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1. Introduction

(i) Summary of results.

The problem of constructing algebraic cycles with given properties — e.g., in a
given homology class — is one of the longest standing and deepest questions in
algebraic geometry. Over the years there have been several variational approaches
centered around the question

(1(i).1) Given a family {Xt}t∈B of smooth algebraic varieties with Xt0 = X, and
given a codimension-p algebraic subvariety Z ⊂ X whose fundamental
class ψ0(Z) remains of Hodge type (p, p) in H2p(Xt,C) for t in an analytic
neighborhood of t0, is there a family of subvarieties {Zt}t∈B with Zt0 = Z?

Especially notable here is Spencer Bloch’s semi-regularity paper [B]. The advantage
of this approach is that one can use the full strength of the deformation theory
of subvarieties. One might similarly ask whether there is a family of algebraic
cycles {Zt}t∈B deforming Z; some first steps toward an infinitesimal theory for
this problem were the subject of [G-G2]. A third possible context, which we will
consider here, is to work in the Chow group. Thus, letting ξ ∈ CHp(X) be the
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rational equivalence class represented by [Z], the question (1(i).1) should be first
modified to

(1(i).2) Under the assumptions in (1(i).1), is there a family ξt ∈ CHp(Xt) with
ξt0 = ξ?

There is a basic obstruction to solving this problem, namely that the fundamental
class ψ0(ξ) must remain of Hodge type (p, p) in H2p(Xt,C) for t in an analytic
neighborhood of t0. For p = 1, this is the only obstruction. We will see below, for
p ≥ 2 that even modulo torsion there are other obstructions to deforming ξ even
when ψ0(ξ) = 0. The full question (1(i)2) is interesting, as is the question

(1(i).3) Under the assumptions of (1(i).1), is there a family ξt ∈ CHp(Xt) with

ψ0(ξ0) = ψ0(ξ)?

This question has a formal analogue where, so to speak, we try to construct
ξt as a formal power series in t, and the purpose of this paper is to develop an
obstruction calculus that will help to understand the formal analogue of (1(i).3).
Two applications of this calculus are the following, where again everything is modulo
torsion

(1(i).4) Suppose that ξ ∈ CHp(X) and as in (1(i).1) assume that the fundamental
class ψ0(ξ) remains of Hodge type (p, p) for t in an analytic neighborhood
of t0. Suppose further that

(1(i).5) Hp+1
(

Ωp−2
X/C

)
= · · · = Hp+1(OX) = 0 .

Then (1(i).2) is true formally.

For p = 2, we are hypothesizing that

H3(OX) = 0

which is equivalent to saying

J2(X) = J2(X)ab,

i.e. J2(X) is an abelian variety. By upper-semicontinuity the same should be true
for nearby Xt. By the Generalized Hodge Conjecture, all of the J(Xt) should lie in
the image of the Abel-Jacobi maps, and we expect no further obstructions beyond
ψ0(ξ) remaining of Hodge type. However, if

H3(OX) 6= 0

then there exist cycles ξ with ψ0(ξ) = 0 and AJ2
X(ξ) non-torsion, yet where

im(AJ2
Xt) ⊆ torsion for 0 < |t| < ε

as in [G] and [V]. So (1(i).2) cannot hold in this situation. The precise explanation
of what “being true formally” means will be given below. We will also see that the
assumption (1(i).5) implies that, at least formally, questions (1(i).2) and (1(i).3)
coincide; i.e., there are no obstructions to formally lifting F 1CHp(X).
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In general we will see that:

(1(i).6) If

Hp+1
(

Ωp−m−1
X/C

)
= · · · = Hp+1 (OX) = 0 , m = 1 ,

then FmCHp(X) is formally unobstructed to all orders in t. Taking m =
p we have that

(1(i).7) F pCHp(X)is formally unobstructed.

Here we use the version of the conjectural filtration on Chow groups of [G-G1].
Since the fundamental works of Bloch and others (cf. [B], [Q] and [S]) leading to

the identification, again modulo torsion,

(1(i).8) CHp(X)⊗Q ∼= Hp
(
KM
p (OX)

)
⊗Q

where KM
p (OX) is the sheaf associated to the pth-Milnor K-groups of the local rings

OX,x for some time it has been understood that for p = 2 the groups CHp(X) have
an arithmetic aspect. Below we shall show that:

(1(i).9) Suppose that X is defined over Q and that ξ ∈ CHp(X(Q)) and, as in
(1(i).4), ψ0(ξ) remains of Hodge type (p, p) for t in an analytic neighbor-
hood of t0. Then formally (1(i).2) has an affirmative answer.

We shall also see that, in general, the lifting of ξ ∈ CHp(X(Q)) can only be
formal. Of course, if the HC is true then question (1(i).3) will have an affirmative
answer. Thus, there is some arithmetic/geometric subtlety in the difference between
(1(i).2) and (1(i).3).

Before turning to a more detailed description of the contents of this paper we
might summarize by saying that this work contains good news and bad news: The
good news is that, under only Hodge-theoretic assumptions, we are able to construct
something; the bad news is that there are subtle obstructions to the convergence of
this iterative construction. There has been a significant recent progress in tackling
such issues, cf. the excellent survey of Chambert-Loir [C-L].

(ii) Discussion of techniques

We will work with an algebraic family of algebraic varieties, given by

(1(ii).1) X
π−→ B .

Here, X and B are smooth complex varieties and π is a smooth projective map. We
shall sometimes write (1(ii).1) as

(1(ii).2) {Xt}t∈B
where Xt = π−1(t) is a smooth, projective variety. It will cause no essential loss
in generality if we assume that B is one-dimensional. We let t0 ∈ B be a reference
point and set X = Xt0 ; we then may think of (1(ii).1) as a deformation of X. We
denote by IX ⊂ OX the ideal sheaf of Xt0 and set{

OXm = OX/Im+1
X

Xm = scheme (Xt0 ,OXm) .
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Geometrically the scheme Xm is the mth order neighborhood of X in X, or equiva-
lently the deformation to order m of X given by (1(ii).2). We have natural maps

Xm+1 −→ Xm

and we let
X̂ = lim

m
Xm

be the scheme (X,O
X̂

) where O
X̂,x = limm OXm ; we shall refer to X̂ as the formal

neighborhood of X in X.
For a codimension-p algebraic cycle Z we denote by ξ = [Z] ∈ CHp(X) the cor-

responding rational equivalence class. Throughout this paper we will work modulo
torsion. We denote by

ψ0(ξ) = ψ0(Z) ∈ Hgp(X)

the fundamental class of ξ or Z. Here

Hgp(X) = H2p(X,Z) ∩Hp,p(X)

is the usual Hodge group of integral cohomology classes of Hodge type (p, p), con-
sidered modulo torsion.

Fundamental to this work is the Soulé variant of the Bloch-Quillen identification

(1(i).8) CHp(X) ∼= Hp
(
KM
p (OX)

)
mod torsion .

Relative to a Zariski covering Uα of X, we may represent elements on the right as
cocycles formed from symbols

(1(ii).3) {f1, . . . , fp} , fi ∈ O∗X
(
Uα0
∩ · · · ∩ Uαp

)
.

If Z is a codimension-p subvariety whose ideal sheaf has a resolution by locally free
sheaves, then from this data we may construct the corresponding cocycle (1(ii).3).
Thus, in a sense we may think of the RHS as giving the “equations” of the rational
equivalence class of an algebraic cycle.

The central thrust of this work is to develop a calculus for successively lifting
a class ξ ∈ Hp

(
KM
p (OX)

)
to classes ξm,∈ Hp

(
KM
p (OXm)

)
over the infinitesimal

neighborhoods of X in X. We are not saying that the identification (1(i).8) extends
to the schemes Xm (this may be an interesting question). Rather, if we can lift
ξ = [Z] to a class in Hp(U,Km

p (OU )) where U is a Zariski neighborhood of X in X,
then from

CHp(U) ∼= Hp
(
U,KM

p (OU )
)

we will have lifted [Z] to [Z] ∈ CHp(U) where Z is a codimension-p algebraic cycle
in U . Our work will enable us to analyze the corresponding formal question of

lifting ξ to ξ̂ ∈ Hp
(
KM
p (O

X̂
)
)
.

The general mechanisms for lifting geometric objects given by “equations” over
successive infinitesimal neighborhoods is well known and classical, dating from the
earliest works of Kodaira and Spencer. The fundamental observation in the present
study is the following: Recall that for any ring R there is a natural map

(1(ii).4) KM
p (R) −→ ΩpR/Q

where the RHS are the absolute Kähler differentials. The map (1(ii).4) is induced
by

{r1, . . . , rp} −→
dr1

r1
∧ · · · ∧ drp

rp
, ri ∈ R∗ .

By abuse of notation we denote this d log r1 ∧ · · · ∧ d log rp.
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For any scheme Y the maps (1(ii).4) give maps

KM
p (OY ) −→ ΩpY/Q

inducing on cohomology what is called the arithmetic cycle class mapping (cf. [Sv])

(1(ii).5) η : Hp
(
KM
p (OY )

)
−→ Hp

(
ΩpY/Q

)
.

The basic observation in this work is:

(1(ii).6) The obstruction to lifting ξm ∈ Hp
(
KM
p (OXm)

)
to Hp

(
KM
p (OXm+1

)
)

de-

pends only on the arithmetic cycle class η(ξm) ∈ Hp
(

Ωp
Xm/Q

)
.

To interpret (1(ii).6) we recall from [G-G1] that, assuming the important con-
jecture of Bloch-Beilinson, the arithmetic cycle class η(Z) captures some — but
not all — of the information in [Z] ∈ CHp(X). For p = 1 this “lost” information
is not crucial to the obstruction to lifting ξ = [Z], this being essentially due to the
p = 1 case of (1(i).7). However, for p = 2 this lost information is non-trivial for the
lifting problem and may be related to the issue of non-convergence of the formal
iterative construction leading to the results (1(i).4) and (1(i).9).

In section 2(i) we will review the classical 1st order Kodaira-Spencer theory,
especially the extension class and subsequent coboundary maps associated to the
exact sheaf sequence

(1(ii).7) 0 −→ Ωp−1
X/Q ⊕ ΩpX/Q −→ Ωp

X1/Q −→ ΩpX/Q −→ 0

where the first map is

ϕ⊕ ω 7→ dt ∧ ϕ+ tω , t2 = 0 .

The central fact, deriving ultimately from Kähler geometry, is that the coboundary
map in the exact cohomology sequence of (1(ii).7)

(1(ii).8) Hq
(

ΩpX/Q

)
δ−→ Hq+1

(
Ωp−1
X/Q

)
,

is zero. We also establish another result (proposition (2(i).13)) that follows from the
degeneracy at E2 of the Leray spectral sequence associated to a smooth, projective
morphism.

In section 2(ii) we analyze the 1st order obstruction theory for the groups
Hp(KM

p (OX)). The basic observation is the commutative diagram

(1(ii).9)

0 −−−−→ Ωp−1
X/Q −−−−→ KM

p (OX1
) −−−−→ KM

p (OX) −−−−→ 0y yη yη
0 −−−−→ Ωp−1

X/Q ⊕ ΩpX/Q −−−−→ Ωp
X1/Q −−−−→ ΩpX/Q −−−−→ 0

where the left hand vertical arrow is

ϕ −→ ϕ⊕ dϕ

and the top left hand horizontal arrow is induced by

(1(ii).10) f
dg1

g1
∧ · · · ∧ dgp−1

gp−1
7→ {1 + tf, g1, . . . , gp−1} , t2 = 0
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where f ∈ OX,x, gi ∈ O∗X,x. The m = 1 result (1(ii).6) follows from (1(ii).8)

and (1(ii).9). The geometric understanding of the relationship between first order
obstruction theory and the filtration on Hp

(
KM
p (OX)

) ∼= CHp(X) is also given.
In section 3(i) we give the rudiments of higher order Kodaira-Spencer theory in

a form that is amenable to the calculations we need to make. (We make no attempt
to provide a systematic general theory as is done in [R] and [E-V].) In particular
the higher order analogues of (1(ii).7) and (1(ii).8) are given.

Finally in section 3(ii) we turn to the higher order deformation for the groups
Hp
(
KM
p (OX)

)
. The analogue of (1(ii).9) is the diagram

(1(ii).11)

0 −−−−→ Ωp−1
X/Q −−−−→ KM

p (OXm) −−−−→ KM
p

(
OXm−1

)
−−−−→ 0yη yη yη

0 −−−−→ Ωp−1
X/Q ⊕ ΩpX/Q −−−−→ Ωp

Xm/Q −−−−→ Ωp
Xm−1/Q −−−−→ 0

m = 1

where the left hand map in the top row is the same as (1(ii).10) with tm replacing t;
the exactness here requires a somewhat intricate lemma on ε-Steinberg symbols (cf.
(3(ii).3)). With this formalism in place we give the proofs of the main applications
(1(i).5)–(1(i).7) and (1(i).9).

In Section 4 we discuss failures of the formal theory; i.e., examples where all the
obstructions to formally lifting vanish but where no choice of successive extensions
will lead to a convergent, or geometric, result. This phenomenon was encoun-
tered in an earlier work [G-G1], and it may have to do with theory of G-functions
(cf. [A]). We feel that its understanding presents a significant issue.

2. First order obstruction theory

(i) Variants of Kodaira-Spencer theory

In this section, we collect together some classical results of deformation theory.

Given a family X
π−→ B, the basic object in classical Kodaira-Spencer theory is the

exact sequence

0 −→ ΘX/B −→ ΘX −→ π∗ΘB −→ 0 .

Letting t denote a local uniformizing parameter on B with π−1(t0) = X, we may
rewrite this sequence as

0 −→ ΘX/B −→ ΘX −→ OX ⊗ ∂/∂t −→ 0 .

Reducing this sequence modulo tm+1 and setting

Θm = ΘX/B/
(
tm+1

)
we obtain

(2(i).1) 0 −→ Θm −→ ΘXm −→ OXm ⊗ ∂/∂t −→ 0 .

The 1st order classical Kodaira-Spencer theory is derived from the m = 0 case of
this sequence, which setting Θ0 = ΘX we write as

(2(i).2) 0 −→ ΘX −→ ΘX1
−→ OX ⊗ ∂/∂t −→ 0 .
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Denoting by δ the coboundary map in exact cohomology sequences we have the
classical

Definition: The (1st order) Kodaira-Spencer class associated to X −→ B is given
by

θ1 = δ (∂/∂t) ∈ H1(ΘX) .

Geometrically, we think of θ1 as the obstruction to lifting ∂/∂t to the fibre over
t = 0 in the family X −→ B. This is clearly the obstruction to trivializing X −→ B
to 1st order, i.e.,

θ1 = 0⇔ X1
∼= X × Spec(C[t]/t2) .

Equivalently, θ1 is the obstruction to splitting the sequence given by (2(i).2), this
obstruction being the same as the extension class in H1(Hom(OX ,Θ)) ⊗ ∂/∂t ∼=
H1(ΘX) of (2(i).2).

When we study the geometry of X −→ B inductively over the successive infinites-
imal neighborhoods Xk, especially in the study of algebraic cycles and cohomology,
there are a number of related sequences to (2(i).1). We shall now discuss their 1st

order versions.
On the 1st order neighborhood X1, we have t2 = 0 and the three basic sequences

for our study are

(2(i).3)


(i) 0 −→ OX −→ OX1

−→ OX −→ 0

(ii)1 0 −→ OX ⊕ Ω1
X/C −→ Ω1

X1/C −→ Ω1
X/C −→ 0

(iii) 0 −→ ΘX −→ ΘX1
−→ π∗ΘB −→ 0 .

Here, the right arrows are restriction mappings and the left arrows are given re-
spectively by 

(i) f −→ tf

(ii) f ⊕ ϕ −→ fdt+ tϕ

(iii) θ −→ i∗θ, where i : X → X .

More precisely, under (i) we have to give for each x ∈ X a map

OX,x
t−→ OX1,x .

For f ∈ OX,x we choose any f̃ ∈ OX1,x with f̃ |X = f and then the map is

f −→ tf̃ .

Since t2 = 0, the choice of lifting f̃ does not matter. Similar remarks apply to (ii)
and (iii). We may write 

(i) = t

(ii) = dt⊕ t
(iii) = t .

The extension classes of the sequences (2(i).3) are of interest. By the remarks
above we expect that all of these can be derived from the 1st order Kodaira-Spencer
class θ1 ∈ H1(ΘX), and we shall now explain how this goes. For this we note that
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there are pairings

(2(i).4)


ΘX ⊗C OX −→ OX

ΘX ⊗C Ω1
X/C −→ OX ⊕ Ω1

X/C

ΘX ⊗C ΘX −→ ΘX

given respectively by
θ ⊗ f −→ Lθf (= θ · f)

θ ⊗ ω −→ θcω ⊕ Lθω

θ ⊗ σ −→ Lθσ (= [θ, σ])

where L denotes Lie derivative. Of these maps only θ ⊗ ω −→ θcω is OX -linear;
the remainder are C-linear derivations.

(2(i).5) Proposition: The extension classes associated to the exact sequences
(2(i).3) are respectively

(i) Lθ1 ∈ H1 (HomC (OX ,OX))

(ii) θ1c ⊕ Lθ1 ∈ H1
(

HomOX

(
Ω1
X/C,OX

))
⊕H1

(
HomC

(
Ω1
X/C,Ω

1
X/C

))
(iii) Lθ1 ∈ H1

(
HomC

(
ΘX1/B ,ΘX

))
.

Proof: We shall prove the most interesting case (ii); a similar argument will apply
to the other cases. We shall also work in the analytic topology; the algebraic
case may be established by a similar argument, or alternatively the result may be
deduced from GAGA. Finally, we shall carry out the computations when dimX = 1;
the extension to the general case is only notationally more complicated.

We may cover X by open sets Uα in which there are box coordinates (zα, t). In
the overlaps Uαβ =: Uα ∩ Uβ we will have

(2(i).6) zα = fαβ(zβ , t) = fαβ(zβ) + fαβ1(zβ)t+ fαβ2(tβ)
t2

2
+ · · · .

We first claim that the Kodaira-Spencer class is represented by the cocycle

(2(i).7) θ1αβ = fαβ1(zβ)∂/∂zα ∈ H1 ({Uα},ΘX) .

To see this, we let (∂/∂t)α be the lift of ∂/∂t in the (zα, t) coordinate system. Then
in Uαβ {

((∂/∂t)β − (∂/∂t)α)) · t = 0

((∂/∂t)β − (∂/∂t)α) · zα =
∂fαβ(zβ ,t)

∂t

∣∣
t=0

= fαβ1(zβ) ,

which is what is wanted.
We now let eα be the product extension of a function or a differential form from

Uα ∩X to Uα. Then by (2(i).6) we have

(eβ − eα)dzα = ∂zβfαβ(zβ)dzβ + fαβ1(zβ)dt+ ∂zβfαβ1(zβ)t mod t2, tdt .

The first term is dzα expressed in the zβ-coordinate system. The second term is,
by (2(i).7),

θαβ1cdzα ,
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and using the Lie derivative formula the third term is the coefficient of dzβ in

Lθαβ1dzα

expressed in the zβ-coordinate system. �

From (2(i).3) (ii)1 we infer the exact sequence

(2(i).3) (ii)p 0 −→ Ωp−1
X/C ⊕ ΩpX/C −→ Ωp

X1/C −→ ΩpX/C −→ 0

whose extension class is

θ1c ⊕ Lθ1 ,

where the first term is induced from the pairing

ΘX ⊗ ΩpX/C −→ Ωp−1
X/C .

It is well-known and elementary that the coboundary maps in the long exact
cohomology sequences associated to short exact sheaf sequences are given by cup-
products with the extension classes.

(2(i).8) Proposition: The coboundary maps in the long exact cohomology sequences
arising from (2(i).3)(i) and (ii)p corresponding to Lθ1 are zero. Thus the only non-
zero coboundary maps are

Hq
(

ΩpX/C

)
θ1c−−−−→ Hq+1

(
Ωp−1
X/C

)
.

Proof: Using the Lie derivative formula

Lθω = d(θcω) + θcdω ,
the proposition follows from the Kähler manifold fact that the mapping

Hq
(

ΩpX/C

)
d−→ Hq

(
Ωp+1
X/C

)
induced by the exterior derivative is zero. Indeed, there is a commutative diagram

Hq
(

ΩpX/C

)
d−−−−→ Hq

(
Ωp+1
X/C

)
o‖ o‖

Hp,q

∂̄
(X)

∂−−−−→ Hp+1,q

∂̄
(X)

(since d = ∂ on ΩpX/C), and it is a Kähler fact that every class in Hp,q

∂̄
(X) is

represented by a ∂-closed form (e.g., take the harmonic representative for a given
Kähler metric). �

Remarks: This result has the following elementary geometric meaning: Given

ω ∈ Hq
(

ΩpX/C

)
,

Lθ1ω ∈ Hq+1
(

ΩpX/C

)
is the 1st obstruction to finding a family ωt ∈ Hq

(
ΩpXt/C

)
with ω0 = ω. But from

Hr(Xt,C) ∼= ⊕
p+q=r

Hq
(

ΩpXt/C

)
it follows that dimHq

(
ΩpXt/C

)
is constant and hence ω extends to a family ωt.
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The 1st obstruction to extending θ1 ∈ H1(ΘX) to θ1,t ∈ H1(ΘXt) is given by

Lθ1(θ1) = [θ1, θ1]

which is also zero, although the map

Hq(ΘX)
Lθ1−−−−→ Hq+1(ΘX)

is in general non-zero.

Remark: A result of Herb Clemens (cf. [C]) states that for θ ∈ H1(ΘX) the map

[θ, θ] : Hq
(

ΩpX/C

) c−−−−→ Hq+2
(

Ωp−1
X/C

)
is zero. More generally, for θi ∈ Hri(ΘX), i = 1, 2, the map

[θ1, θ2] : Hq
(

ΩpX/C

)
−→ Hq+r1+r2

(
Ωp−1
X/C

)
is zero. This follows from the standard differential-geometric formula

(θ1cLθ2 − Lθ2(θ1c))ω = [θ1, θ2]cω
together with

Lθi : Hq
(

ΩpX/C

)
−→ Hq

(
ΩpX/C

)
being the zero map as a consequence of

Lθiω = θ1cdω + d(θicω)

as above.

Corollary: If X is a Calabi-Yau manifold then for θi ∈ Hr1(ΘX),

[θ1, θ2] = 0 .

Proof: This follows from

Hr1+r2(ΘX) ∼= Hr1+r2
(

Ωn−1
X/C

)
and the commutativity of the diagram

Hr(ΘX)⊗Hn−r
(

Ω1
X/C

)
−−→ Hn(OX)

o‖ o‖

Hr
(

Ωn−1
X/C

)
⊗Hn−r

(
Ω1
X/C

)
−−→ Hn

(
ΩnX/C

)
,

using that the pairing in the bottom row is non-degenerate. �

Corollary (Bogomolov): Calabi-Yau varieties are unobstructed.

Proof: This is a well-known consequence of the fact that

H1(ΘX)⊗H1(Θ)X
[ , ]−−−−→ H2(ΘX)

is zero. �

Finally we want to extend the above discussion to absolute differentials. Here we
assume that X −→ B is algebraic and we work in the algebraic setting — Zariski
topology, sheaf of regular (in the algebraic sense) functions, etc. We will discuss

(2(i).3) (iv)1 0 −→ OX ⊕ Ω1
X/Q −→ Ω1

X1/Q −→ Ω1
X/Q −→ 0
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and the sequences derived from it by exterior algebra. Here, for any scheme Y we
denote by ΩY/Q the sheaf of absolute Kähler differentials. From (2(i).3)(iv)1 we
deduce a diagram

(2(i).9)

0 0 0y y y
0 −→ Ω1

C/Q⊗OX −→ Ω1
C/Q ⊗ OX1 −→ Ω1

C/Q ⊗ OX −→ 0y y y
0 −→ OX⊕Ω1

X/Q −→ Ω1
X1/Q −→ Ω1

X/Q −→ 0y y y
0 −→ OX⊕Ω1

X/C −→ Ω1
X1/C −→ Ω1

X/C −→ 0y y y
0 0 0

The left hand column is the same as the right hand column direct summed with
OX in the Ω1

X/Q and Ω1
X/C terms and with idOX being the corresponding map.

The commutativity of the diagram (2(i).9) results from the following considera-
tions. We let k be a field of definition of X and choose a smooth variety S defined
over Q and with

k ∼= Q(S) .

We then denote by

S(X)
π−→ S

the k-spread of X.
If s0 ∈ S is a Q-generic point of S, i.e., s0 does not lie on any proper subvariety

of S defined over Q, then
π−1(s0) ∼= X

and under this identification,

Ω1
X(k)/Q

∼= Ω1
S(x)(Q)/Q

∣∣
π−1(s0)

.

We also not that
Ω1
k/Q
∼= Ω1

S(Q)/Q
∣∣
s0
.

If X→ B is defined over k, then for t ∈ B(k) we have the k-spread

S(Xt)→ S

of Xt. Passing to complex points, the family {S(Xt)}t∈B gives

Replacing Ω1
C/Q by Ω1

k/Q in the diagram (2(i).9) loses no geometric information. If

X
p−→ B

is a family defined over k, then we get

S(X) −→ S(B)
↘ ↙
S .
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We may identify
Ω1

X1(k)/Q
∼= Ω1

S(X)1(Q)/Q
∣∣
π−1(S0)

.

The natural exact sequence

0→ Ω1
k/Q ⊗ OX1(k) → Ω1

X1(k)/Q → Ω1
X1(k)/k → 0

becomes

0→ Ω1
S(Q)/Q) ⊗ OS(X)1(Q)/Q

∣∣
s0
→ Ω1

S(X)1(Q)/Q
∣∣
s0
→ Ω1

S(X)1/S

∣∣
s0
→ 0 .

so that by base change the term in the middle in (2(i).9) may be thought of as the
complexification of the 1-forms in a 1st order neighborhood of X in S(X) and the
horizontal and vertical arrows reflect the sequences of the type (2(i).3)(ii)1 in the
B and S directions respectively.

Let σ ∈ H1(ΘX(k)) ⊗ Ω1
k/Q denote the 1st order Kodaira-Spencer class of

S(X) → S, where we identify T ∗s0S
∼= Ω1

k/Q. Then σ gives the extension class

of
0→ Ω1

k/Q ⊗ OX(k) → Ω1
S(X)(k)1/Q → Ω1

X(k)/k → 0 ,

and by the process described in proposition (2(i).5) it induces the extension classes
of the vertical sequences in (2(i).9). Moreover we have

[θ1, σ] = 0 ,

and this implies the commutativity of (2(i).9).
For θ ∈ ΘX(k) the Lie derivative

Lθ : Ω1
X/Q → Ω1

X/Q

may be defined by
Lθ(ω) = θcdω + d(θcω)

where d = dX/Q. We will see that:

The induced map

Lθ1 : Hq
(

Ω1
X/Q

)
→ Hq+1

(
Ω1
X/Q

)
is zero.

For general p, the sheaves ΩpY/Q are filtered by

(2(i).10) FmΩpY/Q = image
{

ΩmC/Q ⊗ Ωp−mY/Q → ΩpY/Q

}
.

There is a spectral sequence which abuts to Hq(ΩpY/Q) and whose E1-term is ΩmC/Q⊗
Hq(Ωp−mY/C ). For Y = X the maps Lθ1 are zero on these groups and hence vanish

on Hq(ΩpX/Q). Thus we have the

(2(i).11) Proposition: The coboundary maps in the exact cohomology sequence of

0→ Ωp−1
X/Q ⊕ ΩpX/Q → Ωp

X1/Q → ΩpX/Q → 0

are δ = θ1c ⊕ Lθ1 .

Theorem: Hq(ΩpX/Q)
Lθ1−→ Hq+1

(
ΩpX/Q

)
is 0.

The proof proceeds by a number of steps.

(a) ΩpX(k)/Q
∼= Ωp

S(X)/Q)

∣∣
s0

where s0 is a Q-generic point of S.
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(b) Thus we need to show

Hq
(

Ωp
S(X)(Q)/Q)

∣∣
s0

)
Lθ1−−−−→ Hq+1

(
Ωp

S(X)(Q)/Q
∣∣
s0

)
is zero.

(c)

Hq
(

Ωp
S(X)(Q)/Q

∣∣
s0

)
∼= lim

U Zar open
def/Q⊆S

Hq
(
U,Ωp

S(X)(Q)/Q

)
(logD)

where for U Zariski open, def/Q in S, write U = X − D, D divisor with
normal crossings.

(d) The map

Hq
(
U,Ωp

S(X)(Q)/Q(logD)
)

Lθ1−−−−→ Hq+1
(
U,Ωp

S(X)(Q)/Q(logD)
)

is zero.

Proof of (d): Since Lθ1 = (cθ1) ◦ d− d ◦ (cθ1), we just need that

Hq
(
U,Ωp

S(X)(Q)/Q(logD)
)

d−→ Hq
(

0,Ωp+1
S(X)(Q)/Q(logD)

)
is zero. But this follows by base change from showing

Hq
(
U,Ωp

S(X)(C)/C(logD)
)

d−→ H1
(
U,Ωp+1

S(X)(C)/C(logD)
)

is zero. This follows from degeneracy of the Hodge-De Rham spectral sequence for
logarithmic differentials.

To conclude this section we shall give for later use a technical result which,
however, has interesting geometric content. For this we consider the diagram

0 0 0y y y
0 −−→ F 1Ωp−1

X/Q ⊕ F
1ΩpX/Q −−→ F 1Ωp

X1/Q −−→ F 1ΩpX/Q −−→ 0y y y
0 −−→ Ωp−1

X/Q ⊕ ΩpX/Q −−→ Ωp
X1/Q −−→ ΩpX/Q −−→ 0y y y

0 −−→ Ωp−1
X/C ⊕ ΩpX/C −−→ Ωp

X1/C −−→ ΩpX/C −−→ 0y y y
0 0 0

A piece of the cohomology diagram is, using proposition (2(i).11), given by

(2(i).12)

0y
F 1Hq(ΩpX/Q)y

Hq
(

Ωp
X1/Q

)
−−→ Hq

(
ΩpX/Q

)
θ,c−−→ Hq+1

(
Ωp−1
X/Q

)y
Hq
(

ΩpX/C

)
θ1c−−→ Hq+1

(
Ωp−1
X/C

)
.



14 MARK GREEN AND PHILLIP GRIFFITHS

The replacement of Hq(F 1ΩpX/Q) by F 1Hq(ΩpX/Q) will be explained below.

(2(i).13) Proposition: Let η ∈ Hq(ΩpX/Q) have image denoted by ηC ∈ Hq(ΩpX/C).

Suppose that

θ1cηC = 0

in Hq+1(Ωp−1
X/C). Then we can find η′ ∈ F 1Hq(ΩpX/C) such that

θ1c(η + η′) = 0

in Hq+1(Ωp−1
X/C).

(2(i).14) Corollary: Under the assumptions of the proposition, we may modify η
by η′ ∈ F 1Hq(ΩpX/C) so that η + η′ lifts to Hq(Ωp

X1/Q).

Geometrically, ηC ∈ Hq
(

ΩpX/C

)
= Hp,q(X) ⊂ Hp+q(X,C). The assumption

in the proposition is that, to 1st order, ηC remains of Hodge type (p, q) when
we identify all the Hp+q(Xt,C) with Hp,q(X,C) for |t − t0| < ε (Gauss-Manin
connection). This implies that ηC lifts to Hq(Ωp

X1/C). What the proposition states

is that we may modify the absolute class η ∈ Hq(ΩpX/Q) by η′ keeping the same

(η + η′)C = ηC so that η + η′ lifts to Hq(Ωp
X1/Q).

Proof of (2(i).13): We first recall the relative deRham formulation of the degen-
eracy at E2 of the Leray spectral sequence of a proper smooth mapping

W
f−−→ S

of quisi-projective varieties, where for our application we may take S to be affine.
Now Ω•W/C is filtered by

FmΩ•W/C = image
{
f∗
(

ΩmS/C

)
⊗ Ω•−mW/C → Ω•W/C

}
with

GrmΩ•W/C
∼= ΩmS/C ⊗ Ω•−mW/S

(we drop the f∗). Since S is assumed to be affine the Leray spectral sequence has

Ep,q1 = H0
(

ΩpS/C

)
⊗Hq

(
Ω•W/S

)
and

d1 = ∇W/S
is the Gauss-Manin connection. By the theorem of Blanchard-Deligne this spectral
degenerates at E2. The cohomology group

Hq(W ) ∼= Hq
(

Ω•W/C

)
has a natural filtration with

GrpHq(W ) ∼=
(
H0
(

ΩpS/C

)
⊗Hp+q

(
Ω•W/S

))
∇W/S

where ( )∇W/S denotes the cohomology of the sequence

· · · → H0
(

ΩpS/C

)
⊗Hq

(
Ω•W/S

) ∇W/S−−→ H0
(

Ωp+1
S/C

)
⊗Hq

(
Ω•W/S

)
→ · · · .
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Suppose now that we have

W→ S × T
which we think of as a family of families

Wt → S, t ∈ T and W0 = W

to each of which the above considerations apply. We then have

· · · → ΩpT/C ⊗Hq
(

Ω•W/T

) ∇W/T−−→ Ωp+1
T/C ⊗Hq

(
Ω•W/T

)
→ · · · .

The issue we want to consider is whether ∇W/T induces non-trivial maps

ker

(
GrpHq(W )

∇W/T−−→ ΩqT/C ⊗Gr
pHq(W )

)
−−→ coker

(
Grp+1Hq(W )

∇W/T−−→ ΩqT/C ⊗Gr
p+1Hq(W )

)
...

We may rewrite this as

(2(i).15)

ker
{(

H0
(

ΩpS/C

)
⊗Hq−p

(
Ω•W/S

))
∇W/S

−−→ Ω1
T/C ⊗

(
H0
(

ΩpS/C ⊗Hq−p
(

Ω•W/S

)))}
∇W/S

−−→ coker {similar groups} .

Now, and this is the point, assuming that T is contractible

W −−→ S × T

has its own Leray spectral sequence which degenerates at E2, and we claim that
the maps in (2(i).15) are part of d2 for this spectral sequence. First, denoting by
X a typical fibre of W → S we have that

Hq
(

Ω•W/S×T

)
∼= Hq

(
Ω•W/S

)
localizes over s0 ∈ S to Hq(X). Now(
H0
(

ΩpS×T/C

)
⊗Hq−p(X)

)
∇W/S×T

d2−−→
(
H0
(

Ωp+2
S×T/C

)
⊗Hq−p+1(X)

)
∇W/S×T

.

The LHS contains

ker

{(
H0
(

ΩpS/C

)
⊗Hq−p(X)

)
∇W/S

∇W/T−−→ Ω1
T/C ⊗H

0
(

ΩpS/C

)
⊗Hq−p(X)

}
,

the RHS contains

Ω1
T/C ⊗

(
H0
(

Ωp+2
S/C

)
⊗Hq−p+1(X)

)
∇W/S

∇W/T

(
H0
(

Ωp+1
S/C

)
⊗Hq−p+1(X)

)
∇W/S

and the d2 mapping contains (2(i).15).
Finally, we apply these considerations to the situation where

W→ T × S
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is given by

Wt = S(Xt)y y
S = S

, t ∈ T (k)

and
W | T × {s0} = Xy y

T = T

to conclude (2(i).13). �

(ii) First order obstructions for lifting Chow groups

Basic assumption: We are working modulo torsion, and for simplicity of notation
we use

CHp(X)

to denote the usual Chow group modulo torsion. By basic results of Bloch-Quillen
and Soulé we have

(2(ii).1) CHp(X) ∼= Hp
(
KM
p (OX)

)
where KM

p (OX) is the sheaf (in the Zariski topology) given by the pth Milnor
K-groups constructed from the local rings OX,x.

The basic idea is to make the identification (2(ii).1) and then calculate the ob-
struction to lifting a class in Hp(KM

p (OX)) over the successive infinitesimal neigh-
borhoods Xk of X in X. For this the basic sequence following Van der Kallen and
Bloch is

(2(ii).2) 0 −−→ Ωp−1
X/Q −−→ KM

p (OX1) −−→ KM
p (OX) −−→ 0 .

The right hand map is given by restriction of Steinberg symbols

{f1, . . . , fp} → {f1 |X , . . . , fp |X}, fi ∈ O∗X1,x

and the left hand map is induced by

(2(ii).3) f
dg1

g1
∧ · · · ∧ dgp−1

gp−1
→ {1 + tf̃ , g̃1, . . . g̃p} , t2 = 0

where f ∈ OX,x, gi ∈ O∗X,x and f̃ , g̃1, . . . , g̃p denote lifts of these functions to OX1,x .

We shall prove later that this mapping is well-defined and that (2(ii).2) is exact.
Also, it will simplify the notation to write (2(ii).3) as

f
dg1

g1
∧ · · · ∧ dgp−1

gp−1
→ {1 + tf, g1, . . . gp−1}

with the extensions being understood.
To explain the basic observation behind this work, we recall the arithmetic cycle

class mapping

Hp
(
KM
p (OX)

) η−→ Hp
(

ΩpX/Q

)
induced by

(2(ii).4) {f1, . . . , fp} →
df1

f1
∧ · · · ∧ dfp

fp
, d = dX/Q
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(we omit the usual (2π
√
−1)−p factor, as it will play no role in this paper and would

only serve as a notational distraction).

(2(ii).5) Proposition: The coboundary map δ in the exact cohomology sequence of
(2(ii).2) is given by

δ(ξ) = θ1cη(ξ), ξ ∈ Hp
(
KM
p (OX)

)
.

Since δ(ξ) is the 1st order obstruction to lifting ξ to ξ1 ∈ Hp
(
KM
p (OX1)

)
, we have

the to us remarkable conclusion:

(2(ii).5) The obstruction to lifting ξ to ξ1 depends only on the arithmetic cycle
class η(ξ).

In our paper [G-G1] we have proposed a set of Hodge-theoretic invariants ϕ0(Z),
. . . , ϕ2p−2(Z) of an algebraic cycle Z ∈ Zp(X) which, assuming a conjecture of
Bloch-Beilinson, would be a complete set of invariants of the rational equivalence
class [Z] ∈ CHp(X) modulo torsion. The invariants ϕ0(Z), ϕ1(Z), ϕ3(Z), . . . ,
ϕ2p−3(Z) determine the arithmetic cycle class η(Z), so at first glance it appears
that the obstruction to lifting ξ = [Z] only “sees” slightly more than one half of
the invariants of ξ. The actual situation is somewhat subtle and will be discussed
later.

For the proof of (2(ii).5) we consider the diagram

0 −−−−→ Ωp−1
X/Q −−−−→ KM

p (OX1
) −−−−→ KM

p (OX) −−−−→ 0y y y
0 −−−−→ Ωp−1

X/Q ⊕ ΩpX/Q −−−−→ Ωp
X1/Q −−−−→ ΩpX/Q −−−−→ 0 .

Here, the bottom row is the exact sheaf sequence in proposition (2(i).11), the first
map being

(2(ii).8) ϕ⊕ ω 7→ dt ∧ ϕ+ tω .

The two right hand vertical arrows are ∧pd log as in (2(ii).4). The left hand vertical
arrow is

(2(ii).9) ϕ 7→ ϕ⊕ dϕ .

The commutativity of (2(ii).7) follows from (2(ii).8) and

∧pd log{1 + tf, g1, . . . gp−2} = dt ∧ f dg1

g1
∧ · · · ∧ dgp−1

gp−1
+ tdf ∧ dg1

g1
∧ · · · ∧ dgp−1

gp−1
.

Passing to cohomology we have
(2(ii).10)

Hp
(
KM
p (OX1)

)
−−−−→ Hp

(
KM
p (OX)

) δ−−−−−−−−−−−−→ Hp+1
(

Ωp−1
X/Q

)
yη yη y

Hp
(

Ωp
X1/Q

)
−−−−→ Hp

(
KM
p (OX)

) δ̂−−−−→ Hp+1
(

Ωp−1
X/Q

)
⊕Hp+1

(
ΩpX/Q

)
.

Here, the right hand vertical arrow is, by (2(ii).10)

ϕ 7→ ϕ⊕ dϕ, ϕ ∈ Hp+1
(

Ωp−1
X/Q

)
.
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Since by proposition (2(i).11)

δ̂ = θ1c ⊕ Lθ1

= θ1

where Lθ1 = 0 on cohomology, we have

δ(ξ) = δ̂η(ξ) .

This proves the proposition. �

Remark: It is to us quite interesting that the ΩpX/Q summand in the bottom row

of (2(ii).7), which plays no role in the obstruction to lifting a class in Hp(ΩpX/Q) to

Hp(Ωp
X1/Q), is absent from the top row in (2(ii).11). We may say that the geometric

question of lifting a class in Hp(KM
p (OX)) to Hp(Km

p (OX1
)) does not see irrelevant

information.

We will now give the geometric interpretation of the obstruction in proposition
(2(ii).5) and of the conclusion (2(ii).5) in the first two cases p = 1, p = 2; the
interpretation in the case p = 2 will extend to the cases p = 2.

p = 1. In this case — which is classical — the sequence (2(ii).2) reduces to

0→ OX → O∗X1
→ O∗X → 0

with the first map being

f → 1 + tf, t2 = 0 .

The basic obstruction diagram (2(ii).10) is

H1
(
O∗X1

)
−−−−→ H1 (O∗X) −−−−→ H2 (OX)y y ∥∥∥

H1
(

Ω1
X1/Q

)
−−−−→ H1

(
Ω1
X/Q

)
−−−−→ H2 (OX) .

To interpret θ1cη(ξ) where ξ = H1 (O∗X), we have

where the dotted arrow has the interpretation

ηC(ξ) is the fundamental class ψ0(ξ) ∈ H1,1(X).

Moreover,

θ1cη(ξ) = θ1cηC(ξ) is the 1st order deviation of ψ0(ξ) from remain-
ing of Hodge type (1, 1) in the family {Xt}t∈B .
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Geometrically, to lift ξ ∈ Pic(X) to Pic(X), the Chern class of ξ must remain in
Hg1(Xt) for all t, and once this happens ξ lifts since the family Pic0(Xt) is unob-
structed. The above gives the 1st order calculation that this is the case. Nothing
new happens here.

p = 2. In this case the obstruction diagram (2(ii).10) together with the exact
cohomology sequence of

0→ Ω1
C/Q ⊗ OX → Ω1

X/Q → Ω1
X/C → 0

combine to give a diagram (KM
2 = K2 in this case)

Here, O1(ξ) is what we shall call the primary 1st order obstruction to lifting ξ ∈
H2(K2(OX)) to H2(K2(OX1

)). From the discussion above we may infer the inter-
pretation

(2(ii).12) The primary 1st order obstruction is given by

O1(ξ) = θ1cψ0(ξ);

it represents the 1st order deviation of the fundamental class ψ0(ξ) ∈
H2,2(X) from remaining of Hodge type (2, 2) in the family {Xt}t∈B.

Proof: Let ηC : H2(K2(OX))→ H2(Ω2
X/C) be the mapping induced on cohomology

by

{f1, f2} → dC log f1 ∧ dC log f2

where dC = dX/C. It is well known that under the isomorphism

H2
(

Ω2
X/C

)
∼= H2,2(X)

we have (up to the factor (2π
√
−1)−2)

ηC(ξ) = ψ0(ξ)

corresponds to the fundamental class of ξ. Since

O1(ξ) = θ1cηC(ξ)

the result (2(ii).12) follows. �
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In (2(ii).11) the dotted arrow means that O2(ξ) is defined only if O1(ξ) = 0. Sup-
pose this is the case. We shall refer to O2(ξ) as the secondary 1st order obstruction
to lifting ξ = H2(K2(OX)) to H2(K2(OX1)), and we shall now give its geometric
interpretation.

For this we need a short discussion recalling some of the material from
[G-G1]. Suppose that ξ = [Z] ∈ CHp(X(k)) where both X and Z are defined
over field k. Taking k-spreads we have first the spread

(2(ii).13) S(X)
ω̃−−→ S

of X and then the spread

(2(ii).14) S(Z) ∈ Zp(S(X)(Q))

of Z. Both S(X) and S(Z) are only defined up to ambiguities as discussed in (loc.
cit). The arithmetic cycle class

η(S(Z)) ∈ Hp
(

Ωp
S(X)(Q)/Q

)
.

By base change

Hp
(

Ωp
S(X)(Q)/Q

)
⊗ C = Hp

(
Ωp

S(X)/C

)
⊂ H2p(S(X),C)

and under this inclusion

η(S(Z)) ∈ Hgp(S(X))

is the fundamental class of S(Z). We shall denote by

ψ0(S(Z)) ∈ H2p(S(X),C)/ambiguities

the image of η(S(Z)) when we factor out the ambiguities in H2p(S(X),C) induced
by the ambiguities in (2(ii).13) and (2(ii).14). From (loc. cit) we have

(2(ii).15) ψ0(S(Z)) may be identified with η(ξ) .

This has the following precise meaning. We consider the Leray spectral sequence
of (2(ii).13) for the sheaf ΩrS(X)/C and localized over the generic point s0 ∈ S. This

spectral sequence degenerates at E2 (cf. [E-P]), and making the identification

(2(ii).16) Ω1
S/C,s0 = Ω1

k/Q ⊗ C ⊂ Ω1
C/Q

we have (loc. cit)

(2(ii).17) Ep,q2 =
(

ΩqC/Q ⊗H
p+q

(
ΩrX/C

))
∇a

.

Here the right hand side is the cohomology of the complex

Ωq−1
C/Q ⊗H

p+q
(

Ω+1
X/C

)
∇a−−→ ΩqC/Q ⊗H

+q
(
ΩX/C

) ∇a−−→ Ωq+1
C/Q ⊗H

p+q
(

Ω−1
X/C

)
where ∇a is the arithmetic Gauss-Manin connection. This spectral sequence abuts
to

(2(ii).18) Hp+q
(

ΩrS(X)/C

)
localized at s0

∼= Hp+q
(

ΩrX/Q

)
where the isomorphism results from (2(ii).16). Taking q = 0 and r = p, ψ0(S(Z))
belongs to the LHS in (2(ii).18), η(ξ) belongs to the RHS and under this identifi-
cation

(2(ii).19) ψ0(S(Z))→ η(ξ) .
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Finally, from [G-G1]

(2(ii).20)
{
Hp
(

Ωp
S(X)/C

)
localized at s0

}
∼= Hp

(
Ωp

S(X)/C

)
/ambiguities.

Combining (2(ii).18) and (2(ii).20) we see that the map (2(ii).19) is injective, and
this is the meaning of (2(ii).15).

After these preliminaries we may finally give the geometric interpretation of the
secondary 1st order obstruction. Namely, if ξ ∈ H2(K2(OX)) deforms to ξt ∈
H2(K2(OXt)) then we will have ξt = [Zt] for a family of cycles Zt ∈ Z2(Xt).
Assuming everything is defined over k, we will have the family of spreads

(2(ii).21)

{
S(Xt) −−→ S , t ∈ B(k)

S(Zt) ∈ Z2(X(Xt)(Q)) .

In particular,

(2(ii).22) ψ0(S(Z))remains of Hodge type (2, 2) in the family (2(ii).21) .

The vanishing of the primary 1st order obstruction O1(ξ) is the 1st order implica-
tion of this in the top piece of the Leray filtration on H4(S(X),C) mod ambigui-
ties. Assuming O1(ξ) = 0, the vanishing of O2(ξ) is well-defined and geometrically
gives the condition that in (2(ii).22) the second piece in the Leray filtration of
H4(S(X),C) mod ambiguities be true to 1st order.

This interpretation extends in the evident way for all p. We may summarize the
above discussion as follows:

(2(ii).23) The 1st order obstruction to lifting a rational equivalence class [Z] ∈
CHp(X) is expressed by the diagram

There are filtrations on CHp(X) ∼= Hp(KM
p (OX)), Hp(ΩpX/Q) and

Hp+1(Ωp−1
X/Q), and the maps in the above diagram all preserve these fil-

trations. The filtration on the obstruction space Hp+1(Ωp−1
X/Q) reflects

the geometric condition that, to 1st order, the pieces of the fundamental
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class of the spread S(Z) in the Leray filtration on H2p(S(X),C) mod
ambiguities remain of Hodge type (p, p).

Since the filtrations on CHp(X) and Hp(ΩpX/Q) have p steps and the filtration on

the obstruction space Hp+1(Ωp−1
X/Q) has only p− 1 steps, and since the obstruction

map preserves the filtrations, we may infer the following

(2(ii).24) Corollary: To 1st order, F pCHp(X) is unobstructed.

For p = 1 this is the well-known fact that Pic0(X) moves smoothly with X in a fam-
ily. For p = 2 this appears to be a new observation whose geometric interpretation
we will discuss later.

3. Higher order obstruction theory

(i) Higher order Kodaira-Spencer theory

There are two well-developed systematic higher order Kodaira-Spencer theories
[EV], [R]. The rudimentary theory given here is amenable to the computations we
need to make.

Recalling the exact sequence (2(i).1) we give the

Definition: The mth order Kodaira-Spencer class is

θm = δ(∂/∂t) ∈ H1 (Θm−1) .

For m = 1 we have the usual 1st order Kodaira-Spencer class θ1 ∈ H1(ΘX). The
class θm depends on the choice of local coordinate t on B; however we observe that
it’s vanishing does not depend on this choice

θm = 0 if, and only if, Xm ∼= X × Spec(C[t]/tm+1) .

The above definition is convenient for calculations, and the geometric conclusions
that will be drawn from these calculations will not depend on the choice of param-
eter t. One may of course give an intrinsic definition, but for our purposes this is
not necessary. Remark that a change of parameter

t→ at+ bt2

induces

θ1 −−→
(

1

a

)
θ1

θ2 −−→
(

1

a

)[
θ2 +

(
b

a

)
θ1

]
,

from which the general pattern of how the θm transform is clear.
Using the notation (2(i).6) and setting

(3(i).1) θ̃mαβ = fαβm(zβ)∂/∂zα

we have

eβ(∂/∂t)− eα(∂/∂t) = θ̃1αβ + tθ̃2αβ + · · · .
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Thus the Čech representative cocycles for θ1, θ2, . . . are given by

(3(i).2))


θ1αβ = θ̃1αβ

θ2αβ = θ̃1αβ + tθ̃2αβ

...

Under a change of t as above

θ̃1αβ −−→
(

1

a

)
θ̃1αβ

θ̃2αβ −−→
(

1

a

)
θ̃2αβ +

(
b

a2

)
θ̃1αβ .

Since ΘX/B is a sheaf of Lie algebras and since vertical vector fields for X→ B
vanish on the function t, the Θm are sheaves of Lie algebras. Moreover, there is an
exact sequence

(3(i).3) 0 −−→ ΘX
tm−−→ Θm −−→ Θm−1 −−→ 0 , m = 1 .

We claim that:

(3(i).4) The extension class of (3(i).3) is given by an element

em ∈ H1(DerC (Θm−1,ΘX)) ,

where DerC(Θm−1,ΘX) are the C-linear Lie algebra homomorphisms.

Proof: The cases m = 1, 2 will illustrate the general pattern. Using again the
notation (2(i).6) and setting jαβ(zβ) = ∂zβfαβ(zβ), we have in Uαβ

dzα = jαβ(zβ)

{
1 + t∂zβfαβ1(zβ)j−1

αβ (zβ)

+
t2

2
∂zβfαβ2(zβ)j−1

αβ (zβ) + · · ·
}
dzβ mod dt .

If we take the difference of the box coordinate liftings of ∂/∂zα in Uβ and Uα we
have

eβ (∂/∂zα)− eα (∂/∂zα) = −
(
t∂zαfαβ1(zβ) +

t2

2
∂zαfαβ2(zβ) + · · ·

)
∂/∂zα

=

[(
tfαβ1(zβ) +

t2

2
fαβ2(zβ) + · · ·

)
∂/∂zα, ∂/∂zα

]
.

It follows that for v, w sections of ΘX over Uαβ

(3(i).5))

 e1αβ(v) =
[
θ̃1αβ , v

]
e2αβ(v + tw) =

[
θ̃2αβ , w

]
+ 1

2

[
θ̃1αβ , v

]
using the notation (3(i).1). The fact that the extension classes are in

DerC (Θm−1,ΘX)

is a consequence of the Jacobi identity. �

Comparing (3(i).4) and (3(i).5) we see that

θm is constructed from θm−1 and em .
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Thus, for m = 1 we have

0 −−→ ΘX −−→ Θ1 −−→ ΘX −−→ 0

and the extension class
e1 = θ1 .

From
e1(θ1) = [θ1, θ1] = 0

we have
[θ1, θ1] = δθ̃2

and by (3(i).4)

θ2αβ = θ̃1αβ + tθ̃2αβ .

In general, we will have

em = θm−1 ∈ H1 (DerC (Θm−1,ΘX))

and
e(θm−1) = [θm−1, θm−1] = δθ̃m

leading to
θmαβ = θm−1αβ + tmθ̃mαβ .

In addition to the sequence (2(i).1) we now consider the sequences analogous
to (2(i).3)

(3(i).6)
(i) 0 −−→ OX −−→ OXm −−→ OXm−1 −−→ 0 m = 1

(ii)1 0 −−→ OX ⊕ Ω1
X/C −−→ Ω1

Xm/C −−→ Ω1
Xm−1/C −−→ 0 m = 1

(iii)1 0 −−→ OX ⊕ Ω1
X/Q −−→ Ω1

Xm/Q −−→ Ω1
Xm−1/Q −−→ 0 m = 1 .

(3(i).7) Proposition: The extension classes of (3(i).6) are all induced from θm.
Specifically, there are maps Θm−1 −−→ DerC

(
OXm−1 ,OX

)
Θm−1 −−→ DerC

(
Ω1

Xm−1/k
,OX ⊕ Ω1

X/k

)
k = C,Q

which induce maps H1 (Θm−1) −−→ H1
(
DerC

(
OXm−1

,OX
))

H1(Θm−1) −−→ H1
(

DerC

(
Ω1

Xm−1/k
,OX ⊕ Ω1

X/k

))
under which θm goes to corresponding extension classes.

Proof: The inclusion
ΘX/B ⊂ ΘX

and pairing
ΘX ⊗C OX −−→ OX

induce
Θm−1 ⊗C OXm−1 −−→ OXm−1 .

The case m = 1 of the proposition is given in the proof of proposition (2(i).5). For
the case m = 2 we consider a function g ∈ OXm−1,x. If x ∈ Uα we write

g = g0(zα) + tg1(zα)
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and extend g to eα(g) ∈ OXm,x using the (zα, t) box coordinates. If x ∈ Uβ then
we write as in (2(i).6)

zα = fαβ(zβ) + tfαβ1(zβ) +
t2

2
fαβ2(zβ) + · · ·

and look at the t2 term in eβ(g)− eα(g); i.e.,

eβ(g)− eα(g) =
1

2
fαβ2∂zαg0 + fαβ1∂zαg1

which was to be proved. We will write the RHS of this equation as Lθ2g where

(Lθ2g)αβ =
1

2
θ̃2αβg0 + θ̃1αβg1 .

A similar calculation for

ω = g0(zα)dzα + tg1(zα)dzα

gives

eβ(ω)− e2(ω) = θ2cω ⊕ Lθ2ω

where the cocycle representatives are{
(θ2cω)αβ = θ̃2αβcg0(zα)dzα + θ̃1αβcg1(zα)dzα

(Lθ2ω)αβ = Lθ̃2αβ (g0(zα)dzα) + Lθ̃1αβ (g1(zα)dzα) . �

Definition: We define

(3(i).8) Lθm : Hq
(

Ωp
Xm−1/k

)
−−→ Hq+1

(
ΩpX/k

)
k = Q,C

to be the ΩpX/k-component of the coboundary map in the exact cohomology sequence

of

(3(i).9) 0 −−→ Ωp−1
X/k ⊕ ΩpX/k −−→ Ωp

Xm/k
−−→ Ωp

Xm−1/k
−−→ 0 , k = 1 .

As in the case m = 0 (cf. proposition (2(i).8)) we have

(3(i).10) Proposition: The maps (3(i).8) are all zero.

Proof: As in the proof of (2(i).8) and (2(i).11) it will suffice to do the case k = C.
The case m = 2 will illustrate how the general pattern goes. The coboundary maps
in the cohomology sequences of

0 −−−−→ Ωp−1
X/C ⊕ ΩpX/C −−−−→ ΩpX2/C

−−−−→ Ωp
X1/C −−−−→ 0y y y

0 −−−−→ ΩpX/C −−−−→ Ωp
X2/B

−−−−→ Ωp
X1/B

−−−−→ 0

give a commutative diagram

Hq
(

Ωp
X2/C

)
−−−−→ Hq

(
Ωp

X1/C

)
Lθ2−−−−→ Hq+1

(
ΩpX/C

)
y y ∥∥

Hq
(

Ωp
X2/B

)
−−−−→ Hq

(
Ωp

X1/B

)
δ′′−−−−→ Hq+1

(
ΩpX/C

)
.
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Now Hq(Ωp
Xm/B

) represents m-jets of sections of the vector bundle RqΩp
X/B → B

(the fact that this is a locally free sheaf being a consequence of dimHq(ΩpXt/C) =

constant). It follows that δ′′ = 0, which implies the result. �

The remaining coboundary map in the exact cohomology sequence of (3(i).9)
will be denoted by

(3(i).11) Hq
(

Ωp
Xm−1/k

)
θm−−−−→ Hq+1

(
Ωp−1
X/k

)
.

It has the following geometric interpretation: An element in Hq(Ωp
Xm−1/C) repre-

sents an (m− 1)-jet of section of RqΩp
X/C → B, and the coboundary

δ(ϕ) =: δ′(ϕ)⊕ δ′′(ϕ) ∈ Hq+1
(

Ωp−1
X/C

)
⊕Hq+1

(
ΩpX/C

)
represents the obstruction to lifting ϕ to an m-jet. By (3(i).8) and (3(i).10)

δ′′(ϕ) = Lθmϕ = 0 .

We now denote by Φ ∈ (Rp+qπ C)t0 the unique local (in the analytic topology) exten-
sion of ϕ0 ∈ Hq(ΩpX/C) ⊂ Hp+1(X,C) to a section of Rp+qπ C. By our assumption,

to order m− 1 the section corresponding Φ of Rp+qπ C⊗ OB lies in the sub-bundle

(3(i).12) F p
(
Rp+qπ ⊗ OB

)
⊂ Rp+qπ C⊗ OB .

Then

θmcϕ
represents the deviation of Φ remaining in the sub-bundle (3(i).12) to order m. If
we write everything out in terms of Čech cocycles as above we see that θmcϕ is
expressed by an algebraic contraction operator of ϕ with the mth order Kodaira-
Spencer class θm.

We conclude this section with a higher order analogue of proposition (2(i).13).
The proof will be given elsewhere.

(3(i).13) Proposition: Let η ∈ Hq
(

Ωp
Xm−1/Q

)
have image denoted by ηC ∈

Hq
(

Ωp
Xm−1/C

)
. Suppose that

θmcηC = 0

is Hq+1(Ωp−1
X/C). Then there exists η′ ∈ F qHq(Ωp

Xm−1/C) such that

θc(η + η′) = 0

in Hq+1(Ωp−1
X/Q).

(3(i).14) Corollary: Under the assumptions of the proposition, we may modify η
by η′ ∈ F 1Hq(Ωp

Xm−1/Q) such that η + η′ lifts to Hq(Ωp
Xm/Q).

(ii) Higher order obstructions to lifting Chow groups; applications

This section is essentially an amalgam of sections 2(ii) and 3(i). Referring to (2(i).1)
and (2(i).2), the basic sequence for the higher order obstruction theory is

(3(ii).1) 0 −−→ Ωp−1
X/Q −−→ KM

p (OXm) −−→ KM
p

(
OXm−1

)
−−→ 0 .
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Referring to (2(ii).3), the first map is induced by

(3(ii).2) f
dg1

g1
∧ · · · ∧ dgp−1

gp−1
−−→

{
1 + tmf̃ , g̃1, . . . , g̃p−1

}
, tm+1 = 0 .

The exactness of (3(ii).1) follows from the obvious general case of the following
result, for simplicity of notation stated here in the case p = 2.

In the following proposition and its proof, it is convenient to replace t by ε, so
that εm+1 = 0.

(3(ii).3) Proposition: Every element of K2(OXm,x) can be written as a product of
elements of the form

{f, g0 + g1ε+ · · ·+ gmε
m} f, gi ∈ OX,x.

Proof: We will say that a ring R is spanned by powers if for every d > 0 every
r ∈ R is a sum of dth powers

r = pd1 + · · · pdl , pi ∈ R .

Claim 1: OX,x is spanned by powers.

Proof: We first note that a homogeneous polynomial r ∈ C[x0, . . . , xk] of degree
k · d is a sum of dth powers; this is just the fact that for V a vector space the image
of the Veronese map

spans PSymd V .
Next we see that OPl,x is spanned by powers: Given f ∈ OPl,x we write

f = P/Qd (restricted to X)

where P,Q are homogeneous polynomials with Q(x) 6= 0 and apply the first obser-
vation.

Claim 2: Every element of Kx(OXm,x) is a product of elements of the form

{f, g0 + g1ε+ · · ·+ gmε
m} ,

{
1 + uεi, 1 + vεj

}
where f, gi, u, v ∈ OX,x.

Proof: We will show that for any k with 0 < k 5 m
(3(ii).4)

1+fkε
k+fk+1ε

k+1+· · ·+fmεm = (1+fkε
k)
(

1 + fk+1ε
k+1 + f̃k+2ε

k+2 + · · ·+ f̃mε
m
)
.

Assuming this we have

f0 + f1ε+ · · ·+ fmε
m = f0(1 + u1ε)(1 + u2ε

2) · · · (1 + umε
m)

for some u1, . . . , um, from which it follows that

{f0 + f1ε+ · · ·+ fmε
m, g0 + g1ε+ · · ·+ gmε

m}
=
{
f0(1 + u1ε)(1 + u2ε

2) · · · (1 + umε
m), g0(1 + v1ε)(1 + v2ε

2) · · · (1 + vmε
m)
}

= {f0, g0}
∏
i

{
f0, 1 + viε

i
}∏

j

{
1 + ujε

j , g0

}∏
k,l

{
1 + ukε

k, 1 + vlε
l
}
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which proves the claim.

As for (3(ii).4) we have

(1 + fkε
k)−1 = 1− fkεk + f2

k ε
2k − · · ·

so that

(1 + fkε
k)−1(1 + fkε

k + fk+1ε
k+1 + · · · ) = 1 + fk+1ε

k+2 mod εk+2

which gives (3(ii).4).
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Claim 3: This is the same as claim 2, but where now we only use elements of the
form

{1 + uiεi, 1 + vjεj} u, v ∈ OX,x

in the second factors.

Proof: Using claim 1 to write{
u = pi1 + · · ·+ pik

v = qj1 + · · ·+ qjl

we have ∏
α,β

{
1 + piαε

i, 1 + qjβε
j
}

=
{

1 + uiεi, 1 + vjεj
}
· T

where T is a product of terms of the form

{1 + u′εi
′
, 1 + v′εj

′
}

where

i′ + j′ > i+ j .

Now we use descending induction on i+ j, the case i+ j = 2m+1 being automatic.

Claim 4: If ω1, . . . , ωi are the ith roots of −1 and η1, . . . , ηj the jth roots of −1,
then ∏

α,β

{1 + ωαuε, 1 + ηβvε} =
{

1 + uiεi, 1 + vjεj
}
.

Proof: This follows from
i∏

α=2

(1 + ωαuε) = 1 + uiεi

j∏
β=1

(1 + ηβvε) = 1 + vjεj .

Claim 5: If u(x) 6= v(x), then

{1 + uε, 1 + vε}
{

v

v − u
, 1 + vε

}{
1 + uε,

u

u− v

}
= 1 .

Proof: If A and A− 1 ∈ O∗X,x, then A+Bε ∈ O∗X1,x
and by the Steinberg relation

{A+Bε, 1−A−Bε} = 1 .

If follows that

1 = {A, 1−A}
{
A, 1− Bε

1−A

}{
1 +

Bε

A
, 1−A

}{
1 +

Bε

A
, 1− Bε

1−A

}
. �

Setting

u = B/A, v = B/A− 1 ,

i.e.

A = v/(v − u), 1−A = u/(u− v)
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then

1 =

{
v

v − u
, 1 + vε

}{
1 + uε,

u

u− v

}
{1 + uε, 1 + vε} . �

In our arguments we will always be able to arrange that u(x) 6= v(x).

Proof of proposition (3(ii).3): We first write

u = pi1 + · · ·+ pik, v = qj1 + · · · qjl
where, using the notations from Claim 3,

ωαpλ(x) 6= ηβqµ(x) for all α, β, λ, µ .

This is easy to arrange. Then{
1 + uεi, 1 + vεj

}
≡

∏
α,β,λ,µ

{1 + ωαpλε, 1 + ηβqµε}

modulo terms of the form {1 + u′εi
′
, 1 + v′εj

′} with i′ + j′ > i+ j, and

{1 + ωαpλε, 1 + ηβqµε}

=

{
1 + ηβqµε,

ηβqµ
ηβqµ − ωαpλ

}{
ωαpλ

ωαpλ − ηβqµ
, 1 + ωαpλε

}
.

This completes the proof: Claim 2 gets us down to elements in the statement of
the proposition and terms of the forms {1 + uεi, 1 + εvj}. Claim 3 gets us down to
elements we want plus terms {1+uiεi, 1+vjεj}. Claim 4 reduces these to products
of {1+Aε, 1+Bε} terms. Finally, the {1+Aε, 1+Bε} terms are written as products
of the form

{f, 1 +Aε} and {1 +Aε, f}
which have the desired form. �

From (3(i).6) (iii)p and (3(ii.1) we infer the commutative diagram
(3(ii).5)

0 −−−−→ Ωp−1
X/Q −−−−→ KM

p (OXm) −−−−→ KM
p

(
OXm−1

)
−−−−→ 0y yη yη

0 −−−−→ Ωp−1
X/Q ⊕ ΩpX/Q −−−−→ Ωp

Xm/Q −−−−→ Ωp
Xm−1/Q −−−−→ 0 .

Here the left hand vertical arrow is

ϕ −−→ ϕ⊕ dϕ ,

and the other two vertical arrows are the ∧pd log maps. We recall that the bottom
left horizontal arrow is

γ ⊕ ω → mtm−1dt ∧ γ + tmω ,

and the commutativity of (3(ii).5) follows from (3(ii).2). From proposition (3(i).10)
we deduce the

(3(ii).6) Proposition: The obstruction to lifting ξ ∈ Hp(KM
p (OXm−1

)) to

Hp(KM
p (OXm)) is given by

δ(ξ) = θmcη(ξ)
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where θm is the mth order Kodaira-Spencer class and η(ξ) is the arithmetic cycle
class of ξ.

(3(ii).7) Corollary: Let ξ ∈ CHp(X) and suppose that the fundamental class ψ0(ξ)
remains of Hodge type (p, p) in an analytic neighborhood of t0 ∈ B. Assume also
that

(3(ii).8) Hp+1
(

Ωp−2
X/C

)
= · · · = Hp+1(OX) = 0 .

Then ξ lifts formally to Hp(KM
p (O

X̂
).

Remark: If (3(ii).8) is not satisfied, then the HC implies that we may find ξ′ ∈
F 1CHp(X) such that ξ + ξ′ lifts to Hp(KM

p (OX)) (and hence to Hp(KM
p (O

X̂
))).

From (3(i).14) we know the corresponding statement for the arithmetic cycle class
η(ξ); we do not know that we can choose

η′ = η(ξ′)

for some ξ′ ∈ F 1CHp(X); in fact, this is a geometric existence theorem that would
follow from the HC applied to the spread of X and ξ (cf. (2(ii).23) — there are
evident higher order analogues of this statement).

(3(ii.9) Corollary: Any ξ ∈ F pCHp(X) formally lifts to Hp(KM
p (O

X̂
)).

Proof: This is just the higher order extension of (2(ii).24). �

We now turn to the more arithmetic aspects and shall prove the following

(3(ii).10) Proposition: Suppose that X is defined over Q and that ξ ∈ CHp(X(Q)).
Suppose further that the fundamental class ψ0(ξ) remains of Hodge type (p, p) in
all H2p(Xt,C) for t in an analytic neighborhood of t. Then ξ lifts formally to
Hp(KM

p (O
X̂

)).

Proof: It will simplify the notation to take the case p = 2; the general argument
is the same. Since X is defined over Q, the sequence

(3(ii).11) 0 −−→ Ω1
C/Q ⊗ OX −−→ Ω1

X/Q −−→ Ω1
X/C −−→ 0

splits as a sequence of OX -modules (see below). Making as usual the identification
CH2(X) ∼= H2(K2(OX)), referring to (2(ii).11) the obstruction δ(ξ) ∈ H3(Ω1

X/Q)

to lifting ξ to H2(K2(OX1
)) may, using the splitting of (3(ii).11), be written as

δ(ξ) = O1(ξ)⊕ O2(ξ) ∈ H3
(

Ω1
X/C

)
⊕ Ω1

C/Q ⊗H
3(OX) .

The primary 1st order obstruction O1(ξ) vanishes by our assumption on ψ0(ξ), and
therefore we have to show that the secondary 1st order obstruction

(3(ii).12) O2(ξ) = 0 .

Geometrically, this is clear from the interpretation of O2(ξ), the reason being that
the spread of the pair (X, ξ) has no continuous parameters. However, we want to
give a computational proof that will extend to higher order.

Proof: We begin with some background remarks. Let x1, . . . xn ∈ Q(X) give local
uniformizing parameter in a Zariski neighborhood on X. Denote by df ∈ Ω1

X/Q,x
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the absolute Kähler differential of f ∈ OX,x, and by dCf the image of df in Ω1
X/C,x.

The map

((3(ii).13) dCxi −−→ dxi

extended by OX,x-linearity splits the sequence (3(ii).11).
Locally in the analytic topology, any f ∈ OX,x may be expanded as a power

series in the xi

(3(ii).14) f =
∑
I

aIx
I

(
xI = (x1)i1 · · · (xn)in

)
.

If f ∈ OX(k),x for some field k with Q ⊂ k ⊂ C, then the aI ∈ k. As was proved
in [G-G2], we may compute the absolute differential df by differentiating the series
(3(ii).14) term by term, where daI ∈ Ω1

k/Q is the absolute Kähler differential of

aI ∈ k. The resultant series converges and represents the power series expansion
of df . If k = Q̄, then the daI = 0 and df is given by termwise differentiation of
(3(ii).14) in the usual sense. As a consequence, if f ∈ OX,x ∩Q(X) and

dCf =
∑
i

fidCxi

where fi ∈ OX,x ∩Q(X), then it follows that

df =
∑
i

fidxi .

This implies that the splitting of (3(ii).11) given by (3(ii).13) is independent of the
choice of local uniformizing parameters.

Now let {Uα} be a Zariski covering of X and let{
ξ ∈ H2

(
K2

(
OX(k)

))
be represented by {gαβγ , hαβγ}

θ ∈ H1
(
ΘX/C

)
be represented by θαβ∂/∂xα .

Then

(3(ii).15) δ(ξ)αβγδ = θαβc
(
dgβγλ
gβγλ

∧ dhβγλ
hβγλ

)
.

If gβγλ and hβγλ are represented by series as in (3(ii).14) above, then the O2(ξ)αβγλ
component of δ(ξ)αβγλ is represented by the series

θαβc
{
d̄gβγλ
gβγλ

∧ dChβγλ
hβγλ

+
dCgβγλ
gβγλ

∧ d̄hβγλ
hβγλ

}
where in (3(ii).14) we have set

d̄f =
∑
I

daIx
I ∈ Ω1

k/Q ⊗ OX,x .

In particular, if k = Q then d̄gβγλ = d̄hβγλ = 0 and so O2(ξ) = 0, thereby
establishing (3(ii).12).

If ξ ∈ H2(K2(OX(Q̄)) and O1(ξ) = 0, then δ(ξ) = 0 and we may write the

obstruction cocycle (3(ii).15) as a coboundary of a cochain defined over Q. Thus
we may lift ξ to

(3(ii).16)
{
gαβγ + tg′αβγ , hβγλ + th′βγλ

}
, t2 = 0 ,
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where g′αβγOX(Q)(Uαβγ) and h′βγλ ∈ OX(Q)(Uβγλ). The fact that we may keep

things defined over Q through 1st order implies that when we calculate the 2nd

order obstruction to lifting ξ only the deviation of ψ0(ξ) remaining of Hodge type
(2, 2) to 2nd order will appear. This process, when iterated, will lead to a proof of
(3(ii).10).

We will discuss the next case of extending ξ1 ∈ H2(K2(OX1
)) given by (3(ii).16)

to ξ2 ∈ H2(K2(OX2
)). By proposition (3(ii).6) the obstruction is given by

(3(ii).17) δ(ξ1) = θ2cη(ξ1) ∈ H3
(

Ω1
X/Q

)
.

Using the splitting of (3(ii).11) we may write

δ(ξ1) = O1(ξ1)⊕ O2(ξ1)

where {
O1(ξ1) = θ2cηC(ξ1) ∈ H3

(
Ω1
X/C

)
O2(ξ1) ∈ Ω1

C/Q ⊗H
3(OX) .

Now θ1(ξ1) represents the deviation of ψ0(ξ) remaining of Hodge type (2, 2) to 2nd

order, and by assumption it vanishes. As for O2(ξ1), it is computed from terms of
the type

(3(ii).18) d̄ log
(
gαβγ + tf ′αβγ

)
∧ d log

(
hβγλ + th′βγλ

)
.

More precisely, by (3(ii).17) a Čech representative of O2(ξ1) will be given by the
contraction of (3(ii).18) with the vector field

(3(ii).19)

(
1

t

)
θ̃1αβ∂/∂xα + θ̃2αβ∂/∂xα

where the first term contracts the coefficient of t in (3(ii).8) and the second contracts
the other term. Since gαβγ and g′αβγ are defined over Q this contraction vanishes.

Since the cocycles representing the cohomology classes that arise as in (3(ii).17)
are only defined up to coboundaries, the conclusion that we may draw is that the
Čech cocycle representing δ(ξ1) is a coboundary, and as before since the vector field
(3(ii).19) is defined over Q this coboundary may be taken to also be defined over Q.

The argument now proceeds inductively over the infinitesimal neighborhoods
Xm, taking care to ensure at each state that the coefficients in the formal power
series remain in Q. �

4. Failures of the formal theory

In classical algebraic geometry — where “classical” in the study of cycles refers
to codimension one — it is a general principle that a construction that can be made
formally can be made geometrically; we abbreviate this by saying that

(4.1) formal ⇒ actual.

For example, a result from the earliest days of deformation theory — valid in either
the algebraic or analytic setting — states that if we are given a family

{Xt}t∈B
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where h2(OX) = 0, and given [Z] ∈ CH1(X) then

(4.2) there is a family [Zt] ∈ CH1(Xt) which specializes to [Z] at t = t0.

Here there are two caveats: First, we are not saying that the cycle Z deforms; only
that its class in CH1(X) does. The second is that in the algebraic case we may
have to pass an étalé covering of B. Finally, the assumption h2(OX) = 0 may be
replaced by the assumption that the fundamental class ψ0(Z) remains of Hodge
type (1, 1) in H2(Xt,C) for t in an analytic neighborhood of t0.

In the analytic setting, the proof of this result may be done by showing induc-
tively that the successive terms in the power series construction of ξt ∈ H1(K1(OXt))
may be chosen in a “bounded” fashion so as to insure convergence. Such arguments
are common in the works of Kodaira-Spencer, Grauert and others during the 1950’s
and 1960’s.

However, in order to use the Bloch-Quillen result, we need our formal defor-
mation to lift to a rational/algebraic function on B. Here, there is no GAGA
principle to rely on. There has been considerable progress made in recent years in
approaching issues of rationality and algebraicity; see the Bourbaki talk of [CL].

An even more basic illustration of (4.1) is the statement

(4.3) every tangent vector τ ∈ TCH1(X) is tangent to an arc in CH1(X).

Here, by TCH1(X) we mean the p = 1 case of the formal tangent space

(4.4) TCHp(X) = Hp
(

Ωp−1
X/Q

)

to the Chow groups defined by Bloch [cf. B3]. The result (4.3) is more commonly
expressed by saying that CH1(X) is representable and reduced. For reasons that
will appear shortly, we have expressed it in the form (4.3).

The central point of this section is to explain the following:

(4.5) For p = 2 the principle (4.1) is false. In fact, already for p = 2 the analogues
of (4.2) and (4.3) are false.

This will be done by a series of examples, based mostly on our paper [G-G2] in
which we defined for p = 1, n the tangent space TZp(X) to the space Zp(X)
of codimension-p cycles on X, the subspace TZprat(X) to the subgroup of cycles
rationally equivalent to zero, and then we showed in some cases that

(4.6) TCHp(X) ∼= TZp(X)/TZprat(X) .

As discussed in loc. cit we expect that these definitions can be extended for all p
and that (4.6) will hold in general. Also, as discussed in §10 we expect that —
essentially for the geometric reasons stated there — it can be shown that

(4.7) Both TZp(X) and TZprat(X) are formally reduced.
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This means that every tangent vector is tangent to a formal arc in Zp(X) and
Zprat(X). We shall also show that

(4.8) The principal (4.1) is valid for TZ1(X) and TZ1
rat(X), but is in general false

for p = 2.

In the following examples we will use the notations and terminology of [G-G2].

Example (i): In CH2(P2, T ) we consider the arc

z(t) = (b, t)− (b, 1)− (1, t) + (1, 1)

where b ∈ Q̄∗, b not a root of unity. This arc is non-constant in CH2(P2, T ), but
its velocity

z′(t) =
db

b
∈ Ω1

C/Q
∼= TGr2CH2(P2, T )

is identically zero. In this, building a formal power series F (t) in

(4.9) (Y, Y ∩ T ) ⊕
Y⊂(P2,T )

C(Y, Y ∩ T )∗

which maps to z(t) under the map

(Y, f) 7→ div f

involves inductively solving in C∗ ⊗Z C∗ equations of the type
m∏
i=1

ai ⊗ bi =

n∏
ν=1

(1− cν)⊗ cν , cν 6= 1 .

Here, the LHS is given and the RHS is to be solved for.
The assumption that b is not a root of unity implies that z(t) is non-constant.

We are grateful to A. Merkurjev for explaining this. To solve for the terms in the
series, at the first step the assumption that b ∈ Q̄∗ gives

db = 0 (d = dC/Q) .

We can then solve the equation

(1 + t)⊗ b =

n∏
ν=1

(aν + tbν)⊗ (1− aν − tbν) , t2 = 0 and aν ∈ Q∗\{1}, bν ∈ Q ,

where the length n of the Steinberg relation on the right depends on the arithmetic
complexity of b. This gives the t-coefficient in the formal series for F (t). For
the t2-coefficient we again have to an equation of this type where the length of
the Steinberg relation depends on the arithmetic complexity of the aν and the bν .
There is no inductive choice of the solution to these equations that will yield a
convergent answer. Although we don’t know how to make this precise, we feel that
the underlying reason is that there is no way to bound the arithmetic complexity of
the successive choices. In any case, the above is an example of an arc in Z2(P2, T )
whre z′(t) ∈ Z2

rat(P2, T ) but where there can only be formal arcs in (4.9) that map
to z(t).

Example (ii): Let X be a regular surface with H2(OX) 6= 0, Y ⊂ X a smooth curve
and suppose that X and Y are both defined over Q (or over a number field). Then
the map

CH1(Y ) −−→ CH2(X)
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is in general non-constant, while its differential

TCH1(Y ) −−→ TCH2(X)
o‖ o‖

H1(OY ) −−→ Ω1
C/Q ⊗H

2(OX)

is identically zero. Although not as explicit, the reason seems to be analogous to
that in example (i).

Example (iii): Let X be a threefold defined over Q having H2(OX) = 0 and for
which the abelian part J2

ab(X) of the intermediate Jacobian J2(X) is zero — i.e.,
there are no sub-Hodge structures in H2,1(X)⊕H1,2(X) (for the existence of such
see example (iv) below). Then (cf. [G-G2])

TGr2CH2(X) ∼= H2(Ω1
X/C)

may be non-zero but, since J2
ab(X) = 0 there are no actual families. In this case,

for ϕ ∈ H2(Ω1
X/C) there is a tangent vector

τ ∈ TZ2(X)

which maps to ϕ under the isomorphism (4.6). Any arc in Z2(X) with tangent τ
can only be formal; assuming the heurestic (4.7), Z2(X) is only formally reduced.

In concluding we would like to speculate on one possible way of understanding
the convergence issues that arise above and in [G-G2].

In the classical case of deformation theory — e.g., the deformation of classes in
CH1(X) — the objects encountered are finite dimensional schemes (more formally,
the functors are representable), and by results such as the Artin approximation
theorem any construction that can be made formally can be modified at sufficiently
high order to be convergent. Analytically we are inductively solving equations of
the type

(4.10) ϕi = dψi

with sup norm estimates of the sort

(4.11) ‖ψi‖ 5 C‖ϕi‖
that are sufficient to obtain convergence in the analytic category.

In the non-classical case where the objects are not finite dimensional and arith-
metic/geometric considerations arise — e.g., the deformation of classes in CHP (X)
for p = 2 — the issues of convergence are more subtle. One way of thinking of it
is that we have to be able to construct convergent series expansions of algebraic
functions defined over, say, Q. To do so we have to be able to solve (4.10) with
estimates (4.11) where we think of ‖ ‖ as | |∞, together with estimates

(4.12) |ψi|p 5 C|ϕi|p
for each prime p. We must bound “size” both in the usual analytic sense and in
the sense of arithmetic complexity.
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