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1. Algebraic Preliminaries
ita dual

#
et V be & real vector space of dimension n and W

space, An element x €Y is called a vector and an alement x' €V

a covector., V and V* have a "pairing"
{1} (x, x"} , x€v, x €v,

]
whieh ig a real number and is linear in each of the arguments =, X .

Over V there is the exterior or Grassmann algebrs, which is a

graded algebra:
2) av) = 0wy @Aty ®... @A%y) , AOw)=m, M)y =v.

An element § € ﬁp(V) iz called a multivector of degree p . Multiplica-

tion in AlV) , to be dencted by A , is mssociative, distributive and
satisfies the relation
n € AY(v) .

(3} €= (-1 . g, € €AP(W)

The multivector E is called degomposable, if it can be written

(’4) szln”'ﬁxp’xiev'

E %0, it and only 1f Xys reva xp are linearly independent, in which

case £ defines the p—dimensional subspace W of V , spanned by the
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x's . The decomposable multivector £ is a homogenecus ceordinate of
W, c¢alled its Grassmann coordinate:; it iz defined up to a non-zero
factor.

In the seme way there is over v* the exterior algesbra

(5) AV = A0 B AN @ L @ Ayt

T

A%y =m , ALyt = vt

#*
An element of AP(V } 1is called a form of degree 3 or simply a p-form
*
If a € A(V") |, we denote by ﬂDﬂ € 0P(v") ita component in  AP{v¥)

be a bage of V and e'k

Let g its dual base, so that

{6) {e,

1=i, k%n

Then an element £ E AP(V) can he written

(7 =Ly, 7p
} £ my Ta B Ao agy

- l p
and an element a S AP(V*) as

1 i

(8) - L T . 1 t°p

1 [+
In (7) (8 il"'lp
- .-

T) and {8) the coefficients a and bil"'ip are supposed

to be anti-symmetric in any two of their indices, so that they are well-

defined, he "pairing" of AP{y) ana AP(V*) s given by
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(9) €, a0 = Fal Ty : elx): ALY) = A(¥)

It is independent of cholice of base.

A pairing of A(V) and A(V') ie then defined by @istributivity
{12} elx)e=x 42 E, E&AV),

and by the requirement that

py the relation

(10) (¢.a) =0, EEAP(V) |, o€ a3V, p#a.
{13} (g, ilx)at = le{x)g, o , £€Al¥), o€ A R
Tach of the exterior algebras A{V) and AV®Y  is a graded alge-
bra. We define : 1"
the "mdjoint operator of ef{x) " :

o 2 P :

11 = {-1 , for e Ar{V) .
! {11) §= (-1 g -. £(x); AVY) > A(V)
: An endomorphism f of the additive structure of A(V) is called a is defined. i(x} is an anti-derivation of degree ~1 ; it is called

derivetion if it szatisfies the conditions: the interlor product,

—

(1) ff=TE,

(2) £lg am) =208 an+ £, L(n) - Exereise. If £ and o ave given by (7) and (8) respectively and ir

Such an endomorphism is called an snti-derivation if:
{l) fg = ”?é L]
(2} f(E A T"|}

x=zxiei,

Il

£{g) 2 n+ T a £in) . ] .
_ give the expressions of e(x)€ and ilx)a in terms of the basis.
It iz said to be of degree & if

We will consider ideals in A{V*) . A subring T C AlVY) is

+2 -

FAPY C AP called an jdeal if:
Given x€ V , we define the exterior product ;
Z
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{1} « € I implies that its homogeneous corponents H:}a €I,

0% p%n

(2) €1 implies « p BRE€I , ¥B&a(W') . It follows

that B, eE I, ¥BE M),
A minimal set of gemerstors of I can be deseribed by the following
*
consideration: Given an ideal I C A(V ) , all the x €V such that

1MxITCI {i.e., i{x}s ET , %o €I ) form a subspace A; TV , <o

L
be called the associated gpace of I . Its annihilator AI cv* , de-

»
fined to consist of all x €V such that
{x, x'} =0,

’V‘xeAI 3

will be called the dual associated space of I . Then we have:

Theorem., As an ideal, I has a system of generators consisting

of the elements of A{AJI') .

1
Proof, Let A, be spanned by Cpppr *ts By o zo that AI is

I

spanned by e'l, vov, o' T L et {Gi} be a set of generators of I .

Without loss of generality we assume that each Gy {of degree =1 ) is

homogeneous, Suppose Gl be linear, i.e.,
= 0 1
Gl—gaie , I=i=n.

By hypothesis we have
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Gy = 88" "+ ...+ are‘rEAJI— .

in other words, the generators of degree 1 telong to AJ'

1
Suppose that the generators of degree & k  belong to A(Al) Let
T/ -
¢ be a generator of degree kK + 1 . We put
4 ¥ Nl
G =G -¢ [ (i(er-l-l)GJ -

The second term balongs t i i
gs to I (szince S GAI and I is an ideai).

Morecver, it is generated by elements of degree %k , On the other hand

i(er+l,‘l being an anti-derivation, we have

y TH1

i(eﬁ_l){}' = +¢ I (i(eﬁ_l)eﬁ) =0,

This pr ! i T+l
proves that & does net contein & . Continmuing this con-

struction, we ¢an replace G by an element § which does not econtain

e+l IE)
e s tany ©

1
and hence belongs to ""(AI) « Thus the induction is
complete,
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2, {auchy characteristics

Lot M be a manifold of dimensior n , with the loesl ecoordinates

xl, PR . An exterior differential form {later to bhe called simply

a form) of degree p has locally the expression

(l} G.:—J;'Ea.i_ idx ﬁ...,\dxp, lgil’.”’i gn’
P']- l"'P
where the coefficients are smooth functions and are anti-symmetric in

any two of the indices. An exterior differential system is a system of

equations

(2) B0, ATWASH,

1l
o

where a, are forms which are generally of different degrees.

An integral manifold of (2) is a submanifeld f: ¥V + M such
that
(3) t*a, =0, 1<a<N.
Since (3} implies
df*aA = f*d:xA =0a,

the problem remains the same, if we &dd to (2) the equations obtained

by exterior differentiation.
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More generaily, the formg of M generate s graded ring, 4 subring

is called a differential lﬂEELl, if: (1) a€I implies that =sach
I8c
1 . t o 1 T - {2) = 1 Ta
omoZenecus component o o be ongs to I @ I llﬂpll&s that

gaae&Tl for any form B . The differential ldeal is called ciosed
it a &I implies dx € I . An integral manifold of I iz a guh.

panifeld f: ¥ > M sueh that

(i) ™*r =0, ¥Ya€71.
The Pundsmental problem in exterior &ifferential gygtems is to study the

integral manifolds of a closed differential idesl. We shall nse interchangeably

the terms differential ideml or differential sy ETen.
Any system of ordinary or partiol differential egquations can be ex—

pressed &s an exterior differential system. For example, the equaticn

of the first order

() Fix', 2, ¥ 20,
3x

Lsisg
is equivelent to the exterior differential system

i
F{X,z,pi)=0,
daF = § ,

i

dz - f pidx =0,
i

{5a)
E dxi Adp., =0
i i

i . - .
1 the {2n+1)-dimensional space (41, z, p;} . end the classical
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integration problem for {5} is to search for n-dimensional integral

manifolds on which

; n
dxln...ﬁd-x #0 .

This example shows a disadvantage of exterior differential systems,

namely, the large number of equations. We believe it cannot be avoided

for a proper understanding of the equation. At the end of this section
we will show how this formulation leads to the characieristics.

1, Perhaps the simplest exterior differential system is the one where

j the closed differential ideml I is generated by forms of degree one.

Let the generators be

{&) By rary @ s

which we suppose to be linearly independent.. The condition that T iz

closed gives

(7} daao,mdal,...,un"r, lgign-1.

This condition (F) is called the Frobenius condition. A differential

system

(6a)

gatisfying {(F) is called completely integrable.
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Geometrically the o's span ot every paint x €M a subspece W
X

of dimension n - r in the cot ¥
otangent spage 'I‘:‘c or, whet iz the same ,

a subspace le of dimension r in the tangent space T

x + Foliowing

1 T

Chevalley, the data Wi c 'i‘x » 2 &M, is called a distribution.
Fotice that the condition {F} is intrinsic, i.e., independsnt of local
cpordinates, and is also invariant under s linear change of the 4's

The fundemental theorem on completely integrable systems is:

Theorem 2.1 (Frovenius}. Iet T be a closed differential idesl having

s generetors the linearly independent forms al, A degree
one. In & sufficiently swall neighborhood there iz & ccordinate system
1 n
¥y +-+3 ¥ such that I is generated by dyrﬂ‘, . dyn
Procf. We will prove the theorem by induction on r . Let ¢ = 1
Then the i 1
subspace Wi CT}c > *x €M, is of dimension 1. By a well- I

knhown theorem we can choose coordinates yl, [ yn s+ 8uch that brl
x

is spanned by the w —_
¥ entor Byl 3 then Wx is spanned by chr2, s dyn
The letter clsarly form a get of generators of I . Notice that in this

caze the condition {F} is void.

Suppose r # 2 and the theorem be true for 1 - 1 .
151 <pn ,

Let X+,

be local coordinates such that

are 13 i
¢ linearly independent. The diffewential system defined by theze [
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n-r+1 forms also sstisfies the condition {F). By the induction hypothesis

2

there are coordinates ¥* so that

T

d.'fr-'—l: LI ] @_D ? dy

are & set of generators of the corresponding differential idesl. It

: . . . r
follows that dx° is a linear combination of these forms or that x

iz a funection of yr, Py yn . Without loss of generality we suppose
o .
¥y
1 A1 . r+l n
Thef o, -uv,y ® differ from dy s +eses 4y by a non-sipgulax
Iinear transformation mod d_xr , We can choose as new generators of T
cl'l=dyﬂ1+pldxr y l&mlign~1r,

and the condition (F) remains satisfied. This gives

. i
d(!'1=dpi nd—er E ngdyAﬂderD’ moda.;l,...,a'nvr_
=mher -1 5y

Tt follows that
3 i
"ET =0, 1S<i%€p-r, 19x%r-1,
ay

which means that pi are fanctions af yr, i yn . Henee in  the

y-coordinates we are studying a system of n — r forms of degree one

. - r
ipvolving only the coordinetes y . ..., ya +» This reduces to the situa-
tion settled at the beginning of thiz proof. Hence the inductionm is com-

plete.

The theorem glves a "normal form" of a completely integrable system,

i.e,, the system can be writtem locally as

(T ' = .., =dy =0

in & sultable coordinate system. The maximal integral manifolds are

r+1
{Ta) ¥ = const, ..., yn = const ,
and are therefore of dimension r . We say that the system defines a
foliation, of dimension r and codimension n - r , of which the sub-

senifoldas (7a)} are the leaves.

The condition {F) has a formuiation in terms of vector fields, which

is also useful. We add to the forms (6) r forms un"rﬂ, e,y ot ,
i
so that o« , 1 <1 <n , are linearly independent. Then we have
, i_1 i3 X i ;
{8} du—QJRcha ﬁu,l‘i,;},kgn,cjk+cid=o
L]

The condition {F} can be expressed ss

{9) c;q=0,l<aﬁn—r,nhr+l‘;p,q<n-

Let £ be & smooth functicn. The equetion
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(10} ar =] (X, )a*
1

defines n operaters or vector fields X, , which form a2 dual base to

ol , Exterior differentiation of (10) gives
1 . k J i=0.
51 (XX, ~ XX )0 ¢ o+ I(xf)da
Substituting (&) inte this equation, we get
= (XX, XX )t=-lcxe.
{21} (%> X518 = (XX, - XX Loty

The vectors X ey X

FEquation (11) is the dual version of (8). ey

n
span at each point x E M the subspace W; of the distribution. Hence

the condition {F) or {9} can be expressed as follows: Let a distribution
1.
in M be defined by the subspaces Wi c Tx , dim W, =1 . The condl-
tion (F} says that, for any two vector fields X, ¥ , such that
X, Y € WL , their bracket [X, I]x £ WLx .
x? °x x
Given a closed differential ideal I , we ask whether there is a

local coordinate system so that I will be generated by forms invelving

g smaller number of the coordinates. Thiz question is completely snswered
by the notion of mssociated space discussed in §l.

We recall that at =€ M

(12) C o fap =lgET] HeICD.

A vector field £  such that Ex = (AI)X is called e Cauchy characteristic
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.ﬁqﬁi‘

gector field of I .
Feulht e

Lemma 2.2. If £, 1 are Cauchy characteristle vector fielda of a clpsed dif-

fg, nl.

rerential ideal I , 50 is their hracket
Let Lg be the Lie derivative defined by £ . It iz well-known

that

{13) Ly = di(8) + 1{g)a .

Since I is closed, we have dI CI . If & ig a characteristic vector

field, we have 1{g)I CIL . By {13) it follows that LLI €Y . The lerma

follows from the identity

(19} (L, iln)] 43, Leiln) - tn = tllg, A,

vhich iz velid for any twe vector fields £, n .

To prove {14} we ohserve that Lg is a derivation and 1{n) is an
anti-derivation, =0 that [LE’ i{n)] is an anti-derivation. It therefore
suffices to verify {14} vhen the two sides act on functions £ and dif-
ferentials df ., Cleerly, when acted on f » bDoth eides give zers. When

neted op AF ,  we have

L, t{n)las = p{ne} - 1ln)ales) = {g, nlf

= i([g, n])ar .
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This proves [1k).

Theorem 2.3. Let I be a glosed differential ideal whose dual

1 . .
agsociated spmee AI has constant dimension s =n - r . Then there
. . . . . 1 r 1 3
is a neighborhood In which there are coordinates (x 3 reea X 3 F 5 vara ¥ ]
1 5
such that I has a set of generators that are forms in ¥, -.u, ¥

. L
Proof: By lemma 2.2 the differential system defined by A {or, what
is the same, the digtribution defined by AI } is completely integrable.

We may choose coordinetes so that the foliation zo defined is given hy

T Tl ¢ SPPRUR L) B

= 3 9 .
...,t,r) we seb ¢t-em(tl—l+...+t r) . This

3 x Tax
. . . T
gives an action of a neighborhocd of the orlgin in (Jcl, v:1.y ¥ }-space

on M (a germ of R —action 1f you like), and since L a(I) c1I
a/ex

(1=no=r}) it follows that
*
C
o (T} ET,

We choose o point p &M where dim I{p) ig maximel. It may be ascumed
that p is the origin in our coordinate system, and we choose a mipimasl
set of algebraic generstors Bl, A 6% for the spaces IL(0, y) for

W N . *
|¥'| < €, L<u=s. Thus each form 9 defines a form in AT(O }’)(M)
H
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and these generate I1(0, y} . Using fbt we may uniquely extend

the 8" to forms in AT?X y){M} for small x°
»

In this way we
obtain generators gY = EU(}', dx, dy) for T that depend on y" ,
dyl-l , and dxa but do not depend on xa We will prove that we
may choose the Gu 30 as not to depend on d:nc[1 .

The proof is by induction on the degree X of 8Y . When
k=1 we have

0= i(~a—a}e“'

dx
which gilves the elaim in this case. Assume that the generators of
I 1in degree =k do not contain dx> and let GV be a new generator
in degree kK + 1 . We may assume that BU invelves dxl, PP ax®  but
s+1

does not dnvolve dx o raay axt (in case s = r this statemant is

vacuous ). With the additional index range 1 < q < s - 1 write

[=]
It

dxsa n-l-lp

1P(dxa. :Yu, d}r“} do not invelve

i

where TN = n{dxm, yu, ay") ana i

2

%" . Then

i@ Ax%)8Y = n
15 an element of 1 in degree k . Since g¥ is assumed to be a new
generator in degree X + 1 we must have ¥ ¥ 0 . We then replace p°

W
by 87 —ax” 4 n =4 , and thereby eliminate dx°® from 8° . An

Obvious induction then campletes the preof of Thegrem 2.3.
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Definition 2.4. The leaves defined Ly the distribution AX Are

calted the Cauchy cheracteristies.

We will apply this theorem to the equation (5). Eguations (Sa) can

be written

I
o

i =
F{x, =z, pi}

n
L=]
-

dz - Epidxi
(15}

1
Y(F. +Fp.dax +1F 4ap, =0,
i xl 251 ipi 1

I
=]

§axt , ap, =
i

The differential jdeal I is generated by the left-hand members of (15)

and is closed.

To determine the azsociamted space AI congider the vector

i B
(16) gl SprugrtIvig,

and express the condition that the interior product i{%) keeps I stable.

This gives
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u—Zpiui=o,

Il

: 1
(17} ) (in * Fop u + ):Fpivi o,

Xuidpi - Zvid.xi =0,

Comparing the last equation of {17) with the third equation of (15), we et

{18=) _ u” = AFpi A *l(in +Fop.),

and the first equation of (17) then gives
(18b) a= AL pF .
R 1

The parameter * being arbitrary, equaticns (18a) and {18b) show that
dim AI =1, i.e., the characteristic vectors at each polint form a one-
dimenszional space. The characteristic curves in the space (xi, Z, pi} f
or characteristle strips in the classical terminology, are the integral

curves of the differentisl system

{19} dx_l = _._EI,)i_ - dz
Fr; FatTaPy ) Pi¥p,

These sre the equations of Charpit and Lagrange. To construct an integral
manifold of dimemsion n it suffices to take s "nop-characteristie'?
{n-1)-aimeneional integral manifold and draw the characteristic strips

through its points, Putting it in ancther way, an n-dimensional

integral manifold is generated@ by characteristic strips,

*
"Non-characteristic means transverse to the Cauchy characteristie
vector field,
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We wish to apply the Cauchy characteristies to prove the following

glaobal theorem:

Theorem 2.5. Consider the differential egustion

2
(20) J 25 =1, 1< <n.
i 3x
1 n . . . 1 n
If z = 2{x, ..., ¥ ) is a solution for all polmts (x", , X)) € B
{ = n-dimensional euclidesn space), then 2z is a lipear function in

x , i.e.,

(21) Z=Eaixi+b,
i

. . 2
when a,, bt are constants satisfying Z a; = 1.

+
Froof., We will dencte by En 1 the space of ()Ll, - xn, z) N

) +
so that the sclubtion can be interpreted as s graph Z in En 1 . We

will also identify E  with the hyperplane =z = 0 . COur hypothesis
zays that z has a one-cmne projection to . For the eguation {20)
the denominators in the middle term of {19} are zero, so that the

Cauchy characteristies satisfy
(22} p; = const .

The equaticns (19} can be integrated snd the Cemuchy characteristic

curves, when projected to Enﬂ' , are the stralght lines
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(23) x=x0+p_t,z=20+t,

i
where Xn - Zy are congtants., The graph Z must have the property
that it is gemerated by the "Cauchy lines" (23}, whose projecticns
in E° form a foliation of E- ,
Our theorem for n = 2 follows immediastely. For the only

foliation of li:2 by straight lines is given by a family of parallel

lines, say

1 i 2 2
x =x0+cosat, b =x0+sin6t, 8 = const. ,

and we have

Z S gos le+ 5in sz + ¢, ¢ = const.

For any n we consider the level sets Eh = § M{z=n},

defined by
{24) alxl, ooy ") = b .

Because of (20}, Zh 1s a regular hypersurfsce. At every point of

Z » The Cauchy line through it cuts zh orthogonaily. Let

(25) Vo= (-2 ., 2Z e
. X 3xn
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The mep §: EO xR + B given by

o ey

{26) fx, t} b (x +tVa) , t€ER, x={(x
maps each {xo} X1 intc the projection of a Cauchy line In .
Therefore it must be a diffecmerphism. It Ffollows that ):0 is
comnected. We will show that EO must be a hyperplane Iin ol

To do this, we compube the Jacobian of the map ¢ end use the
fact that it 1s pever =zero. ZG being & regular hypersurface on ot R
we use a local corthoncrmal frame field (x, €15 sreny en—l ,en) . x € ED N
where e, = ¥z is the unit normel at x .

On J, let w, be the

dual coframe Lo eB, l€£a, f%=n -1 . Then we have

dx=£waﬁea,

(a1}
den = - ho;ﬂmﬁ Eea, haB = h&x N
l<¢g, B&=n-1,
=6 that
{28} I = -{dax, den) =3 haﬁmums

is the gsecond Fundamental form of ):0 . The condition IX =0 , or
hor.ﬁ = 0 , characterizes ZO to be a hyperplane.

From (27) we have

(29} alx + te ) = Z(Gas - thyplug Be + dt Re .
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fience the pull-back {under ¢ ) of the volume element of K is, up

to & nen-zero factor,
{30] det{d g - thophoy A oo A w o4 @b L
Tt follows that

- + ER .
{31} de‘t(éas thaﬁ) 0, tER
The matrix (haﬁ} being a symmetrie matrix, thiz is possible only
when 811 the eigenvalues of {haB) are zero, i.e., hccB = 0 , 'Therefore

IO is a hyperplane and its unit normel vector Vz 1is a constant. From

this the conclusion {£1) rollows,
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3. FPfaffian systems

Another simple exterior differentiel system is one which comsists

of one equation
(1) a=0,

This problem was studied by Pfaff in

where a is a form of degres 1 .

1814.15. The eorresponding closed differential ideal I Thes the gener-
ators a, de . The integer r defined by

L L

{2) o (aa)* #0 , o4 (da

iz ealled the rank of the equation {1}, It is invariant under the change

{3} x>aa, 370,

Putting it in a different way, the two-form da , mod oo, has an even

roank 2r

The study of the integral menifelds of (1} is completely cleared up

by the formulation of a "normal form', as given by the

Theorem 3.1. In B neighborhood suppose the eguation (1) has a congtant rank

r . Then there exists a coordinate system Wl, N W y Ppossibly in a

smaller neighborhood such thet the gquation bepomes

{4} aw + . w2rdw2r+1 =0 .
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Proof. For r =0

the theorem becomes the Frobenius Theorem.

By induction suppose that the theorem is true for » - 1

the ideal generated by & and du ., The dual asscciated space

1

dimension 2r + 1 . By Theorem 2.3 there are coordingtes x

such that, by multiplying by a feector if neeessary,

1 2r+l

Ay e X . There 1s no loss of generality in assuming n =

Let J be the closed differential ideal generated by do -

r
{du}” ¥ 0 , the dual assoclated space Aé has dimenaion 2r ,

Hence J in 2r

varigbles yl, . y2r '

haz dimensicon one. is generated by & 2-form ¢

and do differs from it by a fackor:
a0 .
We have

(ae)” = a"9" # 9

so that

1
o = nlyyayt s ... &, nly) Fo,
The fact that {da)’ is closed gives
da n'dyl'n ees n dyzr =0,
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condition (2} is the Frobenius condition and

et I

1

AI has
o

"

% is a form in

2r + 1
Zince

and AJ

be



i
’!_
|
a

implying that a is a function of the y's . If follows that do

iz a form in yl, ey y2r

Since do is itself closed, there is a non-zero cne-form £

2
in yl, veiy ¥ T such that

Being in a 2r-dimensicnal space, the form dB , mod B, ecannot have

renk 2r , anod hence must have the rank 2r - 2 In other words, the

pfaffian equation £ =0 has rank r - 1 .
To the equation g = 0 we apply the induction hypothesis and
write it as

gzt + zesz +oL,. + zEr—EdZEr—l =0

30 that B itself becomes

3 + zEr—E z2r~l) .

e H d

1 z
8 = u{dz™ + z%dz
Since
ala - B) =0,

there is a funetion v such thet
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|

o =dv+ B .

By an obvious change of notation we write

o= dwl + wadw3 *ou..+ wzrdw2r+l .
Since
@y (a)" #0,
the functions wl, seng w2r+l are independent and can be extended to a

full coordinate system,
Fraom the normal form (4) we see that the general maximal integral mani-

folds are of dimension r and are given by

{5) wl = f(wa, w5, P w2r+l)

?

where f 1z sn arbitrary function.

COther integral manifolds are, for imstance, given by

(6) W= red,
arbitrary ,

s+ 1St &y,
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|
H Theorem 3.3. Let © be a one-form. Then o has the normel form
H
; {10) =2 = yedyl L y2r6y2r+1 , if r+l=2
H
! (11) = ayt « Y2y  + o+ T, ir r=s
! in these expressions, the y's are independent functions and are there-
i fore parts of a local coordipate system.
i i Proof. Let I be the closed differential ideal generated by o and
i dex By Theorem 3.1 there are coordinates yl, vy yn in
i
I [ a neighborhood sueh thet
Hl
‘Y

+

% = ulayd + y2ayd o ... o4 y TP
;
i
i

A change of notation allows us to write

i

3 o= 2yt + Byt e e
i

(]

z2rd¥2r+l .
4_ Then
¢ r+1 0 1 2 3 2 2r+l
f i (do) = edz op dyT ow A2 o dyT on ... g ds T4 ay . ¢ = const. o0,
b
55 4] 2 2r
i If s=r+ 1, this is #0¢ , ond the fupetions =z, 27, ..., z s
Zr+
yl, y3, cees ¥ * are independent. This proves the normal form (10).
~§ Conzider pext the case r = 5 . Ther do is a two-form of rank 2r .
Fih
!
i)
'_P'
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By Theorem 3.2 we can write

da = aw’ A avs + ...+ awert » dweT
= dfwldw2 + ...+ w2r_ldw2r) .
Hence the form
a - (wldw2 + .., + werqldwgr)

is ¢losed, and is equal to dv . A change of notation gives (11),
A manifold of dimension 2r + 1 provided with a one-form o ,
defined up to 8 factor, such thet

(12} e (aa) #o0 ,

is calied a contact manifold. An example is the projectivized

ecotangent bundle of a manifeld, whose points are the non-zero one-forms
defined up to a fector. A menifold of dimension 2r provided with s

closed two—Fform of maximum rank 2r 1s called s symplectic manifold.

Both contact manifolds and symplectic manifolds play a fundamental role
in theoretical mechanics, Unlike Riemannian manifolds their loeal

properties are fairly simple.
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A4 Pfaffian system is given by k. The Cartan-Kdkhler Theorem,

Let M be a manifold of dimension n and I a closed cifferential

=]
I
[]
R
1
(=]

-

1 o
{13} ideal. Let Ip be the set of all elements of I , which sre homogencous
of degree p . A submanifold f: V+ M, dim ¥ =p , is called mn integral
where the a's sare one-forms mnd are supposed to be linearly independent. menifold if

*
At a point x &M the u's span an r-dimensional subspace W, c T,

which in turn determines its ennihilator wi = Tx . Thus & Pfaffian sys- f1) =0 , Yael

tem is geometrically a subbundle. In the above we treated the classical

cgse r = 1 , in which case the major invarient is the rank. In the By transitivity a submanifold of an integral manifold is an integral

case r =mn - 1 the Frobenius condition is always satisfied and the sys- manifold, We suppose that the eguations
tem has & normal form given by Frobenius theorem. The local invariants

in the general case are very complicated. For a recent work, cf, (1].

define a submanifold of M . By restricting to this submanifold, we

will suppose ipn the following that IO is empty.

If vEV and TVV is the tangent space to V at v , then

(2} (2,1 V,0) = {7V, ey =0, va€ 1,

In general, if x €M and E’ isa p-dimensional subspace of the
tangent space Tx at x , we say that (x, Ep) iz a p-dimensional
integral element of I if

{3} (Ep, al=n

¥a €1 ,
P
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Lemma, %.1. Let E! be n g-dimensional subspace of B, qgx<p .

If (x, EF) is an integral element of I , so is (x, E?} .
#F *
Froof. We cheoose dual bases €, @ s, 1%1 , ® =n, in Tx 2 Tx'
sc that
k
i k
<ei, e )= L
okl EP echivel,
and such that 8y A var 4 eq s B A el t e define P respectively,
The bhypothesis can he expressed by
(el PR nep,u) =0, VnEIp .
Let g & Iq . It suffices to prove that
#9+1 2
BEEQD, mod e y seas B .
Suppose the contrary. There exists a form ~ of degree p - g such that
- *P 1 B

*
Bay=ce s oo ne 5, c¥F0 . node s ren, B

is an ideal, B8 & vy

Since I EIP . Qlearly

(ela...nep,ﬁn‘r)-'—cqﬁt’),

and we have a contradiection.
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Theorem 4,2, Let I be a gloged differential ideal on 2 manifold

M. Let f: ¥+ M, dimV =p , be a sublianifold. Then V is an

manifold 1f and only if f*'I‘vV s TEV , are p-dimensional

integral

integral elements.
and only if {1) is satisfied for all o & Ip .

It follows that V 1s an integral manifpld if

Proof. The "only if" part follows from (2), To prove the converse,
take © €1 and suppose o be homogeneous, If deg a > p , 2 = ¢
for dlmension reascns. If deg o = p , a =g by hypothesis. Finally,

*
let deg @ =g <p . By Lemma 4.1, fa = 0 on any g-dimensionsl sub-

manifold of V . Thig is possible only when e =0 on V.

In view of this theorem the problem of finding integral manifalds
of I eceEn be geometrically interpreted as "plecing together" the integral

elements into a submanifold.

Given an integral element (x, Ep_:l} of dimension p -1, the

first step toward the comstruction of a p-dimensional integral mani-—-
fold is to find & vector £ € T, such that (x, g1, £} 1s an integral
element of dimension p . (Here we identify EP T ith its coordinate

{p-1)-vector, necessarily decomposeble and defined up to & non-zero factor. )}

The econdition om & im

()

-1 -1 : -1
alx, B0, £) gz (EFTY g, ) = 287 1(0)ad = 0, Va1 .

This is a system of lineer homogenecus equations In £ end is satisfied
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M
H
q|!

whenever L € E°™r . (In classical terminalogy (4} is called
"oolardzation”,) The E's setisfying (4} torm e linear subspace of Tx .
containing Pl . We will cail it the polar space of E*1 and dencte
it by L{EP™1} . Its dimension will be denoted by I,Y P, T =
the notation 1s so chosen that there is no (resp. a unigue) p-dimensional

integral element through EF when T, = -1 {resp. = 0} The integer

rp depends on  {x, Ep-l) . To determine an integral element Ep through
271 it suffices to take in T, & subspace I of dimensicn D - T,

- s - -1
through P 1 but otherwise in genersl position with H{Ep 1 BF is

-1
then the interseetion of Y and EHEFT) .

Uonsider the Grassmann bundle Gp l(M) + M , whose fibre at each
point x €M 1is the Grassmann manifold of all {p-1)-dimensionsl

subspaces of the tangent space Tx . We have

(5) dim Gp_l(M) =n+{p-1Hn -p+1).
X Ep—l . .

The condition for {x, } to be an integral element is

(6) Blx, 1) = Pl =0, ¥BEI . .
def p-1

(21

is well-defined.) From now on and throvghout this seetion we suppose

as a {p-1)-vector, is defined up to a factor, but the condition {6)

Ed

8)l dste to be real or complex analytic. It follows that the {p-1)-

dimensicnal integral elements form an analytic subvarlety of GP_I(M) .
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Definiti -1 . .=
efinition L,3., An integral element {xo, Eg } is ealled Kghler

regular or K-regular if:
. s 1 5
1) There exist B, ..., f € Ip—l such that the subvariety

Vp_ll:I) of {p~1)-dimensional integral elements on Gp_l(M} is defined

in & neighborbood of (3, Eﬁ“l} by

(n 8%, ) =0, 150wy,

o
whose differentials @B are linearly independent.

2) r, 1is constant in a neighborhood of (x;, EZ 1) on W
0 i) p-1

It follows thaet V_p_ is a manifold in a neighborhood of a K-regular

i
-1

integral element (xo, E"Q' } . Morecver, sny analyvtic function £ on

Gp-l{M) , Wwhich vanishes on Vp—l , can be written, in a neighborhood

af (XD’ E:g_l) El as

(8) £2aB 0 BN L e g 8, BTN

where the g's are analytie functions.
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An integral element is called K-singwlar if 1t is not E-regular. &in
jntegral menifold whose tamgent spaces are Kerepular integral elements
is called K-regular.

Lemma b.h. let T be an analytic differential fdeal, V., < G { M)

be the variety of jts {p-1)-dimepsional integral elements, and
- . —~1
(x4, Eg he Vool be K-regular. In s neighborhood of (x5, Eg Y en
vp 1 there gre n - rp - p linearly independent functions in §
- % -1
among the alx, )il l, £) defined in (), say © {x, BF7", £) ,

1%t %n - P To any o € I, there exist anelytie functions hy

—1 n -
on Gp—lm) and gc(x, = , £} o Gp-l(M) x B, the latter being

linenr in EE Rn , such that
(9) alx, P, 8) - I lx, 2 B, )
t
= T gglx, BN 08T, BTN
1%0%s

a
where B are defined in Definition L.3.

Proof. When considered as linesr functions in £, the
oflx, Ep"l, £) and oet(x, Ep-l, £) , 1St <n- v, =P have a metrix

of coefficients whieh are analytic functions on G (M) Regtricted to

-1
Vp—-l , the matrix has rank o - Ty p . Hence there are (n - T, " n}
x (- v, - p} minors u, pt of this metrixz such that

wxa P Datx, B, £) ¢ § u(x, FNex, B 6
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is & linear function in £ which restricts to zero on v

p-1 and such that

Sl "
wixy E )["]r ) #0 , The lemma follows by using the remark following
p-

pefinition 1.3,

The Cartan-idhler thesrem zives a construction of integral menl-
folds by induction on dimengion. It 1z a local theorem and is & natural
gzeneralization of the Cauchy-rowalewsky thecrem, UWe now give the statements

of both theorems.

Thecrem L.s. {Cauchy-Kowalewsky ).

Let Zys sees Iy be funetions in n independent warisbles xl, raey ="

{onsider the system of partial differentlial equalions

3z, 3z El
1 i 2

{10) Lo p (e X By, e R —l
)i} i l! T > EH] =2 -

ax m Bt axB L

1=i, j=mn

whera the functions fi ere snalytic in a neighborhood of the yalues

1 L -0 A0 .

{11} x® A ak_qjk’ 1%a%n, l1®k<Sn-1.
3¢

Let ¢ (xl xn-—l} b {

Let ¢;(x7a «00s be m functions, which are amalytic in a neigh-

1 -
Yorbood of (Xgs «ves X, 1) ana satisfy the initisl conditions
o
(12) PO O . s T o S
14%ge » Xy ) L] Ca#)a_qik-
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Then the system (3} has = uniguely determined system of solutiong

(13) 2= 00, o, o)
satisfying the initial conditions

- i n-1
(14} o0t L, T M s e, L T

Theorem 4.6 (Cartan-Kihler}

On an anelytic menifold M of dimension n let I be & closed

di fferential idesl. Let Wt be & K-regular {p-1)}-dimensional integral

-1
manifold and let (xo, Eg } e an integral element of Np*l,

Let ¥ be an (n—rp)-dimensional submanifold such that

L]

{1y Plcry,

{2) At Xy Ihe tangent space T, Y , of dimension n - r, » gontains
o]

gxactly one p-dimensgional imteeral element {xU, Eg) through (x., Eg_l).

Then in a neighborhood of ¥, there is a mniquely determired integrsl

manifold N tangent to E} at %, such that
(15) wlca®cy .

We will not give a proof of Theorem 4.1, which is elassical., We
praceed to prove Theorem 4.5,

We write r = r By changing coordinates if necessary, we sup—

s
poese ¥ Lo be defined by

n-r+l )
x = ...

{16)
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The integral menifold Efpul CY can then he supposed Lo be given by

she additional equations

. , 1 .
(17} L=0, x=¢fxt, ..., ), pHLSi€nr .

-1 P .
He take Xg to be the origin and suppose Eg and E{) to be defined by

2
—-—*—an...n 3 and(aln'..n—-——)

]
3 3 ¥ 9x axP %o
respectively. The latter 1s the uniquely determined p~dimensional

-1
integral element containing E‘g and tapgent to ¥ at Xy - The

jptegral manifoid NP C ¥ to be eonstructed can therefore be

defined by

i

(18) xT = {pi(xl, ceny XD p+l € i = p-r ,

satisfying the initial ccnditionrs

; - i1 -1 <34 Spor .
{19} ‘i’l(xl, s xP-l, o) = q,l(x g eeay =) ptl =1 = n-r
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The unknown functicns '?ilfxl, . «®) are to annihilate all
«a€1 ., Let
g
1 Hy o
{20) a=5TZai et a o P 1Sy, i <,

1y

where the coefficients are mnslytic functions which are antl-symmetric

in their indices. Iet

— 3 Lx Ly oa
(21) B A [ et S
BlxT,yuna,x ) 3}(1 axp_l
i

3 3
{22} £= E.,L_l.

] 3%
Here we regard xl, ey ¥ as independent wariables and xi s PH+1lsisy

as their functions given by (16) and (18), Then the aquations in questicn

can be written

11 jpl in
- d{x caeaX & 1 8x <
{23) afx Epl, E)=T—_rl } =, . E— =0,
’ p-1)t 11"'1p B{xl,...,xp 1) 3xf
€ .
a Ip

8inee (x,., Eg_l} is a regular integral element, it has a neighborhood
-1

in vp—l c Gp_ltl-l) , on which n .- r-p of the al{x, B2, g} are

linearly independent. Call G.t , 1%t %Snp-r-p, the corresponding

t .
p-forms and dencte thelr coefficients by ai N The corresponding
1705

equations can be written
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i i
I t Mai=

(24} . . . s
J=p+l 11,...,1p_1 1" 'ip—l‘j 3(3(1,...,3:?_1) 5P

i i
_z' E.t a(xl... Kp-l)

il"'ip—lp a(xl,...,xpml}

This is a system of n - r - p 1linear equetions in the seme number of

unknowns Bxdfaxp, PHlE)®n-r, A (xo. Ep_l) it has by

Q
hypothesis the unique solution (ijﬁ xp}o =0 ., Hence in a neighborhood

of (x5, Eg‘l) in G (M) the determinant of the coefficients of the

linear system is not zero. The system can be solved to give

i i
J 1 -1
(25) a_xp= i, L, T, A D T P 2y
X

| L] (xl:“ ‘sxp_l}

a

p+1<j<n—r,l€i ...,iplﬁn—r_

1,

This is a Cauchy-Kowalewsky system in a neighborhood of (x, 2L
H O .

By Theorem 4.5 there exists a wiquely determined submanifeld NF defined
by (18) and gatisfying (15).

It remains to show that §° is an integral menifold of I, i,e
thet it annihi i
t ihilates all the forms o € 1, By constructiecn it ennihilates
¢ , 1%t €n-rp . The crux of the matter iz to show that the tangent

-1 -

elements (x, BV ™) of NP , with EF 1 given by (21}, are {p-1}-dimen-

slonel integral elements,
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Ameong the forms in IP are 337 (becsuse I 1ig closed) and

dxll'\ B°, 1<2<p (because T is an ideal). We find

We restrict Lo the gubmanifold NP an which xl, vaea & are

the coordinetes. The BG in Definition 4.3 can be written

o o
E1-) ]
Fa 1
(26) 9= 7 Mt L & el a’=(—r+...+Bats. raP 10w
_ 1< 2%p ax ax? !
_'| 3 <o < (31) L3 1
1so%s. : 6143=th Ao oa axP 1€ 2<p ,
‘I {3 ) éi
; EL >,
] %
5,. We can write ] By (30) their coefficients are linesr combinations of Bl, vevs BT
. X
: l:. [ 3 Expressing this fact, we get & Cauchy-Kowalewsky system
A 5
HIN -1 3 3 7
il (27} = T A eee A =
B dx ax® 7 P T T
] § 8B . . T B R
{ 3 {32} = linear eombinaticn of B, -, ...,
Hil i P 3:;1 Bxp-l
E so that :
1€y, 1%5
p-1
-1 -1 g a
(28) 8, 7 = S B = 57, ey .
where B satisfy the initial conditicns
let €I . On N we can write ] _
;o) : {33) Bc(xl, ...,xpl, oY= o .
1 :
2 = BAX n ... 4 42 o
(29} o L) L] Hence B = 0 and it follows by (30) that Bny o € Ip restricts to
. zero on NF , This proves Theorem 4.6,
he o 1s=t=n-1 - vanish on | -
By (9) in Lemma 4.k, since the s LA _ In the preof we can define Y by the equations
g » we have .
18 ) = B ]
CHHS (30) A 1€czr@: 8o 2 o b (3h) M= g L, o), aer <y <n .
where g, are analytic functicns in a neighborhood of X - Hence the general soluticn depends on rP functions in p variables.
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3
3

The Cartan-Kahler theorem permits us to construct integral manifolgs

by induction on dimension. For applications the notion of Certan

ot e e L T

regularity plays an important role. It is given by:

Lo ek -

Definition 4.7. An integral element (xo, E%"l) is called Carten

regular or C-regular if:

-2
1} Tt contains a C-regular integral element {(x,, E.‘g Y . {This

condition is empty for p =1 Y.

2} Ty iz constent in a neighborhood of it op Vp_l . g

If only the condition 1} is satisfied, we say that (xo, Eﬁ_l} is

C-ordinary.

Tt follows that s C-ordinary integral element (xo, Eg‘l) is the

end-element of & nested sequence of integral elements

2 2 . p-l
{35) xoeﬁ%csoc...cmg c:Eg .
of vhich (xg, B), 1<k€p=-2, is C-regular. (35) is called

a regulsr integral flag. By a successive application of the Cartan-Kahler

theorem 4.6, we conclude that if (xo, Eg_l} is C—ordinary there is an

= -1
integral menifold NPl thvough x, snd tamgent to Bo o .
The relation between K-regularity and C-regularity is clarified by

the following theorem ané exsmple.
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Theorem 4.8. I '1)

is C-reguiar,

an integral element (xo, Eg

then it is elso K-regular,
_———

In the ex=mmple following this theorem, we will show that the

converse 1s not true, that is, KE-regularity iz more general than

g-regularity.

Proof. TFor simplicity we will sssume T, = {0} . Then every point

of M is integral amd, for p = 1 , C-regularity clearly coincides

with K-regularity.

In general, our hypothesis says that we have the regular integral

0 0

flag {35). Buppose Eg' be spe;.nned'by €y cens eq_ s, T=p-1. We

extend these into a frame field ai , 1%i<%n, in a neighborhood of
Xy . It follows by continuity that in a neighborhood of X » the

Bl epanned by s sers € s g%p -1, also form a reguler
integral flag

{36) x€EB C ... cPt,

Let m'j s 1%)Sn, be one—forms which are the dual coframe, so that
(31) (ei,m‘!)=6g, 1<€i, 4%n.

An element (x, Ep'l) {not necessarily integral} near (x., Eg_l)

¥i11 be spanned by the vectors
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(38) e - 18 e, 1€q<€p-1, pSr=n,
1 r qa r
Then the local coordinates x- of x and the R: will form & local

()

coordinate system on Gp 1

Let,
tq
o 1t %np-1r - N
(39) g q qQ 9

be the g-forms which define the polar space H(Eq-l} . Then near
(xo, Egﬂl) the variety Vp_l(I) of C-regular {p-1)-dimensional
integral elements consists exsctly of those (x, Ep_l) which annihilate
the (p-1)-forms

t t

1 2 -1 2 3 ~1 ~L
{40} WA W A s W ,aanmﬁ...awp ""’apfl’
The latter constitute a basis of Ip—l . By expressing the condition
thet the 3 0 gpanned by the vectors in (38) annihilate these forms,
we get equations which are Iinear In E; for each q and define Vp_l(I)
as a regular submanifold in Gp_l(M} . This proves that {x_, Eg_l]
is K-reguiar,

Remark. These equatiocns for vp_l(l} are clearly independent.

Their number is

(n-r.di)=(p—l).nﬂzri“22"P(P-l)-
i
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gigee the fiber of Gp_l(M) is of dimension (p - I1}(n -p + 1} , it

follows that

dim ¥ _(f} =n+ ) r.—l(p—l)(p—a)-
B-1 wisp-1 1 2

: ~1 .
In the integral flag Eg c Eq s Aif a vector spans an integral

element with EY , it does so with 2L,

a : Hence E(E}) € m(E} ™) ,

and we have

+
rq+1 q+1€rq+q.

We introduce the integers

(h1} s =r -r

A a q+l—1;30, l®g%sp-21.

Corollary L.9. Let the integrel element fxo, Eg“l) be C-regular,

Near it the variety Vp_l(I} of inbtegral elements has the dimension

(I) =n+ ¥ r-<

{h2) dim ¥ .
p-1 1igp-1 7

(p - L}p - 2)

n+ s+ 232 + .+ (p - 2)sp_2+ {p - l)rp_l .

5 1 2 i 2

Example. In R” consider the coframe w™ , w° , &, B s BT,

satisfying the equations

(43) dwl=0=aﬁl,ﬂw

i
™




2
et I be the differential system generated by, {wl, uo, dml, dmz}

It 1s clearly closed. It has only ome two-dimensional integral elemeng
E2 , 1.e., ml = w2 =a =0 . BHence it is K-regular,

On the other hand, the system J genersted by {wl, we, e} is
not closed. To make it so, we should add the form Bl A 52 . Thus
it cannot have two-dimensional integral manifoilds. Hence E2 is not

C~ordinary.
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5. Isometrlc imbedding of Riemannian manifolds; molding surfaces

This section will be concerned with the local isometric imbedding
of & real analytic Riemannien manifold into an Euclidean space, The

main theorem is:

Theorem 5,1, Schldfli~Cartan) 4 real-snalytic Riemannian mapifold
of dimension n ecan be locally imbedded in an Euclidean space EN of

dimension N = nin + 1)/2 .

Tet M be a Riemannian manifold of dimension n . In locel coordi-

1
natez x , suppose that the Riemannlan metriec 48

X o1<i, §, x<n,

1} dse = & axt e
ik
i,k

where &5 = &,y Are analytic functioms of Jx:‘j + The isometric imbed-

ding problem is to find functions v {x', ..., x?) such that
{2) as® = [ ()P, 1<a<u.
A

In other words, the functions yA are to satigfy the differential

equationsg
st ayt
(3) : i =&
A Ba axk
269




The solution of the problem depends on an understanding of the geometry.
We will treat the case n = 2 , postponing the general case to a

later occesion. Over M let P be the prineclpal bundle of orthoncrmal

frames {x, e ee) , Wherse x©M

vectors at x . Let w,, @, be the coframe dual to e, e, . 'Then the
metrie on M is
2 2 2

(b} ds = ml + L|l2 .
There exists & uniguely determined one-form a5 in P , the ¢onnectieon
form, so that the atructure squations
(5) du’l=hﬁ.2hw2’du2=ml"m12’

doyp = ey ke

are fulfilled. ¥ is & function on M and is the Gaussian curvature.

Similarly, in the three-dimensional FEuclidean space E3 consider
the space P of mll orthonorms] frames (¥, '51, 3'2, 33) . Tt is & six-dimen-

sieonel manifold and can be identified with the space of mll rigid motionsg

of E3 . By the eguations
a =1 8E,
{6) a%:fﬁu%, 14, 3,k=3,
r— P N
Syt Ep 0
we introduce the forma 'Ji, w,, . Bince

21

and €ys 8, &re matually perpendlicular uniy -2

o i o e B el 2

k.
2

atdy) = da{a&;) = o ,

{7}

The metric in E3 is

Bl
m
+
g}
[y
+
Ei
L]

[
My

(8) =

An isometric immersion is a mepping f: M * E° such that £%aa? = s2

It gives rise to the following diagram of mappings:

p—YX P
(9) ] 0

ML g3
fiere w ard w are the respective projections assigning to a frame its
ortgin, ¥ 1= the isometric immersion, and "y'“ eends the orthonormal frame

{x, Sy 32) to the frame (y(x),y,(elj,y*(eghag) . where y, is the mapping
loduced by =
¥ ¥ on tangent vectors snd ey = y'*(el} x y*(sa) , the

latter being the vector product . ? sends orthonormal frames into

orthonormal frames hecange ¥ 1is an isometrie immersion. The diagram

(9) is clearly commutptive. It lesds to the differential system

(10} 5w o=
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in the 9-dimensional space P X F, Cleariy, a scluticn of {10}, satis.
fying wy 5 wy ¥ 0 , giver en iscmetric lmmersion of M in ES .
The aystem (10} 1s not closed, Exterior differentimtion of the

first two equationa of (10) gives, by the use of the structure equations

{5) and (7},
(@p - wyp) #wy = (g - wpp) s w, =0,

Since Wy oA W, # 0 , this gives

{108) iy, =0

Geometrically this means that the iscometry preserves the connection.

It follews that the system {10} should be "prolonged" to the following:
. =& - El T = o - =
{11) Gy =) =B -y, =g =W, s =0

The extexlor derivatives of the first two eguations are now identically
satisfied, as a consequence of the equations themselves, and the exterior

derivatives of the last two equatione give

{11a)
» At - Ke, auw, =0,

The jsometric imbedding problem is thus reduced to the system consistiung

of the equations {11}, (1la}, which is closed.
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We seek two-dimensional integral elements J':‘.2 given by

@, =1
137 Pyt A s

(z2) - . .
Waz = Par¥r * Poots s

szugh that NE = ¢ defines a regular cne-dimensionsl integral element

gl contained in it. Equations ({1la) give

Y127
{13}
24, -22 =g
11722 12 *

These equations determine RlE‘ 122 , if Ell #0, In thiz case the
integral element E2 through =t is uniquely determined. We take an
integral curve, which hasthe integral elements El as tangents. Through
it a two-dimensional solution of the system {11}, {1la) is uniquely deter-
mined, This proves Theorem 5.1 for the case o =2 .

More precisely, given a eurve C on M and & curve C in E3 N
we wish to construct an isometriec imbedding of M in E3 such that C
goes into © Thim requires thet the mapping of € into § De an
isometry, as expressed by the first equation of (11). The last egustion
of (11} means that C and ¥ have the same geodesic curvsture at
corresponding polnts. The geodesic curvature of C is given by K sin @ f
where 1: is the curvature and & +the angzle which the prinecipal normal
of € makes with the surface normal. As 4 consequence we must have

k= Ikg! at corresponding points, kg being the geodesic curvature of
¢ . The equality of the geodesic curvatures at corresponding points of

¢ and © glves sin 8 = kg/E , which in tuirn gives two determinatiocns

of the surfece normal. Once & choice of the surface normsl is made ,
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¢ !
: F the surface through E and izometric to M 1s uniguely determined,

the interesting problem of isometric surfaces such that the isometry

..'i
| ]
:i" dx = mlel *une,
RHE
gt assuming £, #0 . (14 de, = ] w .o, ,
i i 1 J 1373
: j ¢ The condition Ell % 0 has also & simple geometric meaning. In
' wij+wji=0’ 11, 3, k=3 .
; ] ; fact,
i3
! i . as in {7), we have the structure equatioms
N o~ 2 2 e '
¢ W= R s TR L
.EH ; iy *glpy = Byt b 28009 + Rty 4
! il ] (25} Gy = @15 4 Uy Aoy =ty 8wy,
i :12 : is the second fundamental form of the imbedded surface. The curve C , , dwij =7 Wiy Ay
iR _ £ .
i 3 |
,‘}f : being defined by w, = D , is an asymptotic curve if and only if Ly =0, ,l
.'. ; # The eondition that 2y, e, are along principal directions is expressed hy
,“ H Hence the above imbedding theorem applies only to the case that T is %
tHA
ff 'I- nonasymptotie, In fact, if T is an agymptotic curve, itz torsion is
ifH (16) W = Al W, = Cy
HE +dK (Enneper's theorem), so that T is subjeet to more conditions. 13 L 23 27
A correspondi isometric imbedding theorem is not contained in our general :
P ne ne & 4 so that K = ac  is the Gaussian curvature. We shall suppose K # 0 .
i ithout a further prol tion of the differential system. N 3
b theory wi prolonge ¥ Exterior differentiation of (16) and use of {15) give
f.i 1 H Intimately related to the problem of isometric imbedding 1s that =
A .I ! ._
E of rigidity. The above dizcussion shows that surfaces in E3 are :
! . danwl+{a-c)m12;.m2:0,
3 FR
3 i locelly not rigid, i.e., isometry does not imply congruence, It is ) {17)
(44 .
! natural to impose further conditions. In perticular, we shall study - de 4wy + {a - c]bie sep=0.
ik
iR .
I I | preserves the lines of eurvature. Thie study lerds to the melding Since the frame fx,&1~52383) iz completely determined at x , we cen write
i} i surfaces in a remarkable way.
I
t -
[ Let M be a surface in E- . We shall stay away from its umbilies. (18) o= hae ¥ ka, .

Then &t every point x € M we take the orthonormal frame (x, €10 €5 e3) R

where e;, &, are along the principal directions and e, is the unit We will use @, & bo express the differential of any function f on

surface normel! vector at x . Thizs family of frames satiafies the M, thus

eguations
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(19) af = fowy + fu,

so0 that fl’ f, are "the directional derivatives" of f ., Using this

notetion, we have, from {17}, (18),

{a-chh ,

{20) gy

c {a - clk .

1

Let M' be a surface isometric to M such that the isometry preserves

the lines of curveture. Using asterisks to denote the guaniities per-

taining to M* s we have
* # . &

{21) ml—_-m, m2-_-u12, m3~u:3_o,m12 ml.?’
# _ ¥ _c
B3 T aw » wpg T e up

»
The last two eguations follow from the fact that M~ has the same

Gaugsian curvature as M at corresponding points. Equation (20) gives,

when applied to M* N

I

(22) (ta), = (ta - TIh ,

{ta - %)k .

i
[z}

L
n

Comparison of (20} =nd (22) gives
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(23) = 61 - tFhae
ty = 71 - t%yaten
Qr
{23a) Lt _ t2aeTry, - a Lohy .
112 1 o

From DOW On We suppose t’? #F1 , discarding the trivial case that M

is congrient or symmetric to M . We put

{El\l) ‘i'l".‘L = E.C_lkml ,

-1 -
Ty = & “chw, ,

so that (23a) can be written

(23}3) —t-g—.‘tE = t21'|'l - 11'2 .
1-%

Exterior differemtiation of (23b) gives
{as) t2(dy, - 2w, s oWy} = AW, - 271 1r
i1 T 4T 2 1A
This equation, if not satisfied identically, completely determines t2
On substituting fnto (23), we get conditions on the surfaces M , to

which there exist isometric but not congruent or symmetric suvfaces pre-

serving the lines of curvature. The latter are uniguely determined up
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to position in space.
The most interesting case is when the eguatlon {25) iz identically
satisfied, i.e., both sides of {25) are zexroc. We write

{26} W o=ath, K =c ks

then {24) becones

E]
I
w
£
=
3%

I
=g
£

34]
W
-

(27) 1 13 °
and they are to satisfy the equations
{28) dn, = dm,_, = 211 P T,

Substituting (27) inte {28} and meking use of the struecture equations

(15) y we get

it Lo
{29) (A’ - 'k o) § Wye =0,

1 r_r
{dk +hK ey,

Jawg=0.

We shall show that these eguetions imply hk = 0 . It will be & remsrkable

piece of calculation; an important trick simplfying the ecaleulation is to

use wj g o, m23 in place of W, o, Hy as the independent one-forms.
Equations (2%) allow us to set
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L = ir F
{30] dh R K w4 + g Wy s

[ - !
dk! = p @y g - h'k'wzs .

On the other nand, equation (18) can be written

!

L
{31} DPE LTTIR ey
By (15) we have

’
L} w23 =h mlB

)

v =

(32) dig3 = 9y 23 ¢
- — +

dm23 S tthpawgg ® k Wyg A Wyg -

Taking the exterior derivative of (31} and using (30), (32), we get

2 2
{33) p' mg' +1+n + R =0,

I B" and k' are considered s unknown fmctions, equabions {30} and
{33) give three relations between their directionsl derivatives. This
primitive counting shows that the differential systen is over-determined.
To study our problem there is no other way but to examine the integrability
vonditions through differentiation of {30), {33}, In this case the in-
tegrability conditions give a very simple conelusion.

We first record the formulss

1 2 ’ 2 r
{34) a(r’x’ ) = (hW'k" +1n'p }wH + (-n" k' + k'q‘}mgs ,

1,,..2 .2 2 .2
24’ + k)= ('K o+ k'p’)ml3 + (R + h'q’}m23 R
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" T TR e e

S TR R

which follow from (30)}. Exterior differentiation of (30) gives

2
(35) (3¢ + 20 Ku)nrw,o=0,

' 2 _
{ap’ + 2n'x Wog) 4 Wy =0,
which allow us to set

2
(36) dp' = pluyg - 20K wyy ,

2,
(37) p’ =2 {-2n'" - p'),

From (33) we can set

, 1 , 2 . 2
{38) P OF U~ 5-(1 +n +x ),
2 2
g =u+ia+n +¥),
50 that
(39) 2y = p' + q' .
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Tt follows from (36)-{39) that

o 1 502,12
(ko) du=+k (ru+ 5~ 5 h t3 K Ju

13
2 2
+h'(u+%+%h’ ﬂg-k' Yopg -

Taking the exterior derivative of this equation, we get
() Bk =0 or hk=20,

g8 we have stated above,

We wish to describe these surfaces geometrieally. Suppose k = 0 .

Then, by {30}, (33)

' 2
p- =0, q@ =1+h '
It follows that the surfaces in question satisfy the equations

m=0’ ] =E.(111,M23=C(1)2,N12=h{01,

d(i—) = ell + Zu, ,
(Le)
@, 4 da - hia - c)ml pwy =0

m2 A de =0,

The last three eguaticns are obtained by exterior differentiation of
the three equations before them. Hence the differential system (h2) is

closed,
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To degcribe these surfaces observe that

{resp w, = )

defines a family of lines of curvature, tc be dencted by T, {resp Pl)'

s that these curves are

Along a curve of F2 s we have Uy = g,

geodesics. Writing uw, = ds , we have, along & curve of T, ,
de
ax _ %% _ < S RN
& "% 3 F3 v A 2 ? dg ’

Hence it is a plane curve with curveture ¢ , the plane having the

is a multiple of

normal e The last equation of {42) says that de
tly which means that all the curves of T2 are congruent te each
other.

Since

13%3 = (he2 + aeB)ml ,

the intersection of two neighboring planes of the curves of FE is a

line in the directicn
g.xlhe, + ae = ~ae, + lie .

By {14) and {k2}, we have
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fence this direction is fixed., It follows that the planes of the lines

of eurvature irn F2 are the tangent planes of a cylinder 7 .

The curvez of Fl s heing tangent to e, , are the orthogonal

trajectories of the tangent planes of Z . Eaech line of curvature of
1y Is thus the locus of a2 peint in a tangent plane of % as the latter

are the orthogonal trajectories of

rollz gbout 2 The curveas of P2

those of Tl - Each of them iz therefore the position taken by a Fixed
curve on & tangent plane through the rolling.

The surfaces defined by (42} can be kinematically described as fol-
€ on one of its tangent planes.

lows: Take a cylinder Z and a curve

The surface M 1is the locus deseribed by C as the tangent plane rolls

about Z Such a surface is called a molding surface. Tt depends on
twe arbitrary functions in one variable, one defining the base curve of
Z and the other the plane curve C .,

On 2 molding surface the equation (23b) is completely integrable
and has a solution t which depends on an arbitrary constant. We get
in this way a non~trivial family of isometrie surfaces preserving the
lines of curvature (and in fact, a2ll such femilies}. The geometrical
conclusion, reached after a lucky computation, can be stated in the
following theorem:
consider

Theorem 5.2. In the three-dimensional Euclidean space E3

two pieces of surfaces M, M, such that: (a) their Ceussian curvature
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# 0 and they have no umbilics; {b] they are connected by an isometry £. Invelution

L ] .
» ure. Them M and M are in ’
f: M+ M preserving the lines of curvat L 2= Let I De 2 closed differential system on a manifold M and

There are surfaceg M , for which

general congruent or symmetric. suppose that E° is a pedimensional integral element, We ask the

F 2 " 4 i . T :
the corresponding ¥ is distinct relative to rigid motions. The question: When is there sn integral manifold of I having B a5
molding surfaces, and only these, are such surfaces belonging to & n tangent sSpace? In case EF is a Carten ordinary integral element ana
continuous family of distinct surfaces, which are connected hy isometries everything is real anelytic, the existence of such an integral manifold

preserving the lines of curvature. ig provided by the Cartsn-Kzhler theorem. However, it is clear that

We observe that among the molding surfaces are the surfaces of this is not necessary, and morecver sometimes there are additional
revoluticn econditions on o that must be satisfied., In particular we wish to

The computetions in this case point to the unpredictable nature of mention at the beginning that invelution corresponds to the Cauchy

the integrability conditions of an overdetermined system. In deriving initial value problem being well pozed, and prolongation is nothing

such results the general theory of overdetermipned systems does not seem more then the introduction of derivetives as new varisbles.

to be very helpful.
In {a) we introduce the important concepts of a differential system

with independence condition (ef. (6.1)}) and the property of involution
for such systems (of. (6.5)).
Although the definition of involution is €asy, there gre some
hidden subtletiass involving the variety of all integral elements, and
these are taken up in (b)), More importantly, it is clumsy to check From
the deTinition when a system is in involution, and 2o slso in {b) we
glve a numerical eriterien called Cartan's test for involution {ef, {6.29}).
In & subsequent paper we will show that the homological fomulation of
this test using Spencer cohomology is the central technical poi}i’c in the

Preof of the Cartan-Kuranishi prolengation thecren.
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7oy ey . i
la}) We assume given a closed differential system T on a manifold
e - naniiolc

i
f
i In (c) we discuss the important elass of Pfaffian systems in goog
| T good
I
] M . It will simplify matters if we assume from the outset that all

form; for these Cartan's test assumes a formulation purely in terms of

' linear algebra. data are real analytic; once this case is understood the possible
Finally, in (d) we introduce the concept of a Pfaffian system in extensions to the € situation will be clear. Our considerations
D.E will be local, and therefore will only be valid in a neighborhood of

|

!

j nd

i dual form and use this setting to discuss a single 2 order P.
| a point.

in one unknown functieon.
Many problems reguire the existence of integral manifolds satisfying
folds saetisfying

We remark that we have chosen our notations and terminclogy so as
a transversality condition given by the following:
to try and make accessible the beautiful examples at the end of [2].

4 . h 3 "
Finally, we remark that for the remainder of these notes reguler i (6.1) Definition: A4 differential system with independence conditi

i
i 2 ;
E will be Cartan regular and ordinary will be Cartan ordinary, both as denoted by (T, w) , is ziven by a closed differential ideal togett
= Wi - 1t 2 ier

defined in §L4. We shall also borrow some terminclogy from algebraic with a decomposable p-form w that, module I , is well-defined and nen-zero

geometry, primarily the following: A Zariski open subset of a real

. . X Expliecitly, in each oper 4] g rine { -
analytic variety is the complement (assumed non-empty) of a closed E ¥s ch open set U, of a covering (U} of M we
should be given

subvariety. A real analytic variety V is irreducible if it is not

the union of two non-empty subvarieties.
1. P
(/1] = W i
.lu 02 [
such that
w = no T in U 1
s B module I in Uy al JB
and
w (%) ( -
o L & I(x) x U
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We shall work in a neighborhood of a point and write

(6.2) Definitions: (i) An admissible integral element is a p-dimensional

integral element for I on which w 1s non-zero; (ii) an admissible

inteeral manifold is given by a p-dimensional manifold N together with

a maximal rank mapping

such that each f*(Ty{N}) (y EN) is an admissible integral element

(thus £*(T) =0 and w0 ) . Admissible integral manifolds will

also be referred to as integral manifolds of (I, ®) .

(6.3) Exsmple: Any P.D.E. system
i o [ I ! ko, Iy _ < <
FA\x Lz, 82 /3%, ..., 02 AX) =0, 1<Xi <k
may be written as a differential system with independence condition. For

5 3 - nd ; . .
instance, in the 2 order case we introduce variables

and then the system is defined on the space of variables

and is generated by the equations

T o P
P;\(?(,Z, pij)=U’ 1=)l=k
jaz® - prdx’ = 0
dp; - EQ.an =0
i Fi)

with the independence condition given by w = An

admissible integral manifold of the differential system with independence
condition is the same as a local solution to the P.D.E. system,

s . . n - s
(6.4) The isometric embedding problem, discussed at the

beginning of §5, is naturally formulated as Tinding an admissible integral

manifold of a differential system with independence condition,

The following is one of the main concepts in the theory:

=4 4 G : S i . : :
(6.5) Definition: The differential system with independence condition
(I, w) is in involution at x €M if there exists an ordinary, admissible
integral element = CT (M) .
X
We sometimes say that (I, @) is involutive at x €M ,

When (I, w) is in involution, the Cartan-Kihler theorem may be

applied to conclude thet there exist local integral manifolds of (I, W)

passing through x €M .

Aes 11 1) il i 1 3 ol ¥
A3 will be explained in the next section the definition of being

in involution contains some hidden subtletiesz, For the moment we emphasize




e e pwminssy

w) 1is inveolutive entailsz the f:’]'l‘j'n'iné-

that the question of whether (I,
considerations:
(i) The inadmissible integral elements form a subvariety Z(w) of

"o

5 (M)  (the notation stands for "zerces of W ) 3
(ii) Among the variety V_(I) of p-dimensional integral elements, the
¥

ordinary ones, denoted Ur‘(l} , are either empty or a Zariski open set;

(ii1) Consequentl assuming the fibre of 0_(I) over x is non-empty
s =] B Py ]

et

o be in involution exactly when

A
0,(1) € z(w)

i.e., when the condition that P C 'Z'X(?-i) be ordinary forces a linear

relation among the restrictions ur |E- {this is the definition given

by Cartan [21).

(6.6) Example: On a 6-dimensional manifold with basis

E & 2 1 2 1 2 " q s
8,8 ,wWsw, T, n for the l-forms, we consider a Pfaffian system
1 2 S i 5 1 2 ) .
8 =8 =0 with independence condition w » w F 0 and structure

equations

= 1
dg =7 » o med T |

t’:\j

deefv_"'.“rln [

We shall show that thiz system is not in inveolution.

oo i ol 2 L
For this we denote by 3 /38 3p/es, anp Wt , A/ me , 3/ 'rrl ,

2 i i A 0
apT the basis of tangent wvectors dual to the above basis of forms.

A general vector in the space gt = 62 =0 1is
n N @
amr am 3w 3w

of the vector £ in (6.7) are

o~e ezl
£ ~E% =0
{6.8)
023 30
EE -E¢ =0,
» 0 . . .
Ir £° #0 their rank is 2 .
A 5 ] 2 . 5 2
On the other hand, any 2-plane & on which 6 =6 =0 and

0

1 2 . . .
w A w F0 is given by linear equaticns in the tangent spaces

o= gtel ¢ 2te?
1 2 ’
™ = 22t o 222 .
1 2
The condition that this 2-plane be integral is 1:1'“ = .i',; =0 . Thus,

o | e 4 % -
any b.o < By will have a basis vector
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st & e =

am awl 3w

g 4
i 1 3 2 3 3.8 ¢ (v} In this section we will clarify several foundational points
g concerning the variety of integral elements, introduce scme mumeriecal

By (6.8) the rank of the polar equations of €y is 1 . Consequently, characters, and (most importantly) give Cartan's test for inveolution.

there are no ordinary, admissible 2-planes and the system fails to be

involutive. (6.9) Notations: (i) ‘JB(I) C GD(M) is the real analytic variety of
We remark that with independence condition given by T = o 72 *q - p-dimensional integral elements of I , OP(I} Lo VB(I) is the set of
the system (I, 7) is in involutionm. i ordinary integral elements, and Rp(I) C OP(I) is the set of regular

integral elements;
(ii) For X a Zariski open subset of VP(I) , We denote by F(X)
the set of all flags x € B C vl G R where EX € X . 1In
cage X C OP(I} we dencte by FR{J{) the subset of such flags where
p-1

¥ B Raas B are all regular integral elements.

e e et e

Ir B e OP{I) , ‘then by definition there exists a flag

| Xy € Eé’ A o Eg_l c Eg where Eg is regular for 0<k<p -1
If I.‘p (= ‘."p(I:] is an integral element close to Eg s Tthen any
1 k

flag *€E C... CEP L P ciose to above flag in Eg has L

regular for 0 <k <p - 1, Moreover, E is regular in case
Eg is. Finally, by choosing EF +o be a smooth point of Vp(l)

and to have dim H(EF) minimal among integral elements close to ED

we may assume that EF is regular. These observations establish

the first assertion in the following

(6.10) Proposition: (i) OP(I) and Rplfl') are both Zariski open

sets in V (I) and R (I) is dense in 0 (T ;
et dn. V. ) p{ ) is dense in P( )
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Pro

ase I

open set, then

irreduc

% . Gl Py fiE Y A *he vand
will prove (iii) leaving the for (1i) toc the readep.
S " 1 . £ . ' 4 o =0 34
{iii) is by induction on p . When p =0 , by

The proof of

ou

where

20

assumption that I

we assume

contains no

OOE T) =M

By induction we assume that

0 (1)
p-1
., F(R (1)), and (by (1i))
p—1
¢ @ (1) is empty there is nothing
js]

We have

that

0 (1)+¢ .
P

.h
G

o

=N
=

294

 contains an open set,

) is dominant in

k1 3 { [ WY

3 image conialns a of F?l‘ﬂ LYY
contains an ordinary open set, and hence must conta

lg irredueci

T . This

defined by

real, linear equations (the polar

follows

gince projective spaces irreducible it

that F,(0 (1))

P e q' ’ -1
ig irreducible. Then the .r fFRkUI (1))) =

=

The point is that even though the eguations may he

very complicated, the ordinary integral elements are defined inductively

by real ear equations.

%

(6.11)

Corol

ry: real analytie differential system

that the image of the mapping

0 (1) »u

]

exactly one irreducible component of the

analytic

y varie

contains ordinary integral elements.

o . ’ 2 I ~ 1
Proof: implies that I, = 10} anad hence that

The hypothes

95( I} is irreducible.

*An additional argument shows that T is

need this fact.

surjective, but we
won't
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As will be seen below we shall need to consider components of the

As

that may not contain ordinary integra]

real analytic variety "."p[I}

elements., We give here a simple illustration of the possible

reducibility of *-fp (1)
(6.12) Fxample. We consider the Pfaffian system on a F-dimensional

2 3

generated by l1-forms 6 , 6 , 87 with strueture

manifeold M

equatiocns

agt = 7t Wb wod I
2

#° =71 w mod I

d83 = Tr1 A 1T? mod I

wvhere 8%, 7f, w (1<a<3,1<e<2,1<i<?2) give a basis

for the forms on M If we dencte by

the dual basis of tangent vectors, then any 2-plane on which

91 = 82 = 8'3= 0 has a basis

e Lo Ls@ e,
amt 3 3wt 3
-l g @l @l
RS 3me Jw dw*
The conditions that £ and E span an integral 2-plane are

e P =
13 L3
6.13) EE -EE =0
o=l 0.1
EE = EE =0

To understand these equations we remark that the fibre of '32(:-!) + M

over any point is isomorphic to the Grassmannian G (4) of 2-planes

=

h

in R Under the Pliicker embedding

62()4) cp

the 2-plane spanned by £ and £ has homogeneous coordinates
~b bt
"n,=EE -EE , 0Sa<b<3.

is the guadric hypersurface defined by

Tt is well known that Gg(h)

(6.1 MM, =M T+ W T =

(6.1k) 0123 ~ "o2'13 Tt "o3'12

Consequently, the equations (6.13) and (6.1L) are
T T =
0312 = °

Since the last equation is reducible, it follows that the fibres of

fias 8 2 .
This is because g €A B is decomposable ¢+ p T=0 ,
&nd when m = I +this is one eguation,
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;]

+ M each consist a pair of intersecting lines in

also apply (and are simpler) to a

1e defining equations for V_(I) to the open

(6.15) Example (continued): Tn the previous example with independence

condition

w=w s w FQ
"
t

he admissible 2-planes are given by

-
™o w4+ Bw® .

¥ g i

h

The eguations that this 2-plane be integral are

If we denote the variety of admissible 2-planes by w) then

each Tibr

3]
o]

=
H

w) »M is isomorphic to the union of two coordinate
axes in

testing

element.

™)
o
o

We now def

{6.16) Definitions: (i) In case Okf_) is non-empty we define
1) and s = )

g = I and 3§, = L)

N ) gy

Sk. = maximum rank of polar eguations of E- € (. (1)
k

B 58 48 a
k k-1 Tk
. e e T — . =0 (T) b
(ii) In case Uk—'_l\ I} is non-empty we define g, = .( by
8. F ... g +0 =n-%k,
o) k-1 K

Remarks: Since, for EkE v, (1)

B(EX) C z{(EK“) for any Bt o g

by virtue of our respective assumptions O (I)#+4¢ , 0 _(I)+*4d ,

we have for :‘k regular

F

k < dim E{Ek) =n - 8

k=

=N 20 and ¢ =-1

The -T-'k's are just the :'k's of §4; the s 's and O, 's are the notation
frequently used by Cartan and will generally be followed for the remainder of
these notes.

Now we let X be a Zariski open set in an irreducible component of

V(1)

B . We define




[

(x) € Gk':?'f)
to be the set of k-planes contained in some Eg €EX .

(6.18) Definitions: Assuming that 0 <k <p , we define two sets

of numerical characters

and

S.,(X) s B

x ;(X} , o (x)

k

associated to X as follows: (i)

[(maximum renk of the polar equations of

i}
—
ks
—
]

lan e *ufk(Z} that is close to an F_.IS e Gk()()
5 (%) =8, (X) + s, ()
S, 1(X) + o (X) =n -k ;
and (ii)
S];(X) = maximm rank of the polar egquations of T

8, (X) = 8;_(X) + s, (X)

M: The important and somewhat subtle point is that, in the
! A 1 i .
definition of the Sk(){,’ , the polar equations are restricted to

k-planes TIl; contained in an Elg € X . On the other hand, in the

gefinition of the E‘;k(}() the relevant polar equations allow E to

yary in a neighborhocd of G‘;:(:{)

We also observe that, since X is assumed to be irreducible we

=]

may compute the s]‘{(l(:l by taking first a general %5 € X , and then

o

determining the rank of the polar eaquations of a general Eg c E‘S

It is obviocus that
r
Sk{X)'g sk(X) ;
and we have the

{6.19) Proposition: The component X contains an ordinary integral

ettt i deeaterect it bk

o

element if, and only 1if,

Proof: The condition s (X) =35 (X}, 0<kx<p -1, is equivalent to

saying that for a general flag in X

(6. € cC cPPloPe
(6.20) X 5 C oee CBY Eg F(x)

nk i : 7 4
the polar spaces H(E™) have constant dimension when 7 e ‘;F{T} varies
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in a neighborhood of E_, . By the argument in Chapter L which shows that 2 Moo 03
2 03

Cartan regularity implies Kahler regularity for an integral element, thig

R . koo, . N y y
implies that E. dis a smooth point of Jk{I: around which the equatiopg

funetions. In this cage

m

give a regular set of definin

1
K "o .
E is regular for 0=k s=p -1 , and consequently X contains an

0
ordinary integral element. (The crucial point is that the above flag is
X, = {n = T = g™ o}
taken to be general among flags in X . The hypothesis essentially says = +
it is then general among all integral flags. ‘r
~3 & g & gs.) ! X,=dr, =m =m =0}
2 23 o2 03 *

Conversely, if X contains an ordinary integral element Eg , then

g s s a B 3 3
considering the polar equationt of a regular flag of E Yields the i o & F 2
& I aq e ) each of which is a family of P° 's over M For these two components
degired equalities. Q.E,D. ¥
we have
(6.20) FExample. We reconsider example (6.6) above now without the 17 %
e s/(x.)=2, g/(x)=2

3 5 01 1
. s 1 2 . 1 "
independence condition w , w” 0 . Over each point x of M the

1 o
vectors & given by (6.7) on which 6 =8 =0 forman R , and

so the 2-dimensional integral elements over x will be a subvariety of

k the Grassmannian 7}2(1#) . As in example (£.12) we use the Pliicker 2
1iH
5J embedding (x.)
| g X )= 2 g (X )=2
1 O\ 2} E] ll: 2} - .
6. (b) Ccp? .
g - Al It follows that X contains a i i
i 5 llows tha 1 contains a dense open set of ordinary integral
| 2-planes whereas XE dees not contain any (observe that 1{1 and X
- " & £,
i under which G, (L) is the guadric (6.14) where - ) :
3 Yo B q ( i intersect in a family of integral 2-planes 22 guch that every El C 52
¥ 5 T ; . 5
. has dim H(E™) larger than is generically the case).
ar o B bt
m = ETE —E £ 0<a<b=3,
i
i
i It follows from (6.8) that the equations of V_(I) are
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We now have the following dimension count: R -
. “p,pt
55 / \
(6.22) "p-1/ p
j (6.21) Proposition: Assume that the image of ;/ \N
R _(1) R (1)
p-1 P
0 (1) +M
P |
where
E contains an open set. Then
E:f'l Cc wP1 - =Pl
Wp_l[ EF} = B
14 I)=n+s, + 25, + ... + - L)8 + po_, 3
] dim Op{“’ n+ s, + 25, (p-1) oot ® P, : "
i : m {EP™ C gP} = gP .
D
Proof: By proposition (6.10) it will suffice to prove the same formuls : Clearly ﬂp is surjective while, as in the proof of (6.10), T , is
e p-]
for dim R (I) . We do this by inductiom on p . dominant (again, it may be proved that ﬂp , is surjective, but we
B &
E don't need this). Thus by the induction assumption,
i The result is obvious for p =0, and we assume it for p - 1 . (6.23)
:ﬁ Define the incidence correspondence
] 3 T
il dim(Image m__) =n + s + 25 + + - 2)s + (p - T
i! D 1 2 \P } P2 { 1) 1
{ R . (1) CR_.(I) xR (I}
1 p-1,p p-1 D i
i | where
i |
#
| p-1 p— . &
; to be the set of pairs P CEP where P L and B are both
- O + G = = =5 1
l 0 Sl & %p_g + Up’-l n p + 1

e i regular integral elements.
We have projection mappings . EP N
The fibre T (BT onsi £ on . .
LR ) consists of all regular integral p-planes containing

£l 1

s and is therefore an open set in the projective space

' P(a(sP1) /2P1)
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T . . i
obvious dimension properties of (0.22)

-r‘lgnp"l}- =n~op-8§

(6.24) dim 1 e n i
= ‘/_T H
=1 ,.p-1,
6,° . (TY = a1 (TY) 4 E
(6.25) dim Hp—l,Pl” dim Hp—l\r’ dim 1TEJ_1\ )
=n * ¢ ...+ (p=-2)s + (p - 1)s
n 3 I 50 { )]

where the second equality is a consegquence of (6.23), (6.24), and

(6.26) dim R (I) = dim R (£) - aim ™_(55)
(6.26) dim Rpkl, dim Pp«l,p ) - dim p (E)
= dim R (1) - (p - 1)
p-1,p

= . oE
since T l[Ep} is an open set in the projective space P(E° ) of
P
hyperplanes in EP Comparing (6.25) and (6.26) gives the result.

(6.27) Example (symplectic geometry): Suppose that ¢ is a closed

2-form of maximal rank p on a manifold of dimension 2p . Let T

) 2 M . o g +3 -
be the differential system generated by ¥ . We will prove that

(£.28) a =0 8 = ... = B =]
(6.28) 2 L0 1 s 1

306

Q.E.D,

s 1 1 - - : {T) L. w2 e s
(it is well-known that "rp-i'l."_’ is empty while, as will be seen below,
B R
gim 0 _(T) = 2p + p(p + 1)/2) .
P
It is clear that Sy = 0 since I contains no 1-forms.
0
Let V Dbe the vector space T (M) and %: VXV +R the
x
- e - . F 3 -
alternating bilinear form induced by ¢(x) . Iet  be a
i 14 3 . . P+l 20
of maximal dimension of @ , linear forms " —, ..., w > € V¥

pt+l 2p _

so that EY is defined by w = Le. =W =0 Elementary considerations

show that there exist 1-forms w, ..., W such that

1 +1 2p
q,=i.dﬂ.u5p + .+qu.\\1,'.
. 2p s s 1 2p 2 . i . _
Since ¢ 0, the l-forms w , ..., w © give a basis for V . It

follows that every null plane for ¢ looks like the standard maximal

i 3
o+l =x2p=

ep
null plane x° = eai R

0 in provided with the symplectie
N 1 +1 .. D 2p
form  dx© oA dxl T o4 ... + A aodx s . IF E

for V dual to wl, wonn pr

1 s EE is the basis

then, setting

k . 1 k
E” = span{&, ..., £}

we may easily see that

O SR

gives a flag all of whose elements are regular (the point is that any

flag looks like the standard one). The polar equations of - are
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Thus, for 1Sk <p

8 =k

K

and this proves (6.28).

We note that since

(6.21) is in sgreement with {6,28) and the well-known dimension count for

the variety of null-planes for ¢ .

The main result of this section is the following

(6.29) Theorem (Cartan's test): Let X be g Zariski open set in an

irreducible component of VP(I} . Then

dim X <n + si(X) + 2s) (x) + ... + pa (X},

Moreover, equality holds if, and only if, X contains a dense open set

of ordinary integral elements.

308

proof: We use the notations
i

g ¢ k D 55
SR(X) ={ze G,_(i?-f}: E CE for some & € x}
5 5 : k-1 e Ko
Bl 00 s tET GRS BRES (1)),
k-1,k k

We then have a diagram (compare with (6.22))

k-1,k
P 3 / !
6.30) Te-1 M
N
Gy (%) G (X}
L N . -
where Trk—l and 'JTk are surjective, BSince all varieties are irreducible
we may ccmpute dimensions by using general fibres of the maps in (6.30).
k-1
Thus, for & € Gk_l(.‘(} a general point,
(6.31 dim G (X) = aim G, _(X) + aim w_ > (E°1)
1) im B ! ) = dim k—-l( )+ dim M )

k-1

< dinm ck_l(x) + aiml?(H{Bk“lJ/E

s n (x) _ — g 3 .
= dim Jk._lﬂ(,r +n k )k-l(() H
4
and for E € -’}k{){) a general point
(f o N— e " -1
(6,32) dim uk—l,k(x) = dim uk(}{) + dim ™ X (:‘k}
= dim GK(X} +k-1.
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ive step in th

Py QT N
6.32) wi

propesition (6.21), then the same computation that gives

inequality in Cartan’s

formula Iin €

N P e
remark that, in case X = X) contains R . (I} asa

ense Zariski open subset,

=%

n : i - R T 17 (1)
(6.33) Observation: If we define an enlarge of E (= Ve (L)
k-1 K g i g ey
to be an '-'!k € V. (I) such that E C E° , then strict ineguality will

ke

hold in Cartan's test exactly when, for some k

a general enlargement F"{ of a general

the condition that E- C EP ror some EY € X

Returning to proof of proposition (6.29), if X contalns an
ordinary integral element then, by propositions (£.19) and (6.21),
equality holds in Cartan's test.

Conversely, supbose that strict ineguality holds im Cartan's test.
Referring to observation (6.33), we let k - 1 be the first time that

r 1 1€ 6 _(X) does not lie in
a general enlargement of a general X g does no ie in
¢ (X) . Then the diagram (6.30) cannot have a Zariski open set in
common with the corresponding diagram for UPI:E: . Consequently by

proposition (6.10), X

X P 3 A s bhig-
Remark. The mechanism of the proof is this:

b=
y

o
o
=8
mz
£
A
@

cannot contain any ordinary integral elements. .

pay AL o P i =
ghen (i) G.(X), ..., G _(X} will a1l have dense

Zariski open sets in

n with G o (%)) . (42 3
common with G caes Jk—l(on (X)) 5 (ii) therefore, a general
nlargement E general Bl e g (X) wi 1 ] i
enlarg Ze ] Uyg VS will be a general point
1 A Ty o e 4 oy 5
B E "’}{"E'n""” » and (iii) the condition 8, (X) < s, means that our

" 4

general enlargement E

I
he i k
will not lie in G (

X) . and therefore at
this stage the inequality in the dimension count becomes strict.

In practice Cartan's test will be used as follows:

(6.34) Given a differential system with independence condition (I, w)

=

1

et X be an irreducible component of the analytic variety

f
\

—

i (I, w) of admissible, p-dimensicnal integral elements. Then,

P

if we set s;()() = O’;(X} .

: ' i
dim X <n + sl(}{} + 25'2(3{; + L., F ps;(){}

with equality holding if, and only if, (I, w) is in involution

and a general point of X is an ordinary integral element.

. r ’
The notation change :JD(X} -+ sp{)(] is to conform to what the

reader will find in Cartar [2] (only he does not specify the irreducible

component of '-fk(I, w) in which he is working).

i = . .
(6.35) Example. Ve reconsider example (6.20) with independence

" . 1 2
condition @ = w & WS #0 . ‘Then '-.fE(I, w) is irreducible and is a

ariski open set X in ){1. Thus




= o i = EG = o =1
[n =6, sy(x)=2, sj(X) =1, sy(x)=1
dimX=6+2=28

n+si(){)+25(){)=9>5,

]
2
which confirms our computation (6.6) that (I, w)

For later use, and aslso as an aid in reading [2], we want to
explain the reduced polar equations. Let (I, w}) be a differential
system with independence condition wl A ...t W #0 , Complete the

W' to a basis {w', $"} of the 1-forms. Admissible p-planes are

given by
(6.36) o8 = 2t

1
(the Qi give coordinates on the open set of admissible p-planes in
each TX(M) ) . The conditiom that the p-plane (6.36) be integral is

given by real analytic equations
(6.37) Fox, ) =0, 1<t<t

Let X be a Zariski open subset of an irreducible component of the

variety VD(I, w) given by (6.37). Given Eg € X and a flag

1 i
*q =] Ea G ey 2 Eg 3 C Eg , the polar equations of Eg are linear

equations of the form

312

fails to be involutive,

where

i 3 TR
S gt 2
duwt 3eM

. ]
is a tangent vector (as before {—— , ——=} 1is the basis of tangent

4
vectors dual to {w®, ¢*} ) .

(6.39) Definition: The reduced polar equations are

i
LMB=0, X =iy vty W
- R, , :
(6.40) Propesition: If Ey €X 1is a general point and
2 1 =1 s B
Xy €E) G By~ C Fy 1s 2 general flag, then the rank of the reduced
o o ko /
polar equetions of EO is equal to Sﬁ\X) A

Proof: 1In ®? xm% with coordinates (ai, Bu) we consider the linear
equations (6.38}. As o s ... 4 o #0 on Eg We may assume that the
solutions to (6.38) project onto wP Then, for fixed {ai} the

equations (6.38), viewed as inhomogeneous equations in the 85 , will

N ]
have the same rank, Sk(X} » as the full set of eguations (6.38).




i GI

class of Pfaffian systems.

Suppose that (I, w) dis a Pfaffian sy

c) In this section we will introduce and discuss

system generated by linearly

independent 1-forms 6, ..., 8  together with their exterior derivatives
= o i
SWOA w..p WTO By adding

and with independence condition W

linearly independent 1-forms T , ...,

w- to a basis (thus n=s +p + t)

we shall use the range of indices

o
The exterior derivatives of the 8

o o € i

+ §
m° we may complete the 0 and

For the remainder of the paper

are always of the form

§o X b 8 &
i %—ezaﬂb A T mod T

Throughout we make the convention that

It is natural to ask if (6.41)

basis. Admissible changes of bases

substituticns

- o [+ ]
O =ecs ¥ P8 »

may be simplified by a change of

are given by invertible linear

314

b g . "
n (0.41) underge a complicated

w

Under this change the coefficient

transformation, but the condition

':6.!43) eEF =0

remains invariant.

(6.04)

The Pfaffian system (I, w) is

d to be in

s i fe Y 2 . . ”
goed form if (6.43) is satisfied. In this case (6.41) simplifies to

e e T o AT o, I = i 1 a i i
(6.45) ag" = aeiﬂ AW+ oo o mea T,
2 9y

T

As initial motivation for studying Pfaffian systems in good form

we will give the equations that define the variety V (I, w) orf
s :

admissible integral elements. Any p-plane on which gl = Sae BT e

. P ; i . .
and wl A eee b w FO iz given by linear equations
(6.16) 7 = 18t
i

5 o s : : :
By (6.41) the conditions that this be an integral p-plane are

(6.47) e (2525 _ 0%0%) 4 (08 _ 2 4F e _
L i j} b 5 | aeiz:) i cjd =10 .




S

— o
LI B
&

< 70 these are (inhomogeneous ) guadratic equations and ‘\Tﬂj(I: w)
= E
may have the complexity of a general set of such equations. However,

. o at r . = i -
in case the Praffian system is in good form,(6.47) reduces to the set

of affine linear equations
(6.18) a® 9% - aa.ﬂj. + . =0.

Assume that (I, w) is in food form and that Vg(l’, w) surjects

4
onto an open set in M . Restrict attention to this set. Assume also
either that we are in the real analytic case or that we are in the C

£ o ,E o L€
case and the linear operator (Ei} > (acJ b a&.i‘j}

has constant rank,
- L -
Then we may choose a real analytic (respectively C ) solution Q{(x)
£ € £ i
to the equations (6.48) and replace T by T - Ei(x}w . Whnen this

is done, (6.45) and (6.48) reduce to

(6.49) ag™ = agi ™ 2w mod I
o

( 5 o

\6-50) a‘gji‘ E'[—:j_g" 0

with the same agi as in (6.45).

Tt is clear that, for Pfaffian systems in food form, '\Tp(I, W) has
none of the algebro-geometric complexities of the general case: over
each x EM the solutions to (6.45) form an affine linear space. As
will soon be explained there is a corresponding linear algebra test

for when the system (I, w) is involutive.
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™ P = M 5 " af o) 3 E

For each x €M we denote by .J[a_.x the space of solutions to the
nomogeneous eguations (6.50) whe = { Ta A (T%(
homog 5 eq s (6.50) when a_s a’ei‘x) . In A .I'f‘xll,d}) we

imagine the algebraic ideal generated by the forms

o o €
(x) , a (x)T(x), wix) .

For this ideal we may consider the polar eguations associasted to the

(homogeneous linear) variety of admissible integral p-planes, and we

denote by si-fx}, . si(x," the characters given by (ii) in (6.18)

associated to these polar equations. According to Cartan's test (6.29)

(more precisely, according to its proof) we have

(6.51) dim S(a]x ésl'(x) + ESé(x} +oo.. # ps;{x} .

PR, . . a
(6.52) Definition: We shall say that |lag;(x)ll forms an inveolutive

-1

tableau in case equality holds in (6.51).

o o
Remark: This is a property of the coeffients a _(x) in (6.45) at
e el ¢

=1 ‘s . .
each point x €M (in particular it meskes sense even if there are no

admissible integral p-planes).

From now on we will assume that dim S{(a) and s

¥
are constant (in the real analytic case this is always true on a Zariski
open subset of M ) , and shall freguently omit reference to the point

x in (6.51) and (6.52).

317




ey - . o 1 = a (5 aOY e
l'he following is merely a reformulation of (6.29):

(6.53) The Pfaffian system (I, w) in good form is invoiutive =

x

contains a neighborhood

if, and only if, the image of vp{l, w) * M

o . . .
of x and "aEi(X]" is an involutive tableau.

i " . 2 &3
There is a2 useful numerical criterion for when He'i_;ill

involutive tableau. By a linear substitution

el
1
[bv]

W

Cle p

we may assume that, for L‘g a general admissible p-plane given
+ r':'i ‘h:"_J LRI
the subspaces Eq & 5 defined by
+1
tuk [ER U}p =0
. i pt - i RN (6 a2g) £ --;k
give a general flag. The reduced polar equations (6.39) for I
u

(o £ _

b 0
(6.5%) :

LSBT

ekt 0
Bet

forms

an

i L hEY
y (6.46),

o

are then

1 1
= W
11 %1
et 2
81 0t A
(6.55) M = . .
M : ko
1 1
Bre ttt By
a® o
|1 ot Beyf

Ry 'P o 2 ot g i y 3 . 3
By Proposition (6.40) the equations (6.54) have rank

6.56) *
(6.56) S‘;=rank1-1k+s‘
Y Tyaps at . _
(6.57) Define s, by (6.55), (6.56) sna a!, ..., s’ 1y
" ' '
S =3 + 5 3 lék gp et

— ’
Define S(a) to be the space of solutions of
Pace of solutions of

Then we have;

4 + o P ca
is the number of independent 1-forms o%
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involutive tableau.

holding and is
we will reformulate
Proof. We will use two auxiliary results.
{y } and denocte by {x }
o
y o 43 ¢ Lemma : F ‘;*
to the tableau ||aEi|.| the ( Lemma: For
a C Hom(V, W) =w RV dim a = dim & + u.: + aewk Sy 0Sk<p -1
having the elements Proof: We consider the map
o i .
(6 ) Z. = a..} ; : +>WeE ... PW
(6.58) Zg T Bgg¥g K X Rt

as generators. From (6.L2) it is clear that a iz invariantly

defined by

attached to the tableau of the Pfaffian system in goed form.

- T -
Tt will be convenient to drop the " ®" and think of W®V  as

Q2

; T T
X . m (T) = @ ... — .
W-valued linear functions on V. For 0 <i <p we set k x]_ 3)('-\

[+>]

o ™ T . The kernel of m iz = and the matrix representing m is M in
(6.59) a = {T € a: —311= s =2 =0l o 2 % % B 0 pres g m o
¥ i i
ax I x (6.55). Thus
Then
= ] :) ._—’\ = FCI !
5 30 Dal 0 R a?_l a (o). s+ ... + 8 = rank Mk

= dim a - di

P

(6.60) Proposition: Assume that (I, w) has no Cauchy characteristics

and that {:{1} is a general basis of V° . Then

dim 8(

()
]
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(6.62) Lemma: If X is the dimension

.. = £ 3
characteristic vectors of the form &£ = & ——
- am

i
ot

Proof: The

are equivalent to

Now define a linear map

Lff:‘;'ﬂt-"w‘x‘.i'*

by
WY ewsei By B0y s 0
position

and extend by linearity. Then

* . n .
The general form of (6.60) is
dim S(a) = dinm 2 + dim 2,

with equality holding if, and only if, ilan I
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+ ... + dim a_

of the space of Cauchy

+
el T PX

is an invelutive tableau.

]

Tmage Y

dim kernel ¥ =
The lemma follows.

Returning to the proof of (6.60), we add

(6.61) for k =0, ..., p -1

(6.63)

dim e, ¥ L.

dim =
p dim a 0

+ dim a
p—

On the other hand, 51:

t=n—p—so} by

and therefore by (6.51) and lemma (6.62)

up the result of lemma

dim 8§ S - 1)s imoa — & P
in 8(a) < + oot (0= D, 4 pl@ina - ) o)
=p dim a - s T o gaao# 5l ¥
e ((p 1)sy -
By (6.63) this gives
dim 3(a) <dim a_ + ... + dim &
3 0 -1

With equality holding if, and only if, la%. |
El

tablean. Q.E.D.

is an involutive




(@) We consider a Prfaffian system in good form (ef. (6.L4L)),

which we write as

o i 1 i ] i
6" = a M A W+ e, W a w0 med T
2

S - < - %
with independence condition w =W s ... r W 50 The useful concept

of expressing (6.64) in dual form will be explained and the analogue

of (6.57) given.

As in (6e) we may consider the tableau Haz," in (6£.64) as
4

; S o # en J
intrinsically defining a subspace a CV W For reasons to appear

in the second part of these notes we give the

(6.65) Definition: The annihilator of a , dencted

1 *
b=a CVRW ,

-

will be ealled the symbol of (6.6L). Using the notation from §6c we let

r ri % ]
b = bt’i ';"rl':( 'X:_l
be a basis for the symbol and we set
h b
(6.66) o= 2% " o+ ﬁ'cq o .
1 el 2 i}
324

are intrinsically defined modulo the span {6, w} by

o
The forms ”|Ti
1y

o i .
the tableau "agiﬂ , and (6.64) is

A i
[6.67) dé6" =17, A w mod I
o (0% o BT, | sy
Lo, =0, w mod I
i J

=]

with the independence condition ® = W & ..., wP #0 being understood.

(6.68)

Definition: We shall say that (6.67) is the dual form of the

praffian system (6.64).

For the Pfaffian system (6.67) we consider the following matrix

whose entries are 1-forms

M, ea-w 'ITl
P
(6.69) mod spsn{ea, w'}
T wn OT
P

a i : : o i i s um 2 :
(working modulo the span {8, w } is equivalent to considering the

o . nC i
Tfi restricted to the subspace. B =w =0 ) .




i i . 3 o S Y]
(6.70) Proposition: Assuming that the basis {w'} has been chosen (6.71) FProposition: Assuming that the matrices A (x) = ”i‘-ai'\x:'l'
zenerically, S;{ is the number of linearly independent 1-forms in the span & space of constant dimension, the following are equivalent:
{ el T —_ —
' first k columns of (6.69). (i) the space '-.fP(I, w) of admissible integral p-planes surjeets
onto M ;
cr s . W £ A Lo § - 1 £ oELN .
Proof: We assume that Eg is a general admissible p-plane and that (317 ye ey chogoe she, ¥ jSo bhab iy 0 in (6.64); and
4 o r (&
Do ) oke ; (14 we may chcose the T, so that €, =0 in (6.67).
x. €E C cin C B + “BY is a general flag where E. is given by (dit] ¥e'mey choome i == === 7y (6.67)
0 0 0 0 2 0
k+ th : ¢
w llEg = ,,., = mp]Eg =0 . The k set of reduced polar equations
Proof: We shall show that (i) = (ii) = (41i) = (4i).
(6.39) is (cf. (6.5%)) = - .
Assuming (i) we can find 9,__L = 1_1’(3() such that the eguations
i
a.£E =0
E E i
el T = L W
. 1
& define an integral p-plane. Making the substitution
E
aEKE =0.
T +T - E,fwl
By (6.66) this is
T iy ; P
then eliminates the esy's in (6.64).
(7% B =g 7 e o] S e r
12 = Assuming (ii) we define i by (6.66) and then the C.'s are zero.
o
. Finally we turn to the implication (iii) = (i). Since the 1-forms
. o . . . -
: T. are not linearly independent modulc I , we cannot in general say
o . &
(Tfk, Y B B that the equations To= 0 define a tangent p-plane to M (the point
is that these equations may imply relastions among the wl's } . The
Q,E.D. conditions that these equations do define a p-plane are
ri o gl (00, ¢ O
T Fommhea bt 1 Fr - - 517 1y i Pa, =0 =0 T = 0mod I
To formulate Cartan's test for the dual form we will use the o el a4 i ed Lo,
following two results.
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and from this it is elear that (iii) = (i)} . Q.E.D. ' oy the definition of b =a" .
Conversely, given E?i satisfying the conditions of the proposition,
o
P ~T 3 7 T 3 £
(6.72) Proposition: Assume that L,j =0 in (6.67). Then the since
admissible integral p-planes are given by
1 P |
b= (a) =a
|
| o o J
7= !
| - ve may write
|
| o
| L5, = &,
| ij i N
2t = s =
i | . i4 i%j
ri o J
| b i'm =0 .
i o B 5
. o o d 5 . 3
| The symmetry L., = iji then implies (6.50). Q.E.D.
| =
l . <
Proof: The admissible integral p-planes are given by (6.46) where
(6.50) is satisfied. For these EL; we have by (6.66) Combining the preceeding three propositions gives the following
analogue of (6.57):
o 2
1 = a% 25
l Eil J r .
(6.73) Define S, tobe s plus the dimension of the span of the first
= Q,a \‘j " ) ’ L.
- iju' k columns in (6.69), and Bys eces 8, DY

where by (6.50) { st =g | +s/ 1<k<p-1

=]
MK
e m
L]

+

o

it

=]

]

a

» Define

fx)

i

l 2t ¢ wm synv*
1 b

|

|

|

and where
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independence condition dx™ p ...

Under the assump

T - 7Y
general =z, 1
o i3
TR N .
- X * etric matrix

=

where £

, satisfies the

or this it is useful to introduce an analogue of moving frames,

[y

for the Pfaffian system generated by

iz an involutive tableau.

Rem :

By proposition (6.72) there is an isomerphism

(6.7h) 8(a) = o1 independence condition dx A ... dx’ #0 . The exterior
o 4 =] =a 5
. o 4 o (£ 7 s
- - . 1 i i i ives of (6.78) e
the reason for the notation a'"’ will appear in the sequel to these notes. dgerivatives of (6.78) giv

¢ = 2 - : nd P :
(6.75) Example: We shall discuss one 2 order F.D,E.

=
@
]
}

(6.76) Fx', z

s Ey T i
3x 8y .
:
dp.. A dx* =0,
ij
Introducing variables and & is equivalent to the
ifferential system T
We set
e y
FAX 5 2, ‘;:‘iv Py =S8 e &
iJd w = dx
(6.77) dz - p,dx = 0 ;
i i
§ = dz - p,dx
dp, - p,.dx" = 0 )
L i iJ B
8, = s
e = = Tew: =
1] J1

i 330 331




The system (6.78) is now

-

with structure equations

To give the definition o

For a collection of 1-fo

i o N
Flagla™; BU; T

=0 mod I

e
@
Il

- - 3
df, = -w,. » w" mod I,

f adapted systems we use the following notation:

W o]

i
Tms o 4, B s Y 5 e«s We sct

= syan{ai} 2 syﬂﬂ[mi, gV} 5panfai, ¥, y"1c....

(6.79) Definition: An adapted system is given by 1-forms 6, 8., w, L
satisfying
5 i N
Fla“[.U; B.3 w3 w,.} = Flag{f; 8.: w 3 T, .}
i j i 1]
46 = 0 mod I
(6.80)

A W mod I

332

rirst equation in (6.80) is automatic).

(the
We remark that the two substitutions
[ 8=1%
J 6, = X'5, moa I
i 1]
y g B
(6.81) A= A
i i-d
W = Aw mod I
J

I

|

|

E . L

i = T A d

{ i3 7\1 kg‘;{:! mod T

i o i i

[6=€' s, 8, =8, w =w modI
(6.82) '
11‘r =7 + B r,:|k mod I B =B
1 i ijks o : i3k k]

both give adapted systems.

We will now show that the Pfaffian system (6.77) has an algebraic
normal form in a suitable adapted system, and from this it will be
easy to verify Cartan's test (6.73) for invelution. Setting dF = 0

introduces one relation

0 med I

il

i ot = ) i : P 4.
where @Y = Q@7 = 3F/8p, det J#o , and therefore

we may make a substitution (6.81) sc that (6.83) becomes




M
=
+
02
=
Il

=0 mod I,

By a substitution (6.82) we may eliminate the C, . At this point ywe

have the algebraic normal form

(6.84) e B o

Our Pfaffian system 8 = 6, = 0 with structure equations (6.80)

-

and symbol relation (6.8L) is in dual form. The matrix (6.69)

-
w

0 ... O
Myq wo- ﬂlp
Moom s ¥
pl pp
Aside from the relations
m . =7, elr - 0
i) ji ii

the 1-forms “ig are linearly independent modulo span{g, ei’ w } .

Tt follows that (ef. (6.73))
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:U.‘j) T"I =P L’:‘,f' p =1 ) Ll ] r]_l ;= 2 3 :’hz o
& =L &)
Thus
s +2sh + ... +ps’ =p(p+1)(p+2)/6-p

On the other hand, admissible p-dimensional integral elements

. i P :
on which 8 = 8" =0 are given by

where

Tf we denote by a{lf the space of iijk satisfying (6.86), then
¥ 1 : k
dim a.( ) = dim S}rmj R® - D
p + 2
= D)=
= si 4 29’ + ... F ws; .

By Cartan's test the system is in involution.
By the Cartan-Kihler theorem, in the real analytic case a general
solution of (6.76) depends on 2 functions of (p-1)-varisbles. The simplest

case of this is the wave equation




e

z2{x, y) = ulx + y) + v{x -

nctions of one variable.

where u and v are arbitrary

To conclude this szection we want to supplement this discussion with

: #
some standard FP.D.E. concepts.

N
- + gz i wapsd iz a°
(6.87) Definiticns: (i) The (Monge) characteristics of Fix , By = o -?3LE}
o - ax" Ix9x
=0 at stz ¢ 1 LR Tk Y = g
= t a point (x°, =z, Py» Py, satisfying Fix', z, Pis Pyyl) =

are given by all £ = (E) €R® that satisfy

(3F/op, )88 = 0.

(ii) If there are no Monge characteristics, then the equation is

elliptic (at the point in guestion).

(iii) 1f det(3F/p,,) # 0 =and the equation is not elliptie, then it

is hyperbolie.

t is easy to see that elliptic and hyperbelic systems have the

[l

respective algebraic nermal forms

#
[n the sequel we will generalize these to arbitrary Ffaffian

systems in good form.
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=1

. 13
The matrices QY are,

It is also easy to check that in the elliptic case every adm

integral p-plane Eg is r

i ; cpa]
EE-C,,.CE™ c3zP
) 0 o 50

For example, the coordinat

normal form has
BL = Py wai

in contrast to (6.85).

)

=5
+

g
=
n

—

respectively, the identit

b @ 0
I, o0 0
0 0 Ty2n)

egular, as is every flag

2

e flag for the hyperbolie case in the sbove

i
=}
I
=
+
]
(0]

, 8

2-1

(=]

o

¥

and

while this fails in the hyperbolic case.
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