The Extension Problem for Compaect Submanifolds of
Complex Manifolds I

( The Case of a Trivial Normal Bundle)*
By
Pr. A. GRIFFITHS

Let X be a compact, complex submanifold of a V. We wish to consider
over X certain analytic objects, such as: (i) a holomorphic vector bundle
E —> X (the notations are explained in § 1 below); (ii) a subspace
S c H1(X, &); or (iii) a holomorphic mapping f: X — Y for some com-
plex manifold ¥. The extension problem we consider is, given an analytic
object a over X, to find a corresponding analytic object § over V such
that p restricted to X gives .

We shall be primarily interested in the extension problem when V
is a germ of a neighborhood of X, a concept which we now make precise.
Let O be the sheaf of local rings of holomorphic functions on ¥ and 4 c 0
the ideal sheaf of X. Denote by ## the u'® power of .# and set 0% = (] F#+1
(sheaf of jets of order u in the normal parameter along X). The pair
(X, O#) then forms a ringed space X#, X° = X. Also we set 0* = 0|X
and denote by X* the generalized complex space (X, 0*). Then X* is a
germ of a neighborhood of X and X# is a neighborhood of order y of X in
X*
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114 Pa. A. GrrFrITES

Suppose now that we have an extension a# to X# of the analytic
object a on X. Then the obstruction to extending o# to X#+1is given by
a cohomology class w(x#). In case (i), w(x#)e H2(X, Hom (&, &) ®
@ Jut1[Fut2); in case (ii), w(a#) € Het1(X, & @ F4+1[Fu2); and in
(i) o («#) € HY(X, Hom (7 (V), 7 (Y)) ® SH+1[.50+2).

There are two general statements which may hold for analytic objects
of types (i), (ii), or (iii) and a germ of embedding X ¢ V; these are

(I) there are only finitely many obstructions to the extension problem ;
(IT) a local extension exists if, and only if, a formal extension exists.
Of course, (I) and (II) are not always true; there are easy counter-exam-
ples to (I) and HiroNAK4 has a counter-example to (IT). Our program is to
investigate the extension problem and its applications after making
assumptions on the normal bundle Vof X in V.

In this paper we shall essentially assume that NN is trivial; this means,
at least when H1(X, @) = 0, that ¥ may be considered as an analytic
fibre space over an analytic set D with one fibre being X. Thus the tech-
niques in the theory of deformations of complex structure ([7] and [9]) are
available to treat the extension problem. We are then able to prove I and
II for analytic objects of types (i) or (ii) and to also derive several other
results peculiar to the case of a trivial normal bundle.

For example, suppose that D is non-singular and of dimension 1 with

parameter {. Write ¥ = U X where Xo = X and the X, are the fibres
teD
of the projection of ¥ onto D. Let & be a locally free analytic sheaf on ¥

and &9 = #[I - &. Denote by E¢ the subspace of He(X, %) composed
of extendible classes, and denote by J¢ the subspace of K¢ composed of
extendible classes whose restrictions to X, vanish for ¢ + 0. (These may
be called the jump classes.) Then there is a natural isomorphism

HY(X, S0)[Ee = Ja+1

If a class belongs to E¢, it is represented by a g-cocycle Z; and, if it
belongs to J¢, then Z; is the coboundary of a (g — 1)-cochain which has
a pole at the point ¢ = 0. If diim D = m > 1, then Z; is the coboundary
of a (g — 1)-cochain which has as polar locus an analytic set of dimension
(m — 1) through 0.

As another illustration of our results, we are able to construct, for an
analytic object « of type (i) or (ii), 2 maximal analytic subset V, of V
with X ¢ V; and such that « may be extended to V.

1. Notations and terminology

The basic object on which we shall work will be a compact, complex
manifold. Let J be the almost-complex structure tensor of X acting on
the complex tangent bundle T# (X); then T#(X) = T + T* where T is
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The Extension Problem for Compact Submanifolds 115

the complex tangent bundle, which is the |/—1 eigenbundle of J, and
T* is the conjugate bundle. A general holomorphic vector bundle over X
will be written # — E — X where E, a complex vector space, is a typical
fibre and E is the total space. The dual bundle is denoted by B’ — E' — X
and & is the sheaf of germs of holomorphie cross-sections of £ — E — X.
We use the standard conventions: 7 = @, AF.7’ = QF, and Ox = sheaf
of germs of holomorphic functions. For a holomorphic vector bundle
E — E — X, 27/7(E) is the sheaf of germs of C® E-valued (o, g) forms
over X.

We denote holomorphic principal bundles by @ — P > X where the
complex Lie group @ acts holomorphically on the right on the total space
P. Over X, we have the holomorphic vector bundle @ = T(P)/@, and
there is an onto bundle homomorphism 7z:Q — T with kernel L = P X ¢g
where g is the complex Lie algebra of G. Thus, we have the fundamental
bundle sequence [1]

0—-+L—-Q—-T-0.

The sheaf #°(Q) (= C> germs of sections of Q) acts on &/°(E) as
follows: a germ ¢ in /°(E) is given by an E-valued C* function & on P

satisfying o(p - 9) = o(9)o(p)(p € P, g€ G). Let £ be a germ of a right-
invariant vector field on P(=germ & in /°(Q)); then & - & is again an

E-valued C= function on P satisfying the equivariance condition, and
B

Eogies é o. This action may be extended to a pairing [ , ]: %/?(Q) ®
A9(E) — /P+4(E) ([11]). In particular, we get a pairing [ , 1: 47(T) ®
A9(T) > AP+a(T).

A deformation {#" ~> D} of X is given by the following data: (i) An
analytic subset D of an open neighborhood U of the origin in C™; (ii) An
analytic space ¥~ and a proper holomorphic mapping @:¥" — D such
that @ has maximal rank and connected fibres X; = @~1(t)(t € D); and
(iii) A holomorphic embedding ¢: X — ¥ such that wo ¢+ =0eD. A

mapping F:¥" — ¥ between deformation spaces {7~ > D} and
Yo o
G:D — D
{7 -4 D'} is given by a pair of holomorphic mappings F:¥" — ¥”" and
G:D — D such that @ oF = Gow, Foit= 1, and such that F is

biholomorphic on fibres.
For technical reasons, we introduce the notion of an almost-complex

deformation {#~ 5 U}. This is given by:

(i) An open neighborhood U of 0in C™;

(ii) An almost-complex manifold #” and an almost-complex mapping
@:# — U such that @ has maximal rank, connected fibres, and such

Bt
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116 PH. A. GRIFFITHS

that each fibre X; = @~1(f)(te U) is an almost-complex submanifold;
and (iii) An almost-complex injection 7: X — # such that Gov — 0 .

If {¥" > D} is a deformation, we say that F:¥" —> %" embeds (v 5D}
Yo L aé
G:D > U
into {# 5 U} if G is the injection of an analytic subset D of U into U,
if F' is differentiable embedding of ¥ into % which induces an almost-
complex injection on each fibre, and if the above diagram commutes.

For any deformation {» 2 D}, we shall always assume that there exists

an almost-complex deformation {#" 5 U} into which {r 5 D} can be
embedded.
Given a holomorphic principal bundle & — P> X, we define a

deformation {G — P Ry D} (or just {@ -2 — D3}) to consist of a
deformation {¥" 5 D} of X together with a holomorphic principal

bundle ¢ -2 5 ¥ such that «1(G - % — ¥)= G- P->X. The
auxiliary discussion above about deformations of X may now be carried
over to deformations of @ — P — X. In particular, the analogue of the
assumption about the existence of ambient almost-complex deformations
of X will be assumed to hold for deformations of @ — P X.

1.1. Graded complexes and Lie algebras

We recall that a graded Lie algebra is given by a graded vector space
A =} AP together with a bracket operation[, ]: 4?7 ® A7 — AP+e guch
P20
that:

(@, 9] = (—1)Patl [y, @] (pedr,yedy) (1.1)

(_ 1]1]!‘[93’ [’P: 7;"]] + (_ l}qr [7}) [fpa 1}”]] + (_ I)pq["}u! [73) (FH =0

(pedr, we A2, nedr). 1.5)

The notion of a homomorphism between graded Lie algebras is clear.
If K = > K¢is a graded vector space, we say that K is over the

g=0
graded Lie algebra 4 if thereisa pairing [, ]: 4?7 ® K¢ — K7+4¢ such that

(@, [y, y11 + (— 1)2e*2 [, [, 1] = [[o, 9], 7]
(ped?, pe A9, yeK).

We define K = > K7 to be a graded complex (K, d) if there are linear
=0
mappings §:K? > Ko+l satisfying dod — 0. We set Z (K?) = kernel
0:K? > K»41, Hv(K) = Z(K?)[8K»~1, and H(K) = 5 H»(K).
»=0

(1.3)
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The Extension Problem for Compact Submanifolds 117

A graded Lie algebra 4 which is also a graded complex (4, d) is
called a graded Lie algebra complex if the following rule holds:

dlp, vl =[dp,p] + (—1)?[p,dy] (ped?, ped). (14)

Finally, if (K, é) is a graded complex and (4, d) is a graded Lie algebra
complex, then (K, 8) is over (4, d) if K is over 4 and if

olg,y1=[de,y1+ (—1)?[p,dy] (ped? yeKkK). (L.5)

Suppose now that (K, §)is over (4, ) as above, and let ¢ = (1, ..., ™)
be a variable point in C™. We write K [{] for the graded vector space of
formal power series in ¢ with coefficients in K; K {t} is the subspace of
K [£] consisting of the series with constant term equal to zero. We define
A[t] and A {t} similarly, so that we have, e.g., [4{t}, K[t]] c K{t}. Let
D(t) e A1 {t}.

Definition: We let
AD () =dP(t) — [P (1), P()] (1.6)
and say that @ (f) is integrable if AD (t) = 0.
Let now @ (t) € A1 {t} and define §,:K9[t] - K2+1[t] by
So(l(l) = 8T () —2[®®), T®) (P®eKe[t).  (16)
Lemma 1.1. 84 0 8517 (8) = — 2[AD(¢), I'(¢)].
Proof:  g(8I'(t)) = 6o (81'(t) — 2[D(2), I'(£)])
= 82I'(t) — 26[D (1), I'()] — 2[D(t), 61°(1)]
+4[D(0), [P(1), I'(D]] = —2[6D (1), I'(1)]
+2[[®@), ], ()] by (14)and 1.2). Q.E.D.

If we now assume that AP (f) = 0, then (K[t], d,) becomes again a

graded complex; we set Z4,(K) = Z (K4[t]), H24(K) = HI(K[t]), where

the differential operator dy is given by (1.6). Our immediate goal is to
study the relationship between H4(K) and H4,(K).

1.2. The formal extension problem in cohomology

Let (K, 8) be a graded complex over a graded Lie algebra complex
(A4, d), and let @ (t) € A1{t} be an integrable element. Given y € Z (K9),
we say that y is extendible if there exists I'(f) € K¢[t] such that I'(0) = y
and ,17(f) = 0. If ¢ € K2-1, then d4(0) is an extension of d(o), so that
the following is justified :

Definition. A class [y] € He(K) is extendible if there exists y € Z (K9)
which represents [y] and is itself extendible.

Suppose now that s € C is a single complex parameter, and let K (s)
be the formal power series in s and with coefficients in K which have
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118 PH. A. GRIFFITHS

finitely many terms with negative s-exponents; a 2.(s) € K(s) is thus
written as

Z(.g) :z ?ﬁts‘u (y.uEK}'
p=—N

Definition. Let I'(s) € Z§(K) be an extension of y€Z(K9). Then I' is
said to be a jump extension if there exists 2 € Ke-1(s) with do ¥ =T\
We say that y € Z(K9) is a jump cocycle if there exists a jump extension
Tofy.

If o€ K91, then §,0 is a jump extension of dg, so that we may
define what is meant by a jump class in He (K).

We let EY c He(K) be the subspace of extendible classes, and J%, c E%,
the space of jump classes. Our first main result is the following

Theorem 1.1. Assume that H(K) is finite dimensional.
(1) There are only finitely many obstructions to extending a class in H1(K);
(i) If GG = H(K)|EY, then there are on G% and J25 canonical filtrations
whose associated graded modules are naturally 1somorphic.

(1.2) Proof of Theorem 1.1. Let y € Z(K9). We wish to find I'(s)

= > 7.8% with y9 = y and 841" = 0. Thus we must recursively solve the
u=10
equations

dyn=2> [¢ ,i] 8%
o+t=N
a=>0

with yo = yp, and where we have written @ (s) — > @ys”. Suppose that
va=]

we have yq, ..., yn-1 such that (L.7)# is satisfied for 1 < E=N—1;

we say then that y is extendible to order N — 1. Let

on=2 3 [gs 1.); (1.8)
4= N

then wy is the N obstruction to extending ¥, or the obstruction to extending
¥ to order N.

Lemma 1.2. wye K9*! and édoy =0.
Proof. We use (1.3) and (1.5) to calculate:

dwy = 22[@6, Y — z [®a, 0y

o4i=N oc4i=N
=22 [[®e, @sl. v — 43 [go, [@s, 7:]] = 0.
etote=N etote=N

In the middle step we have used (IL.7)#for 1l = p <N —1.Q.E.D.
We come now to the main points in the formal theory.
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The Extension Problem for Compact Submanifolds 119

Lemma 1.3. @ €Z(K9+1) is a jump cocycle if, and only if, @ is an
obstruction to extending some y € Z(K9).

Proof. Suppose first that w is an obstruction. Then there exists y = yo,
Y1,...s yN-1€ K@ with éy =0, by, = 22[‘?’6: y] 1=p=N-1),

Cti=up
N-1
and w = 22 [@s, o) - Let y¥-1(s) = Zy,,s#, and define 2(8) € K1[D]
gti=N p=0

by > (s) :_J?_N y¥~1(s). Then 6o (s) = 8 (s) — 2[D(s), > (s)]
= Ly(8y¥1(s) — 2[D(s), yY1(s)]) = Ly(ws¥ + O(s¥+1)) (0(s¥ ™)

= terms divisible by s¥*1) = Q(s) € Ke¢t1(D). Since 2(0) = w, the
pair (2(s), D (s)) makes w into a jump cocycle.

Now suppose conversely that w is a jump cocycle. Then there exists
Q(s) € K9*1(D), > (s) € K9[D] such that:

(i) 2(0) = w;

(ii) 6482(s)=0; and

(ifi) 6o (s) = L2(5) (s + 0).

Let N be the order of the pole of > (s) at s =0, and define y e Z(K?9)
by y = lim s¥ Z (s). We may then reverse the above argument to find

=0

that @ is an N obstruction to extending y € Z(K9). Q. E. D.

Now the primary obstruction to extending y € Z(K49) is a well-defined
class in H?+1(K), depending only on [y] € H?(K); this obstruction is
given by w; = [¢1, y]- However, the higher obstructions do not depend
upon [y]e€ H1(K) alone; if e.g., w1 = dy1, then ws = [p1, 1] +
+ [@2, 7] is a secondary obstruction. But so is w, = [¢1, y1 + o] +
+ [@2, y]for any o € Z (K9). We now show how to deal with this situation.
First we observe:

Lemma 1.4. If the primary obstruction to extending y € Z(K9) is
a non-zero class in He+1(K), then no solution of the extension problem
exists for y.

Lemma 1.5. If w is an N obstruction to extending y € Z(K9), and
if, by different choices, y is extendible to order N, then @ is an N — 1%
obstruction to extending some p € Z (K9).

Proof. We are given: (i) ¥ = yo, 1, ..., yn-1 € KZsuch that (1.7) #
is satisfied for 1 < g < N — 1 and such that w = 2 [¢q, y-]; and
o+r=N

(ii) ¥ = 0s ¥1> -+ ,'yNeKG such that (1.7)# is satisfied for 1 = u = N.
LetQ—QO'_J’l_?’l’Qﬂ"—wa-l(l SpﬁN 2) Thenc‘ig a‘}’l—
— 0y = [¢1,. 9] — [g1, 71 =0. Also, for l s u = N — 2, 22[:;06, ezl

odr=0p

=2(> [pa> y:] — [P0, 72]) = 6yus1 — 0741 = dou- Thus g is extended

otr=pu+l
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to order N — 2. But 23 [¢5, 0:] = 2 3, [0, 72l — [po, ye] = @ — Sy
cf+r=N-1 o+t=N
and thus o is an N — 1% obstruction to extending p € Z(K9). Q. E. D.

Corollary. If € Z(K49+1) is a jump cocycle then there exists y# e
€ Z(K9) such that the extension problem cannot be solved for y* and
such that w is an N* obstruction to extending y# where N is maximal,
i. e., there exists no extension of order N of y*.

For w € Z(K9+1), y € Z (K9), we set: N (w) = inf{N € Z*+|w is an N*»
obstruction to extending some y’ € Z(K9)}, N¥(y) = sup{N € Z+|y is
extendible to order N — 1}.

Lemma 1.6. (i) If w is an obstruction of order N (w) to extending
y € Z(K4q), then N¥#(y) = N(w). (ii) If o is an obstruction of order
N*(y) to extending y € Z(K9), then N(w) = N¥(y).

Proof. (i) is just a restatement of Lemma 1.5. To see (ii), we assume
that N (w) < N¥#(y) (since, in any case, N(w) =< N*¥(y)); and we let
r = N¥#(y) — N(w) > 0. We know the following: (a) there exists
Y = Y0, Y1, -+» YN-1(N = N¥(y)) such that (1.7)¢ is satisfied for
l1=pu<N—1 and 0 = 22[(;%, vz]; (b) there exists ¢ = go,

ag+r=N

o1, ---, pm-1 (M = N(w)) such that (1 7)ﬂlssa.tlsﬁed forl=pu=M-1

and @ = 2 [@g, gz]. Define now y = y,, y1, ..., yy—1 € K?as follows:
otr=M

Yuo=vyp for 0= u=r—1; and p, =9 — g, (r<v=N-—1).

Then, for 1 < u = r — 1, (L.7)# is satisfied. Forr S v = N — 1,

Z[‘Pa‘s }’x] = 2 (oo, y:] — z[‘Pa; 07] = 0yy — 8oy = 5('?;) . But, also,

ag+T=r ot+T="¥ at+T=v—r

we have: Z[(pa,y;] = Z[(pg,yr] — Z[(pg, pr] =w — w =0. Thus y is
a+r=N at+r=N a+t=N—r—M

extendible to order N, which is a contradiction. Q. E. D.

Now J?4! is a finite dimensional vector space; we choose a basis
w1, ..., wy and set Ny = N(w;) for 1 =i =< R. Then, to each w;, we
may associate £2;(s) e Ketl[s], 2;(s) e K9(s) such that ;(0) = w;,
dpli = L2, and 2;(s) has a pole of order N; in s. Since N(o + ') =
= max(N (w), N ('), if we set N(g + 1) = max N;, then, for each

1sisR
weJ?!, we may associate Q(s) e Ke+1[s], X'(s) € K9(s) such that
2(0) = w, dg2" = £2, and such that X'(s) has a pole of order less than or
equal to N(g + 1)in s.
Lemma 1.7. Let y € Z(K9). If, for some N = N(¢ + 1), ¥ has an
extension of order N, then y may be extended.

Proof. If not, then N(y) << oo and N(y) > N(g + 1). Thus there
exists w € J75! which is an obstruction of order N (y) to extending y. By
Lemma 1.6, N (w) = N(y) > N (g + 1), which is a contradiction. Q.E.D.
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The Extension Problem for Compact Submanifolds 121

It is in the sense of Lemma 1.7 that there are only finitely many
obstructions to the extension of cohomology.

Set now M (g) = sup N (y); by Lemma 1.7, M (q) << co. We define a

yeGg,
filtration {G}; < ar < pr(q) Of G as follows: Gf = {ye GL: N¥#(y) = M}.
Since N*#(y + ') = min (N¥(y), N¥(y’)), the Gf are subspaces of
@§. Clearly Gy/%, c @f, and we set G2 (M) = G&|Gp? 1.

We also define a filtration {J7§'}; <y cygsen Of J75*: For 1 < N <
=N(g+1), J%' = {weJ:N(w) < N}. Clearly J93! is a vector
subspace of J}1, and J g+ o JOFL Set Ja+l (N) = Jo51 /T g+,

Lemma 1.8. Let ©F be the mapping which associates to each y € G¢(N)
its obstruction of order N in J?+1(N). Then @y is well-defined, linear,
and is an isomorphism for each N.

This result follows from Lemmas 1.2—1.7, and completes the proof
of Theorem 1.1.

2.1. Norms and a harmonie theory

On our graded complexes (K, §) we shall now assume the existence of
a graded Banach space with norm || | such that §: K¢ — K2+1is a bounded
operator. In the case of a graded Lie algebra complex (4, d), we also
assume that [,]: 47 X A? —» AP+2¢isbounded in each factorforp 4 ¢ = 1.
We shall also assume on (K, §) a harmonic theory, given by linear
transformations §*: K2+l — K¢ G:K? — K¢, and a projection my: K¢
— H4? onto a finite dimensional subspace H? ¢ K¢ such that the follo-
wing hold:
(i) 6*0d* =0,
(ii) JoG=God and J*oG = God*,
(lii) mgoG =Gomy=myod =domy=myod* = d*omy =0,
and (iv) every y € K7 has a unique representation (Hodge decomposition)

y = wnly) + 6*6G (y) + 88*G(y) . (2.1)

We also assume that §*G:K? — K¢ is bounded so that we have a
Banach space direct sum decomposition K¢ = H? @ 6Ke1 @ §*Ka+l,
We denote by sy, 74, and ms. the respective projection operators.

The concept of homomorphism between graded complexes or graded
Lie algebra complexes will now refer to bounded transformations which
commute with the harmonic theories.

Let now (K, 8) be over (4, d), and let @ (t) € A1 {t} be convergent for
small £, Then, in addition to the cohomology groups H¢(K) and HY%(K),
we may obviously form a whole family Hf (K) of cohomology groups for
each fixed ¢ (Hf(K) = H4(K)). Our object is now to establish the rela-
tionship between these three.
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2.2. Existence theorems

Following the suggestion of Nijenhuis and Richardson, we shall now
use the implicit function theorem in Banach spaces [2] (rather than doing
successive approximations directly) to derive certain existence theorems.
For notation, we denote by N (*) a generic neighborhood of the origin in a
Banach space *,

Let (4, d) be a normed graded Lie algebra complex. Define ¢ € A1 to
be semi-integrable if dp — malp, ¢] = 0.

Lemma 2.1 ([12]). There exists N(wg(41)), N(mg*(4!)), and a
differentiable mapping p:N(7g(A4L)) — N (mg*x(41)) such that, if
@ € N (g (A41)), p € N (na*(41)), then ¢ + y is semi-integrable if, and
only if, p = p(p).

Proof. Define a differentiable mapping q: 7wy (A41) X 7g* (41) — 74 (A42)
by glp.v) =dlp + 9) — 7a[p + v, ¢ + p]. Then Dyq(0, 0)
= d:7g* (A1) > n4(AZ) is an isomorphism, and, by the implicit function
theorem, there exist N (mgy(4l)), N(mq*(41)), and p:N (zg(4l)) —
—> N (7g*(A?1)) such that, for p € N (ny (A1), € N (ma*(A41)), ¢ (@, ) = 0
if and only if y = p(p). But ¢(p, ) = 0 if, and only if, @ + v is semi-
integrable.

Lemma 2.2. p(p) is defined by the equation
P(p) =d*Glp+2(9), ¢ + p(9)]. (2.2)

Proof. d(p + p(¢)) — malp +2(¢), ¢ +p(¢)] = 0. Q.E.D.

For g € N (my(A4)), we set P(p) = ¢ + p(g), and we define a vector-
valued holomorphic function & on N (mg(41)) by

h(p) = mulP(p), P(p)]. (2.3)

Lemma 2.3. [9]. There exists N (5 (A1)) such that, for ¢ € N (zg(41)),
k(@) = 0if, and only if, P(g) is integrable.

Proof. If ¢ is integrable, then, since P(¢) is semi-integrable, we get
that #a*[P (@), P(p)] = —7tu [P(9), P(p)] = —h(g). Thus h(g) = 0.

Now we have that d*dG [P (g), P(p)] = 2d*G[dP(p), P(¢)]
= 2d*Q[dd*G[P (), P(p)], P(g)] = 24*G{[h(g), P(¢)] + [d*dG[P (g),
P (@), P(g)]} by (1.1), (1.2), and (1.4). Setting F(¢) = d*dG[P(g), P(g)],
if h(g) =0 we get F(g)=2d*G[F(g), P(¢)] and thus | F(g)]| <
Zc|P(g)] - | F(p)]. However, this implies that ¥ (¢) = 0 if hip) =0
for p € N (n5(4Y)). By (2.2), AP(g) = k(g) + F(9). Q.E.D.

We let ¥V c N(zu(A%)) be the analytic set through the origin defined
by the zeroes of %(g); to each ¢ € ¥ we have associated the integrable
element P(g) e 4L
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Let now the graded complex (K, d) be over the graded Lie algebra
complex (4, d). Let ¢ € A1. We say that y € K¢ is semi-closed relative to ¢
if dy — o[, y]1 = 0.

For Banach spaces S, Sz, L(S1, S2) is the Banach space of bounded
linear transformations 7': 87 — Ss.

Lemma 2.4. There exist N(A41), N(L(Z4, ms*(K?)) and a differen-
tiable mapping r:N (A41) — N (L (Z4, s+ (K9))) such that the following
holds: If @ € N(41), y € Z4, and o € ms*(K9), then y + o is semi-closed
relative to @ if, and only if, ¢ = r(¢)y.

Proof. Define s: 41 X Z9 X 4% (K1) — 5 (K1) by s(@,y,0) =d0(y +
+ 6) — 2m4[p, y + 0]. Then s is differentiable and Dss(0, 0, 0)
= §:7p* (K9) — ms(K2+1) is an isomorphism. The existence of r now
follows again from the implicit function theorem.

Lemma 2.5. r (¢)y is defined by
r(p)y =20*Clo,y +r(p)7]. (2-4)

Proof. 6(y + 7(9)y) — 27sle, y +r(@)y] =0. Q.E.D.
For pe N (A1), yeZ4, we set Ry(p) =y + r(g)y-

Now, for each y € H? c Z¢, we define a vector valued holomorphic
function A, (p) on N (ng(41)) by

k, (@) = na[P(9), Re(y)], (2.5)

where, by way of notation, we set Ry(y) = Ep, (¥)-

Lemma 2.6. There exists a neighborhood N (mg(A41)) such that, for
peN(ma(d)NV, ye HI, Ry(y) — 2[P(g), Bp(y)] = 01if, and only
if, hy (@) = 0.

Proof. If 6Ry(y) — 2[P(9), Re(»)] =0, then wa[P(g), Ro(y)]
= —ms[P(p), Ry(y)] = 0since Ry (y) is semi-closed relative to P(g).

Now assume that 6P (¢) = [P(p), P(@)]. Then 6*6G[P(p), Re(y)]
= 6*G[[P(9), P(p)], Bo(y)] — 20*G{[P(9), [P(p); Ro(y)]] + [P(g),
hy(@)] + [P(p), 6*G[P (@), Ro(y)]]}- Setting Ey(p) = 6*6G[P(gp),
Ry (y)], we conclude that, if k(@) = 0, E,(p) = 26*G[P(p), Ey(p)],
from which it follows that E,(p) = 0 for ¢ € N(ng(Al)) n V. But
0Ry(y) — 2[P(9), Ro(y)] = 2{hy(9) + Ey(9)}.- Q.E.D.

For a subspace S ¢ Ha, we let ¥ (S) c V be the analytic set defined by
V(8) = {p € V:hy(g) = 0 for all y € 8}. Then, to each g € V(85), y€ S,
we have associated an element E(y) which satisfies

Op@) Bo(y) = 0Ro(y) —2[P(9), Be(y)] =0 (2.6)

We close this section with the following remark. Suppose that we are
given a neighborhood U of the origin in any C™ and a holomorphic
mapping ¢ — @ (t) of U into A1 such that thelocus Z = {t € U:AD(t) = 0}
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is an analytic set Z. Then, for any subspace S ¢ H¢, we may construct the
analytic set Z (8) c Z just as V(S) c V was constructed above.

2.3. A continuity property of ecohomology

‘We shall now combine the results in 1.2 and 2.2. Before doing this,
we must first establish a certain continuity property for cohomology.
Assume that ¢ e N(AY) is integrable, and recall that any & e K¢
which is semi-closed relative to ¢ may be uniquely written as & = Ry (y)
=y + r(@)y where y € Z(K9) and r(p) y € ms*(K9). Since ¢ isintegrable,
if T € K91, then d4(7) = d7 — 2[@, 7] is closed relative to ¢, and we may
write d4(7) = Rg(y) where y € Z (K1), and, in fact,
y =0t —200*CG[p, 7] — 2myle,1]. (2.7)

Define a linear mapping Ag:7s*(K971) c Z(K9) by Ag(1) = dt —
— 2 36*@[g, 7] — 27alp, 7], so that Ry Ay(z) = dg(7). Finally, define
a bounded linear mapping

=gpimex (K1) —>75(K9) by

=o(7) = 0t — 2 86*Q[g, 7]. (2.8)

For ¢ € N (Al), =4 is an isomorphism.

Now let Zy (K9) — K¢ be the kernel of ;. Then every £ € Z,(K9) may
be written as £ = Ry for some y € Z(K?9). Clearly Ay is an injection of
7g* (K9-1) into Zy(K9), and, since By(Ag(me* (K271))) c (K1), we
have dim HZ(K) < dim {Z(K9)| Ay (mg* (K1)},

Lemma 2.7. dim {Z (K9)] Ag (ns* (K9-1))} = dim He(K).

Proof. Write Z¢(K) = mu(K9) X 7(K2) = mpy(K9) X 6 (7 (Ka-1)).
We define @g:mex(K21) —» mg(K9) by Op(t) = mwulp, ). We then
write swsx (K271) = WeX Vi where Wy, is the kernel of @, and where ¥V,
is a complementary finite dimensional subspace. On W, we have then
that Ay = =4. If we let Xy = Ay(Wy); then X is a closed subspace
with codim (Xg) in 7s* (K91) = dim V¢, and

dim {Z (K9)| Ay (7s* (Ke-1))} < dim He(K) + dim V.

In fact, it is easily seen that
dim {Z (K9)[Ag(mwe* (K91))} = dim HY(K) 4 dim Vg — dim Ap(Ve)
= dim He(K), provided that ¢ is sufficiently near to 0. This proves the
Lemma.

Thus we have a diagram

R
Z4(K) —>Z4(K)
s Rpodp
g+ (K1) == dg (K1)

and a mapping
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0:24 (K)[ns* (K1) o ZL(K)| Ry o Ag(max (K1) oty 71 (K)|do(Ka1);
ie. o:HI(E)™S H ¢(K). This is the continuity property of cohomology

which we were seeking.

2.4. The extension problem in cohomology for normed complexes

Let U be an open neighborhood of the origin in C™ and ¢t — @(t)
holomorphic mapping of U into A1. Suppose furthermore that the locus
D= {teU:4P(t) = 0} is an analytic set. The extension problem in
eohomology is the following: Given y € H?(K), to find a holomorphic
mapping I': U — K2 such that I'(0) = y and 6.1°(t) — 2[D(t), I'(£)] = 0
forte D.

For fixed ¢ € D, denote by Hf (K) the cohomology computed with the
differential operator 6 — 2[@({), ]. We summarize our results in the
following theorems:

Theorem 2.1. There are finitely many obstructions to the exiension
problem for y € H1(K). Furthermore, if a formal solution exists, then an
actual solution exists.

Theorem 2.2. The exlension problem for y € H1(K) can be solved if
dim HY}Y(K) 1s independent of t. If dim HIT'(K) is independent of t,
then dim HI(K) is independent of ¢ if, and only if, dim H, (K) is inde-
pendent of 1.

Finally, suppose that m —= 1 and D = U.

Theorem 2.3. In the notations of Theorem 1.1, H}(K) = Ej[J§ for
t + 0.

The proofs of Theorems 2.1 — 3 areimmediate from what we have
done; the continuity property of cohomology, together with the finitely
many obstructions, are sufficient to assure convergence in the formal
statement of Theorem 1.1.1t is perhaps worth noting that Lemma 2.7
includes, in particular, the usual statements about upper-semi-continuity
of cohomology, while Theorem 2.3 implies the invariance of the Euler
characteristic y;(K) =z(— 1)¢ dim H{(K). Indeed, for ¢ + 0, x:(K)

g=0
= > (—1)¢{dim Bf — dim J J} = > (—1)¢{dim H¢(K) — dim G{(K) —

7 7

— dim J@} = z (—1)2{dim H¢(K) — dim JUEN(K) — dim J 2 (K)}
q
= (—1)¢dim H¢(K) .

g
Finally, we have the following

Theorem 2.4. Let S c H1(K) be a subspace. Then the extension pro-
blem can be solved over D(8S) c D, and D(S) is a maximal such analytic
sef.
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2.5. The extension problem for exact sequences of graded Lie algebra
complexes

Let (4, d), (B, d), and (C, d) be graded Lie algebra complexes which

form an exact sequence 0 > 4 > B 3 €' —> 0. Thus 7 and i are bounded
mappings which commute with the harmonic theories. Clearly, 7 maps
integrable elements of B! into integrable elements in C1; we wish to
know when 7 maps the integrable elements of B onto those in C1.

Theorem 2.5. Assume H2(A) = 0. Then there ewist N(C1), N(BY),
and a differentiable mapping T:N(CY) - N(B) such that mo T
= Indentity and such that, for @ € N (C1) T (¢p) is integrable if, and only
tf, @ is infegrable.

Proof. We first make an assumption concerning the exact sequence
0 — 4 — B — C — 0 which will be satisfied in our applications.

Namely, we suppose that there exist bounded linear maps
weHom(Cf, BY) (i1 =1,2) and Qe Hom (€1, 42) which satisfy the
following: 7o w = Identity and d(wp) = Q(¢) + w(dg) for @e 01,
Thus the general element u in Bl such that 7t(y) = @ € Clis of the form
Y = w(@) + y where y € 41. We recall that y € Bl is semi-integrable if
d(y) — maly, p] = 0,

Lemma 2.8. There exist N (C) and N (m4%(41)) and a differentiable
mapping¢: N (C1) — N (ng* (A1) such that, forp € N (C1), yEN (ma*(41)),
@ (@) + y € Bl is semi-integrable if, and only if, y = t(g).

Proof. If we define a differentiable mapping u: C1 X 7w (A1) — 7q (B1)
by u(, y) =d(w(9) + y) — ma[w (¢) + 3, o (¢) + 7], then Dyu(0,0)=d.
The result then follows from the implicit function theorem.

Lemma 2.9. If ¢ is integrable, then Y =t(g)isgiven by y = d*Q([y +
To@), ¥+ o@)] - olp, gl — 2(9)).

Proof. z([y + w(g), » + 0(@)] — wlp, ¢] — ) = [, 9] —
—[p, ] =0; thus y € 7q*(A1). We must show that ¥ + w(g) is semi-
integrable if dop = [¢, ¢]. We have d(w(p) = w(p, ¢]) + 2(¢), and
thus d(y + (@) - 7aly + @ (@), ¥+ w(p)] = d(w(g)) + dd*@ i+
& w(ﬁh ¥+ wlp)]) — dd*G(d(w (@) — maly + w(g), ¥+ w(@)] = 0.
Q.E.D.

For pe N (C1), we set T(p) =@+ t(p) e BL

Lemma 2.10. Assume H2(4) = 0. Then there exists N’ (CHyc N(CY)
such that, for g € N'(C1), T (g) is integrable if, and only if, @ is.

Proof. Assume that ¢ is integrable; then d7(g) — dd*G[T (@),
T (¢)] =0 by Lemma 2.9. Thus A4 T(9) = na[ T (), T()] + d*dG[T (),
T(?’H But, since Hz(A) =0, JUH[T(@), T("P)] = RH(“[T(Q)’ T(@)D
= au[zT(p), 2T (p)] = nulp, @] =0. Set 4 = a*G[T (p), T(9)].
Then AT () = A. But A = 2d*G[dT (), T(9)] = 2a*G[[T (), T ()],
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T(p)] + 2d*G[4, T (p)). Thus | A = ¢|| T(p)| ]| 4]; since T'(0) =0,
the Lemma follows. Q.E.D.
This completes the proof of Theorem 2.5.

3. Some results on complex manifolds, fibre bundles, and deformations of
complex structures

3.1. Deformations of complex structures

Let X be a compact, complex manifold. Denote by «7(T) the sheaf
of germs of vector-valued (0, ¢) forms of clags C¥~2+% (in the sense of [8]),

and set 07 = H°(X, #7(T)). Then the graded vector space C = > C?
p=0

has a differential operator 9:C07 — C»+! and a bracket [,]:C? @ C? —
—» O'P*2 such that (1.1), (1.2), and (1.4) are satisfied.

We may define | | on C¢ by setting || | = | [x—g+«(k > 0) where
the latter norm was defined in [8], § 4. We setd = 9 on C and, by taking
a C Hermitian metric on X, we may define d* as the adjoint d of 3. The
harmonic theory for (C, d) is then taken as the harmonic theory relative
to the Hermitian metric on X; e. g., G is the usual Green’s operator. In
fact, using the potential-theoretic lemma in [8], § 4, it is easily seen that
(C, d) becomes a normed graded Lie algebra complex as prescribed in § 1.

Let Jo be the almost complex structure underlying the complex
structure on X.

Lemma 3.1. There is a one-to-one correspondence between almost-
complex structures J on X, which are sufficiently close to Jo,and elements
@ e C! which are near to 0. The integrability condition is

0P — [P, D] =0. (3.1)

Proof. An almost-complex structure J is given by a family of
“admissible frames” e¥ = (e1, ..., €n; €},...,¢,) where the ey are
complex tangent vectors and e} is the complex conjugate of ex. We write
e¥* = (e, e*); given e¥, the admissible frames are of the form (4e, Ae*)
where 4 € GL(n, C).

We let Py and @ be the projections, associated to Jo, onto the
vectors of type (1,0) and (0,1) respectively; P and @ fulfill similar
functions for J. Let z = (2, ..., 2") be local holomorphic coordinates
on X. If J is close to Jg, then Qg will be non-singular on Image (@), and
we may uniquely choose a J-admissible frame e¥ = (e(z), e*(z)) such

that Qo(e*) = (?2-1— 3,2—) Then

o2 _Sor? PP I . L 3.2
ez_?_ EE‘_’_I an eﬁ_ﬁ_ ! 338 ° ( . )
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From (3.2), it follows that @ — Z @Ea—z&- ® dzf is a tensor and defines
o, 8

an element of C1. (An intrinsic representation of @ is given in Lemma 3.3
below.)

Now the co-frame w¥ — (0, @*) where w = (w1, ..., @) which is
dual to e* is defined by (w®, eg) — 05 (¢, p =1, ..., n). It then follows
that w* = dzx 2 @3dz8,. The Frobenius indegrability condition is
written symbolically as do* = 0(mod w), which means that dw* should
be in the exterior ideal generated by wl, ..., ™ We have that

doy® = Z%dzr A dzb Z%dz‘f A dz8.
Since — dz* = > @2 d78 (mod w) and div = ®? (mod ), it follows that
dor =S (Zfﬁ déf) Nt —S o ‘Zfﬁ dz* A\ d2f (mod w);

this equation says, by definition, that dey = 9@ — [P, D](mod w). Since
this argument is reversible, the lemma follows. Q.E.D.

Remarks. (i) If J is integrable and, if £1, ..., £7 are local holomorphic
coordinates for J, then @ = {®;} is defined locally by

% < e
-3 Eor @9
Thus, in an intrinsic form, introducing holomorphic coordinates for J
is equivalent to solving locally the linear equation 8f — 2[D, £], for
a local vector-valued function & which gives a differentiable coordinate
for the C® structure on X.

(ii) If J is an almost-complex structure near to J o,andif f: X > X
is a diffeomorphism near the identity, then f transforms J into a new
almost-complex structure J o f+ near to Jo. If @ e C1 corresponds to .J,
we denote by f«(®) € C1 the element corresponding to J o fs.

Let now ¥ c 7y (C?) be the germ of an analytic set defined in§ 2.2.

Proposition A. There exists a deformation {FS ¥} of X such that
@~1(p) has the integrable almost-complex structure P(¢) given in
Lemma 2.2,

Following KurAN1sHI, we call an element ¢ € C1 which satisfies
d*p = 0 extremal. If ¢ € 7p(C), then P(g) is clearly extremal.

Proposition B. (Kuranis1). Let @ € N (C1). Then there exists a diffeo-
morphism f: X — X such that f. (p) is extremal. If furthermore
® = @(s) depends differentiably on s, then we may assume that f(s)
depends differentiably on s.
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From this, we have

Proposition 3.1. The family {¥" > ¥} is universal for differentiable
families of complex structures.

w

Proof. Let {#” — D} be a differentiable family (cf. [7]) such that
X4 = w1(d) (d € D) has the almost complex structure represented by
@ (d) e C1. Then @(d) is differentiable in d, and we may find diffeo-
morphisms f(d) such that f(d)-@(d) is extremal. But f(d)«®D(d) is
integrable, hence semi-integrable, and thus, by Lemma 2.1, f(d)«@(d)
= P(p(d)) where @(d) € mz(C) and is differentiable in de D. If we
define @: D — ¥V by @(d) = ¢(d), then we may define

F:¥' ¥ byFd ) =(Gd),fdz) (deD, zeX),

v oo
G:D >V

and this proves the universality of {#~ L Vi
Finally, we also need

Proposition C. If {¥”' 5 D} is a complex analytic deformation, then
we may choose
F:9" =¥
v
G:D -V
to be a complex analytic mapping.
Propositions 4, B, and C are consequences of the results of KURANISHI
given in his paper in this volume.

3.2. Deformations of holomorphic fibre bundles

Let X be a compact complex manifold, @ a complex Lie group, and
@ — P — X a holomorphic principal fibre bundle. We consider the funda-
mental bundle sequence (see [I] and [11])

0+>L—->Q—->T-0. (3.4)
The sheaves.?, 2, 7 are sheaves of Lie algebrasand 0 +% -2 -9 —0

is an exact sequence of sheaves of Lie algebras. Weset A7 = HO(X, «/¢(L)),

B? = HO(X, «9(Q)). Then, if 4 =2Aﬁ‘ and B = ZBG, and if d
. . g=0 g=0

=0: 49—+ A9l and d = d: B1— Batl (A,d) and (B, d) become graded

Lie algebra complexes. In fact, there are natural homomorphisms of

graded Lie algebras ¢: A — B and @ : B — C such that

0-45B5C>0 (3.5)

is an exact sequence of complexes.

Conference on Complex Analysis 9
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Now let J, J' be almost-complex structures on the differentiable
manifolds P, X respectively.

Definition 3.1. The pair (/, J') makes G — P — X an almost-complex
fibre bundle if the following three conditions are satisfied: (1) J is G-
invariant where @ acts on P on the right; (ii) the almost-complex
structure on P/ induced by J is J' (i. e. svd — J'7+); and (iii) J re-
stricted to a fibre gives the integrable almost-complex structure on @
(this makes sense by (i) and since @ is a complex Lie group).

Let (Jo,Jg) be the given integrable almost-complex fibre bundle
structure on @ — P —> X.

Lemma 3.2. (i) There is a one-to-one correspondence between almost-
complex fibre bundle structures (J, J ') on P, which are sufficiently close
to (Jo, J,), and elements p € Bl which are sufficiently near 0 and which
satisfy 7(y) = @ where @ corresponds to J' using Lemma 3.1.

(ii) J is integrable if, and only if,

oy — [y, 9] =0. (3.6)

Proof. Using the above notation and Lemma 3.1, J is given by an
element y € D! = I'y,(P, Hom (T (P)*, T(P))). By (i) in Definition 3.1,
¥ € o (P, Hom (T(P)¥/G, T(P)*/@)) = I's(X, Hom (Q*, Q)). By (iii)
in the Definition, y will annihilate vertical vectors, and thus ype
€ I'o(X, Hom (Q*/L*, Q)) ~ B! Finally, from the proof of Lemma 3.1,
it is clear that (ii) implies that 7t(y) = D. By reversing this argument,
we get (i) in Lemma 3.2.

Also, (ii) in the Lemma follows from (i1) in Lemma 3.1 by using the
embedding B! ¢ D! and the fact (mentioned above) that @ and [, ] on
B are induced from these operations on D. Q.E.D.

By speaking of (0, ¢) forms with values in Q of class C¥—2+ %, we may,

just as above, make (B, d) (where B — Z B? and d = 9) into a graded
p=0

Lie algebra complex in the sense of § 1. Furthermore, the same remarks
which were made about (C, d) and deformations of complex structure
now make sense and are true for (B, d) and deformations of bundle
structure. For example, where we spoke above of diffeomorphisms of X,
we must now speak of bundle diffeomorphisms; one such is given by a
diffeomorphism f: P - P such that f(pg) =f(p)g (pe P,ge@). In
particular, we have now analogues of Propositions 4, B, €, and 3.1; we
shall assume that the reader has translated these into the language of
complex fibre bundles, and we shall refer to them as Propositions 4’,
B’, C" and 3.1 respectively. The proofs of Propositions 4°, B’, and C” are
similar to those of Propositions 4, B, and C; as above, Proposition 3.1’
follows from the other three.
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3.3. Perturbation of differential operators

Let Xy be a fixed (' manifold, @ a complex Lie group, and let
@—+P—->X, @—>P — X" be two “close” (cf. §3.2) complex fibre
bundle structures on a fixed C> principal bundle @ — Py — X,. If
o: G— GL(E) is a finite-dimensional holomorphic linear representation
of @, then we may construct two holomorphic vector bundles: £ —> E
= PXgl — X,and B — E’ = P'XgE — X'. These are both the same
C= bundle E — Ey— Xy. If &9(E) is the sheaf of 0 cross-sections of
E — Eo — X, then there are differential operators @ and &’ on «°(E)
corresponding to the two complex structures involved. From Lemma 3.2,
we know that G — P’ — X' is uniquely prescribed from G — P — K
by an element € Bl which satisfies (3.6). We want to find an expression
for @ in terms of 0 and .

Let U cc R%» be a contractible open set, and let JJ, J' be two inte-
grable almost-complex structures on U. Let z = (z1,...,2,) and &
= (€1, ..., &a) be holomorphic coordinates for J, J' respectively. Define a

section 85 of Hom (T, T") by 0¢ = z % @ 0&, where 9 is taken with
a=1 %

respect to J. Assume that 6£ is non-singular, i. e. J' is close to J. Define
now a section 9¢ of Hom (T*, T') by 0 = > % @ 0%4. Then the
ore=] o

element @ e (1 (relative to J) which defines J' from J is given by
0E=0tod  (see(3.3)). (3.7)

We now write J' =J,, T' = Tp, T'* = T, and 9 = 3. Let
P, @ be the projections of T+ on T, T* respectively; and let Py, Q4 be
the projections of T# on T, T,. Now, for a function f and a vector »,

<3,,,f, vy = {df, @»(v)); thus, we seek to find @, in terms of @, P, and @.

Lemma 3.3. Ty = (I — @) T*.

Proof. A vectorvliesin T; if, and only if, {(déx, v) =0 (x = 1, ..., »).
But (dfx, V) = {0y + 0fx, V) = (0kq, (I + D)) (by (3.7)). Since
Dod =0, T, = (I — P)T*. Q. E.D.

We now determine Pg and @, in a purely algebraic fashion. On
a 2n-dimensional real vector space V, let J; and J3 be complex structures
(J3 = — I = J3) where J; is close to J;. Write:

Uy @ Wi; Ji-decomposition where W] = U,

= Oz { Us @ Wsa; Ja-decomposition where W, = Us.

Let P1, @, and P3, Qs be the projection operators associated to J; and
J3 respectively, and suppose that we have T € Hom (W, U;) such that
Wa= (I — T)W;. (Lemma 3.3). Letting now * be conjugation with

9#
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respect to J1, we then have: Us = (I — T*) Uy, Uy = (I + T*)Us,
and Wy = (I 4 T)Ws. Since J; is close to J1, (I — T T*) is invertible,
and we set 8 = (I — T T*)-1. Also, we define Sy = T* 08y = S; o T'*
(using (I — A)1 =1+ A2 4 A2 | ... for a linear transformation 4).
Then, since I = (I — TT*) 8 = (I — T* + T* — TT*) §
= (I —T% 81+ (I — T)Sz, we get:
Pi=(I—T¥8:P1+{I—-T)8: P,
Q]_ = {I e T)SI W]_ + (I e T*}S;Qi.
Lemma 3.4, Po = (I — T*)51 P1 + (I — T*)S; @1 and
Qe=I—T)Se P+ (I—T)S; Q1.
Proof. Let V € U;i. Then, by (3.8),
v = (I — T*) Ay P1(v) + (I — T) 8 Py (v)

(3-8)

and, since
(I —T*)S1 P1(v)eUz and (I — T)Se Pi(v)e Wa,

we have verified the formula for Ps on U;. The other verifications are

similar. Q. E. D.
Now, setting 8 = (I + T') @2, 8" € Hom (Wg, W;) and establishes a
vector space isomorphism. We have that

8 =830 P14 8}0Q (3.9)

by Lemma 4.4 and since T2 = 0. Similarly, 8'* € Hom (Usz, U;) and is
an isomorphism. Combining, we get an isomorphism

S: 42U, @AW, - A2U, D M W,.

Applying now this result to U cc R2", we get an isomorphism
Se: AP 1 — %% where o/%4? is the sheaf of C» (p, q) forms relative
to Jg.

Lemma 3.5. For w € #7:2, 3,(Sp0) = 8400 — 2[D, w)).

Remark. As in (3], [D, w] =dw A D + (— 1)PHd(w A\ D) where
A is the contraction operation given by equation (2.7) in [3].

Proof. Since 92 = 0 = 9%, d4d = — do,, and, by Proposition 4.5
in [3], we may prove Lemma 3.5 when @ = f is a function. In this case,
as operators on T#, Sq,(af — 2[®D, f]) = (of — df A D)o Sy On the
other hand, 94(Sof) = 9¢f = df o Qp = (by Lemma 3. 4) dfo (I — D)o
0820 Py + (I —@)oSjoQ1) =dfo(I — D)o (Sz0 Py + 870 Q1) =
(@f + 9f) o (I — D)o Se(by (4.9)) = (3f — 3f o D) 0 Sy (since 0f o P =
0 =3fo8s) = (3f — df A D)o8e = Sa(3f — 2[P, f)). Q. E.D.

Return now to the situation at the beginning of this section. We let
/¢ (E) be the sheaf of germs of C¥~7+%(0, ¢) forms with values in E —
—> E — X and #/%(E’) the sheaf of germs of C*¥-¢+2(0, )’ forms (i. e. (0, q)
forms relative to the J' structure) with values in £ -~ E' —» X',
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Theorem 3.1. There exists a linear isomorphism of sheaves S,: #9(E)—

—> 9(E’) which is bounded in | | and which has the property: For a
germ 7 in 9(E),

'Sy (n) = Se(dn — 2[¥, 7). (3.10)

Proof. The proof is an easy consequence of Lemma 3.5 together with
the standard remarks to the effect that: (i) bundle-valued forms on X’
are given by ordinary vector-valued forms on P’ which satisfy an equi-
variance condition, and (i) the operator @ on bundle-valued forms on X’
corresponds to &' on ordinary forms on P’. Q. E. D.

3.4. Complexes over analytic sets and the eohomology of fibered analytie
spaces

Let G — P — X be a holomorphic principal bundle, let ¥ (t) € B1{t},
and suppose that the equation AV (t) = 0 defines a germ Dy = D of an
analytic set in C™; by § 3.2, we then get a deformation {# — ¥~ — D}
of @ - P — X.Let g: G — GL(¥) be a holomorphic representation and
consider the holomorphic vector bundle E — E# — #xoE — ¥". We
wish to describe the groups H?(¥", &#) in terms of differential forms.

With no loss of generality we may assume that D is Stein. Further-
more, we may choose a differentiable isomorphism % : ¥ 3 X x D such
that: (i) h|w=1(0) is holomorphic; and (ii) if £ — E — X x D is the
trivial extension of £ —+ E = PX ¢l — X, thenh V(B — E - X)joo £ —
— E¥F¥ 7",

Consider now the sheaf «72(E) of germs of C= (0, ¢) forms with values
in E. Over an open set U; c X, the sections of this sheaf form a Fréchét
space 44(E) (U;) by taking the family of norms to be {| |/} where
k=0,1,... and ¥, runs over a countable family of compact subsets of
U, which generate the topology of U;. We now define the sheaves

#1(E) é) Op over V; this definition will be done via k. If U; ¢ X and

Us; c D, then the sections of «/4(E) (;) Op over h~1(U; x Uy) are given
by the holomorphic functions @ : Uy — A9(E) (U;). Thus we may write

@z, t) = Z fu(t) gu(x) where f,(f) is holomorphic in Uz, gu(x) €

€ AI(E) Ul) and, for compa.ct sets Ky c Uy, Kz ¢ Uy and for an
integer k, > | fu(t)] | @u() |¢5% converges uniformly for ¢ € K.

We deﬁ‘ne D: «1(E) ® Op— s£9+1(E) ® Op by
Dg(z,t) = dp(z, 1) — 2[(0), (=, 1)) (3.11)

From our definition, it is clear that Dg(x, t) is a germ of section of
#9+1(E) & 0p; by the remark at the end of §3.3, D2 = 0.
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Lemma 3.6. D satisfies a Poincaré lemma.

Proof. Let ¢(x, 1) be a section of &¢(E) ® Op over U; x Us which
satisfies Do (z, t) = 0.

Now we shall use the definition of deformation of complex structure
given in [8]. Namely, there exists open neighborhoods U el
and a bi-C® mapping ky.: U’ — P'x Uy (U’ = Ui X U,) where P’ c C»
is a polycylinder, and such that hy- locally trivializes the deformation in
the following sense: The transform of D by hy- is the operator @ in the
holomorphic coordinates z’ in P’. This follows from the Newlander-
Nirenberg theorem [10] together with Theorem 3.1. Also @ (=, t) is trans-
formed into ¢ (', f) (z’ € P, t € U,) where g (2, #) is still holomorphic in
t. From this point of view, the D-Poincaré lemma is essentially the
0-Poincaré lemma with holomorphic dependence on ¢. As is well-known,
this is permissible, Q.E.D.

It is perhaps worth remarking that, conversely, the D-Poincaré
lemma implies the Newlander-Nirenberg theorem.

Theorem 3.2. (i) There exists an injection JiEF 5 Z0(E) é) Op such
that:
~ D D -~ D
0—>6%* > AYE)R®Op—>-- > AUE) R Op > --- (3.12)

s an exact sequence of sheaves over V.

(i) He(V, #9(E)Q0p)=0 (g=1); and

(iii) The D-cohomology of the complex ... —TI'(¥", #2(E) & 0Op) 2

I'(7, ste1(E) @CDD} —> <"~ represents the sheaf cohomology H* (¥, &#).
Proof. (iii) follows from (i) and (ii) by the standard sheaf argument

([61). By Lemma 3.6, (3.12) is exact except perhaps at &# 5 A°(E) ®

é() 0p 2 Z1(E) QQ) Up; exactness here follows from (3.10). Finally, it has

been pointed out to me by L. BungarT that (ii) follows from a suitable

generalization, given in BUNGART's thesis (Princeton University, 1962),

of the Kiinneth formula of GROTHENDIECK ([5]). We use here that
H?(X, #9(E)) = 0=H?(D,0p) (p=1). Q.E.D.

4. The extension problem for fibered complex-analytic varieties

4.1. The extension problem in eohomology
Let X ¢ ¥ be agerm of an embedding such that ¥” may be considered

as a deformation {¥~ EH‘.’)} of the compact, complex manifold X. Let
E# — ¥ be a holomorphic vector bundle and E — E #| X. By Theo-
rems 3.3 and 3.2, the extension problem for H (X, &) fits into the formal
framework built in §§ 1 and 2. Our main results are then the following :
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Theorem 4.1. There are only finitely many obsiructions to extending
a class y e HY(X, &) to H1(¥", 7). Furthermore, if a formal extension
exists, then an actual one does also.

Theorem 4.2. Let 8 ¢ H4(X, &) be a subspace. Then the exiension
problem for S can be solved over D(S) c D and D(S) is a maximal such
analytic set.

Set X; = @~1(t) (te D) and E; = E¥| X,.

Theorem 4.3. The extension problem for H1(X, &) can be solved if dim
He* (X, &) is independent of t. If dim HIt1(X,, &) is independent of ¢,
then dim H4(X;, &) s locally constant if, and only if, dim H?1(X;, &)
15 locally constant.

Suppose that dim D = 1.

Theorem 4.4. For t + 0, H1(X;, &) is isomorphic to {extendable
classes in H1(X, &)}/{Jump classes in H1(X, &)}.

4.2. The extension problem for analytic fibre bundles

Let X ¢ ¥ be as above in 4.1, and suppose that G -+ P — X is a
holomorphic principal bundle. We wish to find a principal bundle
G—> 2P — ¥ suchthat Z| X = P.

From the fundamental bundle sequence 0 - L - Q — T — 0 (§1)
we have seen (§ 3.2) that we get an exact sequence of graded Lie algebra
complexes.

D d S5 B S50, (4.1)

The deformation {¥~ > D} may, by §3.1, be given by an element
@ (t) e C1{t}. By Lemma 3.2, the extension problem for ¢ —~ P — X is
the same as the extension problem for exact sequences of graded Lie
algebra complexes considered in § 2.5. In order to apply the result there
and in § 3.2, we must first settle two technical points: (i) We must assure
that the mappings in (4.1) may be made compatible with harmonic
theories on 4, B, and C; and (ii) We must produce the maps w € Hom (C?,
Bi)(i = 1, 2) and 2 € Hom (C1, A2) which satisfy 7 o w = Identity and
d(wg) = 2(p) + w(dg)(p e CY).

Now (i) is easily arranged by choosing an Hermitian metric in B which
induces a C= splitting of (4.1) so that, foreachz € X, Qz = L; @ T;.In
this case, ¢ and x clearly commute with d* (= adjoint of @), hence with [ ],
and finally with the Green’s operators G.

We may thus deal with (ii).

For a holomorphic vector bundle £ — E — X, we set AY(E)=
= HY(X, «1(E)); H1(A(E)) is the ¢'* Dolbeault cohomology group. Let

0—>E'-> E5 E” — 0 be an exact sequence of analytic vector bundles
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over X. From the exact sequences 0 — A9(E’) - 49(E) - A2(E") — 0,
we get the exact cohomology sequence —>H?(A4(E)) - He(A (E")) hir

% Hen (4 (E')) —. Consider the bundle Hom (E”, E’). There is a natural
pairing o: A?(Hom (E", E')) ¥ A1(E"') — Ap*4(E’) which satisfies

0(on)=0fom+ (—1)Péody (EcA?(Hom(E",E'), e A9(E")). (4.2)

Lemma 4.1. There exists an element 2 € H'(A4 (Hom (E", E')) such

that: (i) For any n € H1(A(E")), Q0 ne HI*1(A(E")):
(i) 09(n) =QRoy.

Proof. Let I be the identity in HO(A(E", E")) and choose o e
A° (Hom (E”, E))suchthat o w = I.Then Q = 9w € Al(Hom (E”, E'))
and it is easily checked that it satisfies the required conditions. Q.E.D.

In the case of the fundamental sequence 0 — L — Q — T — 0, the
element w € I',, (X, Hom (T, T(P)/@)) geometrically gives a C* connec-
tion of type (1,0) in & — P — X. The tensor 2 is a (1,1) form with
values in L, and gives the curvature of w. Clearly w and Q satisfy the
requirements of (ii) above.

Theorem 4.5. The extension problem for P — X can be solved if
HY(X, %) = 0. If H\(X, %) =0, then any solution to the extension
problem is unigue.

Proof. We need only prove uniqueness. Suppose that we have two
analytic principal bundles @ - % — ¥", @ - # — ¥~ which are both
extensions of G — P — X. Let ¢:G@ — GL(E) be any holomorphic
linear representation, and form the associated bundles F — E# v,
E — E* — V. The vector bundle Hom (E*, E¥) is an extension to ¥~
of Hom (E, E) = L over X =~ @~1(0). Since H1(X,.#) = 0, there exists,
by Theorem 4.1, an extension I'e H (¥, Hom (&#, £#)) of any class
y € HY(X, Hom (&, &)). Taking y = identity, it follows that I" establishes

a bundle equivalence between E# and E¥. Q.E.D.

5. Some examples and applications

5.1. The extension problem for the groups H? (X, 2¢)

Let {#~ = D} be a deformation of X and let £¢ be the sheaf of germs
of holomorphic (g, 0) forms on X. We set h?¢ = dim H?(X, £9) and
also h}? = dim H?(X,, ) (¢t € D). Finally, we let b, = dim H7(X, C).

Proposition 5.1. If, for some r, > h?:¢ < b,, then the extension

ptg=r
problem can be solved for all the groups H?(X, 29) (p + q =r). In
particular, if X is Kahler, then the extension problem can be solved for
the groups H? (X, £4).

38 SELECTED WORKS WITH COMMENTARY



The Extension Problem for Compact Submanifolds 137

Proof. We recall the inequality of FROLICHER: > h?:¢ = b,. From
ptag=r
this, using upper semi-continuity, it follows that A?:? is locally a con-
stant function of . We complete the proof by giving a proof of the in-
equality > h?-4 = by.
pta=r
If A7 ¢ is the vector space of global C=(p, q) forms on X, then

A = A7-¢ forms a double complex with differential operators d, 9, 9
»q 35 = =
satisfying d = 0 +4 @ and 3@ -+ @0 = 0. By [4], § 4.8, there is a spectral
sequence {EP7} such that E_ is associated to H*(4) ~ H*(X, C)
(de Rham), and such that E?? = H5(A? ¢) > H?(X, £29) (Theorem of
DovrseavvrT). But then clearly z dim E?¢ = dim H7(X,C). Q.E.D.
ptg=r
5.2. An example of a non-extendible abelian differential

Let F be the complex Lie group of complex matrices

1l 21 23
f=10 1 23] ;let I'c F be the discrete subgroup
0 0 1
1 91 93
of matrices y = | 0 1 y2 | where the y; are
001

Gaussian integers. The manifold X = F/[" is a compact, complex mani-
fold which was first discussed by Iwasawa. A basis for the abelian diffe-
rentials on X is given by the right-invariant holomorphic Maurer-Cartan

forms on X. These are: wy = dz1, wz = dzs, wg = — zadz; }+ dzz. The
dual holomorphic vector fields are:
ad 7] a a
91:6_;,1 +22E’92=?z;’83:a_z3‘

The element
. 9 T
9 =0 Qw2 (= 25 O d%2)

gives a non-zero element of H!(X, ), and [p, ¢] = 0. Thus @ (t) = lp
gives a l-parameter family {#~ — D} of deformations of X.

Consider the abelian differential w = w3 = — zadz; + dzze HO (X, Q1).
We have: [p,w] =do A ¢ —d(w A ) =00 A\ ¢ = (w1 A wz) A
A O RB: = w1 @bz + 0in H1(X, 21). Thus the extension problem
for w cannot be solved over {#~ — D}.

5.3. Stability of automorphisms under deformations

Let X be as above and let I” be the identity component of the com-
plex Lie group of analytic automorphisms of X. Then I" acts analytically
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in the bundle C* — T — X, and there are induced holomorphic represen-
tations p?: I' - GL(H4(X, @)).
Suppose that we have a deformation of X,{¥” — D}, given by & (¢)

= gu(t) € C1{t}, and assume that the classes @} span H1(X, @)
pe=1

m
(91(f) = > @ita). Let I'; be the identity component of the analytic
a=1

automorphism group of X,(t e D).
Proposition 5.2. For ¢ + 0, I'; C Ker(pl).

Remark. This Theorem shows how we may think of automorphisms
as being “exceptional phenomena”.

Proof. Let g; be the complex Lie algebra of I';:go = g. The infinitesi-
mal representation of I" on H!(X, @) is given by the bracket [,]; i.e. for
y €8, 9 € H1(X, 0), we have that do! () (@) = [y, ¢]. Thus the subspace
of H%(X, @) for which the extension problem can be solved is a subspace
of {Ker dp!} C g. The theorem now follows.  Q.E.D.

Corollary. The “general” deformation of a simply-connected compact
homogeneous complex manifold is non-homogeneous.

5.4. Extension of holomorphic mappings

Let X be a compact, complex manifold, let G be a Grassmann variety,
and let f: X — G be a holomorphic mapping. Let @ — B — G be the
universal principal bundle over G and let £ — F — G be the universal
vector bundle. Set P = f-1(B), E=f-1(F). Let 0 > L -Q - T —0
be the fundamental bundle sequence of @ — P — X.

Theorem 5.1. (i) There exists a maximal germ of deformation

{*s 5 Dy} of X for which there is a holomorphic mapping F:¥; — G
such that F| w=1(0) = {.

(ii) If f is an embedding, then F is an embedding on fibres.

(ii) {7 — Dy} coincides with Kuranishi’s family if

H(X, %) =0 = H'(X, ).

Proof. Giving f:X — G is equivalent to giving an analytic vector
bundle £ — E — X such that the sections H®(X, &) generate each fibre
Ez(x € X). Thus, in order to extend f to a deformation {#"— D} of X,
we must solve the extension problems for £ — E — X and H°(X, E)
over ¥". We first solve the extension problem for £ - E > X in a
maximal way, and then we solve the extension problem for H9(X, &) in
a maximal way. The rest is clear. Q.E.D.
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5.5. The direet image theorem for fibered analytic spaces

Let ¥ be a complex space and let @:%” — D be a proper holomorphic
mapping of maximal rank whose fibres are connected and non-singular.
Let E¥ >V be a holomorphic vector bundle; set X; = w=1(¢) and
E; = E¥#| X forteD.

Proposition 5.3. The sets Do¥ = {te D|dim H¢(X;, &) = k} are
analytic subsets of D.

In fact, from §§2 and 3 we have the following more general result,
which is still a special case of Gravert’s Theorem [Ein Theorem der
analytischen Garbentheorie und die Modulridume komplexer Strulturen.
Inst. Hautes Etudes Seci., Publ. Math 5, 1— 64 (1960)].

Proposition 5.4. The direct image sheaves %4 (w, &¥) are coherent
analytic sheaves over D,

Remark. In §1.3 we have exhibited explicitly a finite set of genera-
tors and relations for each stalk

R(@, EH#) = lim HI (01 (U),E%| 0-1(0)).
Ua{t}

5.6. On the local triviality of certain analytic fibre spaces

We give another application which generalizes a theorem of Kopaira-
SPENCER. Let ¥, D be compact, complex manifolds and w:%" — D a
proper holomorphic mapping of maximal rank. Set X; = w~1(t) (te D)
and suppose that H1(X,, ;) = 0 for all € D. Suppose furthermore that,
for some #p, X¢, is bi-holomorphically equivalent to a rational homo-
geneous manifold G/U where G and U are suitable complex algebraic Lie
groups. (Then automatically H!(X,, &) = 0.)

Theorem 5.2. ¥~ is a locally trivial fibre bundle over D with typical
fibre GlU. In fact, G acts on ¥~ as a complex Lie group of bi-holomorphic
transformations and D = ¥7|@.

Remark. The assumption H! (X;, 6;) = 0is necessary, as the family of
Hirzebruch surfaces shows (cf. § 5.8 below).

Proof. Since dim H!(X;, @;) = 0, we may locally solve the extension
problem for HO(X;,, ©,) =~ g where g is the complex Lie algebra of G.
But then it is easy to see that there exists on ¥~ a complex Lie algebra,
isomorphic to g, of vertical holomorphic vector fields. From this, it
follows that G acts on ¥~ effectively as a group of bi-regular transforma-
tions. Then we may form the holomorphic vector bundle T'(¥7)/G over D,
and there is an onto bundle mapping T(¥)/G —>T(D)—>0 (x=a,).
Thus we get over D an exact sequence of holomorphic vector bundles
0—>L->T(¥)/G@—TD)—0, and we let 0 ¥ - = -2 — 0 be
the corresponding exact sheaf sequence. It is easy to see that, since
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H' (X, ©;) = 0, this exact sheaf sequence is locally split. Thus, given
locally » independent holomorphic vector fields o7, ..., o, on D, there
exist » independent G-invariant holomorphic vector fields y;, ..., y, on
¥ such that c'}')_ (1) = 05. But then these holomorphic vector fields may
be used to give a local holomorphic cross-section ¢:D — ¥ passing
through any point v € #”. The Theorem now follows.

5.7. An interpretation of the integrability equation 1.6

Let (4, d) be a graded Lie algebra complex and let ¢(f) = > gui# e

€ AL1{t} satisfy et

de(t) —[p(), p()] =0. (5.1)
If welet () = % € A1[¢], then by differentiating (5.1) we get

dy(t) —2[(0), (1)) =0. (5.2)

Since y(0) = @1 = ?}hoeﬂlm), we have

Proposition 5.5. If @; e H1(A) is tangent to an integrable family
given by ¢ (t) € A1 {¢}, then ¢ is extendible along this family.

Remark. This Proposition is rather obvious geometrically. Moreover,
it is clear that (in case @ (f) converges), for each fixed ¢, p(to) € H' ) (A)
is tangent to an integrable family based at ¢ (fo). Observe also that the
converse to Proposition 5.5 is true.

5.8. Automorphisms and jumping of structure
Our next application concerns the following remark of Mumford : Let

> D} be an algebraic family of algebraic varieties and X a variety
such that X; ~ X for ¢ + 0 but Xo + X (this is a so-called jumping of
structure). Then dim H (X, Gg) = 1.

By the theory of § 1 we can show explicitly where the holomorphic
vector field on X comes from :

Proposition 5.6. Let {¥~ =t D} be an analytic family of compact, com-
plex manifolds where there is a jumping of structure. Then dim Ht (X, )
= dim HY(X;, 0y) + 1(i=0,1;¢ + 0). More precisely, there exists
a jump class y € H!(Xg, @) which obstructs an element 6 € H° (Xo, @y).

Proof. For simplicity, assume dim D = 1. We record two obvious
remarks: (i) if a germ of deformation ¥~ 5 D is trivial, then the tangent

To € H1(Xy, Oy) is zero; (ii) if a germ of deformation ¥~ > Dis not trivial,
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then, for any neighborhood U of 0 € D, there exists a { € U such that
¢ + 0in H1(X,, 6,).

The family {#" = D} is given by a holomorphic function ¢ (f) € 41 {t}

satisfying de (f) — [@(t), ¢ ()] = 0. By §5.7 above, the elements y; = Q%t@

give a family of classes in H1(X,, ;) which are tangent at X, to the

deformation {#" = D}. The germ of deformation which {¥" = D} defines
is not trivial at 0 but is trivial at any ¢ + 0. Thus ¢ = o is a non-zero
class in H!(Xy, @) but y; defines the zero class in H (X, @) for ¢ =+ 0.
Thus the element p € H1(Xy, @) is a jump class (i e. it drops off into a
boundary for ¢ + 0), and by § 1 it obstructs an element 6 € HO (X, O).
Q.E.D.

Remark. It is perhaps interesting to compare this with Mumford’s
argument in the algebraic case. Let D be the affine line and #" = X x D.

Since {¥~ 2 D} (@ is now a regular map) is a jumping of structure, there
is a meromorphic mapping F:# — ¥ defined except on X x {0}. Now
d/ot is a regular vector field on ¥ and so F_(d/df) has at worst a finite
pole on Xo = @~1(0). Thus, for some smallest integer m, im F_(d/at) is
a regular vector field 6 on #7; we shall show that 6 is tangent to Xo.

F
W —
Now, since | o
D - D

commutes, f restricted to each fibre X; has constant projection on D.
If w, (6) + 0 on Xy, then the local 1-parameter group generated by 0
would move X biregularly onto X, for some #, + 0. However, this is
impossible by assumption. Q.E.D.
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