXα, b =
∑

λ1(α)>0
α<0

QpXα.

Here n is the direct sum of a and b. If Q is a closed half-space contained in S, let ΘQ be the
set of roots contained in Q. Let the distinct collections of roots obtained in this way be, in
decreasing order, Θ0,Θ1, . . . ,Θℓ,Θℓ+1 = ∅, and set

nk =
∑
α∈Θk

QpXα.

The relations [n, nk] ⊆ nk+1 and nk = a ∩ nk + b ∩ nk are clear; in particular, n is nilpotent.
The following rather complicated lemma is an easy consequence of the Campbell-Hausdorff
formula.

Lemma. Suppose n is a Lie algebra of nilpotent transformations of a vector space V over a
field k of characteristic zero and N is the associated group of linear transformations. Suppose

n = n0 ⫌ n1 ⫌ · · · ⫌ nℓ+1 = {0}
is a decreasing sequence of ideals in n and [n, nk] ⊆ nk+1. Suppose that a and b are two
subspaces of n and

nk = nk ∩ a⊕ nk ∩ b

for each k. Set ak = nk ∩ a, bk = nk ∩ b, and choose ãi, b̃i such that

ak =
ℓ⊕

i=k

ãi and bk =
ℓ⊕

i=k

b̃i.

Then every element of N can be written uniquely as

n = expX0 expX1 · · · expXℓ expYℓ · · · expY0
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with Xi in ãi, Yi in b̃i. If X → Xa is an automorphism of n leaving each nk invariant let
Xk + Yk → X ′

k + Y ′
k be the induced transformation on

nk/nk+1 ≃ ãk ⊕ b̃k.

If
na = expX ′′

0 · · · expX ′′
ℓ expY

′′
ℓ · · · expY ′′

0 ,

then

X ′′
k = X ′

k + f(X0, . . . , Xk−1, Y0, . . . , Yk−1),

Y ′′
k = Y ′

k + g(X0, . . . , Xk−1, Y0, . . . , Yk−1)

with some polynomial functions f and g.

In the case of concern to us, both a and b are subalgebras of n. The group corresponding
to b is NQp(S). There is a subgroup N(S) of G such that the group corresponding to a
is NQp(S). Moreover N(S) is contained in V the unipotent radical of B. As a particular
consequence of the lemma

N = NQp(S)NQp(S).

If n2 lies in NQp(S) then a
−1
1 n−1

1 n2n1a1 lies in N . Project it onto NQp(S) to obtain n′
2. It is

an easy consequence of the lemma that the map n2 → n′
2 is a one-to-one mapping of NQp(S)

onto itself and that
dn2 =

∏
λ1(α)<0
α>0

∣∣ξα(a1)∣∣−1
dn′

2.

Now ψµ(a1) = pλ(a1)(µ+p) and

ρ−
∑

λ1(α)<0
α>0

α =
1

2

α0 +
∑

λ1(α)>0
α>0

α−
∑

λ1(α)<0
α>0

α

 =
1

2

α0 +
∑

λ1(α)>0

α

.
Since ∑

λ1(α)>0

λ(a1)(α) = 0,

we have ∫
NQp (R)

ψµ(n) dn =

{∫
N

0
Qp

pλ(ai)(µ+
α0
2 ) dn1

}{∫
NQp (S)

ψµ(n2) dn2

}
.

The first integral is equal to ∫
Zp

1 +

∫
x∈Qp

|x|>1

|x|−µ(Hα0 )−1 dx,

which is

1 +

(
1− 1

p

) ∞∑
n=1

pn

pn(µ(Hα0 )+1)
= 1 +

(
1− 1

p

pµ(Hα0 )

)
1

1− 1

pµ(Hα0 )
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which equals
1− 1

pµ(Hα0 )+1

1− 1

pµ(Hα0 )

if Reµ(Hα0) > 0.



CHAPTER 5

A review of Eisenstein series

Let ∆ be the set of simple roots of h. If α0 belongs to ∆, there is a parabolic group
P = P (α0) of rank one which contains B associated to α0. Let N be the unipotent radical of
P . Then P is the semi-direct product of N and a reductive group M . It is convenient to
suppose that M contains T . Let A be the centre of M and let 0G = A\M . There is a map
from P to 0G. Furthermore, 0G is the adjoint group of a split Lie algebra of rank one less
than G. Its Dynkin diagram is obtained by deleting α0 from the Dynkin diagram of G.

Lemma. Each of the maps

PQp → 0GQp , PZp → 0GZp , PA → 0GA

is surjective.

It is enough to verify this for the first two maps. Let 0T be the image of T in 0G. Using
the Bruhat decomposition one readily shows that the map PQp → 0GQp is surjective if the
map TQp → 0TQp is surjective. If 0t lies in 0TQp then ξβ(

0t) is given for β in ∆− {α}. There
is certainly a t in TQp such that ξβ(t) = ξβ(

0t) for these β; t is mapped to 0t.
Suppose u in 0GZp is the image of p = vtk with v in VQp , t in TQp , k in GZp . For the

purposes of the lemma we may suppose that k = 1. If α is a root of 0G, then
∣∣ξα(t)∣∣ = 1. Let

t0 be such that ξα(t0) =
∣∣ξα(t)∣∣ for each root α; t0 must lie in the centre of M . Replacing t by

t0t, we may suppose that t lies in GZp or, even better, that t is 1 and p = v. If p is infinite,
v must lie in NQp and if p is finite v must be congruent modulo NQp to an element of GZp .
(See C. Chevalley, Séminaire Bourbaki, Exposé 219.)

If p belongs to P let χ(p) be the determinant of the restriction of Ad p to the Lie
algebra of N . Every element of GA is a product g = bu with b in BA and u in U ; set

ξs(g) = ξs(b) =
∏

p

∣∣χ(bp)∣∣s+ 1
2 . The product is taken over all primes including the infinite

one. The function ξs is well-defined and is a function on PQ\GA. Let ϕ be one of the basis
elements for the cusp forms on 0GQ\0GA. Of course ϕ is supposed to be invariant on the
right under 0U . Also ϕ may be lifted to a function on NAPQ\PA. If g = bu, set

F (g, s, ϕ) = ξs(g)ϕ(b).

This function is well-defined. The sum

E(g, s, ϕ) =
∑

γ∈PQ\GQ

F (γg, s, ϕ)

is called an Eisenstein series. It converges absolutely for Re s > 1
2
but the function on the

left is actually a meromorphic function of s for all g. By the way, if g belongs to GR,

E(g, s, ϕ) =
∑

γ∈PZ\GZ

F (γg, s, ϕ).
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Suppose P ′ = P (α′
0) is another parabolic group of rank one, and N ′ is its unipotent

radical. Then ∫
N ′

Q\N ′
A

E(ng, s, ϕ) dn

is for each g a meromorphic function of s. If Re s > 1
2
, it is equal to∫

N ′
Q\N ′

A

∑
PQ\GQ

F (γng, s, ϕ) dn,

which equals ∫
N ′

Q\N ′
A

∑
PQ\GQ/N ′

Q

∑
γ−1PQγ∩N ′

Q\N ′
Q

F (γδng, s, ϕ) dn

or ∑
PQ\GQ/N ′

Q

∫
γ−1PQγ∩N ′

Q\NA

F (γng, s, ϕ) dn.

Because of the Bruhat decomposition we can suppose that each γ is of the form γ = wγ′

with w in the intersection of GZ and the normalizer of T and γ′ in P ′
Qp

. Then a typical term

equals1 ∫
w−1PQw∩N ′

Q\N ′
A

F (wng, s, ϕ) dn.

There is an order on the roots of 0G such that the positive roots are those of the form wα
where α is a positive root of G. Multiplying w on the left by an element in the normalizer
of T in GZ ∩M , we may suppose this is the order induced from the original order on the
roots of h. Let 0Σ+ be the roots of 0G of the form wα where α is a positive root of G which
is not a root of 0G′ and let 0Σ0 be the roots of 0G of the form wα where α is a positive root
of G which is a root of 0G′. If α belongs to 0Σ+ and β belongs to 0Σ+ or to 0Σ0 and α+ β is
a root, then α + β belongs to 0Σ+; on the other hand, if α and β both belong to 0Σ0 and
α+β is a root, then α+β belongs to 0Σ0. As a consequence, the group N ′′ whose Lie algebra
is the span of

{
Xα

∣∣ α ∈ 0Σ+

}
is the unipotent radical of a parabolic subgroup of 0G. Since

w−1N ′′w is contained in N ′ and

w−1PQw ∩ w−1N ′′
Aw = w−1N ′′

Qw,

our integral equals∫
(w−1PQw∩N ′

Q)w−1N ′′
Aw\N ′

A

{∫
N ′′

Q\N ′′
A

F (n1wng, s, ϕ) dn1

}
dn.

If wng = bk with b in BA and k in U , the inner integral equals

ξs(b)

∫
N ′′

Q\N ′′
A

ϕ(n1b) dn1

which is zero if N ′′ ̸= {1} because ϕ is a cusp form. Thus the integral vanishes identically
unless every positive root of 0G is of the form wα where α is a root of 0G′. Then, if α is a
positive root of 0G′, wα is a linear combination of roots of 0G and thus a root of 0G. As a

1[Added 1970] This statement is, I now notice, an oversimplification. There should be a factor in front
which depends on γ and g should be replaced by γ′g.
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consequence, wM ′w−1 =M . For these terms we can take γ′ = 1. If P = P ′, then w = 1 is
one possibility and the resulting integral is F (g, s, ϕ), which is for each g an entire function
of s. The only other possibility is that wP ′w−1 is the parabolic group opposed to P . This is
the case we are interested in. Then w−1PQw ∩N ′

Q = {1} and∫
N ′

A

F (wng, s, ϕ) dn

is for each g a meromorphic function of s in the whole complex plane.
We have demanded that w lie in GZ. We can also demand that it lie in GZ∞ ; this will

make it easier to evaluate the integral, for then w lies in U and

F (wng, s, ϕ) = F (wngw−1, s, ϕ).

It is enough to evaluate the integral for g = m′ in M ′
A. Set m = wm′w−1; m lies in MA. A

simple change of variable shows that the integral equals∏
p

∣∣χ(mp)
∣∣−1
∫
N ′

A

F (mwnw−1, s, ϕ) dn.

The product is taken over all primes including the one at infinity. If N is the unipotent
radical of the group opposed to P , this may also be written as

(7)
∏
p

∣∣χ(mp)
∣∣−1
∫
NA

F (mn, s, ϕ) dn.

The map T → 0T determines a map hR → 0hR. Since we have more or less consistently
viewed chR and c(0h)R as the duals of hR and 0hR, we can agree that this determines a map
c(0h)C into chC. If χp is for each p the homomorphism of the Hecke algebra into the complex
numbers determined by ϕ, let 0µp be one of the elements in c(0h)C associated to χp. Its image
in chC will again be denoted by 0µp. If ν is the sum of those roots whose root vectors belong
to the Lie algebra of N , we set µp(s) =

0µp + sν. Denote this set of roots by Σ. If

M(s) =


∏
α∈Σ

π1/2Γ
(

µ∞(s)(Hα)
2

)
Γ
(

µ∞(s)(Hα)+1
2

)

∏

p finite

∏
α∈Σ

1− 1
pµp(s)(Hα)+1

1− 1
pµp(s)(Hα)

,
the integral in the expression (7) is equal to

M(s)F (m, s, ϕ).

This is not too difficult to prove. Observe first that if Sk is the set consisting of the
infinite prime and the first k finite primes the integral in (7) is equal to

lim
k→∞

∫
∏

p∈Sk
NQp

F (mn, s, ϕ) dn.

So to prove our assertion all we need to do is show that, if h lies in
∏

q ̸=pGQq ∩GA and m
lies in MQp then∫

NQp

F (hmn, s, ϕ) dn =


∏
α∈Σ

π1/2Γ
(

µp(s)(Hα)

2

)
Γ
(

µp(s)(Hα)+1

2

)
F (hm, s, ϕ)
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if p is the infinite prime and∫
NQp

F (hmn, s, ϕ) dn =

∏
α∈Σ

1− 1
pµp(s)(Hα)+1

1− 1
pµp(s)(Hα)

F (hm, s, ϕ)
if p is a finite prime.

Fix a prime, finite or infinite; fix h in∏
q ̸=p

GQq ∩GA

and consider the function F (hg, s, ϕ), g in GQp .

If h = bu, b in BA, u in U , if b is the projection of b on MA, and if g = n(g)m(g)k(g)
with n(g) in NQp , m(g) in MQp , and k(g) in GZp then it equals

ξs(h)ξs
(
m(g)

)
ϕ
(
bm(g)

)
.

If m belongs to MQp , set ψ(m) = ϕ(bm). If it is convenient, we can regard ψ(m) as a function
on 0GQp . We are reduced to evaluating

(8)

∫
NQp

ξs
(
mm(n)

)
ψ
(
mm(n)

)
dn

if ψ is a function on 0GQp invariant under right translations by elements of 0GZp which is
an eigenfunction of the operators λ(f) for f in 0Hp associated to the homomorphism χp of
0Hp into C determined by 0µp. Of course we assume that the integral converges absolutely.
Recall that

λ(f)ψ(g) =

∫
0GQp

ψ(gh)f(h) dh

if g belongs to 0GQp .
Let M =MQp and let

K = GZp ∩ PQp/GZp ∩NQp .

Define a measure µ on M/K by setting µ(E) equal to the measure of{
n ∈ NQp

∣∣∣ m(n)E
}
.

Suppose k lies in K and n in N equals n(n)m(n)k(n); let k be the coset of k. Since

knk
−1

=
(
kn(n)k

−1
)(
km(n)k

−1
)(
kk(n)k

−1
)
,

the sets
{
n
∣∣ m(n) ∈ kE

}
and

{
knk

−1
∣∣∣ m(n) ∈ E

}
are the same and µ is left-invariant

under K. Define a measure on M , again called µ, which is invariant under left and right
translations by elements of K by setting

µ(E) =

∫
M/K

{∫
K

χE(mk) dk

}
dµ(m)

if χE is the characteristic function of E.
The integral (8) is equal to ∫

M

ξs(mm1)ψ(mm1) dµ(m1).



5. A REVIEW OF EISENSTEIN SERIES 29

If F is a subset of 0GQp = AQp\MQp and E is the inverse image of F in MQp , set

νs(F ) =

∫
E

ξs(m1) dµ(m1).

Since, as we observed earlier, K maps onto 0GZp , νs is invariant on the left and the right
under 0GZp . The integral (8) equals

ξs(m)

∫
0GQp

ψ(mh) dνs(h)

if m is the image of m in 0GQp .
Let F1 ⊆ F2 ⊆ · · · be an increasing sequence of compact sets (we assume that Fi =

0GZpFi
0GZp) whose union exhausts 0GQp and define the measure νns by νns (F ) = νs(F ∩ Fn).

Since νns belongs to Hp∫
0GQp

ψ(mh) dνs(h) = lim
n→∞

∫
0GQp

ψ(mh) dνns (h) = ψ(m) lim
n→∞

χp(ν
n
s )

and the integral (8) equals
ξs(m)ψ(m) lim

n→∞
χp(ν

n
s ).

To evaluate the limit, take ψ to be the function ψ0µp
of Section 3; then

ξs
(
m(g)

)
ψ0µp

(
m(g)

)
= ψµp(s)(g)

and

lim
n→∞

χp(ν
n
s ) =

∫
NQp

ψµp(s)(n) dn.

The integral on the right can be evaluated by the formula of Gindikin and Karpelevich if
Re s is sufficiently large. Retracing our steps, we see that the integral in (7) is indeed equal
to M(s)F (m, s, ϕ) and conclude that M(s) is a meromorphic function in the whole complex
plane.

J. Tits pointed out a way of expressing M(s) which is more convenient for our purposes.
We observed that there was a map of c(0h)C into chC. It is easy to see that it is induced by
an imbedding of c(0g) in cg. Since c(0G) is simply connected, there is an associated map of
c(0G) into cG. Let cn be the Lie algebra spanned by the root vectors belonging to positive
roots of cG which are not roots of c(0G). These are the roots cα corresponding to roots in Σ.
Let Hcα be the copoid attached to cα and set

H0 =
∑
α∈Σ

Hcα.

Let n1, . . . , nr be the eigenspaces of ad(H0) in cn. Let ai be the eigenvalue of ad(H0)
corresponding to ni. Each of the subspaces ni is invariant under c(0G); let πi be the
representation of c(0G) on ni. If π̃i is the representation contragredient to πi, then M(s) can
be written as

r∏
i=1

ξ(ais, π̃i, ϕ)

ξ(ais+ 1, π̃i, ϕ)
.





CHAPTER 6

Examples

If r is 1, then

M(s) =
ξ(a1s, π̃1, ϕ)

ξ(a1s+ 1, π̃1, ϕ)
is meromorphic in the whole plane and

ξ(s, π̃1, ϕ) =M

(
s

a1

)
ξ(s+ 1, π̃1, ϕ).

Since we already know that ξ(s, π̃1, ϕ) is analytic in a half-plane, we can conclude that it is
meromorphic in the whole plane.

If r = 2 and ξ(s, π̃1, ϕ) is known to be meromorphic in the whole plane, the same argument
shows that ξ(s, π̃2, ϕ) is meromorphic in the whole plane. Thus every time we can adjoin
a point to the Dynkin diagram of 0G to obtain the Dynkin diagram of a group of rank 1
greater, we can expect to find a representation π of c(0G) for which ξ(s, π, ϕ) is meromorphic
in the whole plane. Before listing the possibilities, there is one further remark I should make.

If we define the function ξ′s in the same manner as ξs, the expression (7) is easily seen to
equal

M(s)ξ′−s(m
′)ϕ(wm′w−1) =M(s)ξ′−s(m

′)ϕ′(m′).

Recall that m = wm′w−1. Of course ϕ′ is a function on A′
A\M ′

A and thus a function on 0G′
A.

It satisfies the same conditions as ϕ. Associated to it is the function

M ′(s) =
r′∏
i=1

ξ(a′is, π̃
′
i, ϕ

′)

ξ(a′is+ 1, π̃′
i, ϕ

′)
.

But m′ → wm′w−1 defines an isomorphism ofM ′ withM and an isomorphism of 0G′ with 0G.
Thus ϕ and ϕ′ are essentially the same. Moreover c(0G′) and c(0G) are isomorphic, such that
a representation of c(0G′) may be regarded as a representation of c(0G). Recalling that the
elements of the adjoint group of cG are orthogonal with respect to the Killing form and that
the Killing form turns Adw(cn′) into the dual of cn, one sees readily that r = r′, that, with a
suitable order, a′i = ai, and that π′

i is the contragredient of πi. Thus

M ′(s) =
r∏

i=1

ξ(ais, πi, ϕ)

ξ(ais+ 1, πi, ϕ)
.

It is known that M(s)M ′(−s) = 1. This is implied by, but does not imply, the relation
ξ(s, πi, ϕ) = ξ(1− s, π̃i, ϕ).

In the examples we shall give the Dynkin diagram of G with the points belonging to
the Dynkin diagram of 0G labeled. We give the number r, the numbers ai, and the highest
weight λi of the representations πi as a linear combination of the fundamental weights δj. In
the examples considered πi is always irreducible. Do not forget that πi is not a representation
of 0G but a representation of c(0G).
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(i)

1 1 1 1 1

α1 α2 αn−1 αn

r = 1 a1 = n+ 2 λ1 = δn

(ii)

1 1 1 1 1

α1 α2 αn−1 αn

r = 1 a1 = n+ 2 λ1 = δ1

(iii)

1 1 1 1 1 1

α1 α2 αm−1 αm αn

r = 1 a1 = n+ 2 λ1 = δ1 + δn

(iv)

2 2 2 2 1

α1 α2 αn−1 αn

r = 1 a1 = 2(n+ 1) λ1 = 2δ1

(v)

22221

αnαn−1α2α1

r = 1 a1 = 2(n+ 1) λ1 = 2δn

(vi)

1 1 1 1 2

α1 α2 αn−1 αn

r = 2 a1 = 2(n+ 2) λ1 = δ2

a2 = n+ 2 λ2 = δ1

(vii)

11112

αnαn−1α2α1
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r = 2 a1 = 2(n+ 2) λ1 = δn−1

a2 = n+ 2 λ2 = δn

(viii)

1 1 1

1

α1 α2 αn−2

1, αn−1

1, αn

r = 1 a1 = 2n λ1 = δ2

(ix)

11

αnαn−1

1, α2

1

1, α1

r = 1 a1 = 2n λ1 = δn−1

(x)

1 1 1 1

α1

1

α2 α3, 1 α4 α5

r = 2 a1 = 11 λ1 = δ3

a2 = 22 λ2 = 0

(xi)

1

1

1111

α6α5α4, 1α3α2α1

r = 2 a1 = 14 λ1 = δ3

a2 = 28 λ2 = δ6

(xii)

1 1 1 1 1

α1

1

α2 α3, 1 α4 α5 α6
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r = 2 a1 = 14 λ1 = δ4

a2 = 28 λ2 = δ1

(xiii)

1

1

11111

α7α6α5, 1α4α3α2α1

r = 3 a1 = 51 λ1 = δ1

a2 = 34 λ2 = δ6

a3 = 17 λ3 = δ3

(xiv)

1 1 1 1 1 1

α1

1

α2 α3 α4 α5 α6 α7

r = 3 a1 = 51 λ1 = δ1

a2 = 34 λ2 = δ2

a3 = 17 λ3 = δ5

(xv)

3 1

α1

r = 2 a1 = 10 λ1 = 0

a2 = 5 λ2 = 3δ1

This example is particularly striking.
(xvi)

3 1

α1

r = 3 a1 = 3 λ1 = δ1

a2 = 6 λ2 = 0

a3 = 9 λ3 = δ1

(xvii)

2 2 2 2 1

α1 α2 αn−1 αn
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r = 2 a1 = 2n+ 1 λ1 = 0

a2 = 4n+ 2 λ2 = δ1

(xviii)

1 1 2 2

α3 α2 α1

r = 2 a1 = 22 λ1 = 0

a2 = 11 λ2 = δ3

(xix)

1 1 2

α2 α1

r = 1 a1 = 4 λ1 = δ2

(xx)

1 1 1 1 2

α1 αn−2 αn−1 αn

r = 1 a1 = 2(n+ 1) λ1 = δ1

(xxi)

221

α2α1

r = 2 a1 = 5 λ1 = 0

a2 = 10 λ2 = δ2

(xxii)

1 1 2 2

α3α2α1

r = 2 a1 = 16 λ1 = δ1

a2 = 8 λ2 = δ3

(xxiii)

1 1 1

α1 αn−3

1, αn−2

1, αn

1, αn−1
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r = 1 a1 = 2n λ1 = δ1

(xxiv)

1 1 1 1

α1

1, α5

α2 α3, 1 α4

r = 1 a1 = 12 λ1 = δ5

(xxv)

1 1 1 1

α1

1, α4

α2 α3, 1 α5

r = 1 a1 = 12 λ1 = δ4

(xxvi)

11111

1, α6

α5α4, 1α3α2α1

r = 2 a1 = 34 λ1 = 0

a2 = 17 λ2 = δ5

(xxvii)

11111

1, α5

α6α4, 1α3α2α1

r = 2 a1 = 34 λ1 = 0

a2 = 17 λ2 = δ6

(xxviii)

111111

1, α7

α6α4 α5, 1α3α2α1

r = 2 a1 = 46 λ1 = δ1

a2 = 23 λ2 = δ7
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(xxix)

111111

1, α6

α7α4 α5, 1α3α2α1

r = 2 a1 = 46 λ1 = δ1

a2 = 23 λ2 = δ6

(xxx)

11111

α5

1, α6

α4α3, 1α2α1

r = 1 a1 = 18 λ1 = δ5

(xxxi)

11111

α1

1, α6

α2α3, 1α4α5

r = 1 a1 = 18 λ1 = δ1

(xxxii)

111111

1, α7

α5α3 α4, 1α2α1 α6

r = 2 a1 = 29 λ1 = δ1

a2 = 58 λ2 = 0
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