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Preface

In these days of dizzying scientific progress some apology is called for when offering to
the mathematical public a work written twelve years ago. It certainly bears the stamp of a
juvenile hand, and I had always hoped to revise it, but my inclination to a real effort grew
ever slighter, and the manuscript was becoming an albatross about my neck. There were two
possibilities: to forget about it completely, or to publish it as it stood; and I preferred the
second.

There were, when it was first written, other reasons for delaying publication. The study
of Eisenstein series is a preliminary to the development of a trace formula, and the trace
formula has been a long time evolving. Not only does it present serious analytic difficulties,
but also the uses to which it should be put have not been clear. A sustained attack on the
analytic difficulties is now being carried out, by Arthur and others, and, thanks to a large
extent to developments within the theory of Eisenstein series itself, we now have a clearer
picture of the theorems that will flow from the trace formula. However a great deal remains
to be done, and a complete treatment of Eisenstein series, even imperfect, may be useful to
those wishing to try their hand at developing or using the trace formula.

Much of the material in §2–§6 is included in Harish-Chandra’s notes (Lecture Notes 62).
He, following an idea of Selberg with which I was not familiar, uses the Maass-Selberg
relations. Since I was not aware of them when I wrote it, they do not figure in the present
text; they would have simplified the exposition at places.

In §2–§6 Eisenstein series associated to cusp forms are treated. However the central
concern is with the spectral decomposition, and for this one needs all Eisenstein series. The
strategy of these notes is, the preliminary discussion of §2–§6 completed, to carry out the
spectral decomposition and the study of the general Eisenstein series simultaneously, by an
inductive procedure; so §7 is the heart of the text.

It has proven almost impenetrable. In an attempt to alleviate the situation, I have added
some appendices. The first is an old and elementary manuscript, dating from 1962. Its aim
when written was to expose a technique, discovered by Godement and Selberg as well, for
handling some Eisenstein series in several variables. The method, involving a form of Hartog’s
lemma, has not yet proved to be of much importance; but it should not be forgotten. In
addition, and this is the reason for including it, it contains in nascent form the method of
treating Eisenstein series associated to forms which are not cuspidal employed in §7.

The second appendix may be viewed as an introduction to §7. The principal theorems
proved there are stated as clearly as I could manage. The language of adèles is employed,
because it is simpler and because it is the adèlic form of the theorems which is most frequently
applied. I caution the reader that he will not appreciate the relation between §7 and this
appendix until he has an intimate understanding of §7. The appendix should be read first
however.
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iv PREFACE

It is also difficult to come to terms with §7 without a feeling for examples. Some were
given in my lecture on Eisenstein series in Algebraic Groups and Discontinous Subgroups.
Others exhibiting the more complicated phenomena that can occur are given in the third
appendix, whose first few pages should be glanced at before §7 is tackled.

The last appendix has nothing to do with §7. It is included at the suggestion of Serge
Lang, and is an exposition of the Selberg method in the context in which it was originally
discovered.

In the introduction I thank those who encouraged me during my study of Eisenstein series.
Here I would like to thank those, Godement and Harish-Chandra, who encouraged me after
the notes were written. Harish-Chandra’s encouragement was generous in the extreme and
came at what was otherwise a difficult time. Its importance to me cannot be exaggerated.

It has been my good fortune to have had these notes typed by Margaret (Peggy) Murray,
whose skills as a mathematical typist are known to all visitors to the IAS. I thank her for
another superb job.
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CHAPTER 1

Introduction

One problem in the theory of automorphic forms that has come to the fore recently is
that of explicitly describing the decomposition, into irreducible representations, of the regular
representation of certain topological groups on Hilbert spaces of the form L2(Γ\G) when
Γ is a discrete subgroup of G. Usually Γ is such that the volume of Γ\G is finite. Except
for some abelian groups, this problem is far from solved. However, Selberg has discovered
that the gross features of the decomposition are determined by simple properties of the
group Γ and this discovery has led to the development, mostly by Selberg himself, of the
theory of Eisenstein series. Of course he has preferred to state the problems in terms of
eigenfunction expansions for partial differential equations or integral operators. At present
the theory is developed only for the connected reductive Lie groups which, without real
loss of generality, may be assumed to have compact centres. Even for these groups some
difficulties remain. However, some of the problems mentioned in [19] are resolved in this
paper, which is an exposition of that part of the theory which asserts that all Eisenstein series
are meromorphic functions which satisfy functional equations and that the decomposition of
L2(Γ\G) is determined by the representations occurring discretely in L2(Γ\G) and certain
related Hilbert spaces. For precise statements the reader may refer to Section 7.

At present it is expected that the main assertions of this paper are true if the volume of
Γ\G is finite. It is of course assumed that G is a connected reductive Lie group. Unfortunately
not enough is known about the geometry of such discrete groups to allow one to work with
this assumption alone. However, the property which is described in Section 2 and which I
thereafter assume Γ possesses is possessed by all discrete groups known to me which have a
fundamental domain with finite volume. Indeed it is abstracted from the results of Borel [2] on
arithmetically defined groups. Section 2 is devoted to a discussion of the consequences of this
property. In Section 3 the notion of a cusp form is introduced and some preliminary estimates
are derived. In Section 4 we begin the discussion of Eisenstein series, while Section 5 contains
some important technical results. In Section 6 the functional equations for Eisenstein series
associated to cusp forms are proved. For series in one variable the argument is essentially
the same as one sketched to me by Professor Selberg nearly two years ago, but for the
series in several variables new arguments of a different nature are necessary. In Section 7
the functional equations for the remaining Eisenstein series are derived in the course of
decomposing L2(Γ\G) into irreducible representations.

I have been helped and encouraged by many people while investigating the Eisenstein
series but for now I would like to thank, as I hope I may without presumption, only Professors
Bochner and Gunning for their kind and generous encouragement, three years ago, of the
first results of this investigation.
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CHAPTER 2

The assumptions

Let G be a Lie group with Lie algebra g. It will be supposed that G has only a finite
number of connected components and that g is the direct sum of an abelian subalgebra and
a semi-simple Lie algebra gs. It will also be supposed that the centre of Gs, the connected
subgroup of G with Lie algebra gs, is finite. Suppose a is a maximal abelian subalgebra of gs

whose image in ad g is diagonalizable. Choose an order on the space of real linear functions
on a and let Q be the set of positive linear functions α on a such that there is a non-zero
element X in g such that [H,X] = α(H)X for all H in a. The set Q is called the set of
positive roots of a. Suppose a′ is another such subalgebra and Q′ is the set of positive roots of
a′ with respect to some order. It is known that there is some g in Gs such that Ad g(a) = a′

and such that if α′ ∈ Q′ then the linear function α defined by α(H) = α′(Ad g(H)
)
belongs

to Q. Moreover any two elements of Gs with this property belong to the same right coset
of the centralizer of a in Gs. The set G itself possesses the first of these two properties and
it will be assumed that it also possesses the second. Then the centralizer of a meets each
component of G.

For the purposes of this paper it is best to define a parabolic subgroup P of G to be
the normalizer in G of a subalgebra p of g such that the complexification pc = p⊗R C of p
contains a Cartan subalgebra jc of gc together with the root vectors belonging to the roots
of jc which are positive with respect to some order on jc. It is readily verified that the Lie
algebra of P is p so that P is its own normalizer. Let n be a maximal normal subalgebra
of ps = p ∩ gs which consists entirely of elements whose adjoints are nilpotent and let m′

be a maximal subalgebra of p whose image in ad g is fully reducible. It follows from [16]
that p = m′ + n and that m′ contains a Cartan subalgebra of g. Let a be a subalgebra of the
centre of m′ ∩ gs whose image in ad g is diagonalizable. If m is the orthogonal complement of
a, with respect to the Killing form on g, in m′ then a ∩ m = {0}. There is a set Q of real
linear functions on a such that n =

∑
α∈Q na where

na =
{
X ∈ n

∣∣ [H,X] = α(H)X for all H in a
}
.

The Lie algebra a or A, the connected subgroup of P with the Lie algebra a, will be called a
split component of P if the trace of the restriction of adY to nα is zero for any Y in m and
any α in Q. There is a Cartan subalgebra j of g and an order on the real linear functions on
jc such that a ⊆ j ⊆ m′ and such that Q consists of the restrictions of the positive roots to a
except perhaps for zero. Let Q′

α be the set of positive roots whose restriction to a equals α;
then

1/ dim nα
∑

α′∈Q′
α

α′

3



4 2. THE ASSUMPTIONS

is zero on j ∩m and equals α on a. Thus if
∑

α∈Q cαα = 0 and cα ⩾ 0 for all α then∑
α∈Q

∑
α′∈Q′

α

(dim nα)
−1cαα

′ = 0

which implies that cα = 0 for all α. In particular zero does not belong to Q so that m′ is the
centralizer and normalizer of a in g.

Since m′ contains a Cartan subalgebra it is its own normalizer. Let us show that if M ′

is the normalizer of m′ in P then the connected component of M ′ is of finite index in M ′.
The group M ′ is the inverse image in G of the intersection of an algebraic group with AdG.
Since AdG contains the connected component, in the topological sense, of the group of
automorphisms of g which leave each element of the centre fixed the assertion follows from
Theorem 4 of [23]. Since the Lie algebra of M ′ is m′ it follows from Lemma 3.1 of [16] that
M ′ is the inverse image in G of a maximal fully reducible subgroup of the image of P in
AdG. Let N be the connected subgroup of G with the Lie algebra n. Since the image of
N in AdG is simply connected it follows readily from [16] that M ′ and N are closed, that
P =M ′ ·N , and that M ′ ∩N = {1}.

We must also verify thatM ′ is the centralizer of a in G. It certainly contains the centralizer
of a in G. Let b be a maximal abelian subalgebra of gs which contains a such that the image
of b in ad g is diagonalizable. Certainly m′ contains b. Let b = b1 + b2 where b1 is the
intersection of b with the centre of m′ and b2 is the intersection of b with the semi-simple
part of m′. It is a maximal abelian subalgebra of the semi-simple part of m′ whose image
in adm′ is diagonalizable. It may be supposed (cf. [11, p. 749]) that the positive roots of
b are the roots whose root vectors either lie in nc, the complexification of n, or lie in m′

c

and belong to positive roots of b2. If m lies in M ′ then Adm(b1) = b1. Moreover replacing
if necessary m by mm0 where m0 lies in the connected component of M ′ and hence in the
centralizer of a we may suppose that Adm(b2) = b2 and that Adm takes positive roots of b2
to positive roots of b2. Thus Adm(b) = b and Adm leaves invariant the set of positive roots
of b; consequently, by assumption, m lies in the centralizer of b and hence of a. It should
also be remarked that the centralizer of A meets each component of P and G and P meets
each component of G.

If M is the group of all m in M ′ such that the restriction of Adm to nα has determinant
±1 for all α then m is closed; since Q contains a basis for the space of linear functions on a the
intersection A ∩M is {1}. Let α1, . . . , αp be such a basis. To see that AM =M ′ introduce
the group M1 of all m in M ′ such that the restriction of Adm to nαi

has determinant ±1 for
1 ⩽ i ⩽ p. Certainly AM1 =M ′. So it has merely to be verified that M , which is contained
in M1, is equal to M1. Since the Lie algebra of both M and M1 is m the group M contains
the connected component of M1. Since A∩M1 = {1} the index [M1 :M ] equals [AM1 : AM ]
which is finite. It follows readily that M =M1. It is clear that M and S =MN are uniquely
determined by P and A. The pair (P, S) will be called a split parabolic subgroup with A as
split component. Its rank is the dimension of A. Observe that A is not uniquely determined
by the pair (P, S).

The next few lemmas serve to establish some simple properties of split parabolic subgroups
which will be used repeatedly throughout the paper. If (P, S) and (P1, S1) are any two split
parabolic subgroups then (P, S) is said to contain (P1, S1) if P contains P1 and S contains
S1.
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Lemma 2.1. Suppose (P, S) contains (P1, S1). Let A be a split component of (P, S) and A1

a split component of (P1, S1). There is an element p in the connected component of P such
that pAp−1 is contained in A1.

Since S is a normal subgroup of P , pAp−1 will be a split component of (P, S). According to
Theorem 4.1 of [16] there is a p in the connected component of P such that a1+m ⊆ Ad p(a+m).
Thus it suffices to show that if a1 + m1 is contained in a + m then a is contained in a1. If
a1 + m1 ⊆ a + m then a and a1 commute so that a is contained in a1 + m1; moreover m
contains m1 because m ∩ s1 = (a + m) ∩ s ∩ s1 ⊇ (a1 + m1) ∩ s1 = m1. Consequently a is
orthogonal to m1 with respect to the Killing form and hence is contained in a1.

Lemma 2.2. Suppose P is a parabolic subgroup and a is a split component of P . Let
{α1,, . . . , αp,} be a minimal subset of Q such that any α in Q can be written as a linear
combination

∑p
i=1miαi, with non-negative integers mi. Then the set {α1,, . . . , αp,} is linearly

independent.

This lemma will be proved in the same manner as Lemma 1 of [13]. Let ⟨λ, µ⟩ be the
bilinear form on the space of linear functions on a dual to the restriction of the Killing form
to a. It is enough to show that if i and j are two distinct indices that αi, − αj, neither equals
zero nor belongs to Q and that if α and β belong to Q neither α − β nor β − α belongs
to Q or is zero then ⟨α, β⟩ ⩽ 0. If this is so and

∑p
i=1 aiαi, = 0 let F = { i | ai ⩾ 0 } and

F ′ = { i | ai < 0 }. Set
λ =

∑
i∈F

aiαi, = −
∑
i∈F ′

aiαi,

then
0 ⩽ ⟨λ, λ⟩ = −

∑
i∈F

∑
j∈F ′

aiaj⟨αi,, αj,⟩ ⩽ 0

which implies that λ = 0. As a consequence of a previous remark ai = 0, 1 ⩽ i ⩽ p. Certainly
αi, − αj, is not zero of i ̸= j; suppose that αi, − αj, = α belongs to Q. Then

αi, − αj, =

p∑
k=1

mkαk,

or
(mi − 1)αi, + (mj + 1)αj, +

∑
k ̸=i,j

mkαk, = 0

so that mi − 1 < 0. Hence mi = 0 and

αi, = (mj + 1)αj, +
∑
k ̸=i,j

mkαk,

which is a contradiction. Suppose α and β belong to Q and neither α− β nor β − α belongs
to Q or is zero. Choose the Cartan subalgebra j as above and let (λ′, µ′) be the bilinear form
on the space of linear functions on the complexification of j ∩ gs dual to the Killing form. If
µ is the restriction of µ′ to a then

⟨α, µ⟩ = 1/ dim nα
∑

α′∈Q′
α

(α′, µ′)
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In particular of β′ belongs to Q′
β then

⟨α, β⟩ = 1/ dim nα
∑

α′∈Q′
α

(α′, β′)

Because of the assumption on α and β, α′ − β′ is neither a root nor zero; thus (cf. [15,
Ch. IV]) each term of the sum and hence the sum itself is non-positive. It is clear that the set
{α1,, . . . , αp,} is unique and is a basis for the set of linear functions on a; it will be called the
set of simple roots of a. It is also clear that if P1 contains P and A1 is a split component of
P1 contained in A then the set of simple roots of a1 is contained in the set of linear functions
on a1 obtained by restricting the simple roots of a to a1.

Lemma 2.3. Suppose
P = P1 ⊊ P2 ⊊ · · · ⊊ Pk

is a sequence of parabolic subgroups with split components

A1 ⊃ A2 ⊃ · · · ⊃ Ak

and
dimAi+1 − dimAi = 1, 1 ⩽ i < k

If {α1,, . . . , αp,} is the set of simple roots of a and {αj,, . . . , αp,} restricted to aj is the set of
simple roots for aj, 1 ⩽ j ⩽ k, then

aj =
{
H ∈ a

∣∣ αi,(H) = 0, i < j
}

and if
Q′

j =
{
α ∈ Q

∣∣ α(H) ̸= 0 for some H in aj
}

then
nj =

∑
α∈Q′

j

nα, 1 ⩽ j ⩽ k.

Conversely if F is a subset of {1, . . . , p}; if
∗a =

{
H ∈ a

∣∣ αi,(H) = 0 for all i ∈ F
}
;

if
∗Q′ =

{
α ∈ Q

∣∣ α(H) ̸= 0 for some H ∈ ∗a
}
;

if
∗n =

∑
α∈∗Q′

nα;

and if ∗m is the orthogonal complement of ∗a in the centralizer of ∗a in g then ∗p = ∗a+ ∗m+ ∗n
is the Lie algebra of a parabolic subgroup ∗P of G which contains P and has ∗a as a split
component.

In the discussions above various objects such as A, Q, n have been associated to a parabolic
subgroup P ; the corresponding objects associated to another parabolic group, say P1, will be
denoted by the same symbols, for example A1, Q1, n1, with the appropriate indices attached.
It is enough to prove the direct part of the lemma for k = 2. Since P2 properly contains
P1 and since, as is readily seen, Pj is the normalizer of nj, j = 1, 2 the algebra n2 must be
properly contained in n1. Consequently there is an α ∈ Q whose restriction to a2 is zero and
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α =
∑p

i=1miαi, with non-negative integers mi. Let αi, be the restriction of αi, to a2 and let
α1, =

∑p
j=2 njαj,; then

0 =

p∑
j=2

(mj +m1nj)αj;

so mj = 0, j ⩾ 2 and α = m1α1,. Since dim a2 − dim a1 = 1 the direct part of the lemma
is proved. Proceeding to the converse we see that if ∗P is taken to be the normalizer of ∗p
in G then ∗P is parabolic by definition. It contains the connected component of P and the
centralizer of A in G; so it contains all of P . Moreover the image of ∗a+ ∗m in ad g is fully
reducible and ∗n is a normal subalgebra of ∗p; so to prove that ∗a is a split component of ∗P it
has to be shown that if α belongs to ∗Q′ and

Qα =
{
β ∈ Q

∣∣ α(H) = β(H) for all H in ∗a
}
,

then the trace of the restriction of adX to
∑

β∈Qα
nβ is zero for all X in ∗m. It is enough

to show this when X belongs to the centre of ∗m. But then X commutes with a and so lies
in a + m; say X = Y + Z. If i belongs to F the trace of the restriction of adX to nαi,

is
αi,(Y ) dim nαi,

; on the other hand it is zero because nαi,
belongs to ∗m. Thus αi,(Y ) = 0 for

all i ∈ F , so that Y belongs to ∗a and hence is zero. Since the assertion is certainly true for
Z it is true for X.

There are some simple conventions which will be useful later. If jc and j′c are two Cartan
subalgebras of gc and an order is given on the set of real linear functions on jc and j′c then
there is exactly one map from jc to j′c which takes positive roots to positive roots and is
induced by an element of the adjoint group of gc. Thus one can introduce an abstract Lie
algebra which is provided with a set of positive roots and a uniquely defined isomorphism of
this Lie algebra with each Cartan subalgebra such that positive roots correspond to positive
roots. Call this the Cartan subalgebra of gc. Suppose (P, S) is a split parabolic subgroup
with A and A′ as split components. Let j be a Cartan subalgebra containing a and let j′ be a
Cartan subalgebra containing a′. Choose orders on jc and j′c so that the root vectors belonging
to positive roots lie in pc. There is a p1 in P such that Ad p1(a) = a′; since the centralizer
of A meets each component of P there is a p in the connected component of P such that
Ad p(H) = Ad p1(H) for all H in a. Let Ad p(j) = j′′. There is an element m in the adjoint
group of mc such that Ad pAdm(a) = a′, Ad pAdm(j) = j′, and Ad pAdm′ takes positive
roots of j′ to positive roots of j. The maps of a → j → jc and a′ → j′ → j′c determine maps of
a and a′ into the Cartan subalgebra of gc and if H belongs to a then H and Ad p1(H) have
the same image. The image of a will be called the split component of (P, S). Usually the
context will indicate whether it is a split component or the split component which is being
referred to. If F is a subset of the set of simple roots of the split component it determines a
subset of the set of simple roots of any split component which, according to the previous
lemma, determines another split parabolic subgroup. The latter depends only on F and will
be called simply the split parabolic subgroup determined by F ; such a subgroup will be said
to belong to (P, S).

If (P, S) is a split parabolic subgroup with the split component a let α,1, . . . , α,p be the
linear functions on a such that ⟨α,i, αj,⟩ = δij, 1 ⩽ i, j ⩽ p. Of course α1,, . . . , αp, are the
simple roots of a. If −∞ ⩽ c1 < c2 ⩽ ∞ let

a+(c1, c2) =
{
H ∈ a

∣∣ c1 < αi,(H) < c2, 1 ⩽ i ⩽ p
}
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and let
+a(c1, c2) =

{
H ∈ a

∣∣ c1 < α,i(H) < c2, 1 ⩽ i ⩽ p
}

It will be convenient to set a+(0,∞) = a+ and +a(0,∞) = +a. If A is the simply-connected
abstract Lie group with the Lie algebra a then A will also be called the split component
of (P, S). The map H → expH is bijective; if λ is a linear function on a set ξλ(expH) =
exp
(
λ(H)

)
. If 0 ⩽ c1 ⩽ c2 ⩽ ∞ we let

A+(c1, c2) =
{
a ∈ A

∣∣ c1 < ξαi,
(a) < c2, 1 ⩽ i ⩽ p

}
and

+A(c1, c2) =
{
a ∈ A

∣∣ c1 < ξα,i
(a) < c2, 1 ⩽ i ⩽ p

}
We shall make frequent use of the two following geometrical lemmas.

Lemma 2.4. For each s <∞ there is a t <∞ such that a+(s,∞) is contained in +a(t,∞).
In particular a+ is contained in +a.

For each s there is an element H in a such that a+(s,∞) is contained in H + a+; thus it
is enough to show that a+ is contained in +a. Suppose we could show that ⟨αi, αj⟩ ⩾ 0, 1 ⩽ i,
j ⩽ p. Then α,i =

∑p
j=1 a

i
jαj, with a

i
j ⩾ 0 and it follows immediately that a+ is contained in

+a. Since ⟨αi,, αj,⟩ ⩽ 0 if i ̸= j this lemma is a consequence of the next.

Lemma 2.5. Suppose V is a Euclidean space of dimension n and λ1,, . . . , λn, is a basis for V
such that (λi,, λj,) ⩽ 0 if i ̸= j. If λ,i, 1 ⩽ i ⩽ n, are such that (λ,i, λj,) = δij then either there
are two non-empty disjoint subsets F1 and F2 of {1, . . . , n} such that F1 ∪ F2 = {1, . . . , n}
and (λi,, λj,) = 0 if i ∈ F1, j ∈ F2 or (λ,i, λ,j) > 0 for all i and j.

The lemma is easily proved if n ⩽ 2 so suppose that n > 2 and that the lemma is true
for n − 1. Suppose that, for some i and j, (λ,i, λ,j) ⩽ 0. Choose k different from i and
j and project

{
λℓ,
∣∣ ℓ ̸= k

}
on the orthogonal complement of λk, to obtain

{
µℓ,

∣∣ ℓ ̸= k
}
.

Certainly for ℓ ̸= k the vector λ,ℓ is orthogonal to λ,k and (λ,ℓ, µm,) = µℓm. Moreover

(µℓ,, µm,) = (λℓ,, λm,)− (λℓ,, λk,)(λm,, λk,)/(λk,, λk,) ⩽ (λℓ,, λm,)

with equality only if λℓ, or λm, is orthogonal to λk,. By the induction assumption there are
two disjoint subsets of F ′

1 and F ′
2 of { ℓ | 1 ⩽ ℓ ⩽ n, ℓ ̸= k } such that (µℓ,, µm,) = 0 if ℓ ∈ F ′

1

and m ∈ F ′
2. For such a pair (µℓ,, µm,) = (λℓ,, λm,); so either (λℓ,, λk,) = 0 for all ℓ ∈ F ′

1 or
(λm,, λk,) = 0 for all m ∈ F ′

2. This proves the assertion.
Suppose that a is just a split component of P and F is a subset of Q. Let c ={

H ∈ a
∣∣ α(H) = 0 for all α ∈ F

}
; if F is a subset of the set of simple roots c is called

a distinguished subspace of a. Let gc be the orthogonal complement of c in the centralizer
of c in g and let Gc be any subgroup of G with the Lie algebra gc which satisfies the same
conditions as G. Then p ∩ gc is the Lie algebra of a parabolic subgroup P ′ of Gc and b, the
orthogonal complement of c in a, is a split component of P ′. We regard the dual space of
b as the set of linear functions on a which vanish on c. Let β1,, . . . , βq, be the simple roots
of b; {β1,, . . . , βq,} is a subset of Q. There are two quadratic forms on the dual space of b,
namely the one dual to the restriction of the Killing form on g to b and the one dual to the
restriction of the Killing form on gc to b. Thus there are two possible definitions of β,1, . . . , β,q
and hence two possible definitions of +b. In the proof of Theorem 7.7 it will be necessary
to know that both definitions give the same +b. A little thought convinces us that this is a
consequence of the next lemma.
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The split parabolic subgroup (P, S) will be called reducible if g can be written as the
direct sum of two ideals g1 and g2 in such a way that p = p1 + p2 with pi = p ∩ gi and
s = s1 + s2 with si = s ∩ gi. Then n = n1 + n2 with ni = n ∩ gi. If a is a split component
of (P, S) and m′ is the centralizer of a in g then m′ = m′

1 + m′
2 with m′

i = m′ ∩ gi. Since
m = m′ ∩ s, it is also the direct sum of m1 and m2 while a, being the orthogonal complement
of m in m′, is the direct sum of a1 and a2. If (P, S) is not reducible it will be called irreducible.

Lemma 2.6. Suppose that the split parabolic subgroup (P, S) is irreducible and suppose that
π is a representation of g on the finite-dimensional vector space V such that if α is a linear
function on a and

Vα =
{
v ∈ V

∣∣ π(H)v = α(H)v for all H in a
}
,

then the trace of the restriction of π(X) to Vα is zero for all X in m. Then there is a constant
c such that trace

{
π(H1)π(H2)

}
= c⟨H1, H2⟩ for all H1 and H2 in a.

If g contains a non-trivial centre then g is abelian and a = {0}; so there is nothing to prove.
We suppose then that g is semi-simple, so that the Killing form ⟨X, Y ⟩ is non-degenerate.
Consider the bilinear form trace π(X)π(Y ) = (X, Y ) on g. It is readily verified that(

[X, Y ], Z
)
+
(
Y, [X,Z]

)
= 0

Let T be the linear transformation on g such that (X, Y ) = ⟨TX, Y ⟩; then ⟨TX, Y ⟩ = ⟨X,TY ⟩
and T

(
[X, Y ]

)
= [X,TY ]. If H belongs to a and X belongs to m the assumption of the

lemma implies that (H,X) = 0. Moreover choosing a basis for V with respect to which the
transformations π(H), H ∈ a, are in diagonal form we see that (X, Y ) = 0 if X belongs to p
and Y belongs to n. If α belongs to Q let

n−α =
{
X ∈ g

∣∣ [H,X] = −α(H)X for all H in g
}

and let n− =
∑

α∈Q n−α . If X belongs to a+m+ n− and Y belongs to n− then (X, Y ) = 0.

Thus if H belongs to a then ⟨TH, Y ⟩ = 0 for Y in m + n + n−, so that TH lies in a.
For the same reason Tm ⊆ m and Tn ⊆ n. Let λ1, . . . , λr be the eigenvalues of T and
let gi =

{
X ∈ g

∣∣ (T − λi)
nX = 0 for some n

}
. Each gi, 1 ⩽ i ⩽ r, is an ideal of g and

g =
⊕

gi, p =
⊕

(p ∩ gi), and s =
⊕

(s ∩ gi). We conclude that r = 1. The restriction of T
to a is symmetric with respect to the restriction of the Killing form to a. Since the latter is
positive definite the restriction of T to a is a multiple of the identity. This certainly implies
the assertion of the lemma.

Now suppose Γ is a discrete subgroup of G. When describing the conditions to be imposed
on Γ we should be aware of the following fact.

Lemma 2.7. If Γ is a discrete subgroup of G, if (P1, S1) and (P2, S2) are two split parabolic
subgroups, if Γ ∩ Pi ⊆ Si, i = 1, 2, if the volume of Γ ∩ Si\Si is finite for i = 1, 2, and if
P1 ⊇ P2, then S1 ⊇ S2.

Let S = S1∩S2; then Γ∩P2 ⊆ S. It is a normal subgroup of S2 and S\S2 is isomorphic to
S1\S1S2 and is consequently abelian. It follows readily from the definition of a split parabolic
subgroup that the Haar measure on S2 is left and right invariant. This is also true of the
Haar measure on S\S2 and hence it is true of the Haar measure on S. Thus∫

Γ∩S2\S2

ds2 =

∫
S\S2

ds2

∫
Γ∩S2\S

ds = µ(S\S2)µ(Γ ∩ S\S)
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Consequently µ(S\S2) is finite and S\S2 is compact. Since the natural mapping from S\S2

to S1\S1S2 is continuous S1\S1S2 is also compact. But S1\S1S2 is a subgroup of S1\P1 which
is isomorphic to A1 and A1 contains no non-trivial compact subgroups. We conclude that S2

is contained in S1.
If Γ is a discrete subgroup of G and (P, S) is a split parabolic subgroup then (P, S) will

be called cuspidal if every split parabolic subgroup (P ′, S ′) belonging to (P, S) is such that
Γ ∩ P ′ ⊆ S ′, Γ ∩N ′\N ′ is compact, and Γ ∩ S ′\S ′ has finite volume. A cuspidal subgroup
such that Γ∩ S\S is compact will be called percuspidal. Since the last lemma implies that S
is uniquely determined by P and Γ we will speak of P as cuspidal or percuspidal. If P is a
cuspidal subgroup the group N\S which is isomorphic to M satisfies the same conditions as
G. It will usually be identified with M . The image Θ of Γ∩ S in M is a discrete subgroup of
M . If (∗P, ∗S) is a split parabolic group belonging to (P, S) then (†P, †S) = (∗N\P ∩ ∗S, ∗N\S)
is a split parabolic subgroup of ∗M . If (P, S) is a cuspidal group of G then (†P, †S) is a
cuspidal subgroup of ∗M with respect to the group ∗Θ.

Once we have defined the notion of a Siegel domain we shall state the condition to be
imposed on Γ. Fix once and for all a maximal compact subgroup K of G which contains a
maximal compact subgroup of G0. If (P, S) is a split parabolic subgroup, if c is a positive
number, and if ω is a compact subset of S then a Siegel domain S = S(c, ω) associated to
(P, S) is {

g = sak
∣∣ s ∈ ω, a ∈ A+(c,∞), k ∈ K

}
Here A is any split component of (P, S).

A set E of percuspidal subgroups will be said to be complete if when (P1, S1) and (P2, S2)
belong to E there is a g in G such that gP1g

−1 = P2 and gS1g
−1 = S2 and when (P, S)

belongs to E and γ belongs to Γ the pair (γPγ−1, γSγ−1) belongs to E.

Assumption. There is a complete set of E of percuspidal subgroups such that if P is any
cuspidal subgroup belonging to an element of E there is a subset {P1, . . . , Pr} of E such that
P belongs to Pi, 1 ⩽ i ⩽ r, and Siegel domain Si associated to (N\P1 ∩ S,N\Si) such that
M =

⋃r
i=1ΘSi. Moreover there is a finite subset F of E such that E =

⋃
γ∈Γ
⋃

P∈F γPγ
−1.

Henceforth a cuspidal subgroup will mean a cuspidal subgroup belonging to an element of
E and a percuspidal subgroup will mean an element of E. It is apparent that the assumption
has been so formulated that if ∗P is a cuspidal subgroup then it is still satisfied if the pair
Γ, G is replaced by the pair ∗Θ, ∗M . Let us verify that this is so if E is replaced by the
set of subgroups ∗N\P ∩ ∗S where P belongs to E and ∗P belongs to P . It is enough to
verify that if (∗P, ∗S) is a split parabolic group belonging to (P1, S1) and to (P2, S2) and
gP1g

−1 = P2, gS1g
−1 = S2 then g lies in ∗P . Let ∗a be a split component of (∗P, ∗S); let a1 be

a split component of (P1, S1) containing
∗a; and let b be a maximal abelian subalgebra of gs

containing a1 whose image in ad g is diagonalizable. Choose p in ∗P so that (pP2p
−1, pS2p

−1)
has a split component a2 which contains ∗a and is contained in b and so that Ad pg(a1) = a2
and Ad pg(b) = b. Replacing g by pg if necessary we may suppose that p = 1. Choose an
order on the real linear functions on b so that any root whose restriction to a1 lies in Q1 is
positive. If the restriction of the positive root α to ∗a lies in ∗Q then the restriction to a1 of
the root α′ defined by

α′(H) = α
(
Ad g(H)

)
lies in Q1 and is thus positive. The roots whose restrictions to ∗a are zero are determined
by their restrictions to the intersection of b with the semi-simple part of ∗m. It is possible
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(cf. [11]) to choose an order on the linear functions on this intersection so that the positive
roots are the restrictions of those roots α of b such that α′, with α′(H) = α

(
Ad g(h)

)
, is

positive. It is also possible to choose an order so that the positive roots are the restrictions
of the positive roots of b. Consequently there is an m in ∗M such that Admg(b) = b and
Admg takes positive roots to positive roots. Then mg belongs to the centralizer of b and
hence to ∗P ; so the assertion is proved.

Some consequences of the assumption which are necessary for the analysis of this paper
will now be deduced. If (P, S) is a split parabolic subgroup of G the map (p, k) → pk is an
analytic map from P ×K onto G. If A is a split component of (P, S) then every element
p of P may be written uniquely as a product p = as with a in A and s in S. Although
in the decomposition g = pk the factor p may not be uniquely determined by g the factor
a = a(g) of the product p = as is. In fact the image of a(g) in the split component of (P, S)
is. Henceforth, for the sake of definiteness, a(g) will denote this image. Every percuspidal
subgroup has the same split component which will call h. Suppose the rank of h is p and
α,1, . . . , α,p are the linear functions on h dual to the simple roots.

Lemma 2.8. If P is a percuspidal subgroup there is a constant µ such that ξα,i

(
a(γ)

)
⩽ µ,

1 ⩽ i ⩽ p, for all γ in Γ.

If C is a compact subset of G so is KC and
{
a(h)

∣∣ h ∈ KC
}
is compact; thus there

are two positive numbers µ1 and µ2 with µ1 < µ2 such that it is contained in +A(µ1, µ2). If
g = ask with a in A, s in S, and k in K and h belongs to C then a(gh) = a(kh)a(g), so that

µ1ξα,i
(a) < ξα,i

(
a(gh)

)
< µ2ξα,i

(a), 1 ⩽ i ⩽ p,

In particular in proving the lemma we may replace Γ by a subgroup of finite index which
will still satisfy the basic assumption, and hence may suppose that G is connected. If P is
a cuspidal subgroup let ∆ = Γ ∩ S. If P is percuspidal there is a compact set ω in S such
that every left coset ∆γ of ∆ in Γ contains an element γ′ = sa(γ)k with s in ω. For the
purposes of the lemma only those γ such that γ′ = γ need be considered. It is not difficult to
see (cf. [22, App. II]) that there is a finite number of elements δ1, . . . , δn in Γ ∩N such that
the connected component of the centralizer of {δ1, . . . , δn} in Γ ∩N is N c, the centre of N .
A variant of Lemma 2 of [18] then shows that Γ ∩N c\N c is compact so that, in particular,
there is an element δ ̸= 1 in Γ ∩N c. If Qc is the set of α in Q such that nα ∩ nc ̸= {0} there
is a constant ν such that, for all γ in Γ, ξα

(
a(γ)

)
⩽ ν for at least one α in Qc. If not there

would be a sequence {γℓ} with
{
ξ−1
α

(
a(γℓ)

)}
converging to zero for all α in Qc, so that

γ−1δγ = k−1
ℓ

(
a−1(γℓ)(s

−1
ℓ δsℓ)a(γℓ)

)
kℓ

would converge to 1 which is impossible.
If g =

⊕r
i=1 gi with gi simple, then p =

⊕r
i=1 p ∩ gi so that nc =

⊕r
i=1 n

c ∩ gi. If j is a
Cartan subalgebra containing a, if an order is chosen on j as before, and if w is a subspace
of nc ∩ gi invariant under Ad p for p ∈ P then the complexification of w contains a vector
belonging to the lowest weight of the representation g → Ad(g−1) of G on gi. Since this vector
is unique nc ∩ gi ⊆ nβi

for some βi in Q. The lowest weight is the negative of a dominant

integral function; so βi =
∑p

j=1 b
j
iα,j with b

j
i ⩾ 0. Thus there is a constant ν ′ such that, for

all γ in Γ,
min
i⩽j⩽p

ξα,j

(
a(γ)

)
⩽ ν ′

In any case Lemma 2.8 is now proved for percuspidal subgroups of rank one.
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If G0 is a maximal compact normal subgroup of G then in the proof of the lemma G may
be replaced by G0\G and Γ by G0\ΓG0. In other words it may be supposed that G has no
compact normal subgroup. Let Z be the centre of G. If we could show that Γ ∩ Z\Z was
compact we could replace G by Z\G and Γ by Z\ΓZ and assume that G has no centre. We
will show by induction on the dimension of G that if Γ\G has finite volume then Γ ∩ Z\Z is
compact. This is certainly true if G is abelian and, in particular, if the dimension of G is
one. Suppose then that G is not abelian and of dimension larger than one. Because of our
assumptions the group G has a finite covering which is a product of simple groups. We may
as well replace G by this group and Γ by its inverse image in this group. Let G =

∏n
i=1Gi

where Gi is simple for 1 ⩽ i ⩽ r ⩽ n. We may as well assume that Gi is abelian for some
i. Choose δ in Γ but not in Z. It follows from Corollary 4.4 in [1] that the centralizer of δ
in Γ is not of finite index in Γ and hence that for some γ in Γ, δ−1γ−1δγ = ϵ does not lie
in the centre of G. Let ϵ =

∏n
i=1 ϵi and suppose that ϵi does not lie in the centre of Gi for

1 ⩽ i ⩽ m where 1 ⩽ m < n. It follows as in [20] that the projection of Γ on G′ =
∏m

i=1Gi

is discrete and that the volume of Γ ∩G′′\G′′ is finite if G′′ =
∏n

i=m+1Gi. Since G
′′ contains

a subgroup of Z which is of finite index in Z and otherwise satisfies the same conditions as
G the proof may be completed by induction.

If G has no centre and no compact normal subgroup Γ is said to be reducible if there are
two non-trivial closed normal subgroups G1 and G2 such that G1 ∩ G2 = {1}, G = G1G2,
and Γ is commensurable with the product of Γ1 = Γ ∩G1 and Γ2 = Γ ∩G2. The group Γ is
irreducible when it is not reducible. Since if one of a pair of commensurable groups satisfies
the basic assumption so does the other, it may be supposed when Γ is reducible that it
is the product of Γ1 and Γ2. If we show that Γ1 and Γ2 satisfy the basic assumption we
need only prove the lemma for irreducible groups. If ∗P is a cuspidal subgroup for Γ then
∗P = ∗P1

∗P2 with ∗Pi =
∗P ∩ Gi and

∗N = ∗N1
∗N2 with ∗Ni =

∗N ∩ Gi. Since Γ ∩ ∗N\∗N is
thus the product of Γ ∩ ∗N1\∗N1 and Γ ∩ ∗N2\∗N2 both factors are compact. Moreover if
∗Si =

∗S ∩Gi then Γi∩ ∗Pi ⊆ ∗Si and Γ∩ ∗P ⊆ ∗S1
∗S2. If

∗A is a split component of (∗P, ∗S) and
∗Ai is the projection of ∗A on Gi then

∗A1
∗A2 is a split component of ∗P and determines the

split parabolic subgroup (∗P, ∗S1
∗S2). Since the measure of Γ ∩ ∗S1

∗S2\∗S1
∗S2 is clearly finite

Lemma 2.7 implies that ∗S = ∗S1
∗S2. It follows readily that (∗Pi,

∗Si) is a cuspidal subgroup
for Γi, i = 1, 2. Once this is known it is easy to convince oneself that Γi, i = 1, 2, satisfies
the basic assumption.

To make use of the condition that Γ is irreducible another lemma is necessary.

Lemma 2.9. Suppose Γ is irreducible. If P is a cuspidal subgroup of Γ and α,1, . . . , α,q are
the linear functions on a dual to the simple roots then ⟨α,i, α,j⟩ > 0 for all i and j.

To prove this it is necessary to show that if the first alternative of Lemma 2.6 obtains
then Γ is reducible. Let F1 and F2 be the two subsets of that lemma and let P1 and P2

be the two cuspidal subgroups determined by them. We will show in a moment that n is
the Lie algebra generated by

∑q
i=1 nai, and that if i ∈ F1, j ∈ F2 then [nαi,

, nαj,
] = 0. Thus

n = n1 ⊕ n2 if ni is the algebra generated by
∑

j /∈Fi
nαj,

. Moreover ni is the maximal normal
subalgebra of pi ∩ gs containing only elements whose adjoints are nilpotent. The centralizer
of a1 is a fully reducible subalgebra of g and lies in the normalizer of n1. The kernel of the
representation of this algebra on n1 is a fully reducible subalgebra g2. The normalizer g′ of
g2 is the sum of a fully reducible subalgebra g1 and g2; g

′ contains n1 in the centralizer of a1
and thus contains p1. Since p1 is parabolic g′ = g. Since g2 contains n2 and Γ ∩Ni ̸= {1} for
i = 1, 2 it follows from Theorem 1′ of [20] that Γ is reducible.
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To begin the proof of the first of the above assertions we show that if α is in Q then
⟨α, αj,⟩ > 0 for some j. If this were not so then, since α =

∑q
j=1mjαj,,

0 < ⟨α, α⟩ =
q∑

j=1

mj⟨αj,, α⟩ ⩽ 0

Choose a Cartan subalgebra j of g containing a and choose an order as before on the real
linear functions on jc. If α

′ is a positive root and the restriction α of α′ to a is neither zero
nor αi,, 1 ⩽ i ⩽ q, then for some j there is a β′ in Q′

αj,
such that α′ − β′ is a positive root.

Indeed if this were not so then, since β′ − α′ is not a root for any such β′, we would have
(α′, β′) ⩽ 0. Consequently,

⟨α, αi,⟩ ⩽ 0, 1 ⩽ i ⩽ q,

which is impossible. Let n′ be the algebra generated by
∑q

j=1 nαj,
; it is enough to show

that n′c, the complexification of n′, equals nc. We suppose that this is not so and derive a
contradiction. Order the elements of Q lexicographically according to the basis {α1,, . . . , αq,}
and let α be a minimal element for which there is a root α′ in Q′

α such that Xα′ , a root vector
belonging to α′, is not in n′c. Choose a j and a β′ in Q′

αj,
so that α′ − β′ is a root. The root

vectors of Xα′ and Xα′−β′ both belong to n′c and thus Xα′ which is a complex multiple of
[Xβ′ , Xα′−β′ ] does also. As for the second assertion we observe that if

i ∈ F1, j ∈ F2,

and
α′ ∈ Q′

αi,
, β′ ∈ Q′

αj,
,

then α′ − β′ is neither a root nor zero. Moreover

0 =
∑

β′∈Q′
αj,

(α′, β′).

So each term is zero and for no β′ in Q′
αj,

is α′ + β′ a root. This shows that

[nαi,
, nαj,

] = 0.

Suppose that Γ is irreducible and that the assertion of Lemma 2.8 is not true for the
percuspidal subgroup P . There is a sequence {γj} ⊆ Γ and a k, 1 ⩽ k ⩽ p, such that

lim
j→∞

ξα,k

(
a(γj)

)
= ∞

It may be supposed that k = 1. Let ∗P be the cuspidal subgroup belonging to P determined by{
αi,

∣∣ i ̸= 1
}
. Let γj = njajmjkj with nj in

∗N , aj in
∗A, mj in

∗M , and kj in K. Replacing
γj by δjγj with δj ∈ ∗∆ = Γ ∩ ∗S and choosing a subsequence if necessary we may assume
that {nj} belongs to a fixed compact set and that {mj} belongs to a given Siegel domain
associated to the percuspidal subgroup †P ′ = ∗N\P ′ ∩ ∗S of ∗M , where P ′ is a percuspidal
subgroup of G to which ∗P belongs. If †A′ is the split component of †P ′ and A′ = A is the
split component of P ′ then a′(γj) = aj

†a′(mj). There is a constant c such that

ξα,i

(
a′(γj)

)
⩾ cξα,i

(aj)

This follows immediately if i = 1 since

ξα,1

(
a′(γj)

)
= ξα,1(a

′)
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and from Lemma 2.5 if i > 1. Since

⟨α,i, α,1⟩ > 0, 1 ⩽ i ⩽ q

there is a positive constant r such that
†ξrα,i

(aj) ⩾ ξα,1(aj).

However
ξα,1(aj) = ξα,1

(
a(γj)

)
;

so
lim
j→∞

ξα,i

(
a′(γj)

)
= ∞, 1 ⩽ i ⩽ p,

which we know to be impossible.
The next lemma is a simple variant of a well known fact but it is best to give a proof

since it is basic to this paper. Suppose P is a parabolic with split component a. Let j be a
Cartan subalgebra such that a ⊆ j ⊆ p and choose an order on the real linear functions on jc
as before. Let α,1, . . . , α,q be the linear functions on a dual to the simple roots and let α,i be
the linear function on j which agrees with α,i on a and is zero on the orthogonal complement
of a. There is a negative number di such that diα,i is the lowest weight of a representation ρi
of G0, the connected component of G, acting on the complex vector space Vi to the right.

Lemma 2.10. If λ is a linear function on a such that there is a non-zero vector v in Vi with
vρi(a) = ξλ(a) for all a in A then

λ = diα,i +

q∑
j=1

njαj,

with nj ⩾ 0, 1 ⩽ j ⩽ q. Moreover if vi is a non-zero vector belonging to the lowest weight
then {

g ∈ G0

∣∣ viρi(g) = µvi with µ ∈ C
}

is the intersection with G0 of the split parabolic subgroup Pi determined by
{
αj,

∣∣ j ̸= i
}
.

Let
ai =

{
H ∈ a

∣∣ αj,(H), j ̸= i
}

and let Q′
i be the set of positive roots of a which do not vanish on ai. Set

n−i =
∑
α∈Q′

i

n′α;

then
g = n−i + ai +mi + ni.

Let
V ′
i =

{
v
∣∣ vρi(X) = 0 for X ∈ ni

}
.

If W is a subspace of V ′
i invariant and irreducible under ai +mi then the vector belonging

to the lowest weight of the representation of ai +mi on W must be a multiple of vi and the

lowest weight must be diα,i. Consequently V
′
i is the set of multiples of vi. Let V

(n)
i be the

linear space spanned by {
viρi(X1) · · · ρi(Xk)

∣∣ Xj ∈ g and k ⩽ n
}
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and let (n)Vi be the linear space spanned by{
viρi(X1) · · · ρi(Xk)

∣∣ Xj ∈ n−i and k ⩽ n
}
.

We show by induction that V
(n)
i ⊆ (n)Vi. This is certainly true for n = 1 since k may be zero.

If X1, . . . , Xn−1 belong to n−i and Xn belongs to g then

viρi(X1) · · · ρi(Xn)

is equal to

viρi(X1) · · · ρi(Xn−2)ρi
(
[Xn−1, Xn]

)
+ viρi(X1) · · · ρi(Xn−2)ρi(Xn)ρi(Xn−1).

Applying induction to the two terms on the right we are finished. The first assertion of the
lemma follows immediately. Let

P ′
i =

{
g ∈ G0

∣∣ viρi(g) = µvi with µ ∈ C
}

The intersection of Pi with G0 is just the normalizer of ni in G0. Thus it leaves V
′
i invariant and

is contained in P ′
i . To complete the proof we need only show that p′i is contained in pi. If m

′
i

is a maximal fully reducible subalgebra of p′i containing ai+mi then
{
X ∈ m′

i

∣∣ viρi(X) = 0
}

is a normal subalgebra of m′
i and its orthogonal complement in m′

i with respect to the Killing
form lies in ai +mi because it commutes with ai. Thus its orthogonal complement is ai and
[ai,m

′
i] = 0; so m′

i = a+mi. Let n
′
i be a maximal normal subalgebra of p′i such that adX is a

nilpotent for all X in n′i. Then n′i is contained in ni and p′i = m′
i + n′i. It follows that p

′
i = pi.

Before stating the next lemma we make some comments on the normalization of Haar
measures. We suppose that the Haar measure on G is given. The Haar measure on K will be
so normalized that the total volume of K is one. If P is a cuspidal subgroup the left-invariant
Haar measure on P will be so normalized that∫

G

ϕ(g) dg =

∫
P

∫
K

ϕ(pk) dp dk.

Let ρ be one-half the sum of the elements of Q and if a = expH belongs to A let ω(a) =
exp
(
−ρ(H)

)
. Let dH be the Lebesgue measure a normalized so that the measure of a unit

cube is one and let da be the Haar measure on A such that d(expH) = dH. Choose, as is
possible, a Haar measure on S so that∫

P

ϕ(p) dp =

∫
S

∫
A

ϕ(sa)ω2(a) ds da.

Choose the invariant measure on Γ∩N\N so that the volume of Γ∩N\N is one and choose
the Haar measure on N so that∫

N

ϕ(n) dn =

∫
Γ∩N\N

∑
δ∈Γ∩N

ϕ(δn) dn.

Finally choose the Haar measure on M so that∫
S

ϕ(s) ds =

∫
N

∫
M

ϕ(nm) dn dm

Lemma 2.11. Let P be a percuspidal subgroup and ω a compact subset of S. There are
constants c and r such that for any t ⩽ 1 and any g in G the intersection of Γg and the Siegel
domain S(ω, t) associated to p has at most ct−r elements.
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It is easy to convince oneself that it is enough to prove the lemma when G is connected.
In this case the representations ρi introduced before Lemma 2.10 are representations of G.
Choose a norm on Vi so that ρi(k) is unitary for all k in K. If g = sa(g)k then

viρi(g) = ξdiα,i

(
a(g)

)
viρi(k),

so that ∥∥viρi(g)∥∥ = ξdiα,i

(
a(g)

)
∥vi∥.

If T is a linear transformation then ∥T∥ denotes as usual the norm of T . Choosing a basis of
vij, 1 ⩽ j ⩽ ni, for Vi such that

vijρi(a) = ξλij
(a)vij

for all a in A, we see that there is a constant c1 such that, for all v in Vi and all a in A,∥∥vρi(a)∥∥ ⩾ c1

(
min

1⩽j⩽ni

ξλij
(a)

)
∥v∥.

Moreover, it follows from Lemma 2.10 that there is a constant s such that, for all a in
A+(t,∞),

min
1⩽j⩽ni

ξλij
(a) ⩾ tsξdiα,i

(a).

Let c2 be such that, for all s in ω and all v in Vi,∥∥vρi(s)∥∥ ⩾ c2∥v∥.
Suppose g and g′ = γg, with γ in Γ, both belong to S(ω, t). Certainly∥∥viρ(g′)∥∥ = ξdiα,i

(
a(g′)

)
∥vi∥.

On the other hand ∥∥viρi(γg)∥∥ ⩾ c1c2t
sξdiα,i

(
a(g)

)∥∥viρi(γ)∥∥
and ∥∥viρi(γ)∥∥ = ξdiα,i

(
a(γ)

)
∥vi∥.

It follows from Lemma 2.8 that there are constants c3 and c4 and s1 such that

ξα,i

(
a(g′)

)
⩽ c3t

s1ξα,i

(
a(γ)

)
ξα,i

(
a(g)

)
⩽ c4t

s1ξα,i

(
a(g)

)
.

Since g = γ−1g′, the argument may be reversed. Thus there are constants c5, c6, and s2 such
that

c5 > ξα,i

(
a(γ)

)
> c6t

s2 , 1 ⩽ i ⩽ p.

Let us estimate the order of

U(t) =
{
γ = sak

∣∣ s ∈ ω1, a ∈ +A(c6t
s2 , c5), k ∈ K

}
with ω1 a compact subset of S. There are certainly constants b1, b2 and r1, r2 such that
+A(c6t

s2 , c5) is contained in A+(b1t
r1 , b2t

r2). Choose a conditionally compact open set in G
such that γ1U ∩ γ2U ̸= ∅ implies γ1 = γ2; then b1 can be so chosen that γ ∈ U(t) implies

γU ∈ ω2(t)A
+(b1t

r1 , b2t
r2)K,

where
ω2(t) =

{
s1as2a

−1
∣∣ s1 ∈ ω1, s2 ∈ ω2, a ∈ A+(b1t

r1 , b2t
r2)
}
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and ω2 is the projection of KU on S. Consequently the order of U(t) is at most a constant
times the product of ∫

A+(b1tr1 ,b2tr2 )

ω2(a) da

and the volume of ω2(t). A simple calculation, which will not be given here, now shows that
the order of U(t) is bounded by a constant times a power of t. If it can be shown that for
each g in S(ω, t) and each γ in Γ the number of elements δ in ∆ = Γ ∩ P such that δγg
belongs to S(ω, t) is bounded by a constant independent of t, γ, and g then the lemma will
be proved. If γg = sak then δs must be in ω. If there is no such δ the assertion is true; if
there is one, say δ0, then any other δ equals δ′δ0 with δ′ω ∩ ω ̸= ∅.

Corollary. Let P1 and P2 be percuspidal subgroups and let ∗P be a cuspidal subgroup belonging
to P2. Let S1 be a Siegel domain associated to P2, let

†S2 be a Siegel domain associated to
†P2 =

∗N\P2 ∩ ∗S, let ω be a compact subset of ∗N , and let b, s, and t be positive numbers.
Let †a2 be the split component of †P2. There is a constant r, which depends only on G and s,
and a constant c such that if g ∈ S1, γ ∈ Γ, and γg = namk with n in ω , a in ∗A+(t,∞),
m in †S2, k in K, and η(a) ⩽ bηs

(†as(m)
)
then

η
(
a1(g)

)
⩽ cηr

(
†a2(m)

)
Moreover if ∗P = G the constant r can be taken to be 1.

If α1,, . . . , αp, are the simple roots of a1, then

η
(
a1(g)

)
= sup

1⩽i⩽p
ξαi,

(
a1(g)

)
;

similarly, if β1,, . . . , βq, are the simple roots of †a2,

η
(
†a2(m)

)
= sup

1⩽i⩽q
ξβi,

(
†a2(m)

)
.

Suppose that

µ ⩽ ξβi,

(
†a2(m)

)
, 1 ⩽ i ⩽ q,

for all m in †S. If m is given as in the lemma, let M = η
(†a2(m)

)
; then

log µ ⩽ ξβi,

(
†a2(m)

)
⩽ logM, 1 ⩽ i ⩽ q.

Since
log t ⩽ log ξαi,

(a) ⩽ log b+ s logM

and since a2(γg) = a†a2(m) there is a constant r1, which depends only on G and s, and a
constant r2 such that ∣∣∣log ξαi,

(
a2(γg)

)∣∣∣ ⩽ r1 logM + r2, 1 ⩽ i ⩽ p.

In particular there is a constant r3, which depends only on G and s, and two positive constants
c1 and c2 such that

ξαi,

(
a2(γg)

)
⩾ c1M

−r3

and
ξα,i

(
a2(γg)

)
⩽ c2M

r3 ,
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for 1 ⩽ i ⩽ p. Choose u so that uP2u
−1 = P1; then a1(uγgu

−1) = a2(γg). Let vi have
the same significance as above except that the group P is replaced by P1. Then there is a
constant r4, which depends only on G and s, and a constant c3 such that

ξdiα,i

(
a1(g)

)
∥vi∥ =

∥∥∥viρi(γ−1u−1(uγgu−1)u
)∥∥∥ ⩾ c3M

r4ξdiα,i

(
a2(γg)

)
∥vi∥.

Thus there is a constant r5, which depends only on G and s, and a constant c4 such that

ξα,i

(
a1(g)

)
⩽ c4M

r5 .

Appealing to Lemma 2.4 we see that ξα,i

(
a1(g)

)
is bounded away from zero for 1 ⩽ i ⩽ p.

Since log ξαj,

(
a1(g)

)
is a linear combination of log ξα,i

(
a1(g)

)
, 1 ⩽ i ⩽ p the first assertion of

the lemma is proved.
To complete the proof of the lemma we have to show that if S1 and S2 are Siegel domains

associated to P1 and P2 respectively then there is a constant c such that if g belongs to S1

and γg belongs to S2 then
η
(
a1(g)

)
⩽ cη

(
a2(γg)

)
Using Lemma 2.10 as above we see that ξα,i

(
a1(g)a

−1
2 (γg)

)
is bounded away from zero and

infinity for 1 ⩽ i ⩽ p. Thus ξαi,

(
a1(g)a

−1
2 (γg)

)
must be also.

The next lemma will not be needed until Section 5.

Lemma 2.12. Suppose P and P ′ are two percuspidal subgroups and S and S′ are associated
Siegel domains. Let F and F ′ be two subsets, with the same number of elements, of the
set of simple roots of h and let ∗P and ∗P ′ be the cuspidal subgroups belonging to P and P ′

respectively determined by F and F ′. If 0 ⩽ b < 1 there are constants t and t′ such that if g
belongs to S and ξα

(
a(g)

)
> t when α does not belong to F and ξbα

(
a(g)

)
> ξβ

(
a(g)

)
when β

belongs to F and α does not, if g′ belongs to S′ and satisfies the corresponding conditions,
and if γ belongs to F and γg = g′ then γ∗Pγ−1 = ∗P ′. Moreover if P = P ′ and, for some g
in G, g∗Pg−1 = ∗P ′ and g∗Sg−1 = ∗S ′ then ∗P = ∗P ′, ∗S = ∗S ′.

Suppose, for the moment, merely that g belongs to S, g′ belongs to S′, and γg = g′.
Choose u so that uγ belongs to G0 and so that uP ′u−1 = P . Choosing vi in Vi as above we
see that

ξdiα,i

(
a(g)

)
∥vi∥ = ξdiα,i

(
a(γ−1u−1)

)∥∥wiρi(uγg)
∥∥

⩾ ciξ
di
α,i

(
a(γ−1u−1)

)
ξdiα,i

(
a′(g′)

)
∥vi∥

if wi is such that
ξdiα,i

(
a(γ−1u−1)

)
wi = viρi(γ

−1u−1).

Of course a similar inequality is valid if g and g′ are interchanged. Since u may be supposed
to lie in a finite set independent of γ we conclude as before that a−1(g)a′(g′) lies in a compact
set. Moreover, as in the proof of Lemma 2.11, γ−1 must belong to one of a finite number of
left-cosets of ∆. Consequently wi, 1 ⩽ i ⩽ p, must belong to a finite subset of Vi and there
must be a constant c such that∥∥wiρi(ug

′u−1)
∥∥ ⩽ cξdiα,i

(
a′(g′)

)
Moreover, it follows from the proof of Lemma 2.10 that there are positive constants b and r
such that if wi is not a multiple of vi then∥∥wiρi(ug

′u−1)
∥∥ ⩾ bξdiαi,

(
a′(g′)

)
ξdiα,i

(
a′(g′)

)
.
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Choose t′ so large that bt′ > c and choose t in an analogous fashion. If g and g′ satisfy the
conditions of the lemma then γ−1u−1 must belong to

⋂
αi,∈F Pi, where Pi is defined as in

Lemma 2.10. It is easily seen that
∗P =

⋂
αi,∈F

Pi

so γ−1u−1 belongs to ∗P . Index the system of simple roots so that

ξα1,

(
a′(g′)

)
⩾ ξα2,

(
a′(g′)

)
⩾ · · · ⩾ ξαp,

(
a′(g′)

)
There is an integer q such that F ′ = {αq+1,, . . . , αp,}. If t′ is very large then

ξα1,

(
a(g)

)
> ξαj,

(
a(g)

)
if i ⩽ q < j. Thus if β1,, . . . , βp, is the system of simple roots indexed so that

ξβ1,

(
a(g)

)
⩾ ξβ2,

(
a(g)

)
⩾ · · · ⩾ ξβp,

(
a(g)

)
,

then
{β1,, . . . , βq,} = {α1,, . . . , αq,}

Since {βq+1,, . . . , βp,} = F the sets F and F ′ are equal and u∗P ′u−1 = ∗P . Then

γ−1∗P ′γ = γ−1u−1∗Puγ = ∗P .

To prove the second assertion we observe that (∗P ′, ∗S ′) belongs to

(P, S) and to (gPg−1, gSg−1).

We have proved while discussing the basic assumption that this implies that g belongs to ∗P ′.
The next lemma will not be needed until Section 6 when we begin to prove the functional

equations for the Eisenstein series in several variables. Let P be a cuspidal subgroup of rank
q with a as split component. A set {β1,, . . . , βq,} of roots of a is said to be a fundamental
system if every other root can be written as a linear combination of β1,, . . . , βq, with integral
coefficients all of the same sign. It is clear that if P1 and P2 are two cuspidal subgroups, g
belongs to G, Ad g(a1) = a2, and B = {β1,, . . . , βq,} is a fundamental system of roots for a2,
then

g−1B = {β1, ◦ Ad g, . . . , βq, ◦ Ad g}
is a fundamental system. The Weyl chamber WB associated to a fundamental system is{

H ∈ a
∣∣ βi,(H) > 0, 1 ⩽ i ⩽ q

}
,

so that
Ad(g−1)WB = Wg−1B

It is clear that the Weyl chambers associated to two distinct fundamental systems are disjoint.
The only fundamental system immediately at hand is the set of simple roots and the associated
Weyl chamber is a+. If P1 and P2 are as above we defined Ω(a1, a2) to be the set of all
linear transformations from a1 to a2 obtained by restricting Ad g to a1 if g in G is such that
Ad g(a1) = a2. The groups P1 and P2 are said to be associate if Ω(a1, a2) is not empty.

Suppose P0 is a percuspidal subgroup and P is a cuspidal subgroup belonging to
P0. Let {α1,, . . . , αp,} be the set of simple roots for h and suppose that P is deter-
mined by {αq+1,, . . . , αp,}. If 1 ⩽ j ⩽ q let ∗Pj be the cuspidal subgroup determined
by {αj,, αq+1,, . . . , αp,}. Suppose ∗aj is contained in a. To prove the next lemma it is necessary
to know that for each P and j there is an element g in ∗Mj such that Ad g(a∩ ∗mj) is the split
component of a cuspidal subgroup which belongs to P0 ∩ ∗Mj and such that if α is the unique
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simple root of a ∩ ∗mj then α ◦ Ad g−1 is a negative root of Ad g(a ∩ ∗mj). Unfortunately the
only apparent way to show this is to use the functional equations for the Eisenstein series.
Since the lemma is used to prove some of these functional equations a certain amount of
care is necessary. Namely if q > 1 one needs only the functional equations of the Eisenstein
series for the pairs (∗Θj,

∗Mj) and since the percuspidal subgroups have rank less than those
for (Γ, G) one can assume them to be proved. On the other hand if q = 1 the lemma is not
used in the proof of the functional equations. In any case we will take this fact for granted
and prove the lemma. Everyone will be able to resolve the difficulty for himself once he has
finished the paper.

Lemma 2.13. Let P0 be a percuspidal subgroup and let F = {P1, . . . , Pr} be a complete family
of associate cuspidal subgroups belonging to P0. If P belongs to F and E is the collection of
fundamental systems of roots of a then a is the closure of

⋃
B∈E WB. If B ∈ E then there is

a unique i, 1 ⩽ i ⩽ r, and a unique s in Ω(ai, a) such that sa+i = WB.

Suppose as before that P is determined by {αq+1,, . . . , αp,}. If 1 ⩽ j ⩽ q let gj be one of
the elements of ∗Mj whose existence was posited above. Denote the restriction of Ad gj to a
by sj and let sj(a) = bj. Denote the restriction of α1,, . . . , αq, to a also by α1,, . . . , αq,. Then
αj, ◦ s−1

j restricted to bj ∩ ∗mj is the unique simple root. Thus the simple roots β1,, . . . , βq, of

bj can be so indexed that αj, ◦ s−1
j = −βj, and αi, ◦ s−1

j = βi, + bijβj, with bij ⩾ 0 if i ̸= j.
More conveniently, βj, ◦ sj = −αj, and βi, ◦ sj = αi, + bijαj,. To prove the first assertion it is
enough to show that if H0 belongs to a and α(H0) ̸= 0 for all roots α then there is some i
and some s in Ω(ai, a) such that s−1(H0) belongs to a+i . There is a point H1 in a+ such that
the line through H0 and H1 intersects none of the sets{

H ∈ a
∣∣ α(H) = β(H) = 0

}
where α and β are two linearly independent roots. If no such i and s exist let H2 be the
point closest to H0 on the segment joining H0 and H1 which is such that the closed segment
from H1 to H2 lies entirely in the closure of

r⋃
i=1

⋃
s∈Ω(ai,a)

s(a+i ).

Note that H2 is not H0. Let H2 lie in the closure of ta+k with t in Ω(ak, a). Replacing H0

by t−1(H0) and P by Pk if necessary it may be supposed that H2 lies in the closure of a+.
Choose j so that

αℓ,(H2) > 0, 1 ⩽ ℓ ⩽ q, ℓ ̸= j,

and αj,(H2) = 0. Then αj,(H0) < 0, so that if H lies on the segment joining H0 and H2 and
is sufficiently close to H2 then sjH lies in b+j ; this is a contradiction.

It is certainly clear that if B belongs to E then there is an i and an s in Ω(ai, a) such
that sa+i = WB. Suppose that t belongs to Ω(ak, a) and ta

+
k = WB. Then s

−1t(a+k ) = a+i . If
s is the restriction of Adh to a+i and t is the restriction of Ad g to a+k then h−1gPkg

−1h = Pi.
The previous lemma implies that i = k and that h−1g belongs to Pi. Since the normalizer
and centralizer of ai in Pi are the same it follows that s−1t is the identity.

If a is as in the lemma the transformations s1, . . . , sq just introduced will be called the
reflections belonging, respectively, to α1,, . . . , αq,. We have proved that if a and b belong to
{a1, . . . , ar} then every element of Ω(a, b) is a product of reflections; if s is the product of n
but no fewer reflections then n is called the length of s. Two refinements of this corollary
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will eventually be necessary; the first in the proof of Lemma 6.1 and the second in the proof
of Lemma 7.4.

Corollary 1. Every s in Ω(a, b) can be written as a product sn · · · s2s1 of reflections in such
a way that if sk lies in Ω(aik , ajk) and belongs to the simple root αk of aik , then sk−1 · · · s1(a+i1)
is contained in {

H ∈ aik
∣∣ αk(H) > 0

}
.

Of course n is not necessarily the length of s. Let WB = sa+. Take a line segment joining
a point in the interior of WB to a point in the interior of b+ which does not meet any of the
sets

{
H ∈ b

∣∣ α(H) = β(H) = 0
}
where α and β are two linearly independent roots. If the

segment intersects only one Weyl chamber the result if obvious. The lemma will be proved by
induction on the number, m, of the Weyl chambers which it intersects. If m is greater than
one, let the segment intersect the boundary of b+ at H0. Index the simple roots β1,, . . . , βq, of
b so that β1,(H0) = 0 and βj,(H0) > 0 if j > 1. Then if H belongs to b+ the number β1,(sH)
is negative, so that if r is the reflection belonging to β1, the number (−β1, ◦ r−1)(rsH) is
positive. Let t = rs; if r belongs to Ω(b, c) then t belongs to Ω(a, c). Since there is a line
segment connecting WB and r−1(c+) which meets only in m− 1 Weyl chambers, there is a
line segment connecting c+ and ta+ = rWB which meets only m− 1 Weyl chambers. If the
corollary is true for t, say t = sn−1 · · · s1 and sn = r−1 then s = sn · · · s1 and this product
satisfies the conditions of the corollary.

Suppose a1, . . . , ar are, as in the lemma, split components of P1, . . . , Pr respectively.
Suppose that, for 1 ⩽ i ⩽ r, Si is a collection of m-dimensional affine subspaces of the
complexification of ai defined by equations of the form α(H) = µ where α is a root and
µ is a complex number. If s belongs to Si and t belongs to Sj we shall define (s, t) as the

set of distinct linear transformations from s to
{
H
∣∣∣ −H ∈ t

}
obtained by restricting the

elements of Ω(ai, aj) to s. Suppose that each s in S =
⋃r

i=1 Si is of the form X(s) + s̃ where
s̃ is the complexification of a distinguished subspace of h and the point X(s) is orthogonal to
s̃; suppose also that for each s in S the set Ω(s, s) contains an element s0 such that

s0
(
X(s) +H

)
= −X(s) +H

for all H in s̃. Then if r ∈ Ω(r, s) and t ∈ Ω(s, t) the transformation ts0r belongs to Ω(r, t).
Every element s of Ω(s, t) defines an element of Ω(s̃, t̃) in an obvious fashion. Such an s is
called a reflection belonging to the simple root α of s̃ if the element it defines in Ω(s̃, t̃) is
that reflection. It is easy to convince oneself of the following fact.

Corollary 2. Suppose that for every s in S and every simple root α of S̃ there is a t in S
and a reflection in Ω(s, t) which belongs to α. Then if s and t belong to S and s belongs to
Ω(s, t) there are reflections rn, . . . , r1 such that if rk belongs to Ω(s, sk) and sk in Ω(sk, sk)
defines the identity in Ω(s̃k, s̃k) the transformation s equals the product rnsn−1rn−1 · · · r2s1r1.

As before the minimal value for n is called the length of s.





CHAPTER 3

Cusp forms

As usual the invariant measure on Γ\G is normalized by the condition that∫
G

ϕ(g) dg =

∫
Γ\G

∑
Γ

ϕ(γg)

 dg

If ϕ is a locally integrable function on Γ\G, P is a cuspidal subgroup, and T = N∆, then

ϕ̂(g) =

∫
∆\T

ϕ(tg) dg =

∫
Γ∩N\N

ϕ(ng) dn

is defined for almost all g. A function ϕ in L(Γ\G), the space of square-integrable functions

on Γ\G, such that ϕ̂(g) is zero for almost all g and all cuspidal subgroups except G itself
will be called a cusp form. It is clear that the space of all cusp forms is a closed subspace of
L(Γ\G) invariant under the action of G on L(Γ\G); it will be denoted by L0(Γ\G). Before
establishing the fundamental property of L0(Γ\G) it is necessary to discuss in some detail
the integral (

λ(f)ϕ
)
(g) =

∫
G

ϕ(gh)f(h) dh

when ϕ is a locally integral function on Γ\G and f is a once continuously differentiable
function on G with compact support.

Suppose P is a percuspidal subgroup of G and F is a subset of the set of simple roots of
h. Let P1 be the cuspidal subgroup belonging to P determined by the set F . Let

ϕ2(g) =

∫
Γ∩N1\N1

ϕ(ng) dn

and let ϕ1 = ϕ− ϕ2. Then
(
λ(f)ϕ

)
(g) equals

(3.a)

∫
G

ϕ(h)f(g−1h) =

∫
G

ϕ1(h)f(g
−1h) dh+

∫
G

ϕ2(h)f(g
−1h) dh.

The second integral will be allowed to stand. The first can be written as∫
N1(Γ∩N)\G

∑
δ∈Γ∩N1\Γ∩N


∫
Γ∩N1\N1

ϕ1(nδh)
∑

δ1∈Γ∩N1

f(g−1δ1nδh) dn

 dh.

If we make use of the fact that
ϕ1(δnh) = ϕ1(nh)

and ∫
Γ∩N1\N1

ϕ1(nh) dn = 0,

23
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this repeated integral can be written as∫
N1(Γ∩N)\G

{∫
Γ∩N1\N1

ϕ1(nh)f(g, nh) dn

}
dh

with

f(g, h) =
∑

δ∈Γ∩N

f(g−1δh)−
∑

Γ∩N1\Γ∩N

∫
N1

f(g−1nδh) dn

=

∫
Γ∩N1\N1

∑
δ∈Γ∩N

{
f(g−1δh)− f(g−1δnh)

}
dn

It should be recalled that N1 is a normal subgroup of N and Γ ∩N1 a normal subgroup of
Γ ∩N .

If S = S(t, ω) is a Siegel domain associated to P it is necessary to estimate f(g, h) when
g is in S(t, ω). It may be supposed that (Γ ∩N)ω contains N . Since f(g, δh) = f(g, h) if
δ ∈ Γ ∩ N we can take h = n1a1m1k1 with n1 in ω ∩ N , a1 in A, m1 in M , and k1 in K.
Suppose g = sak = a(a−1sa)k = au with s in ω and a in A+(t,∞); then u lies in a compact
set U1 which depends on ω and t. The integrand in the expression for f(g, h) equals∑

δ∈Γ∩N

{
f(u−1a−1δah1)− f(u−1a−1δnah1)

}
with h1 = a−1h. If ω1 is a compact subset of N1 such that (Γ ∩N1)ω1 = N1 it is enough to
estimate this sum for n in ω1. Let U be a compact set containing the support of f . If a given
term of this sum is to be different from zero either a−1δah1 or a−1δnah1 must belong to U1U .
Then either

(a−1δaa−1n1a)(a
−1m1a1)

or
(a−1δnaa−1n1a)(a

−1m1a1)

belongs to P ∩ U1UK. It follows that there is a compact set V in N depending only on S
and U such that a−1δa belongs to V . Choose a conditionally compact open set V1 in N so
that if δ belongs to Γ ∩N and δV1 ∩ V1 is not empty then δ = 1; there is a compact set V2 in
N such that a−1V1a is contained in V2 if a belongs to A+(t,∞). If a−1δa belongs to V then
δV1 is contained in aV V2a

−1. Consequently the number of terms in the above sum which
are different from zero is at most a constant times the measure of aV V2a

−1 and a simple
calculation shows that this is at most a constant times ω−2(a). Finally there is a compact
subset ω2 of AM such that every term of the above sum vanishes unless m1a1 belongs to aω2.

If {Xi} is a basis of g there is a constant µ such that
∣∣λ(Xi)f(g)

∣∣ ⩽ µ for all i and g. If

X ∈ g then λ(X)f(g) is defined to be the value of df
dt
(g exp tX) at t = 0. Then∣∣f(u−1a−1δah1)− f(u−1a−1δnah1)

∣∣
is less than or equal to∫ 1

0

∣∣∣λ(Ad(h−1
1 )Ad(a−1)X

)
f(u−1a−1δ exp tXah1)

∣∣∣ dt
if n = expX. Since n lies in a fixed compact set so does X. Moreover

h1 = a−1n1aa
−1m1a1k1
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lies in a compact set depending only on S and U . Consequently the right hand side is less
than a constant, depending only on S, U , and µ, times the largest eigenvalue of Ad(a−1) on
N1. In conclusion there is a constant c, depending only on S, U , and µ, such that for all g in
S and all h ∣∣f(g, h)∣∣ ⩽ cω−2

(
a(g)

){
min
αi, /∈F

ξαi,

(
a(g)

)}−1

.

Moreover the first integral in the expression for λ(f)ϕ(g) is equal to∫
aω2×K

ω2(b)


∫
N1(Γ∩N)\N

{∫
Γ∩N1\N1

ϕ1(n1nbmk)f(g, n1nbmk) dn1

}
dn

 db dmdk

or, as is sometimes preferable,∫
aω2×K

ω2(b)

{∫
Γ∩N\N

ϕ1(nbmk)f(g, nbmk) dk

}
db dmdk.

The absolute value of the first integral is at most

cω−2
(
a(g)

){
min
α1, /∈F

ξαi,

(
a(g)

)}−1 ∫
aω2×K

ω2(b)

{∫
Γ∩N\N

∣∣ϕ1(nbmk)
∣∣ dn}db dmdk.

If ω3 is a compact subset of N such that (Γ ∩N)ω3 = N this expression is at most

(3.b) cω−2
(
a(g)

){
min
αi, /∈F

ξαi,

(
a(g)

)}−1 ∫
ω3aω2K

∣∣ϕ1(h)
∣∣ dh

For the same reasons the absolute value of the second integral is at most

(3.c) cω2
(
a(g)

){
min
αi /∈F

ξαi

(
a(g)

)}−1 ∫
ω3aω2K

∣∣ϕ(h)∣∣ dh.
Lemma 3.1. Let ϕ belong to L0(Γ\G), let f be a once continuously differentiable function
with compact support, and let P be a percuspidal subgroup. If S = S(t, ω) is a Siegel domain
associated to P there is a constant c depending only on S and f such that for g in S∣∣λ(f)ϕ(g)∣∣ ⩽ cω−1

(
a(g)

)
η−1
(
a(g)

)
∥ϕ∥.

Here ∥ϕ∥ is the norm of ϕ in L(Γ\G) and if a belongs to A then

η(a) = max
1⩽i⩽p

ξαi,
(a)

It is enough to establish the inequality on each

Si =
{
g ∈ S

∣∣∣ ξαi,

(
a(g)

)
⩾ ξαj,

(
a(g)

)
, 1 ⩽ j ⩽ p

}
For simplicity take i = 1. In the above discussion take F =

{
αj,

∣∣ j ̸= 1
}
. The second term

in (3.a) is zero; so to estimate λ(f)ϕ(g) we need only estimate (3.b). The integral is at most{∫
ω3aω2K

dh

}1/2{∫
ω3aω2K

∣∣ϕ(h)∣∣2 dh}1/2
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Since ω3aω2K is contained in a fixed Siegel domain S(t′, ω′) for all a in A+(t,∞), the second
integral is at most a constant times ∥ϕ∥2. If ω4 and ω5 are compact subsets of A and M
respectively such that ω2 is contained in ω4ω5 the first integral is at most{∫

ω3

dn

}{∫
ω4

ω2(ab) db

}{∫
ω5

dm

}
.

Since
min
αi, /∈F

ξαi
(a) = ξα1,(a) = η

(
a(g)

)
if g = sak is in S1, the lemma follows.

It is a standard fact that λ(f) is a bounded linear operator on L(Γ\G). It is readily seen
to leave L0(Γ\G) invariant.
Corollary. If f is once continuously differentiable with compact support then the restriction
of λ(f) to L0(Γ\G) is a compact operator.

Since ω−1(a)η−1(a) is square integrable on any Siegel domain the corollary follows imme-
diately from Ascoli’s lemma, the above lemma, and the fact that Γ\G is covered by a finite
number of Siegel domains. The significance of the corollary is seen from the following lemma.

Lemma 3.2. Let G be a locally compact group and π a strongly continuous unitary represen-
tation of G on the separable Hilbert space V. Suppose that for any neighbourhood U of the
identity in G there is an integrable function f on G with support in U such that

f(g) ⩾ 0, f(g) = f(g−1),

∫
G

f(g) dg = 1

and π(f) is compact; then V is the orthogonal direct sum of countably many invariant
subspaces on each of which there is induced an irreducible representation of G. Moreover no
irreducible representation of G occurs more than a finite number of times in V.

Of course π(f) is defined by

π(f)v =

∫
F

f(g)π(g)v dg

if v belongs to V. Consider the families of closed mutually orthogonal subspaces of V which
are invariant and irreducible under the action of G. If these families are ordered by inclusion
there will be a maximal one. Let the direct sum of the subspaces in some family be W.
In order to prove the first assertion it is necessary to show that W equals V. Suppose the
contrary and let W′ be the orthogonal complement of W in V. Choose a v in W′ with
∥v∥ = 1 and choose U so that

∥∥v − π(g)v
∥∥ < 1

2
if g is in U . Choose f as in the statement

of the lemma. Then
∥∥π(f)v − v

∥∥ < 1
2
so that π(f)v ̸= 0. The restriction of π(f) to W′ is

self-adjoint and thus has a non-zero eigenvalue µ. Let W′
µ be the finite-dimensional space of

eigenfunctions belonging to the eigenvalue µ. Choose from the family of non-zero subspaces
of W′

µ obtained by intersecting W′
µ with closed invariant subspaces of W′ a minimal one

W′
0. Take the intersection V0 of all closed invariant subspaces of W′ containing W′

0. Since
V0 ≠ {0} a contradiction will result if it is shown that V0 is irreducible. If V0 were not then
it would be the orthogonal direct sum of two closed invariant subspaces V1 and V2. Since
Vi ∩W′

µ is contained in V0 ∩W′
µ = W′

0 for i = 1 and 2, the space Vi ∩W′
µ is either {0} or

W′
0. But π(f)Vi ⊆ Vi so

W′
0 = (V1 ∩W′

µ)⊕ (V2 ∩W′
µ)



3. CUSP FORMS 27

and, consequently, Vi ∩ W′
µ = W′

µ for i equal to 1 or 2. This is impossible. The second
assertion follows from the observation that if some irreducible representation occurred with
infinite multiplicity then, for some f , π(f) would have a non-zero eigenvalue of infinite
multiplicity.

Before proceeding to the next consequence of the estimates (3.b) and (3.c) we need a
simple lemma.

Lemma 3.3. Let S(1), . . . ,S(m) be Siegel domains, associated to the percuspidal subgroups
P (1), . . . , P (m) respectively, which cover Γ\G. Suppose c and r are real numbers and ϕ(g) is a
locally integrable function on Γ\G such that∣∣ϕ(g)∣∣ ⩽ cηr

(
a(i)(g)

)
if g belongs to S(i). If ∗P is a cuspidal subgroup and

∗ϕ̂(a,m, k) =

∫
Γ∩∗N\∗N

ϕ(namk−1) dn

for a in ∗A, m in ∗M and k in K then there is a constant r1, which does not depend on ϕ,
such that for any compact set C in ∗A, any percuspidal subgroup †P of ∗M , and any Siegel
domain †S associated to †P there is a constant c1, which does not depend on ϕ, such that∣∣∣∗ϕ̂(a,m, k)∣∣∣ ⩽ c1η

r1
(
†a(m)

)
if a belongs to C and m belongs to †S. In particular if ∗P = G then r1 can be taken equal to
r.

If ω is a compact subset of ∗N such that (Γ ∩ ∗N)ω = ∗N then∣∣∣∗ϕ̂(a,m, k)∣∣∣ ⩽ sup
n∈ω

∣∣ϕ(namk−1)
∣∣

If g = namk−1 choose γ in Γ so that γg belongs to S(i) for some i. According to the corollary
to Lemma 2.11 there is a constant r2 such that for any C, †P , and †S there is a constant c2
such that

η
(
a(i)(γg)

)
⩽ c2η

(
†a(m)

)r2
Since η

(
a(i)(γg)

)
is bounded below on S(i) for each i, it can be supposed for the first assertion

that r ⩾ 0. Then take r1 = rr2 and c1 = ccr2. If
∗P is G the lemma also asserts that if S is

any Siegel domain associated to a percuspidal subgroup P then there is a constant c1 such
that

∣∣ϕ(g)∣∣ ⩽ c1η
r
(
a(g)

)
on S. Given g in S again choose γ in Γ so that γg belongs to S(i)

for some i. The corollary to Lemma 2.11 asserts that there is a number c2 independent of i
and g such that

c−1
2 ⩽ η−1

(
a(g)

)
η
(
a(i)(g)

)
⩽ c2

Take c1 = ccr2 if r ⩾ 0 and take c1 = cc−r
2 if r < 0.

Lemma 3.4. Suppose S(1), . . . ,S(m) are Siegel domains, associated to percuspidal subgroups,
which cover Γ\G. Suppose that ϕ(g) is a locally integrable function on Γ\G and that there

are constants c and r such that
∣∣ϕ(g)∣∣ ⩽ cηr

(
a(i)(g)

)
if g belongs to S(i). Let U be a compact

subset of G, let µ be a constant, let {Xi} be a basis of g, and let f(g) be a once continuously
differentiable function on G with support in U such that

∣∣λ(Xi)f(g)
∣∣ ⩽ µ for all g and i. If
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S is a Siegel domain associated to the percuspidal subgroup P and if k is a non-negative
integer there is a constant c1, depending on c, r, U , µ, S, and k but not on ϕ or f , such that∣∣∣λ(k)(f)ϕ(g)− λk(f)ϕ̂i(g)

∣∣∣ ⩽ c1η
r−k
(
a(g)

)
on

S1 =
{
g ∈ S

∣∣∣ ξαi,

(
a(g)

)
⩾ ξαj,

(
a(g)

)
, 1 ⩽ j ⩽ p

}
.

In accordance with our notational principles

ϕ̂i(g) =

∫
Γ∩Ni\Ni

ϕ(ng) dn

if Pi is the percuspidal subgroup belonging to P determined by
{
αj,

∣∣ j ̸= i
}
. The assertion

of the lemma is certainly true for k = 0. The proof for general k will proceed by induction.
For simplicity take i = 1. Since (

λk(f)ϕ
)∧
i
= λk(f)ϕ̂i,

it will be enough to show that if there is a constant s such that for any Siegel domain S

associated to P there is a constant c′ such that
∣∣∣ϕ̂i(g)

∣∣∣ ⩽ c′ηs
(
a(g)

)
on S1 then for any S

there is a constant c′1 so that∣∣∣λ(f)ϕ(g)− λ(f)ϕ̂1(g)
∣∣∣ ⩽ c′1η

s−1
(
a(g)

)
on S1. Of course it will also have to be shown that the constants c′1 do not depend on f or
ϕ. Indeed we apply this assertion first to ϕ with s = r and then in general to λk(f)ϕ with
s = r − k. Since

λ(f)ϕ(g)− λ(f)ϕ̂1(g)

is nothing but the first term on the right side of (3.a) it can be estimated by means of (3.b).
Thus ∣∣∣λ(f)ϕ(g)− λ(f)ϕ̂1(g)

∣∣∣ ⩽ c2ω
−2
(
a(g)

)
ξ−1
α1,

(
a(g)

) ∫
ω3aω2K

∣∣ϕ1(h)
∣∣ dh

if g belongs to S1. First observe that if g belongs to S1 then

η
(
a(g)

)
= ξα1,

(
a(g)

)
There is a Siegel domain S′ such that when a = a(g) and g belongs to S the set ω3aω2K
belongs to S′. Let ω4 and ω5 be compact subsets of A and M respectively such that ω2

is contained in ω4ω5; then the integral is less than or equal to a constant, which does not
depend on ϕ, times ∫

ω4

ω2(ab)ηs(ab) db

which is certainly less than a constant times ω2(a)ηs(a).

Corollary. Suppose V is a finite-dimensional subspace of L0(Γ\G) invariant under λ(f) for
f continuous with compact support and such that f(kgk−1) = f(g) for all g in G and all k
in K. Then given any real number r and any Siegel domain S associated to a percuspidal
subgroup P there is a constant c such that, for all ϕ in V and all g in S,∣∣ϕ(g)∣∣ ⩽ cηr

(
a(g)

)∥∥ϕ(g)∥∥.



3. CUSP FORMS 29

Since for a given t there are constants c1 and r1 such that ω−1(a) ⩽ c1η
r1(a) for a in

A+(t,∞), the corollary will follow from Lemmas 3.1 and 3.3 if it is shown that there is a
once continuously differentiable function f0 satisfying the conditions of the lemma such that
λ(f0)ϕ = ϕ for all ϕ in V . Let {ϕ1, . . . , ϕn} be an orthonormal basis for V and let U be a
neighbourhood of the identity in G such that∥∥λ(g)ϕi − ϕi

∥∥ < (2n)−1

if g belongs to U and 1 ⩽ i ⩽ n. Then, for any ϕ in V,∥∥λ(g)ϕ− ϕ
∥∥ ⩽

1

2
∥ϕ∥

if g is in U . Choose f to be a non-negative function, once continuously differentiable with
support in u, such that

∫
G
f(g) dg = 1 and f(kgk−1) = f(g) for all g in G and all k in

K. Then the restriction of λ(f) to v is invertible. Thus there is a polynomial p with no
constant term such that p

(
λ(f)

)
is the identity on V . In the group algebra p(f) is defined;

set f0 = p(f). If V was not a space of square-integrable functions but a space of continuous
functions and otherwise satisfied the conditions of the lemma then a simple modification of
the above argument would show the existence of the function f0.

If P is a cuspidal subgroup then the pair M , Θ satisfies the same conditions as the pair
G, Γ. It will often be convenient not to distinguish between functions on Θ\M , T\S, and
AT\P . Also every function ϕ on G defines a function on P ×K by ϕ(p, k) = ϕ(pk−1). Since
G = PK, functions on G may be identified with functions on P ×K which are invariant
under right translation by (k, k) if k belongs to K ∩ P . If V is a closed invariant subspace of
L(Θ\M) let E(V ) be the set of measurable functions Φ on AT\G such that Φ(mg) belongs
to V as a function of m for each fixed g in G and∫

Θ\M×K

∣∣Φ(mk)∣∣2 dmdk = ∥Φ∥2 <∞

If H belongs to ac, the complexification of a, and Φ belongs to E(V ) consider the function

exp
(〈
H(h), H

〉
+ ρ
(
H(h)

))
Φ(h)

on G. If g belongs to G it is not difficult to see that there is another function Φ1(h) in E(V )
such that

exp
(〈
H(hg), H

〉
+ ρ
(
H(hg)

))
Φ(hg) = exp

(〈
H(h), H

〉
+ ρ
(
H(h)

))
Φ1(h)

The function Φ1 depends on Φ, g, and H. If we set Φ1 = π(g,H)Φ then π(g,H) is a bounded
linear transformation from E(V ) to E(V ), π(g1g2, H) = π(g1, H)π(g2, H), and π(1, H) = I.
In fact it is easy to see that π(g,H) is a strongly continuous representation of G on E(V ) for
each H in ac. The representation is unitary if H is purely imaginary. If f is a continuous
function on G with compact support then π(f,H) can be defined as usual by

π(f,H)Φ =

∫
G

f(g)π(g,H)Φ dg

It is readily seen that for almost all g

exp
(〈
H(gh), H

〉
+ ρ
(
H(gh)

))(
π(f,H)Φ

)
(g)
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is equal to ∫
G

exp
(〈
H(gh), H

〉
+ ρ
(
H(gh)

))
Φ(gh)f(h) dh.

If F is a finite set of irreducible representations of K let W be the space of functions on K
spanned by the matrix elements of the representations in F . The space W will be called an
admissible subspace of the space of functions on K. Let E(V,W ) be the space of functions Φ
in E(V ) such that, for almost all g, Φ(gk) belongs to W , that is, agrees with an element of W
except on a set of measure zero. With no loss it may be assumed that it always belongs to W .
Observe that E(V,W ) is just the space of functions Φ in E(V ) such that the space spanned
by
{
λ(k)Φ

∣∣ k ∈ K
}
is finite-dimensional and contains only irreducible representations of

K equivalent to those in F . If f is a continuous function on G with compact support and
f(kgk−1) = f(g) for all g and k then π(f,H) leaves E(V,W ) invariant.

Suppose ∗P is a cuspidal subgroup belonging to P . If Φ belongs to E(V ), define a function
on ∗M ×K by Φ(∗m, k) = ϕ(∗pk−1) if ∗p in ∗P projects onto ∗m. Since G = ∗PK this defines
an isomorphism of E(V ) with a space of functions on ∗M ×K. Indeed let †P = ∗N\P ∩ ∗S
then †P is a cuspidal subgroup of ∗M and †M is the same as M . Also †P ×K is a cuspidal
subgroup of ∗M ×K for the group ∗Θ× {1}. If L is the space of square integrable functions
on K then the image of E(V ) is the set of all functions in E(V ⊗L) which are invariant under
right translations by (k∗, k) where k belongs to K ∩ ∗P and ∗k is the projection of k on ∗M .
Denote the group of such elements by ∗K0 and let ∗K be the projection of K ∩ ∗P on ∗M . The
group ∗K plays the same role for ∗M as K does for G. Suppose Φ belongs to E(V,W ). Then

Φ(∗m∗k1, kk2) = Φ(∗m∗k1k
−1
2 k−1).

For fixed ∗m and k this function belongs to the space of functions on ∗K ×K of the form
ϕ(k1k

−1
2 ) with ϕ in W . A typical element of W is of the form σij , that is, the matrix element

of a representation in F . Since

σij(k1k
−1
2 ) =

∑
ℓ

σiℓ(k1)σℓj(k
−1
2 )

it belongs to the space W ∗ if W ∗ is the space of functions on ∗K ×K spanned by the matrix
elements of those irreducible representations of ∗K×K obtained by taking the tensor product
of an irreducible representation of K ∩ ∗P contained in the restriction to K ∩ ∗P , which is
isomorphic to ∗K, of one of the representations in F with a representation of K contragredient
to one of the representations in F . Thus the image of E(V,W ) is contained in E(V ⊗L,W ∗);
indeed it is readily seen to be contained in E(V ⊗W,W ∗) and to be the space of all functions
in E(V ⊗W,W ∗) invariant under right translation by elements of ∗K0. On occasion it will be
convenient to identify E(V,W ) with this subspace.

Since the representation of M on L(Θ\M) is strongly continuous there is associated to
each element X in the centre Z′ of the universal enveloping algebra of m a closed operator
λ(X) on L(Θ\M). Indeed if π is any strongly continuous representation of M on a Hilbert
space L there is associated to each X in Z′ a closed operator π(X). If L is irreducible then

L =
n⊕

j=1

Lj

where each Lj is invariant and irreducible under the action of M0, the connected component
of M . The restriction of π(X) to Lj is equal to a multiple, ξj(X)I, of the identity. The
map X → ξj(X) is a homomorphism of Z′ into the complex numbers. Let us say that the
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representation belongs to the homomorphism ξj. Suppose the closed invariant subspace V is
a direct sum

⊕
Vi of closed, mutually orthogonal subspaces Vi each of which is invariant and

irreducible under the action of M . As we have just remarked each Vi is a direct sum
ni⊕
j=1

Vij

of subspaces invariant and irreducible under the action of M0. Suppose Vij belongs to the
homomorphism ξij. The space V will be called an admissible subspace of L(Θ\M) if V is
contained in L(Θ\M) and there are only a finite number of distinct homomorphisms in the
set {ξij}.

Lemma 3.5. If V is an admissible subspace of L0(Θ\M) and W is an admissible subspace
of the space of functions on K then E(V,W ) is finite-dimensional.

In the discussion above take ∗P equal to P . Then E(V,W ) is isomorphic to a subspace of
E(V ⊗W,W ∗). It is readily seen that V ⊗W is an admissible subspace of L0

(
Θ× {1}\M ×K

)
and that W ∗ is an admissible subspace of the space of functions on ∗K×K. Since it is enough
to show that E(V ⊗W,W ∗) is finite-dimensional we have reduced the lemma to the case that
P and M are equal to G. Suppose V =

⊕
Vi. If V

′ =
⊕

Vi where the second sum is taken
over those Vi which contain vectors transforming according to one of the representations in F
then E(V,W ) = E(V ′,W ). In other words it can be supposed that each Vi contains vectors
transforming under K according to one of the representations in F . For each i let

Vi =

ni⊕
j=1

Vij

where each Vij is invariant and irreducible under the action of G0, the connected component
of G, and belongs to the homomorphism ξij. It is known ([10, Theorem 3]) that there are
only a finite number of irreducible unitary representations of G0 which belong to a given
homomorphism of Z, the centre of the universal enveloping algebra of g, and which contain
vectors transforming according to a given irreducible representation of K ∩G0. Thus there is
a finite set E of irreducible representations of G0 such that for each i there is a j such that the
representation of G0 on Vij is equivalent to one of the representations in E. As a consequence
of Lemma 3.2 applied to G0 there are only a finite number of Vi. It is known however (cf. [10,
Theorem 4]) that for each i the space of functions in Vi transforming according to one of the
representations in F is finite-dimensional. This completes the proof of the lemma. Since
E(V,W ) is finite-dimensional it follows from the proof of the corollary to Lemma 3.4 that it
can be considered as a space of continuous functions.

Suppose ϕ(g) is a continuous function on T\G such that for each g in G the function
ϕ(mg) on Θ\M belongs to V and the function ϕ(gk) on K belongs to W . For each a in A
consider the function ϕ(sak) on T\S ×K or on AT\P ×K. If k0 belongs to K ∩P = K ∩ S
then ϕ(sk−1

0 ak0k) = ϕ(sak) since sk−1
0 ak0a

−1s−1 is in N . Thus it defines a function Φ′(a)
on AT\G which is seen to belong to E(V,W ). The space of all such functions ϕ for which
ϕ′(·), which is a function on A with values in E(V,W ), has compact support will be called
D(V,W ).

Lemma 3.6. Suppose V is an admissible subspace of L0(Θ\M) and W is an admissible
subspace of functions on K. If ϕ belongs to D(V,W ) then

∑
∆\Γ ϕ(γg) is absolutely convergent;
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its sum ϕ̂(g) is a function on Γ\G. If S0 is a Siegel domain associated to a percuspidal

subgroup P0 and if r is a real number there is a constant c such that
∣∣∣ϕ̂(g)∣∣∣ ⩽ cηr

(
a0(g)

)
for

g in S0.

There is one point in Section 6 where we will need a slightly stronger assertion than that
of the lemma. It is convenient to prove it at the same time as we prove the lemma.

Corollary. Let ϕ(g) be a function on T\G and suppose that there is a constant t such
that ϕ(namk) = 0 unless a belongs to A+(t,∞). Let P1, . . . , Pm be percuspidal subgroups
to which P belongs and suppose that there are Siegel domains †S1, . . . ,

†Sm associated to
†Pi = N\Pi ∩ S which cover Θ\M . Suppose that there is a constant s such that given any
constant r1 there is a constant c1 such that, for 1 ⩽ i ⩽ m,∣∣ϕ(namk)∣∣ ⩽ c1η

s(a)ηr1
(
†ai(m)

)
if m belongs to †Si. Finally suppose that there are constants u and b with 1 ⩾ b > 0 such
that ϕ(namk) = 0 if η(a) > u and the projection of m on Θ\M belongs to the projection on
Θ\M of {

m ∈ †Si

∣∣∣∣ η(†ai(m)
)
< ηb(a)

}
for some i. Then ∑

∆\Γ

ϕ(γg) = ϕ̂(g)

is absolutely convergent and if S0 is a Siegel domain associated to a percuspidal subgroup P0

and r is a real number there is a constant c such that
∣∣∣ϕ̂(g)∣∣∣ ⩽ cηr

(
a0(g)

)
for g in S0.

It is a consequence of Lemma 3.5 and the corollary to Lemma 3.4 that the function of the
lemma satisfies the conditions of the corollary. Let ω be a compact subset of N such that
(Γ ∩ N)ω = N . If g is in S0 let U be the set of all elements γ in Γ such that γg = namk
with n in ω, a in A+(t,∞), m in †Si for some i, and k in K. Since any left coset of ∆ in Γ
contains an element γ such that γg = namk with n in ω, a in A, m in †Si for some i, and k
in K and since ϕ(namk) = 0 unless a belongs to A+(t,∞) it is enough to estimate∑

γ∈U

∣∣ϕ(γg)∣∣
We first estimate the number of elements in U(v), which is the set of all γ in U such that
γg = namk with n in ω, a in A+(t,∞), m in †Si for some i and such that η

(†ai(m)
)
⩽ v,

and k in K. Suppose †Si =
†Si(

†ωi,
†ti) and let ωi = ω†ωi. If γ belongs to U(v) then, for

some i, γg = niaaiki with ni in ωi, a in A+(t,∞), ai in
†A+

i (
†ti,∞) and such that η(ai) ⩽ v,

and k in K. Since ai is considered as an element of †Ai the number η(ai) is the maximum of
ξα(ai) as α varies over the simple roots of †ai. Consider the point aai in Ai. Let α1,, . . . , αq,

be the simple roots of h which vanish on a; then

ξαj,
(aai) = ξαj,

(ai) ⩾
†ti

for 1 ⩽ j ⩽ q. If j > q then

ξαj,
(ai) =

1∏
k=1

ξδkαk,
(ai)
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with δk ⩽ 0; thus if δ =
∑q

k=1 δk then

ξαj,
(aai) = ξαj,

(a)ξαj,
(ai) ⩾ tηδ(ai) ⩾ tvδ

Consequently γg is contained in the Siegel domain Si(ωi, tv
δ) associated to Pi if tv

δ ⩽
min{†ti, . . . , †tm}. In any case it follows from Lemma 2.11 that there are constants c2 and r2
which are independent of g such that U(v) has at most c2v

r2 elements. If ϕ(namk) is not
zero either η(a) ⩽ u or η

(†ai(m)
)
⩾ ηb(a), where η(a) is the maximum of ξα(a) as α varies

over the simple roots of a. Consequently given any number r1 there is a constant c′1 such that∣∣ϕ(namk)∣∣ ⩽ c′1η
r1
(
†ai(m)

)
If N(g) is the largest integer such that γg = namk with n in ω, a in A+(t,∞), m in †Si for
some i, k in K, and ϕ(γg) ̸= 0, implies η

(†ai(m)
)
⩾ N(g) then∑

γ∈U

∣∣ϕ(γg)∣∣ ⩽ c′1c2

∞∑
n=N(g)

(n+ 1)r2nr1

which in turn is at most

−c′1c22r2(r1 + r2 − 1)
(
N(g) + 1

)r1+r2+1

if N(g) > 1, r1 < 0, r2 > 0, and r1 + r2 + 1 < 0. Since the corollary to Lemma 2.11 implies
that there are positive constants c3 and r3 such that

N(g) + 1 ⩾ c3η
r3
(
a0(g)

)
the lemma and corollary are proved.

Let P be a cuspidal subgroup and let ϕ(g) be a measurable function on T\G. Suppose
that given any Siegel domain †S associated to a percuspidal subgroup †P of M and any
compact subset C of A there are constants c and r such that∣∣ϕ(namk)∣∣ ⩽ cηr

(
†a(m)

)
if a belongs to C and m belongs to †S. If V is an admissible subspace of L0(Θ\M) and W
is an admissible subspace of the space of functions on K and if ψ belongs to D(V,W ) then∫

T\G
ψ(g)ϕ(g) dg

is convergent. If it vanishes for all choices of V and W and all ψ then we say that the cuspidal
component of ϕ is zero.

Lemma 3.7. Let S(1), . . . ,S(m) be Siegel domains, associated to the percuspidal subgroups
P (1), . . . , P (m) respectively, which cover Γ\G. Suppose that ϕ(g) is a continuous function on
Γ\G and that there are constants c and r such that∣∣ϕ(g)∣∣ ⩽ cηr

(
a(i)(g)

)
if g belongs to S(i). If the cuspidal component of

ϕ̂(g) =

∫
Γ∩N\N

ϕ(ng) dn

is zero for every cuspidal subgroup P then ϕ(g) is identically zero.
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It is a consequence of Lemma 3.3 that it is meaningful to speak of the cuspidal component

of ϕ̂ being zero. The lemma will be proved by induction on the rank of the percuspidal
subgroups of G. If they are of rank 0 so that Γ\G is compact then ϕ is itself a cusp
form. It follows from Lemma 3.2 and the corollary to Lemma 3.1 that the subspace of
L(Γ\G) spanned by the space E(V,W ) with V an admissible subspace of L0(Γ\G) and W
an admissible subspace of the space of functions on K is dense in L(Γ\G). Since in this case

D(V,W ) = E(V,W ) and ϕ̂(g) = ϕ(g) when P = G, the assumptions of the lemma imply that
ϕ is orthogonal to every element of L(Γ\G) and is consequently zero.

If the rank of the percuspidal subgroups of G is p, suppose that the lemma is true when
the percuspidal subgroups are of rank less than p. Let ∗P be a cuspidal subgroup and consider

∗ϕ̂(a,m, k) =

∫
Γ∩∗N\∗N

ϕ(namk−1) dn

According to Lemma 3.3 ∗ϕ̂(a,m, k) is for each fixed a in ∗A a function on ∗Θ× {1}\∗M ×K
which satisfies the given conditions on its rate of growth on Siegel domains of ∗M ×K. If †P
is a cuspidal subgroup of ∗M there is a cuspidal subgroup P to which ∗P belongs such that
†P = ∗N\P ∩ ∗S. Then

†(∗ϕ̂)∧(a,m, k) =

∫
∗Θ∩†N\†N

∗ϕ̂(a, nm, k) dn

=

∫
∗Θ∩†N\†N

dn

{∫
Γ∩∗N\∗N

ϕ(n1namk
−1) dn1

}
dn

=

∫
Γ∩N\N

ϕ(namk−1) dn,

so that

(3.d) †(∗ϕ̂)∧(a,m, k) = ϕ̂(amk−1)

Suppose that V ′ is an admissible subspace of L0

(
Θ× {1}\M ×K

)
and W ′ is an admissible

subspace of the space of functions on ∗K ×K. As in the remarks preceding Lemma 3.5, ∗K is
the projection on ∗M of K ∩ ∗P . If ψ belongs to D(V ′,W ′) then∫

†T×{1}\∗M×K

ψ(m, k)ϕ̂(amk−1) dmdk

is equal to ∫
†T×{1}\∗M×K

{∫
∗K0

ψ(mk0, kk0) dk0

}
ϕ̂(amk−1) dmdk.

This equality will be referred to as (3.e). Suppose ζ(a) is a continuous function on ∗A with
compact support. Then we can define a function ξ(g) on T\G by setting

ξ(namk−1) = ζ(a)

∫
∗K0

ψ(mk0, kk0)

If F ′ is the set of irreducible representations of ∗K × K whose matrix elements span W ′,
let F be a finite set of irreducible representations of K which contains the representations
contragredient to the irreducible representations of K occurring in the restrictions of the
representations of F ′ to K. If W is the space of functions on K spanned by the matrix
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elements of the representations in F then, for each g in G, ξ(gk) is a function in W . It is also
easy to see that there is an admissible subspace V of L0(Θ\M) such that V ′ is contained in
V ⊗W if F is suitably chosen. Then ξ(g) belongs to D(V,W ). Consequently∫

∗A

ω2(a)ζ(a)

{∫
†T×{1}\∗M×K

ψ(m, k)ϕ̂(amk−1) dmdk

}
da

is equal to ∫
T\G

ξ(g)ϕ̂(g) dg = 0

Since ζ(a) is arbitrary we conclude that the left side of (3.e) is zero and hence that for each

a in ∗A the function ∗ϕ̂(a,m, k) on ∗M × K satisfies the conditions of the lemma. By the

induction assumption ∗ϕ̂(a,m, k), and hence ∗ϕ̂(g), is identically zero if the rank of ∗P is
positive.

Suppose f1, . . . , fℓ are once continuously differentiable functions on G with compact
support. Let ϕ1 = λ(f1) · · ·λ(fk)ϕ. It follows from Lemma 3.4 that there is a constant c1
such that ∣∣ϕ1(g)

∣∣ ⩽ c1η
r−ℓ
(
a(i)(g)

)
if g belongs to S(i), 1 ⩽ i ⩽ m. Let ℓ be some fixed integer greater than r so that ϕ1(g) is
bounded and hence square integrable on Γ\G. If P is a cuspidal subgroup different from G
then

ϕ̂1 = λ(f1) · · ·λ(fk)ϕ̂ = 0

so that ϕ1 is a cusp form. The functions f1, . . . , fℓ can be so chosen that fj(kgk
−1) = f(g)

for all g and all k and for 1 ⩽ j ⩽ ℓ and ϕ1(h) is arbitrarily close to ϕ(h) for any given h in
G. Consequently if it can be shown that ϕ1 is identically zero for all such f1, . . . , fℓ it will
follow that ϕ is identically zero. Suppose V is an admissible subspace of L0(Γ\G), W is an
admissible subspace of the space of functions on K, and ψ belongs to E(V,W ); then∫

Γ\G
ψ(g)ϕ1(g) dg =

∫
Γ\G

λ(f ∗
ℓ ) · · ·λ(f ∗

1 )ψ(g)ϕ(g) dg = 0

since λ(f ∗
ℓ ) · · ·λ(f ∗

1 )ψ also belongs to E(V,W ). The functions f ∗
j are defined by f ∗

j (g) =

f j(g
−1). Since, as follows from Lemma 3.2, the space spanned by the various E(V,W ) is

dense in L0(Γ\G) the function ϕ1 must be identically zero.
We also see from the above proof that if ϕ(g) satisfies the first condition of the lemma

and if the cuspidal component of ϕ̂ is zero for all cuspidal subgroups of rank at least q then

ϕ̂ is identically zero for all cuspidal subgroups of rank at least q. Let us now prove a simple
variant of the above lemma which will be used in Section 4.

Corollary. Suppose that ϕ belongs to L(Γ\G) and that if P is any cuspidal subgroup, V an
admissible subspace of L0(Θ\M), W an admissible subspace of the space of the functions of
K, and ψ an element of D(V,W ) then∫

Γ\G
ψ̂(g)ϕ(g) dg = 0

The function ϕ is then zero.
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It is enough to show that if f is a once continuously differentiable function on G with
compact support such that f(kgk−1) = f(g) for all g and k then λ(f)ϕ is identically zero.
Let ϕ1 = λ(f)ϕ. Then, if ψ belongs to D(V,W ) and ψ1 = λ(f ∗)ψ,∫

T\G
ψ(g)ϕ̂1(g) dg =

∫
T\G

ψ1(g)ϕ̂(g) dg

=

∫
∆\G

ψ1(g)ϕ(g) dg

=

∫
Γ\G

ψ̂1(g)ϕ(g) dg

= 0

since ψ1 also belongs to D(V,W ). If we can obtain a suitable estimate on ϕ1, we can conclude
from the lemma that ϕ1 is identically zero. But λ(f)ϕ(g) is equal to∫

G

ϕ(g)f(g−1h) dh =

∫
Γ\G

ϕ(h)

∑
Γ

f(g−1γh)

 dh.

Consequently
∣∣λ(f)ϕ(g)∣∣ is at most{∫

Γ\G

∣∣ϕ(h)∣∣2 dh}1/2{∫
Γ\G

dh

}1/2
sup

h∈G

∑
Γ

∣∣f(g−1γh)
∣∣

Let U be the support of f and suppose that for all h in G the set { γ | γh ∈ gU } has at most
N(g) elements; then the above expression is less than or equal to a constant times N(g). Let
S0 = S0(ω, t) be a Siegel domain associated to the percuspidal subgroup P0; at the cost of
increasing the size of S0 it may be supposed that ∆0ω = S0. Let ω1 and ω2 be compact
subsets of S0 and A0 respectively such that KU is contained in ω1ω2K. Choose a number t′

such that A+
0 (t

′,∞) contains the product of ω2 and A+
0 (t,∞) and let S′

0 = S0(ω, t
′). Every

element γ′ of Γ such that γ′h belongs to gU can be written as a product δγ in such a way that
γh belongs to S′

0 and δω ∩ ωa0ω1a
−1
0 is not empty if a0 = a0(g). It follows from Lemma 2.11

that the number of choices for γ is bounded independent of h. The condition on δ is that
a−1
0 δa0 is contained in a−1

0 ωa0a
−1
0 ω−1a0. But the union over all a0 in A+

0 (t,∞) of these sets
is contained in a compact set. We conclude first of all that the projection of δ on M = N\S
must belong to a fixed compact set and therefore must be one of a finite number of points.
Consequently δ can be written as a product of δ1δ2 where δ2 is one of a finite set of points,
δ1 belongs to Γ ∩N0, and a

−1
0 δ1a0 belongs to a fixed compact subset of N0. The discussion

preceding Lemma 3.1 shows that the number of choices for δ1 is at most a constant times
ω−2(a0). Thus, on S0, N(g) can be taken as a constant times ω−2

(
a0(g)

)
. The required

estimate is now established.
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Eisenstein series

Let P be a cuspidal subgroup of G, let V be an admissible subspace of L(Θ\M), and let
W be the space of functions on K spanned by the matrix elements of some representation
of K. It will follow from Lemma 4.3 that E(V,W ) is finite-dimensional and thus by the
argument used in Section 3 that every element of E(V,W ) is continuous. We assume then
that E(V,W ) is a finite-dimensional space of continuous functions. If Φ is an element of
E(V,W ) and H belongs to ac, the series

(4.a)
∑
∆\Γ

exp
(〈
H(γg), H

〉
+ ρ
(
H(γg)

))
Φ(γg)

is called an Eisenstein series.

Lemma 4.1. The series (4.a) converges uniformly absolutely on compact subsets of the
Cartesian product of

A =
{
H ∈ ac

∣∣ Reαi, > ⟨αi,, ρ⟩, 1 ⩽ i ⩽ rankP
}

and G0. If the sum is E(g,Φ, H) then E(g,Φ, H) is infinitely differentiable as a function of
g and H and is analytic as a function of H for each fixed g. Moreover if P0 is a percuspidal
subgroup of G and S0 a Siegel domain associated to P0 there is a locally bounded function
c(H) on U which depends only on the real part of H such that, for g in S0,∣∣E(g,Φ, H)

∣∣ ⩽ c(H) exp
(〈
H0(g),ReH

〉
+ 2ρ

(
H0(g)

)
− ρ
(
H ′

0(g)
))

where H ′
0(g) is the projection of H0(g) on a.

Let B be the universal enveloping algebra of g. The map

Y → df

dt
(g exp tY ) = λ(Y )f(g)

of g into the space of the left-invariant vector fields on G can be extended to an isomorphism
X → λ(X) of B with the algebra of left-invariant differential operators on G and the map

Y → df

dt

(
exp(−tY )g

)
= λ′(Y )f(g)

of g into the space of right-invariant vector fields on G can be extended to an isomorphism
X → λ′(X) of B with the algebra of right-invariant differential operators on G. If f is an
infinitely differentiable function on G with compact support and if

F (g,Φ, H) = exp
(〈
H(g), H

〉
+ ρ
(
H(g)

))
Φ(g)

with Φ in E(V,W ), then as we have observed above

(4.b) λ(f)F (g,Φ, H) = exp
(〈
H(g), H

〉
+ ρ
(
H(g)

))
F
(
g, π(f,H)Φ, H

)
37
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It is easily verified that if ϕ(g) is any locally integrable function on G then

λ(X)λ(f)ϕ(g) = λ
(
λ′(X)f

)
ϕ(g)

Arguing as in the corollary to Lemma 3.3 we see that for a given H0 there is an infinitely
differentiable function f0 with compact support such that f0(kgk

−1) = f0(g) for all g in
G and all k in K and such that π(f0, H0) is the identity on E(V,W ). For H close to H0,
π(f0, H) is non-singular and we see from (4.b) that for any such H

λ(X)F (g,Φ, H) = exp
(〈
H(g), H

〉
+ ρ
(
H(g)

))
f
(
g, π(X,H)Φ, H

)
if we define π(X,H) to be π

(
λ′(X)f0, H

)
π−1(f0, H). Of course π(X,H) is independent of the

choice of f0. The map (X,Φ) → π(X,H)Φ can be extended to a linear map of B ⊗ E(V,W )
into E(V ), if Bm is the space spanned by

{X1 · · ·Xk | k ⩽ m, xi ∈ g, 1 ⩽ i ⩽ k }
then Bm is invariant under the adjoint group of G. If k ∈ K and ϕ is a differentiable function
then

λ
(
Ad k(X)

)
λ(k)ϕ(g) = λ(k)λ(X)ϕ(g),

so that the map of Bm⊗E(V,W ) into E(V ) commutes with K. IfW1 is the space of functions
on K which is spanned by the matrix elements of the representation of K in Bm ⊗W and if
the degree of X is at most m, then π(X,H)ϕ belongs to E(V,W1). Consequently the second
assertion of the lemma follows immediately from the first.

To prove the last assertion we will estimate the series∑
∆\Γ

∣∣∣∣exp(〈H(γg), H
〉
+ ρ
(
H(γg)

))
Φ(γg)

∣∣∣∣
which equals

(4.c)
∑
∆\Γ

exp
(〈
H(γg),ReH

〉
+ ρ
(
H(γg)

))∣∣Φ(γg)∣∣,
so that it may as well be supposed that H is real. To prove the first assertion it is enough to
show that the second series is uniformly convergent on compact subsets of A×G. It follows
from Lemma 2.5 that if C is a compact subset of A there is a constant µ such that

α,i

(
H(γg)

)
⩽ µ, 1 ⩽ i ⩽ q,

for γ in Γ and g in C. This number q is of course the rank of P . If C1 is a compact subset of
A and if H0 is such that α,i(H0) ⩽ Reα,i(H) for all H in C1 and 1 ⩽ i ⩽ q then∣∣∣∣exp(〈H(γg), H

〉
+ ρ
(
H(γg)

))∣∣∣∣ ⩽ c exp
(〈
H(γg), H0

〉
+ ρ
(
H(γg)

))
for all H in C1 and all g in C. Here c is some constant depending on µ. To prove the first
assertion it is then enough to prove that the series (4.c) converges uniformly for H0 fixed and
for g in a compact subset of G.

Given H0 choose f0(g) as above so that π(f0, H) is the identity on E(V,W ). Then

F (γg,Φ, H0) =

∫
G

F (γg,Φ, H0)f0(g
−1h) dh.
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Let C2 be the support of f0 and let C3 = CC2; then if g belongs to C the series on the right
is dominated by

M
∑
∆\Γ

∫
C3

∣∣F (γh,Φ, H0)
∣∣ dh

if M = suph∈G
∣∣f(h)∣∣. If the numbers of elements in { γ | γg ∈ C3 } is less than or equal to N

for all g in G and if C4 is the projection of C3 on Γ\G, the sum above is at most N times∫
C4

∑
∆\Γ

∣∣F (γh,Φ, H0)
∣∣ dh ⩽

∫
C5

∣∣F (h,Φ, H0)
∣∣ dh

where C5 is the projection on T\G of ΓC3. To prove the first assertion it has merely to be
shown that the integral on the right is finite. Before doing this we return to the last assertion.
If H is in a sufficiently small neighbourhood of H0 then π(f0, H) is non-singular on E(V,W )
and if Φ ∈ E(V,W ) then

2
∥∥π(f,H0)Φ

∥∥ ⩾ ∥Φ∥.
Given Ψ in E(V,W ) and H in this neighbourhood choose Φ so that π(f0, H)Φ = Ψ. Then∣∣F (γg,Ψ, H)

∣∣ ⩽ ∫
G

∣∣F (γh,Φ, H)
∣∣∣∣f0(g−1h)

∣∣ dh,
so that to estimate the series (4.c) and establish the last assertion it will be enough to show
that there is a locally bounded function c1(H) on A such that for g in S0, Φ in E(V,W ), and
H real and in A

(4.d)
∑
∆\Γ

∫
G

∣∣F (h,Φ, H)
∣∣∣∣f0(g−1γ−1h)

∣∣ dh
is at most

c1(H)∥Φ∥ exp
(〈
H0(g), H

〉
+ 2ρ

(
H0(g)

)
− ρ
(
H ′

0(g)
))
.

The expression (4.d) equals∫
∆\G

∣∣F (h,Φ, H)
∣∣∑

Γ

∣∣f0(g−1γ−1h)
∣∣ dh ⩽ cω−2

(
a0(g)

) ∫
C(g)

∣∣F (h,Φ, H)
∣∣ dh

if g is in S0. The set C(g) is the projection on T\G of ΓgC2 and c is some constant.
The inequality is a consequence of the estimate used to prove the corollary to Lemma 3.7.
Lemma 2.10 can be used to prove that ΓgC2 is contained in{

s exp
(
H +H ′

0(g)
)
k
∣∣∣ s ∈ S, k ∈ K, H ∈ +a(−∞, µ)

}
where µ is some constant. The integral is at most exp

(〈
H ′

0(g), H
〉
− ρ
(
H ′

0(g)
))

times∫
+a(−∞,µ)

exp
(
⟨X,H⟩ − ρ(X)

)
|dx|

∫
Θ\M×K

∣∣Φ(mk)∣∣ dmdk.

The second integral is at most µ(Θ\M)1/2∥Φ∥ and the first is a constant times
q∏

i=1

{(
αi,(H)− ⟨αi, ρ⟩

)−1
expµαi, (H)

}
This completes the proof of both the first and the last assertion.
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Two remarks should now be made. The first is that if C is a compact subset of Γ\G and
ϵ is a positive number there is a constant c and a point H0 in a such that if

Re
(
αi,(h)

)
> ⟨αi,, ρ⟩+ ϵ

for 1 ⩽ i ⩽ q and Φ is in E(V,W ) then, for g in C,∣∣E(g,Φ, H)
∣∣ ⩽ c∥Φ∥ exp⟨H0,ReH⟩.

The second is that if X belongs to B, then

λ(X)E(g,Φ, H) = E
(
g, π(X,H)Φ, H

)
.

Both statements have been essentially proved in the course of proving the above lemma.
We can in particular choose V and W to be the space of constant functions on M and K

respectively. It is clear that if Φ(g) ≡ 1 and H is real then

E(g,Φ, H) ⩾ F (g,Φ, H)

This observation will allow us to prove a variant of Lemma 4.1 which will be used in the
proof of the functional equations for the Eisenstein series in several variables. Suppose that
∗P is a cuspidal subgroup belonging to P and ϕ(g) a function on ∗A ∗T\G. The orthogonal
complement †a of ∗a in a can be regarded as the split component of †P = ∗N\P ∩ ∗S. It is
contained in †h, the orthogonal complement of ∗a in h, which in turn can be regarded as the
split component of the percuspidal subgroups of ∗M . Suppose that there is a point †H in †a
such that if †S0 is a Siegel domain associated to the percuspidal subgroup †P0 of ∗M then∣∣ϕ(mk)∣∣ ⩽ c exp

(〈
†H0(m), †H

〉
+ ρ
(
†H ′

0(m)
))

if m belongs to †γ0 and k belongs to K. Here †H ′
0(m) is the projection of †H0(m) on †a.

Suppose ∗H belongs to ∗ac. Let us verify that the series∑
∗∆\Γ

exp
(〈∗H(γg), ∗H

〉
+ ρ
(∗H(γg)

)
ϕ(γg)

)
converges absolutely if H = ∗H + †H belongs to a. Suppose that P01, . . . , P0r are percuspidal
subgroups of G to which ∗P belongs and †S1, . . . ,

†Sr are Siegel domains of ∗M , associated
to the groups †P01, . . . ,

†P0r respectively, such that
⋃r

i=1
†Si covers

∗Θ\∗M . Let P1, . . . , Pr

be the cuspidal subgroups with the split component a belonging to P01, . . . , P0r respectively.
The function

∣∣ϕ(g)∣∣ is bounded by a constant multiple of
r∑

i=1

∑
∆i\∗∆

exp

(〈
Hi(δg),

†H
〉
+ ρ
(
†H ′

0i(δg)
))

which equals
r∑

i=1

∑
†∆i\∗Θ

exp

(〈
†Hi(θm), †H

〉
+ ρ
(
†H ′

0i(θg)
))

if g = namk with n in ∗N , a in ∗A, m in ∗M , and k in K and if †H ′
0i(g) is the projection of

H0i(g) on
†a. Since〈

Hi(g), H
〉
+ ρ
(
Hi(g)

)
=
〈∗H(g), ∗H

〉
+ ρ
(∗H(g)

)
+
〈
Hi(g),

†H
〉
+ ρ
(
†H ′

0i(δg)
)

the assertion is seen to follow from the lemma. The assertion has now to be refined slightly.
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Suppose that in Lemma 2.10 the parabolic group is a percuspidal subgroup. If s belongs to
Ω(h, h) then λ can be taken to be the linear function defined by λ(H) = diα,i(sH). We infer
from the lemma that α,i(H)− α,i(sH) is non-negative on h+. It will be seen eventually that
if a and b are distinguished subspaces of h then Ω(a, b) is the set of linear transformations
from a to b obtained by restricting to a those elements of Ω(h, h) which take a onto b. It
follows readily that if H belongs to a+ and s belongs to Ω(a, b) then H − sH belongs to +h.

Suppose that ∗P and P are as before but that the function ϕ(g) on ∗A ∗T\G satisfies∣∣ϕ(mk)∣∣ ⩽ c

n∑
i=1

∑
s∈†Ω(a,ai)

exp

(〈
†H0(m), s(†H)

〉
+ ρ
(
H ′

0(m)
))
.

Here a1, . . . , an are the distinguished subspaces of h such that †Ω(a, ai), which is the set of
all linear transformations from a to ai induced by elements of Ω(h, h) that leave each point ∗a
fixed, is not empty. Combining the result of the previous paragraph with the convexity of
the exponential function we see that∑

∗∆\Γ

exp
(〈∗H(γg), ∗H

〉
+ ρ
(∗H(γg)

))
ϕ(γg)

converges if ∗H + †H belongs to the convex hull of
n⋃

i=1

⋃
s∈†Ω(a,ai)

s−1(ai)

There is no need to be explicit about the sense in which the convergence is uniform.
For the further study of Eisenstein series some facts about differential operators on G

must be reviewed. In [9] it has been shown that Z, the centre of B, is isomorphic to the
algebra J of polynomials on jc invariant under the Weyl group Ω of gc. Let this isomorphism
take X in Z to pX . For our purposes the form of the isomorphism is of some importance. If
P is a split parabolic subgroup of G with A as a split component and if α is in Q let

n−α =
{
X ∈ g

∣∣ [H, x] = −α(H)X for all H in a
}
.

If n− =
∑

α∈Q n−α then gc = nc + ac +mc + n−c . If the universal enveloping algebras of n, a, m,

n− are N, A, M, N− respectively then the map

X1 ⊗X2 ⊗X3 ⊗X4 → X1X2X3X4

extends to a vector space isomorphism of N⊗ A⊗M⊗N− with B. Identify the image of
1⊗A⊗M⊗ 1 with A⊗M. If X belongs to Z then X is congruent modulo ncB to a unique
element X1 in A⊗M, say X = X1 +X2. If Z

′ is the centre of M it is clear that X1 belongs
to A ⊗ Z′. The advantage of this decomposition for us rests on the fact that if X belongs
to Z then λ(X) = λ′(X ′) if X ′ is the result of applying to X the anti-automorphism of B
which sends Y in g to −Y . Thus, if ϕ(g) is a function on N\G, λ(X)ϕ(g) = λ′(X ′

1)ϕ(g).
Let jc = ai ⊕ j′c where j′c is the Cartan subalgebra of mc. There is of course an isomorphism
of Z′ with the algebra J′ of polynomials on j′c invariant under the Weyl group of mc. Let
X → pX be that isomorphism of A with the algebra of polynomials on ac which assigns to
Y in a the polynomial pY (H) = ⟨H,H⟩ + ρ(H). Since jc is the direct sum of ac and j′c a
polynomial on either of the latter defines a polynomial on jc. If X =

∑
Xi ⊗ Yi belongs

to A ⊗ Z′ let pX =
∑
pXi

pYi
. The image of A ⊗ Z′ is the set J1 of all polynomials on jc

invariant under the Weyl group Ω′ of ac +mc. If X belongs to Z and X = X1 +X2 as above
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then pX = pX1 . The module J1 is finite over J and so is the set of all polynomials on jc. If
X → ξ(X) is a homomorphism of J or J′ into the complex numbers there is a point Z in jc
or in j′c respectively such that ξ(X) = pX(Z).

If P is a cuspidal subgroup and V is an admissible subspace of L(Θ\M) then V can be
written as a direct sum,

r⊕
i=1

Vi

where Vi is closed and invariant under the action of the connected component of M and
λ(X)ϕ = pX(Z

′
i)ϕ if ϕ belongs to Vi and X belongs to Z′, Z ′

i being some point in j′c. Although
Vi is not admissible we can still define E(Vi,W ) and E(V,W ) =

⊕r
i=1 E(Vi,W ). If Φ belongs

to E(Vi,W ), X belongs to Z, and X = X1 +X2 as above then

λ(X)F (g,Φ, H) = λ′(X ′
1)F (g,Φ, H)

=
∑
j

λ′(U ′
j) exp

(〈
H(g), H

〉
+ ρ
(
H(g)

))
pYj

(Zi)Φ(g)

=
∑
j

pUj
(H)pYj

(Z ′
i)F (g,Φ, H)

= pX(Zi)F (g,Φ, H)

if X1 =
∑

j Uj ⊗ Yj and Zi = H + Z ′
i. Thus

(4.e) λ(X)E(g,Φ, H) = pX(Zi)E(g,Φ, H)

Lemma 4.2. Let P be a cuspidal subgroup of G; let ϕ be an infinitely differentiable function
on N\G; and suppose that there is an integer ℓ and a Z in jc such that, for all X in Z,(
λ(X)− pX(z)

)ℓ
ϕ = 0. Let k = [Ω : Ω′]. If {pj} is a basis for the polynomials on a of

degree at most k2ℓ, if {Z1, . . . , Zt} is a set of representatives of the orbits of Ω′ in ΩZ, and
Zi = Hi + Z ′

i with Hi in ac and Z
′
i in j′c then there are unique functions ϕij on NA\G such

that (
λ′(X ′)− pX(Z

′
i)
)k2ℓ

ϕij = 0

if X belong to Z′ and

ϕ(g) =
t∑

i=1

exp
(〈
H(g), Hi

〉
+ ρ
(
H(g)

)){∑
pj
(
H(g)

)
ϕij(g)

}
.

If {Y1, . . . , Yu} generate A⊗ Z′ over the image of Z and if {X1, . . . , Xv} generate Z the
linear space W spanned by{

λ′(X ′
1)

α1 · · ·λ′(X ′
v)

αvλ′(Y ′
j )ϕ

∣∣∣ 1 ⩽ αi ⩽ ℓ, 1 ⩽ j ⩽ u
}

if finite-dimensional and is invariant under λ′(X ′) for X ′ in A⊗Z′. Since A⊗Z′ is commutative
one has a representation of this algebra on W. Let K be a set of representatives for the
left-cosets of Ω′ in Ω and if s ∈ Ω and p is a polynomial on jc let p

s(W ) = p(sW ) for W in jc.
If X belongs to A⊗ Z′ the polynomial

p(U) =
∏
s∈K

(U − psX)
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has coefficients in J; by means of the isomorphism between J and Z it defines a polynomial q
with coefficients in Z and q(X) = 0. If p(U,Z) is the polynomial∏

s∈K

(
U − pX(sZ)

)
with constant coefficients then, restricted to W,(

p
(
λ′(X ′), Z

)
− λ′

(
p(X ′)

))kℓ
= 0.

So ∏
s∈K

(
λ′(X ′)− pX(sZ)

)kℓ
= 0

From this it follows immediately that W is the direct sum of spaces W1, . . . ,Wt with

Wi =
{
ψ ∈ W

∣∣∣ (λ′(X ′)− pX(Zi)
)k2ℓ

= 0 for all X in A⊗ Z′
}
.

Then ϕ can be written uniquely as
∑t

i=1 ϕ
′
i with ϕ

′
i in Wi. Suppose ψ belongs to Wi for some

i. If g is fixed in G let ψ(a, g) be the function ψ(ag) on A. If X belongs to A then(
λ(X)− pX(Hi)

)k2ℓ
ψ(a, g) = 0

This implies that

ψ(expH, g) = exp
(
⟨H,Hi⟩+ ρ(H)

)∑
j

ψ′
j(g)pj(H)

where the functions ψ′
j(g) are uniquely determined and infinitely differentiable. If a′ = expH ′

let

exp
(
⟨H −H ′, Hi⟩+ ρ(H −H ′)

)
pm(H −H ′) =

∑
j

τjm(a
′) exp

(
⟨H,Hi⟩+ ρ(H)

)
pj(H)

Since ψ(a′−1a, a′g) = ψ(ag) we have∑
j

τmj(a
′)ψ′

j(a
′g) = ψ′

m(g).

Consequently

ψj(g) =
∑
m

τjm
(
a(g)

)
ψ′
m(g)

is a function on A\G and

ψ(g) =
∑
m

ψ′
m(g)pm(0) = exp

(〈
H(g), H

〉
+ ρ
(
H(g)

))∑
j

ψj(g)pj
(
H(g)

).
Since the functions ψj(g) are readily seen to be functions on N\G the lemma follows.

Two remarks should be made in connection with this lemma. The first is just that if ϕ
is a function on T\G then, for all i and j, ϕij will be a function on AT\G. For the second,
suppose that ℓ = 1 and suppose that there is a subset {Z1, . . . , Zu} of {Z1, . . . , Zt} such that
ϕij is identically zero unless 1 ⩽ i ⩽ u. Suppose moreover that for 1 ⩽ i ⩽ u there is a unique
element si in K such that siZ = Zi and that

Hi = Hj, 1 ⩽ j ⩽ t
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implies Zi = Zj. Referring back to the proof we see that

p
(
λ′(X ′), Z

)
− λ′

(
p(X ′)

)
= 0;

so ∏
s∈K

(
λ′(X ′)− pX(sZ)

)
= 0.

If X belongs to A we see also that
r∏

i=1

(
λ(X)− pX(Hi)

)
ϕ = 0.

Hence
λ(X)ϕ′

i = pX(Hi)ϕ
′
i

and

(4.f) ϕ(g) =
u∑

i=1

exp
(〈
H(g), Hi

〉
+ ρ
(
H(g)

))
ϕi(g),

where ϕi(g) is a function on NA\G such that

λ′(X ′)ϕi = pX(Z
′
i)ϕi

is X belongs to Z′.
If ℓ is a fixed integer, Z1, . . . , Zm points in jc, and σ1, . . . , σn irreducible representations

of K let
H(Z1, . . . , Zm; σ1, . . . , σn; ℓ)

be the set of infinitely differentiably functions ϕ on Γ\G such that
m∏
i=1

(
λ(X)− pX(Zi)

)ℓ
ϕ = 0

for every X in Z,
{
λ(k)ϕ

∣∣ k ∈ K
}
spans a finite-dimensional space such that the restriction

of λ(k), k ∈ K, to this space contains only irreducible representations equivalent to one
of σ1, . . . , σn, and there is a constant r such that for any Siegel domain S, associated to a
percuspidal subgroup P , there is a constant c such that∣∣ϕ(g)∣∣ ⩽ cηr

(
a(g)

)
for g in S. The following lemma is essentially the same as the one stated in [14].

Lemma 4.3. The space
H(Z1, . . . , Zm; σ1, . . . , σn; ℓ)

is finite-dimensional.

There is no less of generality in assuming that Zi and Zj do not belong to the same orbit
under Ω unless i = j. Then

H(Z1, . . . , Zm; σ1, . . . , σn; ℓ)

is the direct sum of
H(Zi, σ1, . . . , σn; ℓ), 1 ⩽ i ⩽ m

In other words it can be assumed that m = 1. Let

H(Z, σ1, . . . , σn; ℓ) = H
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The first step is to show that the set H0 of all functions ϕ in H such that∫
Γ∩N\N

ϕ(ng) dn ≡ 0

for all cuspidal subgroups except G itself is finite-dimensional. From Lemma 3.4 we see that
H0 ∩ L0(Γ\G) is finite-dimensional. Consequently to prove that H0 is finite-dimensional it
would be enough to show that H0 is contained in L0(Γ\G). If s is a real number let H0(s) be
the set of functions in H0 such that for any Siegel domain S there is a constant c such that∣∣ϕ(g)∣∣ ⩽ cηs

(
a(g)

)
for g in S. Since

H0 =
⋃
s∈R

H0(s)

it must be shown that H0(s) is contained in L0(Γ\G). This is certainly true if s = 0 and if it
is true for s1 it is true for all s less than s1. If it is not true in general let s0 be the least
upper bound of all the s for which it is true. If f is once continuously differentiable with
compact support and, for all g and k,

f(kgk−1) = f(g)

then λ(f) takes H and H0 into themselves. Indeed according to Lemma 3.3 if ϕ belongs
to H0

(
s0 +

1
2

)
then λ(f)ϕ belongs to H0

(
s0 − 1

2

)
and hence to H0 ∩ L0(Γ\G). There is a

sequence {fn} of such functions such that λ(fn)ϕ converges uniformly to ϕ on compact sets.
Since

{
λ(fn)ϕ

}
belongs to H0 ∩ L0(Γ\G) which is finite-dimensional so does ϕ. This is a

contradiction. We have in particular proved the lemma if the percuspidal subgroups of G are
of rank 0 so that we can use induction on the rank of the percuspidal subgroups of G. To

complete the proof it will be enough to show that the range of the map ϕ→ ϕ̂ where

ϕ̂(g) =

∫
Γ∩N\N

ϕ(ng) dn

is finite-dimensional for every cuspidal subgroup of rank one. According to the previous

lemma there is a finite set {Z1, . . . , Zt} of elements of jc such that if Zi = Hi + Z ′
i then ϕ̂(g)

may be written as

t∑
i=1

exp

(〈
H(g), H i

〉
+ ρ
(
H(g)

))∑
j

pj
(
H(g)

)
, ϕij(g)


where the ϕij are functions on AT\G. We shall show that, for each i and j, ϕij lies in a certain
finite-dimensional space. Consider ϕij as a function on Θ× {1}\M ×K. The percuspidal
subgroups here have rank one less than for G. It will be enough to show that there are points
W1, . . . ,Wu in j′c, representations τ1, . . . , τv of N\N(K ∩ P )×K, and an integer ℓ′ such that
ϕij belongs to

H(W1, . . . ,Wu; τ1, . . . , τv; ℓ
′)

This follows almost immediately from Lemma 4.2 and Lemma 3.3.
Observe that if ϕ belongs to

H(Z1, . . . , Zm; σ1, . . . , σn; ℓ)
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and ψ belongs to
H(Z1, . . . , Zm;σ1, . . . , σn; ℓ) ∩ L0(Γ\G) = H0

then, by the corollary to Lemma 3.3, ∫
Γ\G

ψ(g)ϕ(g) dg

is defined. Thus there is a unique ϕ′ in H0 such that ϕ−ϕ′ is orthogonal to J0; ϕ
′ is called the

cuspidal component of ϕ. It is easy to see that if V is any admissible subspace of L0(Γ\G)
and W is any admissible subspace of the space of continuous functions on K and ψ belongs
to E(V,W ), then ∫

Γ\G
ψ(g)ϕ(g) dg =

∫
Γ\G

ψ(g)ϕ
′
(g) dg.

These two lemmas will now be used to study the Eisenstein series. Suppose P (1) and P (2)

are two cuspidal subgroups and V (1) is an admissible subspace of L(Θ(1)\M (1)). As before

write V (1) as
∑r

i=1 V
(1)
i where λ(X)ϕ = pX(Z

(1)
i )ϕ if ϕ belongs to V

(1)
i and X belongs to

Z(1), Z
(1)
i being some point in j

(1)
c . Because we have two cuspidal subgroups it is notationally

convenient to replace the prime that has been used earlier by the superscript (1) or (2). If Φ

belongs to E(V
(1)
i0
,W ) and H(1) and a

(1)
c satisfies the conditions of Lemma 4.1 consider∫

Γ∩N(2)\N(2)

E(ng,Φ, H(1)) dn =

∫
∆(2)\T (2)

E(tg,Φ, H(1)) dt

which is equal to∫
∆(2)\T (2)

∑
∆(1)\Γ

exp

(〈
H(1)(γtg), H(1)

〉
+ ρ
(
H(1)(γtg)

))
Φ(γtg) dt.

Replace the sum by a sum over double cosets to obtain∑
∆(1)\Γ/∆(2)

∫
∆(2)∩γ−1∆(1)γ\T (2)

exp

(〈
H(1)(γtg), H(1)

〉
+ ρ
(
H(1)(γtg)

))
Φ(γtg) dt.

The terms of this sum will be considered individually.
If

Φ(g,H, γ) =

∫
∆(2)∩γ−1∆(1)γ\T (2)

exp

(〈
H(1)(γtg), H(1)

〉
+ ρ
(
H(1)(γtg)

))
Φ(γtg) dt

and if W1, . . . ,Wt is the set of representatives of the orbits of Ω(2) in Ω(H(1) + Z
(1)
i0
) and

Wj = H
(2)
j +W

(2)
j , we can write

Φ(g,H, γ) =
t∑

j=1

exp

(〈
H(2)(g), H

(2)
j

〉
+ ρ
(
H(2)(g)

))∑
k

pk

(
H(2)(g)

)
ϕjk(g)

.
Setting

ϕj,k(m, k) = ϕj,k(mk
−1),

we obtain functions on
Θ(2) × {1}\M (2) ×K.
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There are irreducible representations τ1, . . . , τn of(
N (2)\N (2)(K ∩ P (2))

)
×K

and an integer ℓ such that ϕj,k belongs to

H(Z
(2)
j , τ1, . . . , τn; ℓ).

Let ϕ′
j,k be the cuspidal component of ϕj,k. If V is an admissible subspace of

L0

(
Θ(2) × {1}\M (2) ×K

)
and W ′ an admissible subspace of the space of continuous functions on(

N (2)\N (2)(K ∩ P (2))
)
×K

and if ψ belongs to E(V,W ′), then∫
Θ(2)\M(2)×K

Φ(expH(2)mk−1, H(1), γ)ψ(m, k) dmdk

is equal to the sum from j = 1 to t of exp
(
⟨H(2), H

(2)
j ⟩+ ρ(H(2))

)
times{∑

pk(H
(2)
j )

∫
Θ(2)\M(2)×K

ϕ′
k,j(m, k)ψ(m, k) dmdk

}
.

The first integral is an analytic function of H(1) on

A(1) =
{
H(1) ∈ a(1)c

∣∣∣ Reα1
i,(H

(1)) > ⟨α1
i,, ρ⟩, 1 ⩽ i ⩽ q(1)

}
if q(1) is the rank of P (1). It vanishes identically if it vanishes identically on some open subset
of A(1). If s1 and s2 belong to K, a set of representatives for the left cosets of Ω(2) in Ω, and
s belongs to Ω(2) then the equation

ss1(H
(1) + Z

(1)
i0

) = s2(H
(1) + Z

(1)
i0

)

is satisfied on all of a(1) or on a proper subspace of a(1). Let A1 be the open set of points
H(1) in A(1) such that for any s, s1, and s2,

ss1(H
(1) + Z

(1)
i0

) = s2(H
(1) + Z

(1)
i0

)

only if this equation holds identically. On this set of points the number t above is constant.
We can then choose fixed elements s1, . . . , st in Ω and take, for H(1) in A1,

Wj = sj(H
(1) + Z

(1)
i0

).

It is readily seen that∑
k

pk(H
(2)
j )

∫
Θ(2)\M(2)×K

ϕ′
j,k(m, k)ψ(m, k) dmdk

is a continuous function on A1. It vanishes unless Z
(2)
j is one of a finite number of points.

Since Z
(2)
j is a linear function of H(1) it will be a constant if this integral does not vanish

identically. Then sj(A1) will be contained in a(2). Since sj is non-singular this can only
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happen if the rank of P (2) is at least as great as the rank of P (1). We conclude that the
cuspidal component of Φ(g,H(1), ψ) and thus of∫

Γ∩N(2)\N(2)

E(ng,Φ, H(1)) dn

is zero if the rank of P (2) is less than the rank of P (1).
We now treat the case that V (1) is contained in L0(Θ

(1)\M (1)). It will be shown later
that if the rank of P (2) is greater than the rank of P (1) then the cuspidal component of
Φ(g,H(1), γ) vanishes identically. Anticipating this result, we consider the case of equal rank.

Let s1, . . . , sm be the elements of K = {s1, . . . , sn} such that sj(a
(1)) = a(2). Let H

(2)
j now

be the projection of sj(H
(1) + Z

(1)
i0
) on a

(2)
c . If 1 ⩽ j1 ⩽ m and m < j2 ⩽ n the equation

H
(2)
j1

= H
(2)
j2

cannot be identically satisfied. Let A2 be the set of points in H(1) in A1 such

that H
(2)
j1

̸= H
(2)
j2

if 1 ⩽ j1 ⩽ m and m < j2 ⩽ n and such that

sj1(H
(1) + Z

(1)
i0

) = sj2(H
(1) + Z

(1)
i0

)

or
sj1(H

(1)) = sj2(H
(1)), 1 ⩽ j1, j2 ⩽ m

only if this equation holds identically on a(1). Suppose H(1) belongs to A2 and

sj1(H
(1)) = sj2(H

(1)), 1 ⩽ j1, j2 ⩽ m

then sj1s
−1
j2

belongs to Ω(2), so that j1 = j2. According to the remark following Lemma 3.7
ϕj,k = ϕ′

j,k and then according to the remark following the proof of Lemma 4.2

Φ(g,H, γ) =
m∑
j=1

exp

(〈
H(2)(g), sjH

(1)
〉
+ ρ
(
H(2)(g)

))
ϕj(g)

Grouping together those sj which determine the same element of Ω(a(1), a(2)) we can write
the right hand side as∑

s∈Ω(a(1),a(2))

exp

(〈
H(2)(g), sH(1)

〉
+ ρ
(
H(2)(g)

))
Φs(g; γ),

where Φs(mk
−1; γ) belongs to

L0

(
Θ(2) × {1}\M (2) ×K

)
.

This sum is of course zero if P (1) and P (2) are not associate.
In general for any Φ in E(V (1),W ) we see that, for H(1) in A2,∫

Γ∩N(2)\N(2)

E(ng,Φ, H(1)) dn

is equal to ∑
∆(2)\Γ/∆(1)

∑
s∈Ω(a(1),a(2))

exp

(〈
H(2)(g), sH(1)

〉
+ ρ
(
H(2)(g)

))
Φs(g; γ)

In order to simplify the statements of our conclusions let us introduce the notion of a simple
admissible subspace. Let P be a cuspidal subgroup and let jc = ac + j′c where j

′
c is the Cartan
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subalgebra of mc. If Z
′ is a point in j′c and Z

′
1, . . . , Z

′
r is the orbit of Z

′ under those elements in
the group of automorphisms of gc generated by G and the adjoint group of gc which normalize
both jc and ac then the sum V of all closed subspaces of L0(Θ\M) which are invariant and
irreducible under the action of the connected component of M and which belong to one of
the characters X → pX(Z

′
i) of Z

′ will be called a simple admissible subspace of L0(Θ\M).
Since V is invariant under M it is an admissible subspace. A simple admissible subspace
of the space of continuous functions on K is the space of functions spanned by the matrix
elements of an irreducible representation of K. If P (1) and P (2) are two associate cuspidal

subgroups and Z(1) is a point of j
(1)
c let Z(2) be the image of Z(1) under some element of Ω

which takes a(1) onto a(2). If V (1) and V (2) are the simple admissible subspaces defined by
Z(1) and Z(2) respectively then V (1) and V (2) are said to be associated. As a convention two
associate admissible subspaces will always be simple. It will be enough to state the results for
simple admissible subspaces because every admissible subspace is contained in a finite sum of
simple admissible subspaces. In particular if V (1) and W are simple admissible subspaces
and V (2) is the simple admissible subspace associate to V (1), if Φ belongs to E(V (1),W ), and
if H(2) belongs to U (2) then

(4.g)

∫
∆(2)∩γ−1∆(1)γ\T (2)

exp

(〈
H(1)(γtg), H(1)

〉
+ ρ
(
H(1)(γtg)

))
Φ(γtg) dt

is equal to

(4.h)
∑

s∈Ω(a(1),a(2))

exp

(〈
H(2)(g), sH(1)

〉
+ ρ
(
H(2)(g)

))(
Nγ(s,H

(1))Φ
)
(g).

Here Nγ(s,H
(1)) is, for each H(1) in A2 and each s, a linear transformation from E(V (1),W )

to E(V (2),W ); it is analytic as a function of H(1).
It is necessary to establish the formula (4.h) on all of A. To do this it is enough to show

that all but one of the terms in (4.h) vanish identically on A. Choose some s0 in Ω(a(1), a(2));
since A2 is connected the corresponding term of (4.h) will vanish identically if it vanishes for
real values of the argument. If H(1) is real and in A2 then

⟨s0H(1), sH(1)⟩ < ⟨s0H(1), s0H
(1)⟩

if s belongs to Ω(a(1), a(2)) but does not equal s0. In (4.h) take

g = exp a(s0H
(1))mk,

where a is a positive real number, exp a(s0H
(1)) belongs to some split component A(2) of P (2),

m belongs to M (2), and k belongs to K, and replace H(1) by bH(1) where b is a positive real
number such that bH(1) belongs to A2. Then multiply by

exp
(
−ab⟨s0H(1), s0H

(1)⟩ − aρ(s0H
(1))
)

and take the limit as a approaches infinity. The result is

Nγ(s0;H
(1))Φ(mk).

On the other hand if the same substitution is effected in (4.g) the result is bounded by a
constant times∫

∆(2)∩γ−1∆(1)γ\T (2)

exp

(〈
H(1)

(
h(t, γ)

)
, bH(1)

〉
+ ρ
(
H(1)

(
h(t, γ)

)))
dt
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with h(t, γ) = γt exp a(s0H
(1))mk, because Φ(g) is a bounded function. Of course this integral

is finite and it equals the sum over ∆(2) ∩ γ−1∆(1)γ\∆(2)/Γ ∩N (2) of∫
δ−1γ−1∆(1)γδ∩N(2)\N(1)

exp

(〈
H(1)

(
h(n, γδ)

)
, bH(1)

〉
+ ρ
(
H(1)

(
h(n, γδ)

)))
dn.

Choose u in the connected component of G so that u−1P (2)u and P (1) both belong to the
percuspidal subgroup P . Suppose that split components a(1), a(2) and a have been chosen for
P (1), P (2), and P respectively so that Ad(u−1)a(2) and a(1) are both contained in a. The Lie
algebra p contains a subalgebra b such that a ⊆ b ⊆ gs and b is a maximal subalgebra of gs
such that {AdH | H ∈ b } is diagonalizable. By Bruhat’s lemma [12] γδu can be written as
pvp1 where p belongs to P , p1 to u−1P (2)u and v belongs to the normalizer of b. Then each
integral above is the product of

exp

(〈
H(1)(p), bH(1)

〉
+ ρ
(
H(1)(p)

))
and the integral over

δ−1γ−1∆(1)γδ ∩N (1)\N (1)

of

exp

〈
H(1)

(
vp1u

−1nu exp a
(
Ad(u−1)(s0H

(1))
)
u−1mk

)
, bH(1) +Hρ

〉
if Hρ is such that ⟨H,Hρ⟩ = ρ(H) for H in h. Let N0 = u−1N (2)u and replace the integral
by an integral over

t−1p−1∆(1)pt ∩N0\N0.

Now v−1p−1∆(1)pv∩N is contained in v−1p−1S(1)pv∩N0 and both these groups are unimodular.
So the integral is a product of

µ(v−1p−1∆(1)pv ∩N0\v−1p−1S(1)pv ∩N0)

and an integral over v−1S(1)v ∩N0\N0 since p−1S(1)p = S(1). If p1 = n1m1a1 with n1 in N0,
m1 in µ−1M (2)u, and a1 in u−1A(2)u the integrand is

exp

〈
H(1)

(
vn exp

(
aAd(u−1)(s0H

(1))
)
m1a1u

−1mk

)
, bH(1) +Hρ

〉
.

If H belongs to b then
n→ exp(−H)n expH = ξ(n)

defines a map of v−1S(1)v ∩N0\N0 onto itself; let dn = exp ρ1(H) dξ(n). Then this integral
is the product of

exp

(
ab
〈
Ad(vu−1)(s0H

(1)), H(1)
〉
+ aρ

(
Ad(vu−1)s0H

(1)
))

+ aρ1

(
Ad(u−1)(s0H

(1))
)

and ∫
v−1S(1)v∩N0\N0

exp
〈
H(1)(vnm1a1u

−1mk), bH(1) +Hρ

〉
dn.

This integral is of course independent of a. If Ad(vu−1)(s0H
(1)) does not equal H(1) choose b

so large that

ρ
(
Ad(vu−1)(s0H

(1))
)
+ ρ1

(
Ad(u−1)(s0H

(1))
)
− ρ(s0H

(1))
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is less than
b⟨s0H(1), s0H

(1)⟩ − b
〈
Ad(vu−1)(s0H

(1)), H(1)
〉

Then the result of multiplying (4.g) by

exp
(
−ab⟨s0H(1), s0H

(1)⟩ − aρ(s0H
(1))
)

and taking the limit as a approaches infinity is zero. Thus if Nγ(s0, H
(1)) is not identically

zero there is some δ in ∆(2) such that Ad(vu−1) maps a(2) onto a(1) and is equal to the inverse
of s0 on a(2). If γδu = pvp1 then γu = pv(p1u

−1δ−1u) and v can be chosen to depend only
on γ. Thus there is at most one term of (4.h) which does not vanish identically. Before
summarizing the conclusions reached so far let us make some remarks which are useful
for calculating the transformations Nγ(s,H

(1)) explicitly. If Nγ(s,H
(1)) does not vanish

identically let γ = p(vu−1)(up1u
−1); simplifying we can write γ = n1a1wn2 with n1 in N (1),

a1 in A(1), n2 in N (2), and with w such that Adw takes a(2) onto a(1) and is inverse to s on
a(2). Then (4.g) equals the product of

exp

(〈
H(1)(a1), H

(1)
〉
+ ρ
(
H(1)(a1)

))
and the sum over (Γ ∩N (2))(∆(2) ∩ γ−1∆(1)γ)\∆(2) of∫

δ−1γ−1∆(1)γδ∩N(2)\N(2)

exp

(〈
H(1)(wn2δng), H

(1)
〉
+ ρ
(
H(1)(wn2δng)

))
Φ(wn2δng) dn

Although we will not press the point here it is not difficult to see that the sum is finite
and that δ−1γ−1∆(1)γδ ∩ N (2) is equal to δ−1γ−1(N (1) ∩ Γ)γδ ∩ N (2). Consider the linear
transformation on E(V (1),W ) which sends Φ to Φ′ with Φ′(g) equal to the product of

exp

(
−
〈
H(2)(g), sH(2)

〉
− ρ
(
H(2)(g)

))
and ∫

w−1N(1)w∩N(2)\N(2)

exp

(〈
H(1)(wng), H(1)

〉
+ ρ
(
H(1)(wng)

))
Φ(wng) dn.

Note that Φ′ is a function on A(2)N (2)\G. Considered as a function on M (2) × K, it is a
function on w−1Θ(1)w\M (2). Since the sum is finite w−1Θ(1)w and Θ(2) are commensurable.
We can define the subspace of V (2)(w) of L0(w

−1Θ(2)w\M (2)) associate to V (1) and Φ′ belongs

to E
(
V (2)(w),W

)
. Denote the linear transformation from E(V (1),W ) to E

(
V (2)(w),W

)
by

B(w,H(1)). Write, for brevity

µ
(
δ−1γ−1(N (1) ∩ Γ)γδ ∩N (2)\δ−1γ−1N (1)γδ ∩N (2)

)
,

which is independent of δ, as µ; then

Nγ(s,H
(1))Φ(m, k)

equals ∑
(Γ∩N(2))(∆(2)∩γ−1∆(1)γ)\∆(2)

µ exp

(〈
H(1)(a1), H

(1)
〉
+ ρ
(
H(1)(a1)

))
B(w,H(1))Φ(δm, k)
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if δ is the projection of δ on M (2). The sum is a kind of Hecke operator. However this
representation of the linear transformations will not be used in this paper.

If s belongs to Ω(a(1), a(2)) let

N(s,H(1)) =
∑

∆(1)\Γ/∆(2)

Nγ(s,H
(1)).

Lemma 4.4. Suppose P (1) and P (2) are two cuspidal subgroups and suppose V (1) is a simple
admissible subspace of L0(Θ

(1)\M (1)) and W is a simple admissible subspace of the space of
continuous functions on K. If P (1) and P (2) are not associate then the cuspidal component of∫

Γ∩N(2)\N(2)

E(ng,Φ, H(1)) dn

is zero; however if P (1) and P (2) are associate then∫
Γ∩N(2)\N(2)

E(ng,Φ, H(1)) dn

is equal to ∑
s∈Ω(a(1),a(2))

exp

(
⟨H(2)g, sH(1)⟩+ ρ

(
H(2)(g)

))
N(s,H(1))Φ(g)

where N(s,H(1)) is for each H(1) in A(1) a linear transformation from E(V (1),W ) to E(V (2),W )
which is analytic as a function of H(1).

This lemma is not yet completely proved; the proof will come eventually. First however
let us establish some properties of the functions N(s,H(1)).

Lemma 4.5.

(i) There is an element H
(1)
0 in a(1) and a constant c = c(ϵ) such that, for all s in

Ω(a(1), a(1)), ∥∥∥N(s,H(1))
∥∥∥ ⩽ c exp⟨H(1)

0 ,ReH(1)⟩

for all H(1) in A(1) with αi,(H
(1)) > ⟨αi,, ρ⟩+ ϵ.

(ii) Let F be a subset of the simple roots of h and let
∗a =

{
H ∈ h

∣∣ α(H) = 0 if α ∈ F
}

Suppose ∗a is contained in a(1) and a(2) and s in Ω(a(1), a(2)) leaves each point of
∗a fixed. Let ∗P (1) and ∗P (2) be the unique cuspidal subgroups belonging to P (1) and
P (2) respectively with ∗a as a split component. If ∗P (1) and ∗P (2) are not conjugate
under Γ then N(s,H(1)) ≡ 0; if ∗P (1) = ∗P (2) = ∗P then N(s,H(1)) is the restriction
to E(V (1),W ) of N(†s, †H(1)).

(iii) If s belongs to Ω(a(1), a(2)) then N(s,H(1)) is analytic on the convex hull of A(1) and
−s−1(A(2)) and

N(s,H(1)) = N∗(s−1,−sH(1)
).

Let us start with part (ii). First of all we have to explain the notation. If ∗P (1) = ∗P (2) = ∗P
let

†P (i) = ∗N\P (i) ∩ ∗S, i = 1, 2.
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Then †P (i) × K is a cuspidal subgroup of ∗M × K with split component †a(i) if a(i) is
the orthogonal sum of ∗a and †a(i). The restriction of s to †a(1) defines an element †s of
Ω(†a(1), †a(2)). So †P (1) and †P (2) are associate. As we remarked in Section 3, the space
E(V (i),W ) can be identified with a subspace of E(V (i) ⊗W,W ∗). Although the subspace W ∗

is not simple it is a sum of simple admissible subspaces so that if †H(1) belongs to †A(1), which
is defined in the obvious manner, the linear transformation N(†s, †H(1)) from E(V (1)⊗W,W ∗)
to E(V (2) ⊗W ∗, ∗W ⊗W ∗) is still defined. If H(1) belongs to A(1) and H(1) = ∗H(1) + †H(1)

then †H(1) belongs to †A(1) and part (ii) of the lemma asserts that N(s,H(1)) is the restriction
to E(V (1),W ) of N(†s, †H(1)). To prove it we start from the formula

(4.i) N(s,H(1)) =
∑

∆(1)\Γ/∆(2)

Nγ(s,H
(1)).

If Nγ(s,H
(1)) is not zero we know that γ = p1vp2 with p1 in P (1), p2 in P (2), and v such that

the restriction of Ad(v) to a(2) is the inverse of s. We are here considering a(1) and a(2) as
subsets of g. Let ∗a(1) and ∗a(2) be the image of ∗a in a(1) and a(2) respectively. Then Ad v
takes ∗a(1) to ∗a(2) in such a way that positive roots go to positive roots. Thus

v(∗P (2))v−1 = (∗P (1)).

So
γ(∗P (2))γ−1 = ∗P (1),

which proves the first assertion. If ∗P (1) = ∗P (2) = ∗P then γ∗Pγ−1 = ∗P so γ belongs to ∗P .
The sum defining N(s,H(1)) may be replaced by a sum over a set of representatives of the
cosets ∆(1)\∗∆/∆(2). Moreover if γ1 and γ2 belong to ∗∆ and δ1γ2δ2 = γ2 with δ1 in ∆(1), δ2
in ∆(2) then project on

∗Θ = (∗∆ ∩ ∗N)\∗∆
to obtain ∗δ1

∗γ1
∗δ2 =

∗γ2 with ∗δi in
†∆(i) = (∗∆ ∩ ∗N)\∆(i), i = 1, 2.

Conversely if ∗δ1
∗γ1

∗δ1 =
∗γ2 then there is a δ in ∗∆ ∩ ∗N ⊆ ∆(1) so that δδ1γ1δ2 = γ2. Finally

if H belongs to a(2) and γ belongs to ∗P then

exp
(
⟨H, sH(1)⟩+ ρ(H)

)
Nγ(s,H

(1))Φ(mk−1),

with m in ∗M and k in K, is equal to∫
∆(2)∩γ−1∆(1)γ\T (2)

exp

(〈
H(1)(γt expHmk−1), H(1) +Hρ

〉)
Φ(γt expHmk−1) dt.

Since ∆(2) ∩ γ−1∆(1)γ contains ∗N ∩ Γ and

µ(∗N ∩ Γ\∗N) = 1,

the integral is the product of

exp

(〈
∗H, s(∗H(1))

〉
+ ρ(∗H)

)
and the integral over †∆(2) ∩ ∗γ−1(†∆(1))∗γ\†T (2) of

exp

(〈
†H(†γ†t exp †Hmk−1), †H(1) +Hρ

〉)
Φ(†γ†t exp †Hmk−1) d†t.
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Here H = ∗H + †H with ∗H in ∗a and †H in †a(2). This integral equals

exp

(〈
†H, s(†H(1))

〉
+ ρ(†H)

)
N∗γ(

†s, †H(1))Φ(m, k).

Thus Nγ(s,H
(1)) is the restriction of N∗γ(s,

†H(1)). Substituting in (4.i) we obtain the result.
Before proving the rest of the lemma we should comment on the formulation of part (ii).

Suppose P and γ0Pγ
−1
0 = P ′ are two conjugate cuspidal subgroups. Then γ0Sγ

−1
0 = S ′ and

we may suppose that split components A and A′ for (P, S) and (P ′, S ′) respectively have
been so chosen that γ0Aγ

−1
0 = A′. Every function ϕ on AT\G defines a function ϕ′ = Dϕ on

A′T ′\G by
ϕ′(g) = ω

(
a′(γ0)

)
ϕ(γ−1

0 g).

Let us verify that ∫
Θ\M×K

∣∣ϕ(mk)∣∣2 dmdk =

∫
Θ′\M ′×K

∣∣ϕ′(m′k)
∣∣2 dm′ dk

Since we may suppose that M ′ = γ0Mγ−1
0 , the right side is equal to

ω2
(
a′(γ0)

) ∫
Θ\M×K

∣∣ϕ(mγ−1
0 k)

∣∣2µ(m) dmdk

which equals

ω2
(
a′(γ0)

) ∫
M×K

∣∣ϕ(mk)∣∣2µ(m) dmdk

if

µ(m) =
d(γ0mγ

−1
0 )

dm
The map n→ γ0nγ

−1
0 of N to N ′ is measure preserving since Γ∩N is mapped to Γ∩N ′ and

Γ ∩N\N and Γ ∩N ′\N ′ both have measure one. Since the map H → Ad γ0(H) of a to a′ is
an isometry the map a→ γ0aγ

−1
0 of A to A′ is measure preserving. If ψ(g) is a continuous

function on G with compact support then∫
G

ψ(g) dg

is equal to ∫
N

dn

∫
A

ω2(a) da

∫
M

dm

∫
K

dk ψ(γ0namk)

which equals ∫
N ′
dn′
∫
A′
ω2(a′) da′

∫
M

dm

∫
K

dk ψ(n′a′γ0mγ
−1
0 γ0k).

The latter integral is in turn equal to

ω−2
(
a′(γ0)

) ∫
N ′
dn′
∫
A′
ω2(a′) da′

∫
M

dm

∫
K

dk
{
ψ(n′a′m′k)µ−1(γ−1

0 m′γ0)
}
.

We conclude that
µ(m) ≡ ω−2

(
a′(γ0)

)
and the assertion is verified. In the same way if ϕ is a function on Θ\M and ϕ′ = Dϕ is
defined by

ϕ′(m′) = ω
(
a′(γ0)

)
ϕ(γ−1

0 mγ0)
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then ∫
Θ\M

∣∣ϕ(m)
∣∣2 dm =

∫
Θ′\M ′

∣∣ϕ′(m′)
∣∣2 dm′.

The map D takes L0(Θ\M) to L0(Θ
′\M ′). If V is an admissible subspace of L(Θ\M) and W

is an admissible subspace of the space of functions on K then D takes E(V,W ) to E(V ′,W )
if V ′ = DV . If Φ belongs to E(V,W ) let

D(H)Φ = exp
(
−
〈
H ′(γ0), H

〉)
DΦ.

Then
E(g,Φ, H) =

∑
∆\Γ

exp
(〈
H(γg), H

〉
+ ρ
(
H(γg)

))
Φ(γg)

or ∑
∆′\Γ

exp
(〈
H(γ−1

0 γg), H
〉
+ ρ
(
H(γ−1

0 γg)
))

Φ(γ−1
0 γg).

If g = n′a′m′k′ then
γ−1
0 g = (γ−1

0 n′γ0)(γ
−1
0 a′γ0)(γ

−1
0 m′γ0)γ

−1
0 k

so that
H(γ−1

0 g) = H ′(g) +H(γ−1
0 ).

In particular H(γ−1
0 ) = −H ′(γ0). Consequently the sum equals∑

∆′\Γ

exp
(〈
H ′(γg), H

〉
+ ρ
(
H ′(γg)

))(
D(H)Φ

)
(g) = E

(
g,D(H)Φ, H

)
.

Thus the theory of Eisenstein series is the same for both cuspidal subgroups. This is the reason
that only the case that the cuspidal subgroups P ∗

1 and P ∗
2 are equal is treated explicitly in the

lemma. Finally we remark that if ϕ belongs to D(V,W ) and ϕ′ is defined by ϕ′(γ0g) = ϕ(g)
then ϕ′ belongs to D(V,W ) and ∑

∆\Γ

ϕ(γg) =
∑
∆′\Γ

ϕ′(γg).

Part (iii) and the improved assertion of Lemma 4.4 will be proved at the same time by
means of Fourier integrals. Suppose P is a percuspidal subgroup, V is an admissible subspace
of L0(Θ\M), and W is an admissible subspace of the space of functions on K. If ϕ(g) belongs
to D(V,W ) then, for each a in A, let Φ′(a) be that element of E(V,W ) whose value at (m, k)
is ϕ(amk−1). If q is the rank of P and H belongs go ac let

Φ(H) =

∫
a

Φ′(expX) exp
(
−⟨X,H⟩ − ρ(X)

)
dX.

The function Φ(H), which is a meromorphic function on ac, will be called the Fourier
transform of ϕ. By the inversion formula

ϕ(g) =

(
1

2π

)q ∫
Re(H)=Y

exp
(〈
H(g), H

〉
+ ρ
(
H(g)

))
Φ(H, g) |dH|

if Y is any point in a and Φ(H, g) is the value of Φ(H) at g. In the following ϕ will be chosen
to be infinitely differentiable so that this integral is absolutely convergent. If

α(Y ) > ⟨α, ρ⟩
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for every simple root of a then

ϕ̂(g) =

(
1

2π

)q ∫
Re(H)=Y

E
(
g,Φ(H), H

)
|dH|.

Since we have still to complete the proof of Lemma 4.4 we take P (i), i = 1, 2, to be
cuspidal subgroups, V (i) to be an admissible subspace of L0(Θ

(i)\M (i)) , and W (i) to be an
admissible subspace of the space of functions on K. Suppose ϕ belongs to D(V (1),W (1)) and
Ψ belongs to E(V (2),W (2)); then it has to be shown that if the rank of P (2) is less than the
rank of P (1) the integral

(4.j)

∫
T (1)\G

ϕ(g)

{∫
∆(1)\T (1)

E(tg,Ψ, H
(2)
) dt

}
dg

vanishes for all H(2) in A(2). As usual we write this as a sum over the double cosets ∆(2)\Γ/∆(1)

of ∫
ϕ(g)

{∫
exp
〈
H(2)(γtg), H(2) +Hρ

〉
Ψ(γtg) dt

}
dg.

The outer integral is over T (1)\G; the inner over ∆(1) ∩ γ−1∆(2)γ\T (1). We shall show that
each term vanishes. A typical term equals

(4.k)

∫
∆(1)∩γ−1∆(2)γ\G

exp
〈
H(2)(γg), H(2) +Hρ

〉
ϕ(g)Ψ(γg) dg

which equals ∫
∆(2)∩γ∆(1)γ−1\G

exp
〈
H(2)(g), H(2) +Hρ

〉
ϕ(γ−1g)Ψ(g) dg

If

ϕ(g) =

(
1

2π

)q ∫
Re(H(1))=Y

exp
〈
H(1)(g), H(1) +Hρ

〉
Φ(H(1), g) |dH(1)|,

with Y in A(1), and ξ(H(1), H(2)) is obtained by integrating

exp
〈
H(1)(γ−1t expH(2)mk−1), H(1) +Hρ

〉
Φ(H(1), γ−1t expH(2)mk−1)Ψ(mk−1)

first over ∆(2) ∩ γ−1∆(1)γ\T (2) with respect to dt and afterwards over Θ(2)\M (2) ×K with
respect to dmdk, then (4.k) equals

(4.ℓ)

∫
a(2)

exp⟨H,H(2) −Hρ⟩
{∫

ReH(1)=Y

ξ(H(1), H) |dH(1)|
}
dH

Since ξ(H(1), H) vanishes when rank P (1) is greater than rank P (2), so does (4.k). Suppose
now that P (1) and P (2) are associate, then V (1) and V (2) are associate, and that W (1) = W (2).
Then ξ(H(1), H(2)) equals

exp
(
⟨H(2), sH(1)⟩+ ρ(H(2))

)(
Nγ−1(s,H(1))Φ(H(1)),Ψ

)
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where s is some element of Ω(a(1), a(2)) determined by γ. Substitute in (4.ℓ) to obtain∫
a(1)

exp
(
−⟨H,−s−1H(2)⟩

)
·
{∫

ReH(1)=Y

exp⟨H,H(1)⟩
(
Nγ−1(s,H(1))Φ(H(1)),Ψ

)
|dH(1)|

}
dH

The outer integral and the corresponding integral for

(4.m)

∫
a(1)

exp
(
−⟨H,−s−1H(2)⟩

)
·
{∫

ReH(1)=Y

exp⟨H,H(1)⟩
(
N(s,H(1))Φ(H(1)),Ψ

)
|dH(1)|

}
dH,

which is obtained by summing over double cosets, are absolutely convergent. On the other
hand (4.k) equals(

1

2π

)q ∫
a(1)

exp
(
−⟨H,−s−1H(2)⟩

)
·

{∫
Re(H(1))=Y

exp⟨H,H(1)⟩
(
Φ(H(1)), Nγ(s

−1, H
(2)
)Ψ
)
|dH(1)|

}
dH.

The sum over double cosets equals

(4.n)

(
1

2π

)q ∫
a(1)

exp
(
−⟨H,−s−1H(2)⟩

)
·

{∫
Re(H(1))=Y

exp⟨H,H(1)⟩
(
Φ(H(1)), N(s−1, H

(2)
)Ψ
)
|dH(1)|

}
dH

Thus (4.m) and (4.n) are equal. From the Fourier inversion formula (4.n) equals(
Φ(−s−1H(2)), N(s−1, H

(2)
)Ψ
)

On the other hand the inner integral in (4.m) is the Fourier transform of a function analytic on

A(1) and uniformly integrable along vertical “lines.” Thus its product with exp
(
−⟨H,H(1)

0 ⟩
)

is absolutely integrable if H
(1)
0 is in A(1). Referring to (4.m) we see that this product is

also integrable if H
(1)
0 is in −s−1(A(2)). From Hölders inequality the product is integrable if

H
(1)
0 is in the convex hull of these two sets and then the integral must give us the analytic

continuation of (
N(s,H(1))Φ(H(1)),Ψ

)
to this region. Consequently(

N∗(s−1, H
(2)
)Φ(−s−1H(2)),Ψ

)
=
(
N(s,−s−1H(2))Φ(−s−1H(2)),Ψ

)
which proves (iii).
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Finally we prove (i). We start from the observation made at the end of Lemma 4.1 that if
C is a compact subset of Γ\G or of G then∑

∆\Γ

∣∣∣∣exp〈H(1)(γg), H(1) +Hρ

〉∣∣∣∣∣∣Φ(γg)∣∣ ⩽ c∥Φ∥ exp⟨ReH(1), H
(1)
0 ⟩

for g in C. If ω ⊆ N (1) and
N (1) = (Γ ∩N (1))ω

and if ωg ⊆ C then∑
∆(1)\Γ/∆(2)

∫
∆(2)∩γ−1∆(1)γ\T (2)

∣∣∣∣exp〈H(1)(γtg), H(1) +Hρ

〉∣∣∣∣∣∣Φ(γtg)∣∣ dt
is at most

c∥Φ∥ exp⟨ReH(1), H
(1)
0 ⟩.

This remains true if for each s in Ω(a(1), a(2)) we sum only over those γ such that N(s,H(1))
is not identically zero. Then∣∣∣N(s,H(1))Φ(g)

∣∣∣ ⩽ c∥Φ∥ exp⟨H(1), H
(1)
0 ⟩ exp

(
−
〈
H(2)(g),Re

(
s(H(1))

)〉)
which proves the assertion since the linear functionals on E(V (2),W ) obtained from evaluating
a function at a point span the space of linear functionals on E(V (2),W ).

The relation of being associate breaks up the cuspidal subgroups into equivalence classes.
A set of representatives {P} for conjugacy classes under Γ in one of these equivalence classes
will be called a complete family of associate cuspidal subgroups. If P0 ∈ {P} and V0 is a
simple admissible subspace of L0(Θ0\M0) then for each P in {P} there is a simple admissible
subspace associate to V0. The family {V } so obtained will be called a complete family of
associate admissible subspaces. Let W be a simple admissible subspace of the space of
functions on K. If P belongs to {P} and V , which is a subspace of L(Θ\M), belongs to {V },
and if ϕ belongs to D(V,W ) then ϕ̂(g) belongs to L(Γ\G). Let the closed space spanned by

the functions ϕ̂ as P varies over {P} be denoted by L
(
{P}, {V },W

)
. Whenever we have

{P}, {V }, and W as above we will denote by a(1), . . . , a(r) the distinct split components of
the elements of {P}, by P (i,1), . . . , P (i,mi) those elements of {P} with a(i) as split component,
and by E(i) the direct sum

mi⊕
k=1

E(V (i,k),W )

Moreover if H(i) belongs to a(i) and s belongs to Ω(a(i), a(j)) we will denote the linear
transformation from E(i) to E(j) which takes Φ in E(V (i,k),W ) to that element of E(j) whose
component in E(V (j,ℓ),W ) is N(s,H(i))Φ by M(s,H(i)). Of course N(s,H(i)) depends on
P (i,k) and P (j,ℓ) and is not everywhere defined. Finally if

Φ =

mi⊕
k=1

Φk
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belongs to E(i) we let

E(g,Φ, H(i)) =

mi∑
k=1

E(g,Φk, H
(i)).

Lemma 4.6.

(i) Suppose {P}i, {V }i, Wi, i = 1, 2, are respectively a complete family of associate
cuspidal subgroups, a complete family of associate admissible subspaces, and a simple
admissible subspace of the space of functions on K; then L

(
{P}1, {V }1,W1

)
is

orthogonal to L
(
{P}2, {V }2,W

)
unless {P}1 and {P}2 are representatives of the

same equivalence class, the elements of {V }1 and {V }2 are associate, and W1 = W2.
Moreover L(Γ\G) is the direct sum of all the spaces L

(
{P}, {V },W

)
and, for a fixed

{P} and {V },
⊕

W L
(
{P}, {V },W

)
is invariant under G.

(ii) If {P}, {V }, and W are given and if, for 1 ⩽ i ⩽ r and 1 ⩽ k ⩽ mi, ϕi,k and ψi,k,
which belongs to D(V (i,k),W ), are the Fourier transforms of Φi,k(H

(i)) and Ψi,k(H
(i))

respectively let

Φi(H
(i)) =

mi⊕
k=1

Φi,k(H
(i))

and

Ψi(H
(i)) =

mi⊕
k=1

Ψi,k(H
(i))

Then

(4.o)

∫
Γ\G

r∑
i=1

r∑
j=1

mi∑
k=1

mj∑
ℓ=1

ϕ̂i,k(g)ψ̂j,ℓ(g) dg

is equal to

(4.p)

(
1

2π

)q ∫
Re(H(i))=Y

(
M(s,H(i)),Φ(H(i)),Ψj(−sH

(i)
)
)
|dH(i)|

summed over s in Ω(a(i), a(j)) and 1 ⩽ i, j ⩽ r. Here q is the rank of elements of
{P} and Y (i) is a real point in A(i).

Suppose P (i), i = 1, 2 are cuspidal subgroups, suppose V (i) is an admissible subspace
of L0(Θ

(i)\M (i)), and W (i) is an admissible subspace of the space of functions on K. If ϕ
belongs to D(V (1),W (1)) and ψ belongs to D(V (2),W (2)) let

ϕ(g) =

(
1

2π

)q ∫
Re(H(1))=Y (1)

exp
〈
H(1)(g), H(1) +Hρ

〉
Φ(H(1), g) |dH(1)|,

ψ(g) =

(
1

2π

)q ∫
ReH(2)=Y (2)

exp
〈
H(2)(g), H(2) +Hρ

〉
Ψ(H(2), g) |dH(2)|.

Then ∫
Γ\G

ϕ̂(g)ψ̂(g)
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is equal to

(4.q)

(
1

2π

)q ∫
ReH(1)=Y (1)

{∫
∆(2)\G

ψ(g)E
(
g,Φ(H(1)), H(1)

)
dg

}
|dH(1)|

if Y (1) belongs to U (1). The inner integral is of the same form as (4.j) and as we know
vanishes unless P (1) and P (2) are associate. If P (1) and P (2) are associate and V (i) and W (i)

are simple admissible spaces for i = 1, 2, then it is zero unless V (1) and V (2) are associate and
W (1) = W (2). Finally if P (1) and P (2) and V (1) and V (2) are associate and W (1) = W (2) = W
the inner integral is readily seen to equal(

1

2π

)q ∑
s∈Ω(a(1),a(2))

(
N(H(1), s)Φ(H(1)),Ψ(−sH(1)

)
)

This proves part (ii) of the lemma and the first assertion of part (i). The second assertion
follows readily from the second corollary to Lemma 3.7.

To complete the proof of part (i) it is enough to show that⊕
W

L
(
{P}, {V },W

)
is invariant under λ(f) when f is continuous with compact support. If W1 and W2 are simple
admissible subspaces of the space of functions on K define C(W1,W2) to be the set of all
continuous functions on G with compact support such that f(k−1g) belongs to W1 for each g
in G and f(gk−1) belongs to W2 for each g in G. It is enough to show that for any W1 and
W2 the space ⊕

W

L
(
{P}, {V },W

)
is invariant under λ(f) for all f in C(W1,W2). Suppose ϕ(g) belongs to D(V,W ) for some V
in {V } and some W and

ϕ(g) =

(
1

2π

)q ∫
ReH=Y

exp
(〈
H(g), H

〉
+ ρ
(
H(g)

))
Φ(H, g) |dH|.

If f belongs to C(W1,W2) then

λ(f)ϕ(g) =

∫
G

ϕ(gh)f(h) dh

equals 0 unless W2 = W . If W2 = W it is readily seen that λ(f)ϕ belongs to D(V,W1); since

λ(f)ϕ̂ =
(
λ(f)ϕ

)∧
the third assertion of part (i) is proved. Moreover

(4.r) λ(f)ϕ(g) =

(
1

2π

)q ∫
ReH=Y

exp
(〈
H(g), H

〉
+ ρ
(
H(g)

))
Φ′(H, g) dH

if Φ′(H) = π(f,H)Φ(H).
Let us now introduce some notation which will be useful later. Suppose {P}, {V }, and W

are given. Suppose that, for 1 ⩽ i ⩽ r, Φi(H
(i)) is a function defined on some subset of a

(i)
c

with values in E(i). We shall use the notation Φ(H) for the r-tuple
(
Φ1(H

(1)), . . . ,Φr(H
(r))
)
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of functions and occasionally talk of Φ as though it were a function. If Φ1(H
(1)), . . . ,Φr(H

(r))
arise as in part (ii) of the lemma, let us denote

r∑
i=1

mi∑
k=1

ϕ̂i,k

by ϕ̂. If R2 > ⟨ρ, ρ⟩ the map Φ(·) → ϕ̂ can be extended to the space of all functions

Φ(H) =
(
Φ1(H

(1)), . . . ,Φr(H
(r))
)
which are such that Φi(H

(i)) is analytic on{
H(i) ∈ a(i)c

∣∣∣∣ ∥∥∥Re(H(i))
∥∥∥ < R

}
and dominated on this set by a square-integrable function of Im(H(i)). The formula of part (ii)
of the lemma will still be valid. In particular the map can be extended to the set H of all

functions Φ(H) such that Φi(H
(i)) is analytic on the above set and

∥∥∥∥p(Im(H(i))
)
Φ(H(i))

∥∥∥∥ is

bounded on the above set if p is any polynomial. The set H is invariant under multiplication
by polynomials.





CHAPTER 5

Miscellaneous lemmas

In order to avoid interruptions later we collect together in this section a number of lemmas
necessary in the proof of the functional equations of the Eisenstein series.

Lemma 5.1. Let ϕ be a continuous function on Γ\G and suppose that there is a constant r
such that if S′ is a Siegel domain associated to a percuspidal subgroup P ′ there is a constant
c′ such that

∣∣ϕ(g)∣∣ ⩽ c′ηr
(
a′(g)

)
if g belongs to S′. Suppose that there is an integer q such

that if ∗P is any cuspidal subgroup then the cuspidal component of

∗ϕ̂(g) =

∫
Γ∩∗N\∗N

ϕ(ng) dn

is zero unless the rank of ∗P equals q. Let {P1, . . . , Ps} be a set of representatives for the
conjugacy classes of cuspidal subgroups of rank q and for each i let Vi be an admissible
subspace of L0(Θi\Mi); let W be an admissible space of functions on K. Suppose there is

an integer N such that if
{
p
(k)
i

∣∣∣ 1 ⩽ k ⩽ t
}

is a basis for the polynomials on ai of degree at

most N then

(5.a)

∫
Γ∩Ni\Ni

ϕ(ng) dn =

si∑
j=1

exp
〈
Hi(g), H

(j)
i

〉 t∑
k=1

p
(k)
i

(
Hi(g)

)
Φ

(j,k)
i (g)

with Φ
(j,k)
i in E(Vi,W ). Let { pi | 1 ⩽ i ⩽ u } be a basis for the polynomials on h of degree at

most N ; then given any percuspidal subgroup P and any Siegel domain S associated to P
there is a constant c such that on S

(5.b)
∣∣ϕ(g)∣∣ ⩽ c


s∑

i=1

si∑
j=1

exp
〈
H(g),ReH

(j)
i

〉


u∑
k=1

∣∣∣pk(H(g)
)∣∣∣
.

Suppose f is an infinitely differentiably function on G with compact support such that
f(kgk−1) = f(g) for all g and k. Let ϕ1 = λ(f)ϕ. If ∗P is any cuspidal subgroup, ∗V an
admissible subspace of L0(

∗Θ\∗M), ∗W an admissible space of functions on K, and ψ an
element of D(∗V , ∗W ) we have∫

∗T\G
ψ(g)∗ϕ̂1(g) dg =

∫
∗T\G

λ(f ∗)ψ(g)∗ϕ̂(g) dg.

If ψ belongs to D(∗V , ∗W ) so does λ(f ∗)ψ so that both integrals are zero if the rank of ∗P is
not q. On the other hand if Hi belongs to the complexification of the split component of Pi

and Φ
(k)
i , 1 ⩽ k ⩽ t, belongs to E(Vi,W ) then the result of applying λ(f) to the function

exp
〈
Hi(g), Hi

〉
t∑

k=1

p
(k)
k

(
Hi(g)

)
Φ

(k)
i (g)
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is the function

exp
〈
Hi(g), Hi

〉
t∑

k=1

p
(k)
i

(
Hi(g)

) t∑
ℓ=1

π(k,ℓ)(f,Hi)Φ
(ℓ)
i

(g)


where π(k,ℓ)(f,Hi) is a linear transformation on E(V (i),W ). The matrix

(
π(k,ℓ)(f,Hi)

)
defines

a linear transformation on
t⊕

k=1

E(V (i),W )

which we will denote by π(f,Hi) even though π(f,Hi) usually has another meaning. Given

the finite set of points H
(1)
i , . . . , H

(si)
i we readily see that we can choose f so that π(f,H

(j)
i )

is the identity for 1 ⩽ i ⩽ s, 1 ⩽ j ⩽ si.∫
Γ∩Ni\Ni

ϕ(ng) dn =

∫
Γ∩Ni\Ni

ϕ1(ng) dn

for 1 ⩽ i ⩽ s, It follows from Lemma 3.7 that λ(f)ϕ = ϕ. Arguing the same way as in the
proof of Lemma 4.1 we see that if X is in the centre of the universal enveloping algebra then
the result of applying λ(X) to the function

exp
〈
Hi(g), Hi

〉
t∑

k=1

p
(k)
i

(
Hi(g)

)
Φ

(k)
i (g)


is the function

exp
〈
Hi(g), Hi

〉
t∑

k=1

p
(k)
i

(
Hi(g)

) t∑
ℓ=1

π(k,ℓ)(X,Hi)Φ
(ℓ)
i

(g)


where π(k,ℓ)(X,Hi) is a linear transformation on E(V (i),W ). It then follows readily that there
are points Z1, . . . , Zm in jc, irreducible representations σ1, . . . , σn of K, and an integer ℓ0 such
that ϕ belongs to

H(Z1, . . . , Zm; σ1, . . . , σn; ℓ0).

If q = 0 the inequality (5.b) merely asserts that ϕ(g) is bounded on any Siegel domain.
That this is so follows of course from Lemma 3.5 and the corollary to Lemma 3.4. The lemma
will be proved for a general value of q by induction . Suppose q is positive. If {α1,, . . . , αp, }
is the set of simple roots of h let ∗Pi be the cuspidal subgroups belonging to P determined by{
αj,

∣∣ j ̸= i
}
. It follows from Lemma 4.2 that∫
Γ∩∗Ni\∗Ni

ϕ(ng) dn =

ji∑
j=1

exp
〈
∗Hi(g),

∗H
(j)
i

〉 ki∑
k=1

q
(j)
i

(∗Hi(g)
)
ϕ
(j,k)
i (g)

where ϕ
(j,k)
i is a function on ∗Ai

∗Ti\G, the elements ∗H
(j)
i , 1 ⩽ j ⩽ ji, are distinct, and the set

of homogeneous polynomials q
(1)
i , . . . , q

(ki)
i is linearly independent. Let us consider ϕ

(j,k)
i as a

function on ∗Θi × {1}\∗Mi ×K and show that it satisfies the conditions of the lemma. Since
the functions

exp⟨∗Hi,
∗H

(j)
i ⟩q(k)i (∗Hi), 1 ⩽ j ⩽ ji, 1 ⩽ k ⩽ ki,
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are linearly independent, ϕ
(j,k)
i (m, k) is a linear combination of functions of the form∫

Γ∩∗Ni\∗Ni

ϕ(namk−1) dn

with a in ∗Ai. Any condition of the lemma which is satisfied by the latter functions will also

be satisfied by each of the functions ϕ
(j,k)
i . Lemma 3.3 shows that the condition on the rate

of growth on Siegel domains is satisfied. The proof of Lemma 3.7 shows that if †P ×K is a
cuspidal subgroup of ∗Mi ×K then the cuspidal component of∫

∗Θi∩†N\†N

{∫
Γ∩∗Ni\∗Ni

ϕ(nan1mk
−1) dn

}
dn1

is zero unless the rank of †P , or equivalently †P × K, is q − 1. Finally we must find the
analogue of the form (5.a).

In order to free the indices i, j, and k for other use we set i = i0, j = j0, and k = k0. If P
′

is a cuspidal subgroup of rank q to which ∗Pi0 belongs suppose for simplicity that P ′ = Pi for

some i. If F is the subset of {1, . . . , si} consisting of those j such that the projection of H
(j)
i

on the complexification of ∗ai0 equals ∗H
(j0)
i0

and if r(1), . . . , r(ti) is a basis for the polynomials

on the orthogonal complement †ai of
∗ai0 in ai of degree at most N −M , with M equal to

the degree of q
(k0)
i0

, then ∫
∗Θi0

∩†Ni\†Ni

ϕ
(j0,k0)
i0

(nm, k) dn

is equal to

(5.c)
∑
j∈F

exp
〈
†Hi(m), †H

(j)
i

〉 ti∑
k=1

r(k)
(
†Hi(m)

)
Ψ

(j,k)
i (mk−1).

Here
†Pi =

∗Ni0\Pi ∩ ∗Si0 , H
(j)
i = ∗H

(j)
i + †H

(j)
i ,

with ∗H
(j)
i in the complexification of ai0 and

†H
(j)
i in the complexification of †ai. The functions

Ψ
(j,k)
i are linear combinations of the functions Φ

(j,k)
i . Considered as functions on ∗Mi0 ×K

they belong to E(Vi ×W,W ∗) as we saw when proving Lemma 3.5.

Applying the induction assumption to each of the functions ϕ
(j,k)
i we see that if †Si is a

Siegel domain associated to a percuspidal subgroup of ∗Mi there is a constant ci such that if
g = niaimiki and mi belongs to

†Si then∣∣∣∣∣
∫
Γ∩∗Ni\∗Ni

ϕ(ng) dn

∣∣∣∣∣ ⩽ ci


s∑

i=1

si∑
j=1

exp
〈
H(g),ReH

(j)
i

〉


u∑
k=1

∣∣∣pk(H(g)
)∣∣∣
.

Suppose S is a Siegel domain associated to P . It is enough to establish the inequality (5.b)
on each

Si =
{
g ∈ S

∣∣∣ ξαi,

(
a(g)

)
⩾ ξαj,

(
a(g)

)
, 1 ⩽ j ⩽ p

}
.

It is not difficult to see that there is a Siegel domain †Si associated to a percuspidal subgroup
of ∗Mi such that S is contained in ∗Ni

∗Ai
†SiK; the simple calculations necessary for a
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complete verification are carried out later in this section. Since λ(f)ϕ = ϕ we see from
Lemma 3.4 that if b is any real number there is a constant c′i such that∣∣∣∣∣ϕ(g)−

∫
Γ∩∗Ni\∗Ni

ϕ(ng) dn

∣∣∣∣∣ ⩽ c′iη
b
(
a(g)

)
on Si. For b sufficiently small ηb

(
a(g)

)
is bounded on S by a constant times the expression

in brackets on the right side of (5.b). So the lemma is proved.

Corollary. If, for each i and j,

Re
(
α,k(H

(j)
i )
)
< ⟨α,k, ρ⟩, 1 ⩽ k ⩽ p

then ϕ is square integrable on Γ\G.

It has only to be verified that the right side of (5.b) is square integrable on any Siegel
domain. This is a routine calculation.

Lemma 5.2. Let {ϕn} be a sequence of functions on Γ\G and suppose that for each n there
is a constant r(n) such that if S′ is a Siegel domain associated to a percuspidal subgroup
there is a constant c′(n) such that∣∣ϕ(g)∣∣ ⩽ c′(n)ηr(n)

(
a′(g)

)
if g belongs to S′. Suppose that there is an integer q such that if ∗P is any cuspidal subgroup
then the cuspidal component of ∫

Γ∩∗N\∗N
ϕn(xg) dx

is zero unless the rank of ∗P is q. Let {P1, . . . , Ps} be a set of representatives for the conjugacy
classes of cuspidal subgroups of rank q and for each i let Vi be an admissible subspace of
L0(Θi\Mi); let W be an admissible space of functions on K. Suppose there is an integer N

such that if
{
p
(k)
i

∣∣∣ 1 ⩽ k ⩽ t
}

is a basis for the polynomials on ai of degree at most N then∫
Γ∩Ni\Ni

ϕn(xg) dx =

si∑
j=1

exp
〈
Hi(g), H

(j)
n,i

〉 t∑
k=1

p
(k)
i

(
Hi(g)

)
Φ

(j,k)
n,i (g)

with H
(j)
n,i in the complexification of ai and Φ

(j,k)
n,i in E(Vi,W ). Finally suppose that

lim
n→∞

H
(j)
n,i = H

(j)
i

and
lim
n→∞

Φ
(j,k)
n,i = Φ

(j,k)
i

exist for all i, j, and k. Then there is a function ϕ on Γ\G such that

lim
n→∞

ϕn(g) = ϕ(g)

uniformly on compact sets. Moreover if S is any Siegel domain associated to a percuspidal
subgroup there is a constant c such that

∣∣ϕn(g)
∣∣ is less than or equal to

(5.d) c


s∑

i=1

si∑
j=1

t∑
k=1

∥Φ(j,k)
n,i ∥




s∑
i=1

si∑
j=1

exp
〈
H(g),ReH

(j)
n,i

〉


u∑
k=1

∣∣∣pk(H(g)
)∣∣∣
.
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The polynomials pk are the same as in the previous lemma. If f is an infinitely differentiable
function on G with compact support such that

f(kgk−1) = f(g)

for all g and k then define π(f,Hi) as in the proof of the previous lemma. Choose f such

that π(f,H
(j)
i ) is the identity for 1 ⩽ i ⩽ s, 1 ⩽ j ⩽ si. If we take the direct sum

s⊕
i=1

si⊕
j=1

 t∑
k=1

E(V (i),W )


then we can define the operator

s⊕
i=1

si⊕
j=1

π(f,H
(j)
n,i ) = πn

on this space. For n sufficiently large the determinant of πn will be at least 1
2
. Thus for n

sufficiently large there is a polynomial pn of a certain fixed degree with no constant term and
with uniformly bounded coefficients such that pn(πn) is the identity. Because of Lemmas 3.7
and 5.1 we can ignore any finite set of terms in the sequence; so we suppose that pn is defined
for all n. The function fn = pn(f) is defined in the group algebra and the argument used
in the proof of Lemma 5.1 shows that λ(fn)ϕn = ϕn. There is a fixed compact set which
contains the support of all the functions fn and if X belongs to g there is a constant µ such
that ∣∣λ(X)fn(g)

∣∣ ⩽ µ

for all n and all g.

In the statement of the lemma the limit as n approaches infinity of Φ
(j,k)
n,i is to be taken in

the norm on E(Vi,W ) that has been introduced earlier. This, as we know, implies uniform
convergence. Thus if q equals zero the first assertion of the lemma is immediate. The second
is also; so we suppose that q is positive and proceed by induction. Let

ν(n) =
s∑

i=1

si∑
j=1

t∑
k=1

∥Φ(j,k)
n,i ∥

If limn→∞ ν(n) = 0 we have only to establish the inequality (5.d) because we can then take ϕ
to be zero. Since ϕn is zero when ν(n) is, the lemma will be valid for the given sequence if it
is valid for the sequence which results when all terms with ν(n) equal to zero are removed.
We thus suppose that ν(n) is different from zero for all n. If the lemma were false for a given
sequence with limn→∞ ν(n) = 0 then from this sequence we could select a subsequence for
which the lemma is false and for which

lim
n→∞

ν−1(n)Φ
(j,k)
n,i

exists for all i, j, and k; replacing the elements of this subsequence by ν−1(n)ϕn we obtain a
sequence for which the lemma is false and for which limn→∞ ν(n) = 1. We now prove the
lemma in the case that limn→∞ ν(n) is not zero.

Let S(1), . . . ,S(v) be a set of Siegel domains, associated to the percuspidal subgroups
P (1), . . . , P (v) respectively, which cover Γ\G. If {ϕn} is any sequence satisfying the conditions
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of the lemma it follows from Lemmas 3.7 and 5.1 that for 1 ⩽ n < ∞ there is a constant
c1(n) such that

(5.e)
∣∣ϕn(g)

∣∣ ⩽ c1(n)


s∑

i=1

si∑
j=1

exp
〈
H(x)(g),ReH

(j)
n,i

〉


u∑
k=1

∣∣∣∣pk(H(x)(g)
)∣∣∣∣


if g belongs to S(x). It may be supposed that c1(n) is the smallest number for which (5.e)
is valid. Since we can always take S to be one of S(1), . . . ,S(v) the inequality (5.d) will
be proved, at least when limn→∞ ν(n) is not zero, if it is shown that the sequence

{
c1(n)

}
is bounded. At the moment however there are still two possibilities; either the sequence
is bounded or it is not. In the second case replace ϕn by c−1

1 (n)ϕn and, for the present
at least, assume that

{
c1(n)

}
is bounded. It follows from Ascoli’s lemma and the relation

λ(fn)ϕn = ϕn that we can choose a subsequence {ϕ′
n} so that

lim
n→∞

ϕ′
n(g) = ϕ(g)

exists for each g and the convergence is uniform on compact sets. Lemma 3.3 and the
dominated convergence theorem imply that if ∗P is a cuspidal subgroup of rank different from
q then the cuspidal component of ∫

Γ∩∗N\∗N
ϕ(ng) dn

is zero. Moreover∫
Γ∩Ni\Ni

ϕ(ng) dn =

si∑
j=1

exp
〈
Hi(g), limH

(j)
n,i

〉 t∑
k=1

p
(k)
i

(
Hi(g)

)
limΦ

(j,k)
i (g).

If {ϕn} did not converge to ϕ uniformly on all compact sets we could choose another
subsequence which converged to ϕ′ which is not equal to ϕ; but the cuspidal component of∫

Γ∩∗N\∗N
ϕ(ng)− ϕ′(ng) dn

would be zero for any cuspidal subgroup. According to Lemma 3.7 this is impossible. For the
same reasons, if

lim
n→∞

Φ
(j,k)
n,i = 0

for all i, j, and k then ϕ is zero. In order to exclude the second possibility for (5.e) it has to
be shown that if (5.e) is satisfied with a bounded sequence

{
c1(n)

}
and

lim
n→∞

Φ
(j,k)
n,i = 0

for all i, j, and k then
lim
n→∞

c1(n) = 0

Once the second possibility is excluded the lemma will be proved.
We will suppose that limn→∞ c1(n) is not zero and derive a contradiction. Passing to a

subsequence if necessary it may be supposed that there is a definite Siegel domain, which we
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again call S, among S(1), . . . ,S(v) such that

(5.f) sup
g∈S

∣∣ϕn(g)
∣∣

s∑
i=1

si∑
j=1

exp
〈
H(g),ReH

(j)
n,i

〉
−1

u∑
k=1

∣∣∣pk(H(g)
)∣∣∣


−1

= c1(n)

is greater than or equal to ϵ > 0 for all n; S is of course associated to the percuspidal
subgroup P . Let ∗Pi, 1 ⩽ i ⩽ p, be the cuspidal subgroup belonging to P determined by the
set
{
αj,

∣∣ j ̸= i
}
and let

Si =
{
g ∈ S

∣∣∣ ξαi,

(
a(g)

)
⩾ ξαj,

, 1 ⩽ j ⩽ p
}
.

Suppose it could be shown that there is a sequence
{
c′1(n)

}
of numbers converging to zero so

that ∣∣∣∣∣
∫
Γ∩∗Nℓ\∗Nℓ

ϕn(ng) dn

∣∣∣∣∣
is less than or equal to

(5.g) c′1(n)


s∑

i=1

si∑
j=1

exp
〈
H(g),ReH

(j)
n,i

〉


u∑
k=1

∣∣∣pk(H(g)
)∣∣∣


if g belongs to Sℓ. Then it would follow from Lemma 3.4 that there was a constant c′

independent of n such that, for g in S,
∣∣ϕ(g)∣∣ is at most(

c′1(n) + c′c1(n)η
−1
(
a(g)

))
s∑

i=1

si∑
j=1

exp
〈
H(g),ReH

(j)
n,i

〉


u∑
k=1

∣∣∣pk(H(g)
)∣∣∣
.

There is a conditionally compact subset C of S such that c′η−1
(
a(g)

)
⩽ 1

2
if g is not in C. If

in the left side of (5.d) g is allowed to vary only over the complement of C the results would
be at most c′1(n) +

1
2
c1(n). Thus if n were so large that c′1(n) <

1
2
ϵ

sup
g∈C

∣∣ϕn(g)
∣∣

s∑
i=1

si∑
j=1

exp
〈
H(g), H

(j)
n,i

〉
−1

u∑
k=1

∣∣∣pk(H(g)
)∣∣∣


−1

⩾ ϵ

This is however impossible since ϕn(g) converges to zero uniformly on compact sets.
The induction assumption will be used to establish (5.g). As in the proof of Lemma 5.1

let ∫
Γ∩∗Ni\∗Ni

ϕn(ng) dn =

ji(n)∑
j=1

exp
〈
∗Hi(g),

∗H
(j)
n,i

〉 ki∑
k=1

q
(k)
i

(∗Hi(g)
)
ϕ
(j,k)
n,i (g)

where ϕ
(j,k)
i is a function on ∗Ai

∗Ti\G, the elements

∗H
(j)
n,i , 1 ⩽ j ⩽ ji(n),

are distinct, and the set of homogeneous polynomials q
(1)
i , . . . , q

(ki)
i is linearly independent.

We have already seen in the proof of Lemma 5.1 that if ϕ
(j,k)
n,i are considered as functions

on ∗Θi × {1}\∗Mi ×K then the sequences {ϕ(j,k)
n,i } satisfy all conditions of the lemma, with

q replaced by q − 1, except perhaps the last. We again replace i by i0, j by j0, and k by
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k0 in order to free the indices i, j, and k. For each n and each i define a partition Pi(n) of
{1, . . . , si} by demanding that two integers j1 and j2 belong to the same class of the partition

if and only if H
(j1)
n,i and H

(j2)
n,i have the same projection on ∗ai0 . Breaking the sequence into a

number of subsequences we can suppose that ji(n) = ji and Pi(n) = Pi are independent of n.

With this assumption we can verify the last condition of the lemma for the sequence ϕ
(j0,k0)
n,i0

.
If P is a cuspidal subgroup of rank q to which ∗Pi0 belongs, suppose for simplicity that P = Pi

for some i. Let M be the degree of q
(k0)
i0

. If F is the subset of {1, . . . , si} consisting of those

j such that the projection of H
(j)
n,i on

∗ai0 equals ∗H
(j0)
n,i0

and if r(1), . . . , r(ti) is a basis for the

polynomials on the orthogonal complement †ai of
∗ai0 in ai of degree at most N −M then∫

∗Θi0
∩†Ni\†Ni

ϕ
(j0,k0)
i0

(nm, k) dn

is equal to ∑
j∈F

exp
〈
†Hi(m), †H

(j)
n,i

〉 ti∑
k=1

r(k)
(
†Hi(m)

)
Ψ

(j,k)
n,i (mk−1).

Here
†Pi =

∗Ni0\Pi ∩ ∗Si0

H
(j)
n,i =

∗H
(j)
n,i +

†H
(j)
n,i

with ∗H
(j)
n,i in the complexification of ai0 and †H

(j)
n,i in the complexification of †ai. It is clear

that limn→∞
†H

(j)
n,i exists for each j. The functions Ψ

(j,k)
n,i are linear combinations of the

functions Φ
(j,k)
n,i with coefficients which do not depend on n; consequently

lim
n→∞

Ψ
(j,k)
n,i = 0

for each i, j, and k. The inequality (5.g) follows immediately from the induction assumption.
In the next section it will be necessary to investigate the integral over Γ\G of various

expressions involving the terms of a sequence {ϕn} which satisfies the conditions of the lemma

with q = 1. In order to do this we must be able to estimate the integral of
∣∣ϕ(g)∣∣2 over certain

subsets of G and Γ\G. For example if C is a compact subset of G then∫
C

∣∣ϕn(g)
∣∣2 dg = O

(
ν2(n)

)
if ν(n) has the same meaning as in the proof of the lemma. Suppose that S is a Siegel
domain associated to the percuspidal subgroup P . If αi,, . . . , αp, are the simple roots of h let
∗Pi be the cuspidal subgroup of rank one determined by

{
αj,

∣∣ j ̸= i
}
and let

Si =
{
g ∈ S

∣∣∣ ξαi,

(
a(g)

)
⩾ ξαj,

(
a(g)

)
, 1 ⩽ j ⩽ p

}
It follows from Lemmas 3.4 and 5.2 that if

∗ϕ̂n,i(g) =

∫
Γ∩∗Ni\∗Ni

ϕn(ng) dn

and r is any real number then∣∣∣ϕn(g)− ∗ϕ̂n,i(g)
∣∣∣ = O

(
ν(n)

)
ηr
(
a(g)

)
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for all g in Si. Since η
r
(
a(g)

)
is square integrable on Si for r ⩽ 0∫

Si

∣∣∣ϕn(g)− ∗ϕ̂n,i(g)
∣∣∣2 dg = O

(
ν2(n)

)
.

If 1 ⩾ b > 0 let

Si(b) =
{
g ∈ Si

∣∣∣ ξαj,

(
a(g)

)
⩾ ξbαi,

(
a(g)

)
for some j ̸= i

}
.

We shall show that

(5.h)

∫
Si(b)

∣∣∣∗ϕ̂n,i(g)
∣∣∣2 dg = O

(
ν2(n)

)
and hence that

(5.i)

∫
Si(b)

∣∣ϕn(g)
∣∣2 dg = O

(
ν2(n)

)
It will be better to prove a slightly stronger assertion than (5.h). Suppose that S = S(c, ω).
If g is in G let g = namk with n in ∗Ni, a in ∗Ai, m in ∗Mi, and k in K. If †Ai = A∩ ∗Mi then
†Ai is the split component of the cuspidal subgroup †Pi =

∗Ni\P ∩ ∗Si of
∗Mi. If g belongs to

S and j ̸= i then

ξαj,

(
†ai(m)

)
= ξαj,

(
a(g)

)
⩾ c.

It follows readily from Lemma 2.6 that

ξ−1
αi,

(
†ai(m)

)
=
∏
j ̸=i

ξδjαj,

(
†ai(m)

)
with δj ⩾ 0; consequently

ξαi,
(a) ⩾ cξ−1

αi,

(
†ai(m)

)
⩾ c1

with some constant c1. If g belongs to Si(b) then, for some j ̸= i,

ξαj,

(
†ai(m)

)∏
k ̸=i

ξbδkαk,

(
†ai(m)

)
⩾ ξbαi,

(a).

Consequently there is a constant b1 > 0 such that, for some other j,

ξαj,

(
†ai(m)

)
⩾ ξb1αi,

(a)

Suppose ω1 and ω2 are compact subsets of ∗Ni and
†Si respectively such that ω is contained

in ω1ω2; then we can choose n in ω1 and m in †Si(c, ω2). For each a in ∗Ai let

U(a) =

{
m ∈ †Si(c, ω2)

∣∣∣∣ η(†ai(m)
)
⩾ ηb1(a)

}
.

The integral of (5.h) is at most a constant, which does not depend on n, times

(5.j)

∫
∗A+

i (c1,∞)

ω2(a)

{∫
U(a)×K

∣∣∣∗ϕ̂n,i(amk)
∣∣∣2 dmdk

}
da.
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To estimate (5.j) we can replace ∗Pi by any cuspidal subgroup conjugate to it. In particular
we can suppose that ∗Pi is one of the groups P1, . . . , Ps. If

∗Pi equals Pi0 the above integral
equals∫

∗A+
i0
(c1,∞)

ω2(a)


∫
U(a)×K

∣∣∣∣∣∣
si0∑
j=1

exp⟨H,H(j)
n,i0

⟩
t∑

k=1

P
(k)
i0

(H)Φ
(j,k)
n,i0

(mk−1)

∣∣∣∣∣∣
2

dmdk

 da

if a = expH. Given any real number r there is a constant c(r) such that∣∣∣Φ(j,k)
n,i0

(m, k−1)
∣∣∣ ⩽ c(r)∥Φ(j,k)

n,i0
∥ηr
(
†ai(m)

)
if m belongs to †Si. Thus if r is less than or equal to zero the above integral is

O
(
ν2(n)

) ∫
∗Ai0

(c1,∞)

ω2(a)η2rb1(a)

si0∑
j=1

t∑
k=1

∣∣∣exp⟨H,H(j)
n,i0

⟩p(k)i0
(H)

∣∣∣2 da
which is O

(
ν2(n)

)
for r sufficiently small.

For each i let P
(1)
i , . . . , P

(ni)
i be a set of of percuspidal subgroups to which Pi belongs

which are such that there are Siegel domains †S
(j)
i , 1 ⩽ j ⩽ ni, associated to

†P
(j)
i = Ni\P (j)

i ∩ Si

whose union covers Θi\Mi. It may be supposed that
{
P

(1)
i

∣∣∣ 1 ⩽ j ⩽ ni

}
contains a complete

set of representatives for the conjugacy classes of percuspidal subgroups to which Pi belongs

and hence that
{
P

(j)
i

∣∣∣ 1 ⩽ i ⩽ s, 1 ⩽ j ⩽ ni

}
contains a complete set of representatives for

the conjugacy classes of percuspidal subgroups. It should perhaps be recalled that we have
seen in Section 2 that if two percuspidal subgroups to which Pi belongs are conjugate then
the conjugation can be effected by an element of ∆i. Let t be a positive number and for each

i and j let ω
(j)
i be a compact subset of S

(j)
i ; let S

(j)
i be the set of all g in the Siegel domain

S
(j)
i (t, ω

(j)
i ) such that

ξα

(
a
(j)
i (g)

)
⩾ ξβ

(
a
(j)
i (g)

)
if β is any simple root of h and α is the unique simple root which does not vanish on ai. Let

us now verify that
⋃s

i=1

⋃ni

j=1S
(j)
i covers Γ\G if t is sufficiently small and the sets ω

(j)
i are

sufficiently large. Since Γ\G is covered by a finite number of Siegel domains it is enough to

show that if t and the sets ω
(j)
i are suitably chosen the projection of the above set on Γ\G

contains the projection on Γ\G of any given Siegel domain S. Suppose S is associated to
the percuspidal subgroup P and ∗Pk is the cuspidal subgroup belonging to P determined
by
{
αℓ,

∣∣ ℓ ̸= k
}
. It is enough to show that the projection of the above set contains the

projection on Γ\G of

Sk =
{
g ∈ S

∣∣∣ ξαk,

(
a(g)

)
⩾ ξαℓ,

(
a(g)

)
, 1 ⩽ ℓ ⩽ p

}
for each k. Given k there is an i and a j and a γ in Γ such that γ∗Pkγ

−1 = Pi and γPγ
−1 = P

(j)
i .

Let S = S(c, ω). The projection of Sk on Γ\G is the same as the projection on Γ\G of γSk.
The set Sk is contained in

γωγ−1N
(j)
i A

(j)+
i (c,∞)γK
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since ∆
(j)
i \S(j)

i is compact there is a Siegel domain S
(j)
i (t, ω

(j)
i ) such that γSk is contained in

∆
(j)
i S

(j)
i (t, ω

(j)
i ). The set γSk will then be contained in ∆

(j)
i S

(j)
i because

ξα

(
a
(j)
i (γgγ−1)

)
= ξαk,

(
a(g)

)
if α is the unique simple root which does not vanish on ai.

If 1 ⩾ b > 0 and u > 0 let S
(j)
i (b, u) be the set of all g in S

(j)
i such that

ξβ

(
a
(j)
i (g)

)
< ξbα

(
a
(j)
i (g)

)
,

for all simple roots β of h different from α, and such that ξα
(
ai(g)

)
> u. Let F be the

projection on Γ\G of
⋃s

i=1

⋃ni

j=1S
(j)
i (b, u). We now know that

(5.k)

∫
Γ\G−F

∣∣ϕn(g)
∣∣2 dg = O

(
γ2(n)

)
.

Let Fi be the projection on ∆i\G of
⋃ni

j=1S
(j)
i (b, u). It follows from Lemma 2.12 that if u is

sufficiently large and b is sufficiently small the projections on Γ\G of Fi and Fj are disjoint
unless i = j and that the projection of Fi into Γ\G is injective. Thus if ψ(g) is any function
on Γ\G for which ∫

Γ\G
ψ(g) dg

is defined the integral is equal to

(5.ℓ)
s∑

i=1

∫
Fi

ψ(g) dg +

∫
Γ\G−F

ψ(g) dg.

We also know that

(5.m)

∫
Fi

∣∣∣ϕn(g)− ϕ̂n,i(g)
∣∣∣2 dg = O

(
ν2(n)

)
if

ϕ̂n,i(g) =

∫
Γ∩Ni\Ni

ϕn(ng) dn.

There is one more lemma which should be established before we go on to the proof of the
functional equations.

Lemma 5.3. Let U be an open subset of the n-dimensional complex coordinate space. Suppose
that to each point z in U there is associated a continuous function E(g, z) on Γ\G. Suppose
that for each z in U there is a constant r such that if S is any Siegel domain, associated to a
percuspidal subgroup P , there is a constant c, which may also depend on z, such that∣∣E(g, z)∣∣ ⩽ cηr

(
a(g)

)
if g belongs to S. Suppose that there is an integer q such that if ∗P is any cuspidal subgroup
then the cuspidal component of ∫

Γ∩∗N\∗N
E(ng, z) dn

is zero for all z unless the rank of ∗P equals q. Let {P1, . . . , Ps} be a set of representatives for
the conjugacy classes of cuspidal subgroups of rank q and for each i let Vi be an admissible
subspace of L0(Θi\Mi); let W be an admissible space of functions on K. Suppose there is
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an integer N such that if
{
p
(k)
i

∣∣∣ 1 ⩽ k ⩽ t
}

is a basis for the polynomials on ai of degree at

most N then∫
Γ∩Ni\Ni

E(ng, z) dn =

si∑
j=1

exp
〈
Hi(g), H

(j)
i (z)

〉 t∑
k=1

p
(k)
i

(
Hi(g)

)
Φ

(j,k)
i (g, z).

For each z and each i and j the point H
(j)
i (z) belongs to the complexification of ai; Φ

(j,k)
i (g, z)

is the value at g of an element Φ
(j,k)
i (z) of E(Vi,W ). If H

(j)
i (z) and Φ

(j,k)
i (z) are holomorphic

functions on U , with values in the complexification of ai and E(Vi,W ) respectively, for all i,
j, and k then E(g, z) is a continuous function on Γ\G × U which is holomorphic in z for
each fixed g.

It follows immediately from Lemma 5.2 that E(g, z) is a continuous function on Γ\G×U .
Let z0 = (z01 , . . . , z

0
n) be a point in U and let

B =
{
z = (z1, . . . , zn)

∣∣ |zi − z0i | < ϵ
}

be a polycylinder whose closure is contained in U . It is enough to show that E(g, z) is
analytic in B for each g. To do this we show that if Ci is the contour consisting of the circle
of radius ϵ about z0i transversed in the positive direction then

E(g, z) =

(
1

2πi

)n ∫
C1

dζ1 · · ·
∫
Cn

dζnE(g, ζ)
n∏

ℓ=1

(ζi − zi)
−1

when z is in B. Denote the right hand side by E1(g, z). It follows from Lemma 5.2 that if S
is any Siegel domain there are constants c and r such that

∣∣E(g, z)∣∣ ⩽ cηr
(
a(g)

)
for all g in

S and all z in the closure of B. Consequently for all z in B the function E(g, z)− E1(g, z)
satisfies the first condition of Lemma 3.7. If ∗P is a cuspidal subgroup then∫

Γ∩∗N\∗N
E1(ng, z) dn

is equal to (
1

2πi

)n ∫
C1

dζ1 · · ·
∫
Cn

dζn

{∫
Γ∩∗N\∗N

E(ng, ζ) dn

}
n∏

ℓ=1

(ζi − zi)
−1.

It follows from Fubini’s theorem that the cuspidal component of∫
Γ∩∗N\∗N

E1(ng, z) dn

is zero if the rank of ∗P is not q. However∫
Γ∩Ni\Ni

E1(ng, z) dn

is equal to the sum over j, 1 ⩽ j ⩽ si, and k, 1 ⩽ k ⩽ t of(
1

2πi

)n ∫
C1

dζ1 · · ·
∫
Cn

dζn

{
exp
〈
Hi(g), H

(j)
i (ζ)

〉
p
(k)
i

(
Hi(g)

)
Φ

(j,k)
i (g, ζ)

} n∏
ℓ=1

(ζ − zi)
−1.
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Since the expression in the brackets is a holomorphic function of ζ this equals
si∑
j=1

t∑
k=1

exp
〈
Hi(g), H

(j)
i (ζ)

〉
p
(k)
i

(
Hi(g)

)
Φ

(j,k)
i (g, z)

and the lemma follows from Lemma 3.7.





CHAPTER 6

Some functional equations

We are now ready to prove the functional equations for the Eisenstein series associated
to cusp forms. Let {P} be a complete family of associate cuspidal subgroups; let {V }
be a complete family of associate admissible subspaces; and let W be a simple admissible
subspace of the space of functions on K. If a(1), . . . , a(r) are the distinct subspaces of h
occurring among the split components of the elements of {P} then for each transformation
s in Ω(a(i), a(r)) we have defined a holomorphic function M(s,H(i)) on A(i) with values in
the space of linear transformations from E(i) to E(j) and for each point Φ in E(i) we have
defined a continuous function E(g,Φ, H(i)) on Γ\G× A(i) which is holomorphic in H(i) for
each fixed g. In order to avoid some unpleasant verbosity later we introduce some conventions
now. As usual M(s,H(i)) is said to be holomorphic or meromorphic on some open set V
containing A(i) if there is a holomorphic or meromorphic function, which is still denoted by
M(s,H(i)), on V whose restriction to A(i) is M(s,H(i)). The function E(·,Φ, H(i)) is said to
be holomorphic on V if there is a continuous function on Γ\G × V which is holomorphic
in H(i) for each fixed g and equals E(g,Φ, H(i)) on Γ\G× A(i). Of course this function on
Γ\G×V is still denoted by E(g,Φ, H(i)). The function E(·,Φ, H(i)) is said to be meromorphic

on V if it is holomorphic on an open dense subset V ′ of V and if for each point H
(i)
0 in V

there is a non-zero holomorphic function f(H(i)) defined in a neighbourhood U of H
(i)
0 such

that f(H(i))E(g,Φ, H(i)) is the restriction to Γ\G × (U ∩ V ′) of a continuous function on
Γ\G × (U ∩ V ) which is holomorphic on U ∩ V for each fixed g. If V ′ is the complement
of the intersection of V with a set of hyperplanes and if f(H(i)) can always be taken as a
product of linear functions we will say that the singularities of E(·,Φ, H(i)) in V lie along
hyperplanes. A similar convention applies to the functions M(s,H(i)).

Lemma 6.1. For each i and each j and each transformation s in Ω(a(i), a(j)) the function
M(s,H(i)) is meromorphic on a(i) and its singularities lie along hyperplanes. For each i and
each Φ in E(i) the function E(·,Φ, H(i)) is meromorphic on a(i) and its singularities lie along
hyperplanes. If s belongs to Ω(a(i), a(j)), t belongs to Ω(a(j), a(k)), and Φ belongs to E(i) then

M(ts,H(i)) =M(t, sH(i))M(s,H(i))

and
E
(
g,M(s,H(i))Φ, sH(i)

)
= E(g,Φ, H(i)).

There are a number of other properties of the functions E(·,Φ, H(i)) which it is important
to remark.

Lemma 6.2. Fix i and fix H
(i)
0 in a(i). Suppose that for every j and every s in Ω(a(i), a(j))

the function M(s,H(i)) is analytic at H
(i)
0 . Then for every Φ in E(i) the function E(·,Φ, H(i))

is analytic at H
(i)
0 and if S is a Siegel domain, associated to a percuspidal subgroup P , there

77
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are constants c and r such that, for g in S,∣∣∣E(g,Φ, H(i)
0 )
∣∣∣ ⩽ cηr

(
a(g)

)
.

Moreover if ∗P is a cuspidal subgroup the cuspidal component of∫
Γ∩∗N\∗N

E(ng,Φ, H
(i)
0 ) dn

is zero unless ∗P belongs to {P} but∫
Γ∩N(j,ℓ)\N(j,ℓ)

E(ng,Φ, H
(i)
0 ) dn

is equal to ∑
s∈Ω(a(i),a(j))

exp

(〈
H(j,ℓ)(g), sH

(i)
0

〉
+ ρ
(
H(j,ℓ)(g)

))(
E(j,ℓ)M(s,H(i))Φ

)
(g)

if E(j,ℓ) is the projection of E(j) on E(V (j,ℓ),W ).

It should be observed immediately that this lemma is true if H
(i)
0 belongs to A(i). Let us

begin the proof of these two lemmas with some remarks of a general nature. We recall that if
Φ(·) and Ψ(·) belong to the space H introduced in Section 4 then∫

Γ\G
ϕ̂(g)ψ̂(g) dg

is equal to

(6.a)
r∑

i=1

r∑
j=1

∑
s∈Ω(a(i),a(j))

(
1

2π

)q ∫
ReH(i)=Y (i)

(
M(s,H(i))Φi(H

(i)),Ψj(−sH
(i)
)
)
|dH(i)|.

If, for 1 ⩽ i ⩽ r, fi(H) is a bounded analytic function on

Di =
{
H(i) ∈ a(i)c

∣∣∣ ∥ReH(i)∥ < R
}

and if Φ(H) is in H then

f(H)Φ(H) =
(
f1(H

(1))Φ1(H
(1)), . . . , fr(H

(r))Φr(H
(r))
)

is in H. Suppose that, for all s in Ω(a(i), a(j)), fj(sH
(i)) = fi(H

(i)) and let f ∗
i (H) = f i(−H).

If (6.a) is denoted by
(
Φ(·),Ψ(·)

)
it is readily verified that(

f(·)Φ(·),Ψ(·)
)
=
(
Φ(·), f ∗(·)Ψ(·)

)
In particular

(
f ∗(·)f(·)Φ(·),Ψ(·)

)
is a positive definite hermitian symmetric form on H.

Suppose k is a positive number and, for each i and all H in Di,
∣∣fi(H)

∣∣ < k then(
k2 − f ∗

i (H)fi(H)
)1/2

= gi(H)

is defined, analytic, and bounded on Di and g
∗
i (H) = gi(H). If the square root is properly

chosen then gj(sH) = gi(H) for all s in Ω(a(i), a(j)). Since

k2 − f ∗
i (H)fi(H) = g∗i (H)gi(H),
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we see that (
f(·)Φ(·), f(·)Φ(·)

)
⩽ k2

(
Φ(·),Φ(·)

)
.

Consequently f defines a bounded linear operator λ(f) on L
(
{P}, {V },W

)
. If si(f) is the

closure of the range of fi(H) for H in Di then the spectrum of λ(f) is contained in
⋃r

i=1 si(f).
It is clear that λ∗(f) = λ(f ∗) so that if f = f ∗ then λ(f) is self-adjoint. If H belongs to Di,
let H = H1 + iH2 with H1 and H2 in a(i); then

⟨H,H⟩ = ⟨H1, H1⟩ − ⟨H2, H2⟩+ 2i⟨H1, H2⟩

so that Re⟨H,H⟩ < R2. If Reµ > R2 let fµ
i (H) =

(
µ− ⟨H,H⟩

)−1
; then λ(fµ) is a bounded

operator on L
(
{P}, {V },W

)
. Since the map Φ(·) → fµ(·)Φ(·) is a one-to-one map of H onto

itself the range of λ(fµ) is dense. Consequently if fi(H) = ⟨H,H⟩ the map

Φ(·) →
(
f1(·)Φ1(·), . . . , fr(·)Φr(·)

)
defines a closed, self-adjoint, linear operator A on L

(
{P}, {V },W

)
and

λ(fµ) = (µ− A)−1 = R(µ,A),

where R(µ,A) is an analytic function of µ off the infinite interval (−∞, R2].
Suppose Φi,k belongs to E(V (i,k),W ) and H(i) belongs to A(i); consider∑

∆(i,k)\Γ

exp

(〈
H(i,k)(γg), H(i)

〉
+ ρ
(
H(i,k)(γg)

))
Φi,k(γg).

LetS be a Siegel domain, associated to a percuspidal subgroup P , and let C be a fixed compact

set. For each i let α
(i)
1, , . . . , α

(i)
p, be the simple roots of h so numbered that α

(i)
q+1,, . . . , α

(i)
p,

vanish on a(i); we will also denote the restriction of α
(i)
j, to a(i) by α

(i)
j , if 1 ⩽ j ⩽ q. The

methods used to prove Lemma 2.11 can be used to show that there is a constant x such that
if g belongs to S and h belongs to C then

α
(i)
,j

(
H(i,k)(γgh)

)
⩽ x+ α

(i)
,j

(
H(g)

)
for 1 ⩽ j ⩽ q. Let F ′(h,Φi,k, H

(i)) equal

exp

(〈
H(i,k)(h), H(i)

〉
+ ρ
(
H(i,k)(h)

))
Φi,k(h)

if, for all j,

α
(i)
,j

(
H(i,k)(h)

)
⩽ x+ α

(i)
,j

(
H(g)

)
and let it equal zero otherwise; then set

E ′(h,Φi,k, H
(i)) =

∑
∆(i,k)\Γ

F ′(γh,Φi,k, H
(i)).

The functions E(h,Φi,k, H
(i)) and E ′(h,Φi,k, H

(i)) are equal on gC. The Fourier transform of

F ′(h,Φi,k, H
(i)
1 ) is

a


q∏

j=1

α
(i)
j, (H

(i)
1 −H(i))


−1

exp

(
⟨X,H(i)

1 −H(i)⟩+
〈
H(g), H

(i)
1 −H(i)

〉)
Φi,k
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if X in h is such that α,j(X) = x, 1 ⩽ j ⩽ p, and a is the volume of{
H ∈ a(i)

∣∣∣ 0 ⩽ α
(i)
,j (H) ⩽ 1, 1 ⩽ j ⩽ q

}
.

If

Φi =

mi⊕
k=1

Φi,k

and

E ′(h,Φi, H
(i)) =

mi∑
k=1

E ′(g,Φi,k, H
(i))

then Lemma 4.6 together with some simple approximation arguments shows that

E ′(·,Φi, H
(i))

is an analytic function on A(i) with values in L
(
{P}, {V },W

)
and that∫

Γ\G
E ′(h,Φi, H

(i)
1 )E

′
(h,Ψj, H

(j)
2 ) dh

is equal to

(6.b)
∑

s∈Ω(a(i),a(j))

a2

(2π)q

∫
ReH(i)=Y (i)

(
M(s,H(i))Φi,Ψj

)
ξ(H(i)) |dH(i)|

with ξ(H(i)) equal to

exp

∣∣∣∣〈X(g), H
(i)
1 −H(i)

〉
+
〈
X(g), H

(j)

1 − sH(j)
〉∣∣∣∣∏q

k=1 α
(i)
k, (H

(i)
1 −H(i))α

(j)
k, (H

(j)

2 + sH(i))

if Y (i) is suitably chosen and X(g) = X +H(g).
Suppose that for any choice of x and g and all Φi the function E ′(g,Φi, H

(i)) is analytic
in a region V containing A(i). If f is a continuous function on G choose C so that it contains
the support of f ; then

(6.c) λ(f)E(g,Φi, H
(i)) =

∫
G

E ′(gh,Φi, H
(i))f(h) dh

is a continuous function on Γ\G× V which is an analytic function of H(i) for each fixed g.

In particular if f(kgk−1) = f(g) for all g in G and all k in K then E
(
g, π(f,H(i))Φi, H

(i)
)

is analytic on V for each g. Of course

π(f,H(i))Φi =

mi∑
k=1

π(f,H(i))Φi,k.

But f can be so chosen that π(f,H(i)) is non-singular in the neighbourhood of any given

point H
(i)
0 . Consequently E(g,Φi, H

(i)) is, for each g and each Φi, analytic on V . In the
course of proving the lemmas for the Eisenstein series in more than one variable we will meet
a slightly different situation. There will be a function f0 such that f0(kgk

−1) = f0(g) for
all g and k, the determinant of the linear transformation π(f0, H

(i)) on E(i) does not vanish
identically, and λ(f0)E

′(·,Φi, H
(i)) is analytic on V for all Φi, all g, and all x. Arguing as
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above we see that E
(
·, π(f0, H(i))Φi, H

(i)
)
is analytic on V and hence that E(·,Φi, H

(i)) is

meromorphic on V .
If S is a Siegel domain and C a compact subset of G let us choose x as above. Suppose

that given any compact subset U of V there are constants c and r such that

(6.d)
∥∥∥E ′(·,Φi, H

(i))
∥∥∥ ⩽ cηr

(
a(g)

)
∥Φi∥

if H(i) belongs to U and g belongs to S. If we refer to the formula (6.c) and the proof of the
corollary to Lemma 3.7 we see that there are constants c′ and r′ such that∣∣∣E(g,Φi, H

(i))
∣∣∣ ⩽ c′ηr

′(
a(g)

)
∥Φi∥

if g is in S and H(i) is in U . If all the functions M(s,H(i)) are analytic on V we see by
combining the dominated convergence theorem and the estimates of Section 3 with the
principle of permanence of functional relations that Lemma 6.2 is valid for any point of V .
On the other hand suppose only that λ(f0)E

′(·,Φi, H
(i)) is analytic on V for all Φi but that

for any S and any C and any compact subset U of V there are constants c and r such that∥∥∥λ(f0)E ′(·,Φi, H
(i))
∥∥∥ ⩽ cηr

(
a(g)

)
∥Φi∥

if g is in S and H(i) is in U . If all the functions M(s,H(i)) are meromorphic on V we see just
as above that Lemma 6.2 is valid at those points where the determinant of π(f0, H

(i)) is not

zero. It is a little more difficult to obtain Lemma 6.2 for a point H
(i)
0 at which the determinant

of π(f0, H
(i)) vanishes. If the assumption of the lemma is satisfied we can apply Lemma 5.2

to define E(·,Φ, H(i)) in a neighbourhood of H
(i)
0 by continuity. That every assertion of the

lemma except the first is valid for each point in a neighbourhood of H
(i)
0 follows immediately

from the earlier lemma. Once we are assured of this we can immediately deduce the first
assertion from Lemma 5.3.

The prefatory remarks over we will now prove the lemmas for the case that the elements
of {P} have rank one. The case of rank greater than one will then be proved by induction. If
the elements of {P} have rank one then, as follows from Lemma 2.13, r is either 1 or 2 and if
r is 2 then Ω(a(i), a(i)), i = 1, 2, contains only the identity transformation. If z is a complex

number let H(i)(z) be that element of a
(i)
c such that

α(i)
(
H(i)(z)

)
= z⟨α(i), α(i)⟩1/2

if α(i) is the one simple root of a(i). Let E be E(1) or E(1) ⊕ E(2) according as r is 1 or 2. If r
is 1 and there is an s in Ω(a(1), a(1)) different from the identity then sH = −H for all H in

a(1) so that s is uniquely determined; in this case let M(z) =M
(
s,H(1)(z)

)
. If there is no

such s let M(z) be 0; as we shall see this possibility cannot occur. If r is 2 and s belongs to

Ω(a(1), a(2)) then S
(
H(1)(z)

)
= −H(2)(z) for all z so that s is again uniquely determined. In

this case let

M(z) =


0 M

(
s−1, H(2)(z)

)
M
(
s,H(1)(z)

)
0
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If r is 1 and Φ belongs to E we set

E(g,Φ, z) = E
(
g,Φ, H(1)(z)

)
and if r is 2 and Φ = Φ1 ⊕ Φ2 belongs to E we set

E(g,Φ, z) = E
(
g,Φ1, H

(1)(z)
)
+ E

(
g,Φ2, H

(2)(z)
)

Lemma 6.1 can be reformulated as follows.

Lemma 6.3. The function M(z) is meromorphic on the complex plane and for each Φ in
E the function E(·,Φ, z) is meromorphic on the complex plane. Moreover M(z)M(−z) = I
and, for all Φ,

E
(
g,M(z)Φ,−z

)
= E(g,Φ, z).

There is no value in reformulating Lemma 6.2. As we observed in the introduction this
lemma will be proved by the method of [19]. The space H can be considered as a space of
functions defined in a region of the complex plane with values in E. If Φ(·) is in H we denote

Φ1

(
H(1)(z)

)
or Φ1

(
H(1)(z)

)
⊕ Φ2

(
H(2)(z)

)
if r is 2 by Φ(z). If

(ϕ̂, ψ̂) =

∫
Γ\G

ϕ̂(g)ψ̂(g) dg

then

(6.e) (ϕ̂, ψ̂) =
1

2πi

∫ c+i∞

c−i∞

(
Φ(z),Ψ(−z)

)
+
(
M(z)Φ(z),Ψ(z)

)
dz

if c is greater than but sufficiently close to

⟨α(i), α(i)⟩−1/2⟨α(i), ρ⟩ = ⟨ρ, ρ⟩.
If c1 > Reλ > c then(

R(λ2, A)ϕ̂, ψ̂
)
=

1

2πi

∫ c+i∞

c−i∞
(λ2 − z2)−1

{(
Φ(z),Ψ(−z)

)
+
(
M(z)Φ(z),Ψ(z)

)}
dz

and the latter integral is the sum of

(6.f) (2λ)−1

{(
Φ(λ),Ψ(−λ)

)
+
(
M(λ)Φ(λ),Ψ(λ)

)}
and

(6.g)
1

2πi

∫ c1+i∞

c1−i∞
(λ2 − z2)−1

{(
Φ(z),Ψ(−z)

)
+
(
M(z)Φ(z),Ψ(z)

)}
dz.

The function
(
R(λ2, A)ϕ̂, ψ̂

)
is analytic if λ2 does not belong to (−∞, R2), that is, λ is not

imaginary and not in the interval
[
−⟨ρ, ρ⟩1/2, ⟨ρ, ρ⟩1/2

]
. If Φ(z) = ez

2
Φ and Ψ(z) = ez

2
Ψ

with constant Φ and Ψ then (6.g) is an entire function of λ and (6.f) equals

(2λ)−1e2λ
2
{
(Φ,Ψ) +

(
M(λ)Φ,Ψ

)}
Consequently M(λ) is analytic for Reλ > 0, λ /∈

(
0, ⟨ρ, ρ⟩1/2

]
.
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We next show that E(·,Φ, λ) is holomorphic for Reλ > 0, λ /∈
(
0, ⟨ρ, ρ⟩1/2

]
. If x is given

and Φi,k belongs to E(V (i,k),W ) let F ′(g,Φi,k, H
(i)) equal

exp

(〈
H(i,k)(g), H(i)

〉
+ ρ
(
H(i,k)(g)

))
Φi,k(g)

if
α(i)
(
H(i,k)(g)

)
⩽ x⟨α(i), α(i)⟩

and let it equal zero otherwise. Let

E ′(g,Φi,k, H
(i)) =

∑
∆(i,k)\Γ

F ′(γg,Φi,k, H
(i))

and if

Φ =
r⊕

i=1

mi∑
k=1

Φi,k

belongs to E let

E ′(g,Φ, z) =
r∑

i=1

mi∑
k=1

E ′
(
g,Φi,k, H

(i)(z)
)
.

It follows from (6.b) that ∫
Γ\G

E ′(g,Φ, λ)E
′
(g,Ψ, µ) dg

is equal to

1

2πi
eax(λ+µ)

{∫ c+i∞

c−i∞
(Φ,Ψ)

{
(λ− z)(µ+ z)

}−1
+ e−2axz

(
M(z)Φ,Ψ

){
(λ− z)(µ− z)−1

}
dz

}
if c is as in (6.e). If x is sufficiently large one sees readily, making use of Lemma 4.5(i), that
the above integral equals

(6.h) eax(λ+µ)(λ+ µ)−1(Φ,Ψ)

+ eax(µ−λ)(µ− λ)−1
(
M(λ)Φ,Ψ

)
+ eax(λ−µ)(λ− µ)−1

(
Φ,M(µ)Ψ

)
.

In general we obtain (
∂nE ′

∂λn
(·,Φ, λ), ∂

nE ′

∂µn
(·,Ψ, µ)

)
by differentiating (6.h) n times with respect to λ and µ. Thus

∞∑
n=0

1

n!
|λ− λ0|n

∥∥∥∥∂nE ′

∂λn
(·,Φ, λ)

∥∥∥∥
is seen to converge in the largest circle about λ0 which does not meet the imaginary axis or
the real axis. Since the above formulae persist in any subset of{

λ

∣∣∣∣ Reλ > 0, λ /∈
(
0, ⟨ρ, ρ⟩1/2

]}
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in which E ′(·,Φ, λ) is defined we conclude that E ′(·,Φ, λ) is an analytic function in this
region. Since the analogue of (6.d) is readily deduced from (6.h) we also see that Lemma 6.2

is valid if H
(i)
0 = H(i)(z) and z is in this region.

The next step in the proof is to show that there are a finite number of points z1, . . . , zn

in the interval
(
0, ⟨ρ, ρ⟩1/2

]
such that M(z) and E(·,Φ, z) are analytic in the region Re z > 0

except perhaps at z1, . . . , zn. It is enough to establish this for the function M(z) because we
can then apply Lemmas 5.2 and 5.3 to obtain the assertion for E(·,Φ, z). Suppose that either
there is a sequence {zn} converging to a point z0 of the positive real axis and a sequence
{Φn} in E with ∥Φn∥ = 1 such that{∥∥M(zn)Φn

∥∥} = {νn}

is unbounded or there are two sequences {zn} and {z′n} approaching z0 and an element Φ of
E such that

lim
n→∞

M(zn)Φ ̸= lim
n→∞

M(z′n)Φ.

In the first case select a subsequence such that limn→∞ νn = ∞ and

lim
n→∞

ν−1
n M(zn)Φn = Φ0

exists; then
{
E(·, ν−1

n Φn, zn)
}
satisfies the conditions of Lemma 5.2. In the second case{

E(·,Φ, zn)− E(·,Φ, z′n)
}
does; let

lim
n→∞

M(zn)Φ−M(z′n)Φ = Φ0

In either case let the limit function by ϕ0. If P
′ is a cuspidal subgroup not in {P} the cuspidal

component of ∫
Γ∩N ′\N ′

ϕ0(ng) dn

is zero. However∫
Γ∩N(i,k)\N(i,k)

ϕ0(ng) dn = exp

(
−
〈
H(i,k)(g), H(i)(z0)

〉
+ ρ
(
H(i,k)(g)

))
(E(i,k)Φ0)(g)

if E(i,k) is the projection of E on E(V (i,k),W ). By the corollary to Lemma 5.1 the function ϕ0

belongs to L(Γ\G). It is clear that it belongs to L
(
{P}, {V },W

)
. For each z in

(
0, ⟨ρ, ρ⟩1/2

]
let L(z) be the set of all functions ψ in L

(
{P}, {V },W

)
such that∫

Γ∩N(i,k)\N(i,k)

ψ(ng) dn = exp

(
−
〈
H(i,k)(g), H(i)(z)

〉
+ ρ
(
H(i,k)(g)

))
E(i,k)Ψ(g)

for some Ψ in E. Since Ψ = 0 implies ψ = 0 the space L(z) is finite-dimensional. If Φ(z) is
in H then ∫

Γ\G
ϕ̂(g)ψ(g) dg =

(
Φ(z),Ψ

)
from which we conclude that ψ is the domain of A and Aψ = z2ψ. In particular L(z1) and
L(z2) are orthogonal if z1 and z2 are different. It is clear that there is a constant c which

is independent of z such that ∥Ψ∥ ⩽ c∥ψ∥ for any z in
(
0, ⟨ρ, ρ⟩1/2

]
and all ψ in L(z). If

there was a sequence {zn} in
(
0, ⟨ρ, ρ⟩1/2

]
, converging to a point in

(
0, ⟨ρ, ρ⟩1/2

]
, such that
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L(zn) ̸= {0} for all n it is clear that we could construct a sequence {ψn} with ψn in L(zn) and
∥ψn∥ = 1 which satisfied the hypotheses of Lemma 5.2. It would follow from the dominated
convergence theorem, applied as in the corollary to Lemma 5.1 that limn→∞ ψn exists in
L(Γ\G). This is impossible for an orthonormal sequence. Thus the set of points for which

L(z) ̸= {0} is discrete in
(
0, ⟨ρ, ρ⟩1/2

]
. If z is not in this set then M(w) is bounded on the

complement of the real axis in a neighbourhood of z and limw→zM(w) exists. It follows
from the reflection principle that M(z) is analytic in the right half plane except at this set of
points.

We have still to exclude the possibility that the above set of points has 0 as a limit
point. If it does let {zn} be a monotone decreasing sequence of points converging to 0 with
L(zn) ̸= {0} for all n. Let {ψn} be a sequence of functions such that ψn belongs to L(zn)
and ∥ψn∥ = 1. Let Ψn be that element of E such that∫

Γ∩N(i,k)\N(i,k)

ψn(ng) dn = exp

(
−
〈
H(i,k)(g), H(i)(zn)

〉
+ ρ
(
H(i,k)(g)

))
(E(i,k)Ψn)(g)

for all i and k. If Ψ′
n = ∥Ψn∥−1Ψn it may be supposed that limn→∞Ψ′

n exists. To obtain a
contradiction we make use of the formulae (5.k), (5.ℓ), and (5.m). The first and second show
us that ∫

Γ\G
Ψm(g)ψn(g) dg =

s∑
i=1

∫
Fi

ψm(g)ψn(g) +O
(
∥Ψm∥

)
The third shows us that∫

Fi

ψm(g)ψn(g) dg =

∫
Fi

ψ̂m,i(g)ψn(g) dg +O
(
∥Ψm∥

)
.

The integral on the right is equal to ∫
F ′
i

ψ̂m,iψ̂n,i(g) dg

if F ′
i is the projection of Fi on Ti\G, for we can suppose that the inverse image in ∆i\G of

F ′
i is Fi. If we then apply the estimate obtained for (5.j) we see that∫

Γ\G
ψm(g)ψn(g) dg

is equal to
s∑

i=1

∫
A+

i (u,∞)

ω2(a)

{∫
Θi\Mi×K

ψ̂m,i(amk)ψ̂n,i(amk) dmdk

}
da+O

(
∥Ψm∥

)
.

The only integrals on the right which are different from zero are those for which Pi belongs
to {P}. If however Pi is conjugate to P (j,ℓ) and we suppose, for simplicity, that {P1, . . . , Ps}
contains

{
P (k,m)

∣∣∣ 1 ⩽ k ⩽ r, 1 ⩽ m ⩽ mi

}
the corresponding integral equals

(zm + zn)
−1 exp

(
−a−1(zm + zn) log u

)
(E(j,ℓ)Ψm, E

(j,ℓ)Ψn).

The number a has been introduced in the expression (6.b). Summing we obtain

δm,n = (zm + zn)
−1 exp

(
−a−1(zm + zn) log u

)
(Ψm,Ψn) +O

(
∥Ψm∥

)
.
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Set m = n to see that limm→∞∥Ψm∥ = 0 and

1 = (2zm)
−1 exp(−2a−1zm log u)∥Ψm∥2 +O

(
∥Ψm∥

)
.

Hence ∥Ψm∥ = O(z
1/2
m ); consequently if m ̸= n

0 = 2(znzm)
1/2(zn + zm)

−1(Ψ′
m,Ψ

′
n) +O(z1/2m ).

If we divide by z
1/2
m and recall that limm,n→∞(Ψ′

m,Ψ
′
n) = 1 we conclude that z

1/2
n (zm + zn)

−1

is bounded for all m and n. But that is clearly impossible.
Let

Φ =
r⊕

i=1

mi⊕
k=1

Φi,k

belong to E and let

M(z)Φ =
r⊕

i=1

mi⊕
k=1

Φi,k(z).

If x is given and M(z) is defined let F ′′
(
g,Φi,k, H

(i)(z)
)
equal F

(
g,Φi,k, H

(i)(z)
)
if

α(i)
(
H(i,k)(g)

)
⩽ x⟨α(i), α(i)⟩

and let it equal −F
(
g,Φi,k(z),−H(i)(z)

)
otherwise. Observe that the notation is deceptive.

The Fourier transform of F ′′
(
g,Φi,kH

(i)(λ)
)
evaluated at H(i)(z) is equal to

(λ− z)−1 exp
(
ax(λ− z)

)
Φi,k − (λ+ z)−1 exp

(
−ax(λ+ z)

)
Ψi,k(λ).

It follows from Lemma 4.1 that the series∑
∆(i,k)\Γ

F ′′
(
γg,Φi,k, H

(i)(z)
)

converges for Re z > ⟨ρ, ρ⟩1/2; denote its sum by E ′′
(
g,Φi,k, H

(i)(z)
)
. If

E ′′(g,Φ, z) =
r∑

i=1

mi∑
k=1

E ′′
(
g,Φi,kH

(i)(z)
)

then Lemma 4.6, together with a simple approximation argument, shows that E ′′(g,Φ, z) is
square-integrable on Γ\G for Re z > ⟨ρ, ρ⟩1/2. We need an explicit formula for(

E ′′(g,Φ, λ), E ′′(g,Ψ, µ)
)
.
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If we use formula (4.p) we see that this inner product is equal to the sum of eight integrals
which we list below.

1

2πi

∫
Re z=c

(λ− z)−1(µ+ z)−1 exp
(
ax(λ+ µ)

)
(Φ,Ψ) dz(i)

−1

2πi

∫
Re z=c

(λ− z)−1(µ+ z)−1 exp
(
ax(λ− µ)

)(
Φ,M(µ)Ψ

)
dz(ii)

−1

2πi

∫
Re z=c

(λ+ z)−1(µ+ z)−1 exp
(
ax(µ− λ)

)(
M(λ)Φ,Ψ

)
dz(iii)

1

2πi

∫
Re z=c

(λ+ z)−1(µ− z)−1 exp
(
−ax(λ+ µ)

)(
M(λ)Φ,M(µ)Ψ

)
dz(iv)

1

2πi

∫
Re z=c

(λ− z)−1(µ− z)−1 exp
(
ax(λ+ µ− 2z)

)(
M(z)Φ,Ψ

)
dz(v)

−1

2πi

∫
Re z=c

(λ− z)−1(µ+ z)−1 exp
(
ax(λ− µ− 2z)

)(
M(z)Φ,M(µ)Ψ

)
dz(vi)

−1

2πi

∫
Re z=c

(λ+ z)−1(µ− z)−1 exp
(
ax(µ− λ− 2z)

)(
M(z)M(λ)Φ,Ψ

)
dz(vii)

1

2πi

∫
Re z=c

(λ+ z)−1(µ+ z)−1 exp
(
−ax(λ+ µ+ 2z)

)(
M(z)M(λ)Φ,M(µ)Ψ

)
dz(viii)

If we then make use of Lemma 4.5(i) these integrals can be evaluated when x is sufficiently
large by using the residue theorem. The result when λ+ µ ̸= 0 and λ− µ ̸= 0 follows.

(λ+ µ) exp
(
ax(λ+ µ)

)
(Φ,Ψ)(i)

0(ii)

0(iii)

(λ+ µ)−1 exp
(
−ax(λ+ µ)

)(
M(λ)Φ,M(µ)Ψ

)
(iv)

(µ− λ)−1 exp
(
ax(µ− λ)

)(
M(λ)Φ,Ψ

)
+ (λ− µ)−1 exp

(
ax(λ− µ)

)(
Φ,M(µ)Ψ

)
(v)

−(λ+ µ)−1 exp
(
ax(λ+ µ)

)(
M(λ)Φ,M(µ)Ψ

)
(vi)

−(λ+ µ)−1 exp
(
−ax(λ+ µ)

)(
M(λ)Φ,M(µ)Ψ

)
(vii)

0(viii)

Adding up these eight terms we see that(
E ′′(g,Φ, λ), E ′′(g,Ψ, µ)

)
is equal to the sum of

(λ+ µ)−1
{
exp
(
ax(λ+ µ)

)
(Φ,Ψ)− exp

(
−ax(λ+ µ)

)(
M(λ)Φ,M(µ)Ψ

)}
and

(λ− µ)−1
{
exp
(
ax(λ− µ)

)(
Φ,M(µ)Ψ

)
− exp

(
ax(µ− λ)

)(
M(λ)Φ,Ψ

)}
.

It is known that M(z) is analytic in the right half-plane except at a finite number of points;
it can be shown in a number of ways and, in particular, will follow from the discussion below
that this is also true of E ′′(·,Φ, z) considered as a function with values in L(Γ\G). The
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formula for
(
E ′′(g,Φ, λ), E ′′(g,Ψ, µ)

)
is valid in this larger region. If λ = σ + iτ and µ = λ

the above formula reduces to the sum of

(2σ)−1
{
exp(2axσ)(Φ,Ψ)− exp(2axσ)

(
M(λ)Φ,M(λ)Ψ

)}
and

(2iτ)−1
{
exp(2iaxτ)

(
Φ,M(λ)Ψ

)
− exp(−2iaxτ)

(
M(λ)Φ,Ψ

)}
.

The sum will be labelled (6.i). If we choose Φ so that ∥Φ∥ = 1 and
∥∥M(λ)Φ

∥∥ =
∥∥M(λ)

∥∥ and
then take Φ = Ψ we can conclude that

(2σ)−1
{
exp(2axσ)− exp(−2axσ)

}∥∥M(λ)
∥∥2 + |τ |−1

∥∥M(λ)
∥∥ ⩾ 0.

As a consequence ∥∥M(λ)
∥∥ ⩽ max

{
2 exp 4axσ, 4σ/|τ | exp 2axσ

}
.

We conclude first of all that
∥∥M(λ)

∥∥ is bounded in the neighbourhood of any point different

from zero on the imaginary axis. Let us show next that
∥∥E ′′(·,Φ, λ)

∥∥ is bounded in the
neighbourhood of any such point.

To be more precise we will show that E ′′(·,Φ, λ) is holomorphic in any region U in which
both M(λ) and E(·,Φ, λ) are holomorphic and in which E(·,Φ, λ) satisfies the analogue of
Lemma 6.2 and that if B is a bounded set of this region on which

∥∥M(λ)
∥∥ is bounded then∥∥E ′′(·,Φ, λ)

∥∥ is bounded on B. As above if Φ belongs to E let

M(z)Φ =
r⊕

i=1

mi⊕
k=1

Φi,k(z).

If x is given and M(z) is defined let F ′′′
(
g,Φi,k, H

(i)(z)
)
equal

F
(
g,Φi,k, H

(i)(z)
)
+ F

(
g,Φi,k(z),−H(i)(z)

)
if α(i)

(
H(i,k)(g)

)
> x⟨α(i), α(i)⟩ and let it equal zero otherwise. Let

E ′′′
(
g,Φi,k, H

(i)(z)
)
=

∑
∆(i,k)\Γ

F ′′′
(
g,Φi,k, H

(i)(z)
)
.

The series converges whenever it is defined. As usual let

E ′′′(g,Φ, z) =
r∑

i=1

mi∑
k=1

E ′′′
(
g,Φi,k, H

(i)(z)
)
,

then
E ′′(g,Φ, z) = E(g,Φ, z)− E ′′′(g,Φ, z).

Consequently the function E ′′(·,Φ, z) can be defined, although it may not be square integrable,
whenever M(z) and E(·,Φ, z) are both defined. In particular it can be defined on U . We
will show that if z0 is any complex number and if

∥∥M(z)
∥∥ is bounded on the intersection

of B with some neighbourhood of z0 then there is another neighbourhood of z0 such that∥∥E ′′(·,Φ, z)
∥∥ is finite and bounded on the intersection of this neighbourhood with B. This

will establish the second part of the assertion. To see that the first part will also follow
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we observe that the above statement implies that
∥∥E ′(·,Φ, z)

∥∥ is bounded on any compact
subset of U ; thus we have only to prove that∫

Γ\G
E ′′(g,Φ, λ)ψ(g) dg

is holomorphic on U if ψ is a continuous function on Γ\G with compact support. However,
this follows from the fact that if C is a compact subset of G the set

{
E ′′(g,Φ, ·)

∣∣ g ∈ C
}
of

functions on U is equicontinuous. We have to show that if {zn} is any sequence of points

in B converging to z0 then the sequence
{∥∥E ′′(g,Φ, zn)

∥∥} is bounded. Let the sets F and

Fi, 1 ⩽ i ⩽ s, be the same as in (5.k), (5.ℓ), and (5.m). We suppose again that Fi is the
inverse image of its projection F ′

i on Ti\G. The set {P1, . . . , Ps} can be so chosen that
it contains the set {P}; then for each j and ℓ there is a unique i such that P (j,ℓ) = Pi.

Let F ′′′
1

(
g,Φj,ℓ, H

(j)(z)
)
equal F ′′′

(
g,Φj,ℓH

(j)(z)
)
if g belongs to Fi and let it equal zero

otherwise; let F ′′′
2

(
g,Φj,ℓ, H

(j)(z)
)
equal

F ′′′
(
g,Φj,ℓ, H

(j)(z)
)
− F ′′′

1

(
g,Φj,ℓ, H

(j)(z)
)
.

If the sets ω
(k)
i used to define the sets Fi have been appropriately chosen, as we assume,

the functions F ′′′
2

(
g,Φj,ℓ, H

(j)(zn)
)
satisfy, uniformly in n, the conditions of the corollary to

Lemma 3.6. Thus if

E ′′′
2

(
g,Φj,ℓ, H

(j)(z)
)
=

∑
∆(j,ℓ)\Γ

F ′′′
2

(
g,Φj,ℓ, H

(j)(z)
)
,

we know that the sequence

{∥∥∥∥E ′′′
2

(
·,Φj,ℓ, H

(j)(zn)
)∥∥∥∥
}

is bounded. Let

E ′′′
1

(
g,Φj,ℓ, H

(j)(z)
)
= E ′′′

(
g,Φj,ℓ, H

(j)(z)
)
− E ′′′

2

(
g,Φj,ℓ, H

(j)(z)
)
.

The function E ′′′
1

(
g,Φj,ℓH

(j)(z)
)
is zero on Γ\G− F . Thus

∫
Γ\G−F

∣∣E ′′(g,Φ, zn)
∣∣2 dg = ∫

Γ\G−F

∣∣∣∣∣∣E(g, ϕ, zn)−
r∑

j=1

mj∑
ℓ=1

E ′′′
2

(
g,Φj,ℓ, H

(j)(zn)
)∣∣∣∣∣∣

2

dg

It follows from (5.j) that the latter integrals are uniformly bounded. Moreover the integrals∫
Fi

∣∣E ′′(g,Φ, zn)
∣∣2 dg

are uniformly bounded if and only if the integrals∫
Fi

∣∣∣∣∣∣E(g,Φ, zn)−
r∑

j=1

mj∑
ℓ=1

E ′′′
1

(
g,Φj,ℓ, H

(j)(zn)
)∣∣∣∣∣∣

2

dg
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are. But it follows from the definition of the sets Fi that on Fi the sum
r∑

j=1

mj∑
ℓ=1

E ′′′
1

(
g,Φj,ℓ, H

(j)(zn)
)

is zero if Pi does not belong to {P} and is F ′′′
(
g,Φj,ℓ, H

(j)(z)
)
if Pi = P (j,ℓ). If the number

u used in the definition of the sets Fi is sufficiently large, as we suppose, then in all cases the
sum equals ∫

Γ∩Ni\Ni

E(ng,Φ, zn) dn.

We can complete are argument by appealing to the estimate (5.m).
It now follows from (6.i) that

(2σ)−1
{
exp(2axσ)(Φ,Ψ)− exp(−2axσ)

(
M(λ)Φ,M(λ)Ψ

)}
is bounded in the neighbourhood of any point λ0 on the imaginary axis different from zero.
Hence

lim
λ→λ0

M∗(λ)M(λ) = I

or
lim
λ→λ0

M(λ)M(λ) = I

since M∗(λ) =M(λ). Moreover if the interval [a, b] does not contain zero there is an ϵ > 0
such that

∥∥M−1(λ)
∥∥ is bounded for 0 < σ ⩽ ϵ and a ⩽ τ ⩽ b; consequently

lim
σ↘0

∥∥M−1(σ − iτ)−M(σ + iτ)
∥∥ = 0.

Define M(λ) for Reλ < 0 by M(λ) =M−1(−λ). Let C be the contour consisting of the lines
joining ia − ϵ, ia + ϵ, ib + ϵ, ib − ϵ and then ia − ϵ again. It is clear that, for 0 < |σ| < ϵ,
a < τ < b,

M(λ) =
1

2πi

∫
C

(z − λ)−1M(z) dz + lim
δ→0

1

2π

∫ b

a

{
M(−δ + it)−M(δ + it)

}
(it− λ)−1 dt.

The final integral equals ∫ b

a

{
M−1(δ − it)−M(δ + it)

}
dt.

So the limit is zero. This shows that the function M(λ) defined in the left half-plane is
the analytic continuation of the function M(λ) defined the right half-plane. Thus M(λ)
is meromorphic except perhaps at a finite number of points 0,±z1, . . . ,±zn in the interval[
−⟨ρ, ρ⟩1/2, ⟨ρ, ρ⟩1/2

]
.

Let us verify that the same is true of E(·,Φ, λ) for all Φ in E. It follows from Lemma 5.2
that

lim
σ↘0

E(g,Φ, σ + iτ) = E(g,Φ, iτ)

converges for all τ different from zero and all g and that the convergence is uniform on compact
subsets of G for each τ . If we use this fact to define E(g,Φ, z) for non-zero imaginary values

of z all the assertions of Lemma 6.2, except perhaps the first, will be valid if H
(i)
0 = H(i)(z)

with z imaginary and different from zero. We define E(g,Φ, λ) when Reλ ⩽ 0 by setting
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it equal to E
(
g,M(λ)Φ,−λ

)
. With this definition all the assertions of Lemma 6.2, except

perhaps the last, are valid if H
(i)
0 = H

(i)
0 (z) with Re z < 0 and z different from −z1, . . . ,−zn.

Every assertion, except perhaps the first and last, is valid if H
(i)
0 = H(i)(z) with z imaginary

and different from zero. However∫
Γ∩N(i,k)\N(i,k)

E
(
ng,M(λ)Φ,−λ

)
dn

is equal to the sum of

exp

(〈
H(i,k)(g), H(i)(−λ)

〉
+ ρ
(
H(i,k)(g)

))(
E(i,k)M(λ)Φ

)
(g)

and

exp

(〈
H(i,k)(g), H(i)(λ)

〉
+ ρ
(
H(i,k)(g)

))(
E(i,k)M(−λ)M(λ)Φ

)
(g)

which, since M(−λ)M(λ) = I, is equal to the sum of

exp

(〈
H(i,k)(g), H(i)(λ)

〉
+ ρ
(
H(i,k)(g)

))
(E(i,k)Φ)(g)

and

exp

(〈
H(i,k)(g), H(i)(−λ)

〉
+ ρ
(
H(i,k)(g)

))(
E(i,k)M(λ)Φ(g)

)
.

Consequently the last assertion is also valid. It follows from Lemma 3.7 that the two definitions
of E(g,Φ, λ) agree when λ is imaginary and then from Lemma 5.3 that E(·,Φ, λ) is analytic
at the non-zero points on the imaginary axis.

It remains to examine the behavior of M(λ) and E(·,Φ, λ) at the points 0,±z1, . . . ,±zn.
Since we readily see from Lemma 5.2 that the behavior of E(·,Φ, λ) is at least as good as
that of M(λ) we shall only study the latter. We shall show that M(λ) is analytic at zero
and has at most a simple pole at the points z1, . . . , zn. If Φ(z) and Ψ(z) belong to H the

formula (6.e) expresses the inner product (ϕ̂, ψ̂) as a contour integral. We shall replace the
contour of (6.e) by the sum of n+ 1 other contours C,C1, . . . , Cn. Let ϵ > 0 be so small that
the closed discs of radius ϵ about 0, z1, . . . , zn are disjoint. Let Ci, 1 ⩽ i ⩽ n, be the circle of
radius ϵ about zi traversed in the positive direction; let C be the path running from −i∞
to iϵ along the imaginary axis, then in the positive direction on the circle of radius ϵ and
centre zero to iϵ, and then along the imaginary axis to i∞. Our estimates of

∥∥M(λ)
∥∥ are

good enough that we can replace the right side of (6.e) by the sum of

1

2πi

∫
C

(
Φ(z),Ψ(−z)

)
+
(
M(z)Φ(z),Ψ(z)

)
dz

and
n∑

i=1

1

2πi

∫
Ci

(
M(z)Φ(z),Ψ(z)

)
dz

This sum will be labelled (6.k). Suppose that E(·) is, in the terminology of [21], the resolution
of the identity belonging to the linear transformation A. It is well known ([21, Theorem 5.10])
that, if b is greater than a and c is positive,

(6.ℓ)
1

2

{(
E(b)ϕ̂, ψ̂

)
−
(
E(b− 0)ϕ̂, ψ̂

)}
− 1

2

{(
E(a)ϕ̂, ψ̂

)
−
(
E(a− 0)ϕ̂, ψ̂

)}
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is given by

(6.m) lim
δ↘0

1

2πi

∫
C(a,b,c,δ)

(
R(λ,A), ϕ, ψ

)
dλ

where the contour C(a, b, c, δ) consists of two polygonal paths whose vertices are in order
b+ iδ, b+ ic, a+ ic, a+ iδ and a− iδ, a− ic, b− ic, b− iδ respectively. Since the spectrum of
A is contained in

(
−∞, ⟨ρ, ρ⟩

)
we know that E

(
⟨ρ, ρ⟩

)
= I. Choose a and b so that b > a > 0

and so that exactly one of the numbers z21 , . . . , z
2
n, say z

2
i , belongs to the interval [a, b]. If we

use the formula (6.k) to calculate (6.m) we find that (6.ℓ) is equal to

(6.n)
1

2πi

∫
Ci

(
M(z)Φ(z),Ψ(z)

)
dz.

Since this is true for any such a and b we conclude that (6.n) is equal to E(b) − E(a). If
we assume, as we may, that M(z) is not analytic at any of the points z1, . . . , zn we see
that z21 , . . . , z

2
n are isolated points in the spectrum of A. Consequently, for any ϕ and ψ in

L
(
{P}, {V },W

)
, (

R(λ2, A)ϕ, ψ
)

has only a simple pole at z1, . . . , zn. Referring to the discussion following (6.f) and (6.g) we
see that the same is true of M(λ).

If we again use (6.k) to calculate (6.m) we find that
(
E(x)ϕ, ψ

)
is continuous except at

z21 , . . . , z
2
n and, perhaps, zero and that, if ϵ is positive but sufficiently small,(

E(0)ϕ̂, ψ̂
)
−
(
E(−δ2)ϕ̂, ψ̂

)
is equal to

(6.o)
1

2πi

∫ iϵ

−iϵ

(
Φ(z),Ψ(−z)

)
dz +

1

2πi

∫
C(ϵ)

(
M(z)Φ(z),Ψ(z)

)
dz

if C(ϵ) is the semi-circle of radius ϵ and centre zero transversed in the positive direction from
−iϵ to iϵ. Hence(

E(0)ϕ̂, ψ̂
)
−
(
E(0− 0)ϕ̂, ψ̂

)
= lim

ϵ↘0

1

2πi

∫
C(ϵ)

(
M(z)Φ(z),Ψ(z)

)
dz.

The right side must be a positive definite hermitian symmetric form on H. However it is
defined if Φ(z) and Ψ(z) are merely defined and analytic in some neighbourhood of zero. A
simple approximation argument shows that it remains positive definite on this large space of
functions. Consequently, if ω(z) is a scalar-valued function, analytic in a neighbourhood of
zero,

(6.p) lim
ϵ↘0

1

2πi

∫
C(ϵ)

(
ω(z)ω(z)M(z)Φ(z),Φ(z)

)
dz ⩾ 0.

If δ is positive we can take ω(z) to be either (δ + z)1/2 or (δ − z)1/2; then ω(z)ω(z) is δ + z
or δ − z. Substituting in the relation (6.p) we conclude that

lim
ϵ↘0

1

2πi

∫
C(ϵ)

(
zM(z)Φ(z),Φ(z)

)
dz = 0
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Applying Schwarz’s inequality to (6.p) we can conclude more generally that

lim
ϵ↘0

1

2πi

∫
C(ϵ)

(
zM(z)Φ(z),Ψ(z)

)
dz = 0

Consequently

(6.q)
(
E(0)ϕ̂, ψ̂

)
−
(
E(0− 0)ϕ̂, ψ̂

)
= lim

ϵ↘0

1

2πi

∫
C(ϵ)

(
M(z)Φ(0),Ψ(0)

)
dz.

There is a linear transformation M on E such that the right side of this equation equals
M
(
Φ(0),Ψ(0)

)
.

We shall use the equation we have just found to show that E(0) = E(0− 0). It is enough

to show that, for all functions Φ(z) in H, E(0)ϕ̂ = E(0 − 0)ϕ̂. Suppose f is a continuous
function on G with compact support such that f(kgk−1) = f(g) for all g in G and all k in

K. For each H(i) in a
(i)
c we have defined, in Section 3, a linear transformation π(f,H(i))

on E(V (i,k),W ). For each complex number z the direct sum of the linear transformations

π
(
f,H(i)(z)

)
is a linear transformation π(f, z) on E. It follows from (4.r) that if Ψ(z) belongs

to H and
Ψ1(z) = π(f, z)Ψ(z)

then λ(f)ψ̂ = ψ̂1. As a consequence λ(f) commutes with A and with E(x) for all x. Choosing

f so that π(f, 0) is the identity we deduce from (6.q) that if ϕ′ = E(0)ϕ̂− E(0− 0)ϕ̂ then
λ(f)ϕ′ = ϕ′. Hence ϕ′ is continuous. Referring to Lemma 4.6(i) we see that if P is a cuspidal
subgroup the cuspidal component of ∫

Γ∩N\N
ϕ′(ng) dn

is zero unless P is conjugate to an element of {P}. However it follows from (6.q) and the
remark following the proof of Lemma 3.7 that∫

Γ∩N(i,k)\N(i,k)

ϕ′(ng) dn = exp ρ
(
H(i,k)(g)

)(
E(i,k)MΦ(0)

)
(g).

If P is a percuspidal subgroup to which P (i,k) belongs and S a Siegel domain associated to P
then the left, and hence the right, side must be square integrable on S. A simple calculation
shows that this is so only if E(i,k)MΦ(0) is zero. Since i and k are arbitrary the function ϕ′

is identically zero.
Now let C be the semi-circle of radius 1 and centre zero traversed in the positive direction

from −i to i. Suppose 0 < |λ| < 1 and Reλ > 0; since (6.q) vanishes and M(z) is unitary for
imaginary z, the residue theorem implies

M(λ) =
1

2πi

∫ −i

i

(z − λ)−1M(z) dz +
1

2πi

∫
C

(z − λ)−1M(z) dz

Since the right side vanishes if λ is replaced by −λ we have

(6.r) M(λ) =
σ

π

∫ 1

−1

(
σ2 + (y − τ)2

)−1
M(iy) dy +

1

2πi

∫
C

{
(z − λ)−1 + (z + λ)−1

}
M(z) dz

if λ = σ + iτ . We shall use this equation to show that

(6.s) lim
σ↘0, τ→0

M(σ + iτ) =M(0)
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exists. Since M(0) must equal limτ→0M(iτ) which is unitary and, hence, invertible we shall
conclude that there is an ϵ > 0 such that M(λ) and M−1(λ) are uniformly bounded on{

λ
∣∣ 0 < |λ| < ϵ, Reλ ⩾ 0

}
ConsequentlyM(λ) is bounded in a neighbourhood of zero and zero is a removable singularity.

Let

M ′(z) =
d

dz
M(z)

It is a familiar, and easily proved, fact that (6.s) will follows from (6.r) if it is shown that
limy→0M(iy) =M(0) exists and that, if N > 0, there are positive constants c′ and r′ such
that

∥∥M ′(iy)
∥∥ ⩽ c′|y|r′−1 for 0 < |y| ⩽ N . We know that, for every Φ in E,

∥∥E ′′(·,Φ, iy)
∥∥

is bounded on
{
y
∣∣ 0 < |y| ⩽ N

}
. If in (6.i) we replace τ by y and take the limit as σ

approaches zero we find that
(
E ′′(·,Φ, iy), E ′′(·,Ψ, iy)

)
is equal to(

M−1(iy)M ′(iy)Φ,Ψ
)
− (2iy)−1

{(
M(iy)Φ,Ψ

)
−
(
M−1(iy)Φ,Ψ

)}
if the number x is taken to be zero. Consequently the linear transformation1

B(y) = −M−1(iy)M ′(iy)− (2iy)−1
(
M(iy)−M−1(iy)

)
is positive definite for y different from zero and is bounded on

{
y
∣∣ 0 < |y| ⩽ N

}
. If we show

that there is a δ > 0 and positive constants c and r such that∥∥M(iy)−M−1(iy)
∥∥ ⩽ 2cyr

if 0 < y < δ it will follow that, for some c′ and r′,∥∥M ′(iy)
∥∥ ⩽ c′yr

′−1

if 0 < |y| ⩽ N . We shall conclude that

lim
y↘0

M(iy) =M(0)

and
lim
y↗0

M(iy) =M−1(0)

exist and that
lim
y↘0

M(iy) = lim
y↘0

M−1(iy)

so that M(0) =M−1(0). Since

M ′(−z) =M−1(z)M ′(z)M−1(z)

we need only establish the above estimate on the interval (0, N ]. Choose b so that
∥∥B(y)

∥∥ ⩽ b

for 0 < y ⩽ N . Suppose 0 < y and suppose eiθ is an eigenvalue for M(iy) of multiplicity m.

1(Added 1999) There appears to be a sign missing in the first term. Fortunately this does not affect the
argument in any serious way. The argument is an elaboration of one for the ordinary differential equation

dθ

dy
= ± sin θ

y
+ c(y),

where c(y) is bounded. If the sign is positive and y small, then for −π < θ < π either θ hovers about 0 or is
driven to ±π. Thus eiθ either hovers about 1 or is driven to −1. If the sign is negative, the roles of 1 and −1
are reversed. The sign can be changed simply by replacing θ by θ + π. In the text the argument is made
quantitative and extended to the vector-valued function M(iy), which is analogous to eiθ. Multiplying M by
−1 changes the sign. It also replaces B by −B, but that is of no consequence.
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It is known that if y′ is sufficiently close to y then M(iy′) has exactly m eigenvalues, counted
with multiplicities, which are close to eiθ. If

8yb ⩽ |sin θ|
it is possible to obtain more precise information about the position of these m eigenvalues.
Choose an orthonormal basis Φ1, . . . ,Φn for E consisting of eigenvectors of M(iy) and let
eiθ1 , . . . , eiθn be the corresponding eigenvalues. If

Φ =
n∑

j=1

αjΦj

with
n∑

j=1

|αj|2 = 1

is a unit vector then (
M(iy)Φ,Φ

)
=

n∑
j=1

eiθj |αj|2

and (
M ′(iy)Φ,Φ

)
=

n∑
j=1

y−1 sin θje
iθj |αj|2 +

(
M(iy)B(y)Φ,Φ

)
which is equal to

n∑
j=1

(y−1 sin θje
iθj + β)|αj|2

if
β =

(
M(iy)B(y)Φ,Φ

)
Certainly |β| ⩽ b. It follows from the first formula that

(
M(iy)Φ,Φ

)
lies in the convex hull of

the eigenvalues of M(iy); a similar assertion is of course valid for any unitary transformation.
For any positive y′ (

M(iy′)Φ,Φ
)
=

n∑
j=1

eiθj |αj|2 + i

∫ y′

y

(
M ′(is)Φ,Φ

)
ds

Let t = y′ − y and suppose |t| is so small that
∥∥M ′(is)−M ′(iy)

∥∥ ⩽ b if |s− y| ⩽ |t|; then(
M(iy′)Φ,Φ

)
=

n∑
j=1

eiθj
(
1− ity−1 sin θj − β(t)

)
|αj|2

with
∣∣β(t)∣∣ ⩽ 2bt. Set

vj(t) = ∓ty−1 sin θj ± iβ(t)

and set
uj(t) = eiθj

(
1∓ ivj(t)

)
The upper or lower sign is taken according as sin θj ⩾ 0 or sin θj < 0. The number vj(t)
equals

(∓ty−1 sin θj + 8bt) +
(
−8bt± iβ(t)

)
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If t < 0 and 8yb ⩽ |sin θj| the second term lies in the sector
{
z
∣∣ |arg z| ⩽ π

4

}
and the first

term is positive.
Suppose eiθ is an eigenvalue of M(iy) of multiplicity m and 8yb ⩽ |sin θ|; we shall show

that if y′ is less than but sufficiently close to y the m eigenvalues of M(iy′) which are close
to eiθ then lie in

X(t) =

{
eiθ
(
1∓ i(∓ty−1 sin θ + 8tb+ z)

) ∣∣∣∣ |arg z| ⩽ π

3

}
Again the upper or the lower sign is taken according as sin θ ⩾ 0 or sin θ < 0. This will follow
if it is shown that for some ϵ with 0 ⩽ ϵ < π

12
these eigenvalues lie in

Y (t) =

{
eiθ
(
1∓ i(∓ty−1 sin θ + 8tb+ z)

) ∣∣∣∣ −π2 ± π

4
∓ ϵ ⩽ arg z ⩽

π

2
± π

4
∓ ϵ

}
The set e−iθX(t) is the shaded sector of the diagram below, and e−iθY (t) is the shaded
half-plane

π
3

π
3

sin θ ⩾ 0
1 π

4
− ϵ > π

6

Choose ϵ so that the boundary of Y (0) contains no eigenvalues of M(iy) except eiθ.
We establish the assertion by showing that if Y (0) contains ℓ eigenvalues of M(iy) then
Y (t) contains ℓ eigenvalues of M(iy + it) when t is negative but sufficiently close to 0. Let
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eiθ1 , . . . , eiθℓ be the ℓ eigenvalues of M(iy) which lie in Y (0). If

Φ =
ℓ∑

j=1

αjΦj

is a unit vector then (
M(iy + it)Φ,Φ

)
=

ℓ∑
j=1

uj(t)|αj|2

If 1 ⩽ j ⩽ ℓ and eiθj ̸= eiθ then, for |t| sufficiently small, uj(t) lies in Y (t) simply because
it is close to eiθj . If eiθj = eiθ the calculations above show that uj(t) lies in Y (t). Since the
set is convex

(
M(iy + it)Φ,Φ

)
does also. If the assertion were false we could choose Φ to

be a linear combination of eigenvectors of M(iy + it) belonging to eigenvalues lying in the
complement of Y (t), and thereby force

(
M(iy + it)Φ,Φ

)
to lie in the complement. This is a

contradiction.
A glance at the diagram allows us to infer that if eiθ

′
is an eigenvalue of M(iy′) lying

close to eiθ then

(6.t) ±(θ − θ′) ⩾ ± sin(θ − θ′) ⩾ (y − y′)
(
y−1|sin θ| − 8b

)
provided of course that θ′ is chosen near θ. We readily deduce that if −1 < a < 1 there is an
ϵ > 0 such that the number of eigenvalues which lie on the arc

V (y) =
{
eiθ
∣∣∣ |sin θ| < 8yb, cos θ < 0

}
and the number of eigenvalues which lie on the arc

{
eiθ
∣∣ cos θ < a

}
are non-decreasing

functions on (0, ϵ). Indeed we can find ϵ and a such that these functions are equal and
constant on (0, ϵ). For example at a point y at which one of the eigenvalues θ = θ(y) enters
or leaves V (y) we have

|sin θ| = 8yb

Hence (6.t) holds. Moreover if y′ is close to y but less than it then

−8y′b+ |sin θ′| =
(
8yb− |sin θ|

)
−
(
8y′b− |sin θ′|

)
= (y − y′)

{
8b∓ θ − θ′

y − y′
cos θ′′

}
with θ′′ close to θ. Since cos θ′′ < 0 the right hand side is greater than or equal to 8b(y − y′).
It follows that

8y′b− |sin θ′| < 0

so that V (y) has more elements than V (y′).
We next observe that the eigenvalues ofM(iy) which do not lie on V (y) must all approach

1. Suppose they did not. From all the eigenvalues eiθ of M(iy) which lie outside of V (y)
choose one eiθ(y), with 0 ⩽

∣∣−θ(y)∣∣ ⩽ π, for which cos θ is a minimum and set a(y) = cos θ(y);
then a(y) ⩾ a. If lim infy→0 a(y) ̸= 1 then there is an a′ < 1 such that a(y) ⩽ a′ for all
sufficiently small y. Consequently there is a constant c′ such that∣∣y−1 sin θ(y)

∣∣− 8b ⩾ c′y−1

for all sufficiently small y. It then follows from (6.t) that, for y′ less than but sufficiently
close to y, ∣∣θ(y)∣∣− ∣∣θ(y′)∣∣ ⩾ c′y−1(y − y′).
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Hence, for all y′ ⩽ y, ∣∣θ(y)∣∣− ∣∣θ(y′)∣∣ ⩾ 1

2
c′ log y/y′

which is a patent impossibility. Choose δ > 0 so that
∣∣sin θ(δ)∣∣ ⩽ 1

2
, cos θ(δ) ⩾ 1

2
, and

32bδ < 1. Let r = 1/5 and choose c so that cδr = 1. We shall show that if 0 < y ⩽ δ then∣∣sin θ(y)∣∣ ⩽ cyr. If δ < ϵ < 1, c ⩾ 8b, as we may suppose, we can combine this with our

earlier assertion to see that
∥∥M(iy)−M−1(iy)

∥∥ ⩽ 2cyr on the interval (0, δ]. If the assertion
is false for some number y′ let y be the least upper bound of the numbers for which it is false.
It is true for y and

∣∣sin θ(y)∣∣ = cyr. If y′ is less than, but sufficiently close to, y then∣∣sin θ(y)∣∣− ∣∣sin θ(y′)∣∣ ⩾ 1

2

(∣∣θ(y)∣∣− ∣∣θ(y′)∣∣) ⩾
1

2
(y − y′)(cyr−1 − 8b).

Since

cyr−1 =
1

2
δ−ryr−1 ⩾

1

2
δ−1 > 16b,

we see that ∣∣sin θ(y′)∣∣ ⩽ cyr − 1

4
cyr−1(y − y′)

However, for y′ sufficiently close to y,

yr − 1

4
yr−1(y − y′) ⩽ (y′)r,

so that ∣∣sin θ(y′)∣∣ ⩽ c(y′)r.

This is a contradiction.
We turn now to the proof of Lemmas 6.1 and 6.2 for families of cuspidal subgroups of

rank greater than one. Let a(i) be one of a(1), . . . , a(r), where r is now the integer introduced

at the beginning of the present section. If α
(i)
ℓ, is a simple root of a(i) let

a
(i)
ℓ =

{
H ∈ a(i)

∣∣∣ α(i)
ℓ, (H) = 0

}
.

If we fix i and ℓ then, as was remarked before stating Lemma 2.13, there is a unique j such

that a(j) contains a
(i)
ℓ and such that Ω(a(i), a(j)) contains an element s such that α

(i)
m, ◦ s−1

is a positive root of a(j) if and only if m ̸= ℓ. We first show that if Φ belongs to E(i) then
E(g,Φ, H) is meromorphic on the convex hull of A(i) and s−1A(j) and, on this set

E
(
g,M(s,H)Φ, sH

)
= E(g,Φ, H).

For each k there is a unique cuspidal subgroup ∗P (i,k) belonging to P (i,k) which has the split

component a
(i)
ℓ . We define ∗P (j,k) in the same manner. There is no harm in supposing that

the elements of {P} have been so chosen that if ∗P (i,k1) and ∗P (i,k2) or ∗P (j,k2) are conjugate
they are equal. Choose ∗P in{

∗P (i,k)
∣∣∣ 1 ⩽ k ⩽ mi

}
=
{

∗P (j,k)
∣∣∣ 1 ⩽ k ⩽ mj

}
and suppose ∗P = ∗P (i,k) for 1 ⩽ k ⩽ m′

i and
∗P = ∗P (j,k) for 1 ⩽ k ⩽ m′

j. Let

†E(i) =

m′
i⊕

k=1

E(V (i,k) ×W,W ∗)
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and let

†E(j) =

m′
j⊕

k=1

E(V (j,k) ×W,W ∗).

According to the remarks preceding Lemma 3.5 we can identify
mi⊕
k=1

E(V (i,k),W )

or
m′

j⊕
k=1

E(V (j,k),W )

with the space of functions in †E(i) or †E(j) respectively which are invariant under right

translations by elements of ∗K0. If H belongs to a
(i)
c let H = ∗H + †H with ∗H in the

complexification of a
(i)
ℓ and †H orthogonal to a

(i)
ℓ . The restriction of M(s,H) to

m′
i⊕

k=1

E(V (i,k),W )

depends only on †H and agrees with the restriction to this space of a linear transformation
on †E(i) which, using a notation suggested by that of Lemma 4.5(ii), we call M(†s, †H). If Φ
belongs to

mi⊕
k=1

E(V (i,k),W )

then M(s,H)Φ belongs to
m′

j⊕
k=1

E(V (j,k),W ).

It is enough to show that for each ∗P and each Φ in

m′
i⊕

k=1

E(V (i,k),W )

the function E(g,Φ, H) is meromorphic on the convex hull of A(i) and s−1A(j) and

E
(
g,M(†s, †H)Φ, sH

)
= E(g,Φ, H).

If

Φ =

m′
i⊕

k=1

Φk

then

E(g,Φ, H) =

m′
i∑

k=1

E(g,Φk, H)
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and if H belongs to A(i) then

(6.u) E(g,Φk, H) =
∑
∗∆\Γ

∑
∆(i,k)\∗∆

exp

(〈
H(i,k)(δγg), H

〉
+ ρ
(
H(i,k)(δγg)

))
Φk(δγg).

If g is in G let g = namk−1 with n in ∗N , a in ∗A, m in ∗M , and k in K; then∑
∆(i,k)\∗∆

exp

(〈
H(i,k)(δg), H

〉
+ ρ
(
H(i,k)(δg)

))
Φk(δg)

is equal to

exp
(〈∗H(g), ∗H

〉
+ ρ
(∗H(g)

)) ∑
†∆(i,k)\∗Θ

exp

(〈
†H(i,k)(θm), †H

〉
+ ρ
(
†H(θm)

))
Φk(θm, k)

if
†P (i,k) = ∗N\P (i,k) ∩ ∗S

and
†∆(i,k) = ∗Θ ∩ †P (i,k)

The sum on the right is, essentially, the Eisenstein series E
(
(m, k),Φk,

†H
)
associated to

the function Φk, considered as an element of E(V (i,k) ×W,W ∗), and the cuspidal subgroup
†P (i,k) ×K. It is not quite this Eisenstein series because the Killing form on ∗m is not the
restriction to ∗m of the Killing form on g. We ignore this difficulty. It is a function on
∗Θ×{1}\∗M ×K which is invariant under right translations by elements of ∗K0 and can thus
be considered a function on ∗T\G which we write as E(g,Φk,

†H). The right side of (6.u)
equals ∑

∗∆\Γ

exp
(〈∗H(γg), ∗H

〉
+ ρ
(∗H(γg)

))
E(γg,Φk,

†H).

Consequently

(6.v) E(g,Φ, H) =
∑
∗∆\Γ

exp
(〈∗H(γg), ∗H

〉
+ ρ
(∗H(γg)

))
E(γg,Φ, †H)

if, for all g,

E(g,Φ, †H) =

m′
i∑

k=1

E(g,Φk,
†H)

A similar result is valid if i is replaced by j. The cuspidal subgroups
†P (i,k) ×K, 1 ⩽ k ⩽ m′

i

have a common split component †a(i) of dimension one. Since Lemmas 6.1 and 6.2 are valid
for families of cuspidal subgroups of rank one E(·,Φ, †H) is meromorphic on †a(i) and

E(·,Φ, †H) = E
(
·,M(†s, †H)Φ, †H

)
Let †S be a Siegel domain associated to a percuspidal subgroup †P of ∗M . If U is a bounded
subset of †a(i) let p(†H) be a polynomial such that p(†H)M(†s, †H) is analytic on U . It
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follows readily from Lemmas 5.2 and 6.2 that there is a constant c such that, for all m in S,
all k in K, and all †H in U , ∣∣∣∣p(†H)E

(
(m, k),Φ, †H

)∣∣∣∣
is at most

c

{
exp

(〈
†H(m),Re †H

〉)
+ exp

(〈
†H(m), †s(Re †H)

〉)}
exp ρ

(
†H(i)(m)

)
.

Here †H(m) belongs, of course, to †h the split component of †P and its projection on †a(i) is
†H(i)(m). The remarks following the proof of Lemma 4.1 imply that (6.v) converges absolutely
if H is in the convex hull of A(i) and s−1A(j) and M(†s, ·) is analytic at †H, that E(·,Φ, H)
is meromorphic on this set, and that every assertion of Lemma 6.2 except perhaps the last is

true if H
(i)
0 belongs to this set. Since sH = ∗H + †s(†H) the relation

E(g,Φ, H) = E
(
g,M(s,H)Φ, H

)
is immediate. It is however the last assertion of Lemma 6.2 which is of importance to us.

Let Φ belong to E(i) and let P (h,ℓ) belong to {P}. Fix a split component, which we still
call a(h), of P (h,ℓ) and let X belong to a(h), m to M (h,ℓ), and k to K. If H belongs to A(i) then∫

Γ∩N(h,ℓ)\N(h,ℓ)

E(n expXmk,Φ, H) dn

is equal to ∑
t∈Ω(a(i),a(j))

exp
(
⟨X, tH⟩+ ρ(X)

)(
E(h,ℓ)M(t,H)Φ

)
(mk)

if E(h,ℓ) is the projection of E(h) on E(V (h,ℓ),W ). If t1, . . . , tn are the elements of Ω(a(i), a(j))

there are elements X1, . . . , Xn of a(h) such that det
(
exp
(
⟨Xx, tyH⟩+ ρ(Xx)

))
does not vanish

identically. The inverse,
(
axy(H)

)
, of the matrix

(
exp
(
⟨Xx, tyH⟩+ ρ(Xx)

))
is a meromorphic

function on a(i) and
(
E(h,ℓ)M(tx, H)Φ

)
(m, k) is equal to

n∑
y=1

axy(H)

∫
Γ∩N(h,ℓ)\N(h,ℓ)

E(n expXymk,Φ, H) dn

which is meromorphic on the convex hull of A(i) and s−1A(j). Since m and k are arbitrary
this is also true of E(h,ℓ)M(t,H) and hence of M(t,H) for any t. Moreover∫

Γ∩N(h,ℓ)\N(h,ℓ)

E(ng,Φ, H) dn

is equal to ∑
t∈Ω(a(i),a(h))

exp

(〈
H(h,ℓ)(g), tH

〉
+ ρ
(
H(h,ℓ)(g)

))(
E(h,ℓ)M(t,H)Φ

)
(g)

at those points of the convex hull where both sides are defined. A similar result is of course
valid if i is replaced by j. Use this together with the functional equation we have discovered
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to see that the left side of this equation also equals∑
t∈Ω(a(j),a(h))

exp

(〈
H(h,ℓ)(g), tsH

〉
+ ρ
(
H(h,ℓ)(g)

))(
E(h,ℓ)M(t, sH)M(s,H)Φ

)
(g).

This is so for every ℓ only if

M(t, sH)M(s,H) =M(ts,H).

If i and j are arbitrary and s is any element of Ω(a(i), a(j)) then, according to the first
corollary to Lemma 2.13, s can be written as a product of reflections, say s = sn · · · s1. Let us
show by induction on n that M(s,H(i)) is meromorphic on a(i) and that its singularities lie
along hyperplanes. If n = 1 then the discussion above, together with the remarks following
the proof of Lemma 4.5(ii), shows that M(s,H(i)) depends, apart from an exponential factor,
on only one variable and is a meromorphic function on a(i). On the set A(i)

M(s,H(i)) =M(sn · · · s2, s1H(i))M(s1, H
(i))

The induction assumption implies that M(s,H(i)) is meromorphic on all of a(i) and that its
singularities lie along hyperplanes. It can also be shown by induction that if t belongs to
Ω(a(j), a(k)) then

M(ts,H(i)) =M(t, sH(i))M(s,H(i)).

Indeed
M(ts,H(i)) =M(tsn · · · s1, H(i)) =M(tsn · · · s2, s1H(i))M(s1, H

(i)).

Apply the induction assumption to the first factor to see that M(ts,H(i)) equals

M(t, sH(i))M(sn · · · s2, s1H(i))M(s1, H
(i)) =M(t, sH(i))M(s,H(i)).

There is one more property of the functions M(s,H(i)) which will be needed to complete the
proof of Lemma 6.1. If, as above, s is in Ω(a(i), a(j)), choose sn, . . . , s1 so that s = sn · · · s1
and so that if tk = sk−1 · · · s1, 2 ⩽ k ⩽ n, and sk lies in Ω(a(ik), a(jk)) and belongs to the

simple root αk, then tk

(
(a(i))+

)
is contained in{
H ∈ a(ik)

∣∣∣ αk,(H) > 0
}
.

Then

(6.w) M(s,H(i)) =M(sn, tnH
(i)) · · ·M(s2, t1H

(i))M(s1, H
(i)).

But there are only a finite number of singular hyperplanes of M(sk, H) which intersect the
closure of {

H ∈ a(ik)c

∣∣∣ Reαk,(H) > 0
}
.

Consequently there are only a finite number of singular hyperplanes of M(s,H(i)) which
intersect the closure of the tube over (a(i))+.

For each i, 1 ⩽ i ⩽ r, there are a finite number of points Z
(i)
1 , . . . , Z

(i)
ni in the orthogonal

complement of a
(i)
c in jc such that for any X in Z, the centre of the universal enveloping

algebra of g, for any H(i) in a(i), and for 1 ⩽ k ⩽ mi, the eigenvalues of π(X,H(i)), the linear
transformation on E(V (i,k),W ) defined in Section 4, belong to the set{

PX(H
(i) + Z

(i)
1 ), . . . , PX(H

(i) + Z(i)
ni
)
}
.
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There is certainly a polynomial p in Z such that

p(H(i) + Z
(i)
k ) = 0, 1 ⩽ k ⩽ ni,

if, for some s, H(i) in a
(i)
c belongs to a singular hyperplane of M(s, ·) which intersects the

closure of the tube over (a(i))+, but such that p(H(i) + Z
(i)
k ) does not vanish identically on

a
(i)
c for any choice of i and k. Thus there is an X in Z such that for all i, all j, and all s in

Ω(a(i), a(j)) the function
M(s,H(i))π(X,H(i))

is analytic on the closure of the tube over (a(i))+ but not identically zero. Let f be an
infinitely differentiable function G such that f(kgk−1) = f(g) for all g and all k and such
that the determinant of the linear transformation π(f,H(i)) on E(i) vanishes identically for
no i. Set f0 = λ′(X)f ; then π(f0, H

(i)) = π(X,H(i))π(f,H(i)) and its determinant does not
vanish identically. If S is a Siegel domain associated to a percuspidal subgroup then for each
g in S define E ′(h,Φi, H

(i)) as in the beginning of this section. According to (4.r) and (6.b)

the inner product of λ(f0)E
′(·,Φi, H

(i)
1 ) and λ(f0)E

′(·,Ψj, H
(j)
2 ) is equal to∑

s∈Ω(a(i),a(j))

a2

(2π)q ∫
ReH(i)=Y (i)

(
M(s,H(i))π(f0, H

(i))Φ, π(f0,−sH
(i)
)Ψj

)
ξ(s,H(i)) |dH(i)|

with

ξ(s,H(i))

= exp
〈
X(g), H

(i)
1 +H

(j)

2 −H(i) + sH(i)
〉

q∏
k=1

α
(i)
k, (H

(i)
1 −H(i))α

(j)
k, (H

(j)

2 + sH(i))


If the relation (6.w) is combined with the estimates obtained for the function M(z) of
Lemma 6.3 when Re z ⩾ 0 it is seen that in this integral Y (i) can be replaced by 0. Con-

sequently the expression is an analytic function of (H
(i)
1 , H

(j)
2 ) on the Cartesian product of

the tubes over (a(i))+ and (a(j))+. Applying an argument similar to that used in the case
of a single variable we see that λ(f0)E

′(·,Φi, H
(i)) is an analytic function on the tube over

(a(i))+ with values in L(Γ\G). The estimate of (6.d) is a manifest consequence of the above
expression for the inner product. We conclude that E(·, ϕi, H

(i)) is meromorphic on the tube

over (a(i))+ and that Lemma 6.2 is true if H
(i)
0 is in this set. If H(i) lies on the boundary of

this set and if, for every h and all t in Ω(a(i), a(j)), M(t, ·) is analytic at H(i) then, applying
Lemma 5.2, we define E(·,Φ, H(i)) by continuity. Suppose W is a Weyl chamber of a(i).
Choose the unique j and the unique s in Ω(a(i), a(j)) such that sW = (a(j))+ and if H(i) is in
the closure of the tube over W set

E(·,Φi, H
(i)) = E

(
·,M(s,H(i))Φi, sH

(i)
)

when the right side is defined. Then∫
Γ∩N(h,ℓ)\N(h,ℓ)

E(ng,Φi, H
(i)) dn
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is equal to∑
t∈Ω(a(j),a(h))

exp

(〈
H(h,ℓ)(g), tsH(i)

〉
+ ρ
(
H(h,ℓ)(g)

))(
E(h,ℓ)M(t, sH(i))M(s,H(i))Φi

)
(g).

Since the cuspidal component of ∫
Γ∩N\N

E(ng,Φi, H
(i)) dn

is zero if P is not conjugate to an element of {P} and since E(·,Φi, H
(i)) has the proper

rate of growth on Siegel domains it follows from Lemma 5.2 that E(·,Φi, ·) can be defined
at H(i) in the closure of W if, for all h and all t in Ω(a(i), a(h)), M(t, ·) is analytic at H(i).
However a given point H(i) at which all functions M(t, ·) are analytic may lie in the closure
of more than one Weyl chamber so that it is not clear that we have defined E(·,Φ, H(i))
unambiguously; but to see that we have, it is sufficient to refer to Lemma 3.7. Lemma 5.3

implies that E(·,Φi, H
(i)) is meromorphic on a

(i)
c and that the first assertion of Lemma 6.2 is

valid. It remains to verify the functional equations. Appealing again to Lemma 3.7 we see
that it is enough to show that for all j, all s in Ω(a(i), a(j)), and for 1 ⩽ h ⩽ r, 1 ⩽ ℓ ⩽ mh,∫

Γ∩N(h,ℓ)\N(h,ℓ)

E(ng,Φi, H
(i)) dn =

∫
Γ∩N(h,ℓ)\N(h,ℓ)

E
(
ng,M(s,H(i))Φi, sH

(i)
)
dn.

The left side has just been calculated; the right side is∑
t∈Ω(a(j),a(h))

exp

(〈
H(h,ℓ)(g), tsH(i)

〉
+ ρ
(
H(h,ℓ)(g)

))(
E(h,ℓ)M(t, sH(i))M(s,H(i))Φi

)
(g).

Since
M(t, sH(i))M(s,H(i)) =M(ts,H(i))

they are equal.



CHAPTER 7

The main theorem

As was stressed in the introduction the central problem of this paper is to obtain a spectral
decomposition for L(Γ\G) with respect to the action of G. Referring to Lemma 4.6 we see
that it is enough to obtain a spectral decomposition for each of the spaces L

(
{P}, {V },W

)
with respect to the action of C(W,W ). If q is the rank of the elements of {P} it will be seen
that L

(
{P}, {V },W

)
is the direct sum of q + 1 invariant and mutually orthogonal subspaces

Lm

(
{P}, {V },W

)
, 0 ⩽ m ⩽ q,

and that, in a sense which will become clear later, the spectrum C(W,W ) in Lm

(
{P}, {V },W

)
is of dimension m. The spectral decomposition of Lq

(
{P}, {V },W

)
will be effected by means

of the Eisenstein series discussed in Section 6, the Eisenstein series associated to cusp
forms. The spectral decomposition of Lm

(
{P}, {V },W

)
, m < q, is effected by means of

the Eisenstein series in m-variables which are residues of the Eisenstein series in q variables
associated to cusp forms. More precisely the series in m-variables are residues of the series
in m+ 1 variables. In any case they are by definition meromorphic functions and it will be
proved that they must satisfy functional equations similar to those of Lemma 6.1. It will
also be shown that there are relations between the functions defined by Eisenstein series and
certain other functions that arise in the process of taking residues but cannot be defined
directly. It will be apparent, a posteriori, that the Eisenstein series described above are
precisely those of Lemma 4.1.

It will be easy to define the space Lq

(
{P}, {V },W

)
; the other spaces Lm

(
{P}, {V },W

)
,

m < q will be defined by induction. Although the spaces Lm

(
{P}, {V },W

)
can be shown, a

posteriori, to be unique it is, unfortunately, necessary to define them by means of objects
which are definitely not unique. Since the induction on m must be supplemented by an
induction similar to that of the last section this lack of uniqueness will cause us trouble if we do
not take the precaution of providing at each step the necessary material for the supplementary
induction. To do this it is best to let {P} denote a full class of associate cuspidal subgroups
rather than a set of representatives for the conjugacy classes in an equivalence class. Then
L
(
{P}, {V },W

)
is just the closure of the space of functions spanned by the functions

ϕ̂(g) =
∑
∆\Γ

ϕ(γg)

where for some P in {P}, ϕ belongs to D(V,W ). Suppose ∗P is a cuspidal subgroup belonging
to some element P of {P}. The space D(V ⊗W,W ∗) of functions on †T × {1}\∗M ×K has
been defined; it can be regarded as a space of functions on ∗AT × {1}\∗P ×K. The subspace
D(V ⊗W,W ∗) consisting of those functions ϕ such that ϕ(p1, k1) = ϕ(p2, k2) when p1 and
p2 belong to ∗P , k1 and k2 belong to K, and p1k

−1
1 = p2k

−1
2 can be regarded as a space of

functions on ∗AT\G. It will be called ∗D(V,W ). Then ∗L
(
{P}, {V },W

)
will be the closure,

in L
(∗Θ× {1}\∗M ×K

)
, of the space of functions on ∗A ∗T\G spanned by functions of the

105
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form
ϕ̂(g) =

∑
∆\∗∆

ϕ(γg)

where, for some P in ∗{P}, the set of elements in {P}, to which ∗P belongs, ϕ belongs to
∗D(V,W ). If a(1), . . . , a(r) are as before the distinct split components of the elements of {P}
we let ∗{P}(i) be the set of elements in ∗{P} with the split component a(i) and define {P}(i)
in a similar fashion. Suppose P belongs to ∗{P}(i) and †a(i) is the orthogonal complement
of ∗a in a(i). Let ∗H(V,W ) be the set of all functions Φ(·) with values in C(V,W ) which are
defined and analytic on {

H ∈ †a(i)c

∣∣∣ ∥ReH∥ < R
}

and are such that, if p is any polynomial,
∥∥p(ImH)Φ(H)

∥∥ is bounded on this set. Here R is

the number introduced at the end of Section 4 and ∥ReH∥ is the norm of ReH in a(i). If we
are to use these new spaces effectively we have to realize that all of the facts proved earlier
have analogues for these new types of spaces. Since the proof generally consists merely of
regarding functions on ∗N∗A\G as functions on ∗M ×K we will use the analogues without
comment. In particular the analogue of the operator A on L

(
{P}, {V },W

)
is defined on

∗L
(
{P}, {V },W

)
; it will also be called A.

Since the entire discussion concerns one family {P}, one family {V }, and one space W we
fix the three of them immediately and start by introducing some simple notions. Let a = a(i)

with 1 ⩽ i ⩽ r. If s is a complex affine subspace of ac defined by equations of the form
α(H) = µ where α is a positive root of a and µ is a complex number then s = X(s)+ s̃ where
s̃ is a complex subspace of ac defined by real linear equations which contains zero and X(s)
is orthogonal to s̃. Let S(s) be the symmetric algebra over the orthogonal complement of s̃.
Suppose ∗a is a distinguished subspace of a and suppose s̃ contains ∗s. If †a is the orthogonal
complement of ∗a in a there is a unique isomorphism Z → D(Z) of S(s) with a subalgebra of
the algebra of holomorphic differential operators on †ac such that

D(Y )f(H) =
df

dt
(H + tY )

∣∣∣∣
t=0

if Y belongs to the orthogonal complement of s̃. If E is a finite-dimensional unitary space and
if Φ(·) is a function with values in E which is defined and analytic in a neighbourhood of the
point H in †ac let dΦ(H) be that element of L

(
S(s),E

)
, the space of linear transformations

from S(s) to E, defined by
dΦ(H)(Z) = D(Z)Φ(H).

The space L
(
S(s),E

)
can be identified with the space of formal power series over the

orthogonal complement of s̃ with coefficients in E and we obtain dΦ(H) by expanding the
function

ΦH(Y ) = Φ(H + Y )

about the origin. If f(·) is a function with values in the space of linear transformations
from E to E′ which is defined and analytic in a neighbourhood of H we can regard df(H)
as a power series; if F belongs to L

(
S(s),E

)
the product df(H)F is defined and belongs to

L
(
S(s),E′). There is a unique conjugate linear isomorphism Z → Z∗ of S(s) with itself such

that Y ∗ = −Y if Y belongs to the orthogonal complement of s̃ and there is a unique function
(T, F ) on

S(s)⊗ E× L
(
S(s),E

)
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which is linear in the first variable and conjugate linear in the second and such that

(Z ⊗ Φ, F ) =
(
Φ, F (Z∗)

)
if Z is in S(s), Φ is in E, and F is in L

(
S(s),E

)
. It is easily seen that if Λ is any linear

function on S(s)⊗E there is an F in L
(
S(s),E

)
such that Λ(T ) = (T, F ) for all T in S(s)⊗E.

If we define the order of F , denoted O(F ), to be the degree of the term of lowest degree which
actually occurs in the power series expansion of F and if we say that a linear transformation
N from L

(
S(s),E

)
to some other vector space is of finite degree n if NF = 0 when O(F ) is

greater than n and if NF ≠ 0 for some F of order n then a linear function Λ on L
(
S(s),E

)
is

of finite degree if and only if there is a T in S(s)⊗E such that Λ(F ) is the complex conjugate
of (T, F ) for all F . In particular if t is a subspace of a(j) defined by linear equations of the
form α(H) = µ where α is a positive root of a(j) and µ is a complex number, if E′ is another
unitary space, and if N is a linear transformation from L

(
S(s),E

)
to S(t)⊗ E ′ which is of

finite degree, there is a unique linear transformation N∗ from L
(
S(t),E′) to S(s)⊗ E such

that (NF,F ′) is the complex conjugate of (N∗F ′, F ) for all F and F ′ and N∗ is of finite
degree.

There is a unique isomorphism Z → pZ of S(s) with a subalgebra of the algebra of
polynomials on †ac such that pY (H) = ⟨H,Y ⟩ if Y belongs to the orthogonal complement
of s̃. If P belongs to {P}(i), V is the corresponding element of {V }, and ∗P is the cuspidal
subgroup with split component ∗a belonging to P and if ∗A is a split component of ∗P there
is a unique map of S(s)⊗E(V,W ) into the space of functions on ∗AT\G such that the image
of Z ⊗ Φ is pZ

(†H(g)
)
Φ(g) if †H(g) is the projection of H(g) on †a. We denote the image of

T by T (·). If ψ(g) belongs to ∗D(V,W ) then we can represent ψ(g) as a Fourier transform

ψ(g) =
1

(2πi)p

∫
ReH=0

exp

(〈
†H(g), H

〉
+ ρ
(
†H(g)

))
Ψ(g,H) |dH|

where Ψ(·) is a holomorphic function on †ac with values in E(V,W ) and ψ(g,H) is the value
of Ψ(H) at g, and p is the dimension of †a. We shall need the formula

(7.a)
(
T, dΨ(−H)

)
=

∫
†T\∗M×K

exp

(〈
†H(m), H

〉
+ ρ
(
†H(m)

))
T (m)ψ(m) dmdk

for H in †ac and T in S(s)⊗E(V,W ). We need only verify it for T = Z ⊗Φ. If Y belongs to
†a then the function ψ(expY mk) on M ×K belongs to E(V,W ); call it Ψ′(Y ). Then

Ψ(H) =

∫
†a

exp
(
−⟨Y,H⟩ − ρ(Y )

)
Ψ′(Y ) |dY |.

Consequently

D(Z∗)Ψ(H) =

∫
†a

exp
(
−⟨Y,H⟩ − ρ(Y )

)
pZ∗(−Y )Ψ′(Y ) |dY |.

Since the complex conjugate of pZ∗(−Y ) is pZ(Y ),(
Φ, D(Z∗)Ψ(−H)

)
is equal to∫

†a

ω2(a) da

∫
Θ\M

dm

∫
K

dk
{
exp
(
⟨Y,H⟩+ ρ(Y )

)
pZ(Y )Φ(mk)ψ(expY mk)

}
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or ∫
†T\∗M×K

exp

(〈
†H(m), H

〉
+ ρ
(
†H(m)

))
(Z ⊗ Φ)(mk)ψ(mk) dmdk.

Suppose that t is contained in S and is also defined by equations of the form α(H) = µ
where α is a positive root and µ is a complex number. There are a number of simple relations
between S(s) and S(t) which we state now although they are not needed till later. Let S0(t)
be the symmetric algebra over the orthogonal complement of t in s; then S(t) is isomorphic
in a natural manner to S0(t)⊗ S(s). If F belongs to L

(
S(t),E

)
and X0 belongs to S0(t) let

X0 ∨ F be that element of L
(
S(s),E

)
such that

(X0 ∨ F )(X) = F (X0 ⊗X).

It is clear that S(t)⊗E is isomorphic to S0(t)⊗
(
S(s)⊗ E

)
and that if T belongs to S(s)⊗E

then
(T,X0 ∨ F ) = (X∗

0 ⊗ T, F ).

If F (·) is a function defined in a neighbourhood of a point H in †a with values in L
(
S(s),E

)
such that F (·)(X) is analytic at H for all X in S(s) we let dF (H) be that element of
L
(
S(t),E

)
such that

dF (H)(X0 ⊗X) = D(X0)
(
F (H)(X)

)
.

It is clear that
d(dΦ)(H) = dΦ(H).

There is one more definition to make before we can begin to prove anything. Let s be a
subspace of a(i) as above and suppose that if ∗P is any cuspidal subgroup belonging to an
element of {P} whose split component ∗a is contained in s̃ and P is any element of ∗{P}(i)
there is given a function E(g, F,H) on

∗A ∗T\G× L
(
S(s),E(V,W )

)
× †s.

Here †s is the projection of s on the orthogonal complement of ∗a. The space s together with
this collection of functions will be called an Eisenstein system belonging to s if the functions
E(·, ·, ·) do not all vanish identically and the following conditions are satisified.

(i) Suppose ∗P and a P in ∗{P}(i) are given. For each g in G and each F in

L
(
S(s),E(V,W )

)
the function E(g, F,H) on †s is meromorphic. Moreover if H0 is any point of †s
there is a polynomial p(H) which is a product of linear polynomials α(H)−µ, where
α is a positive root of †a and µ is a complex number, and which does not vanish
identically on †s and a neighbourhood U of H0 such that p(H)E(g, F,H) is, for all
F in L

(
S(s),E(V,W )

)
, a continuous function on ∗AT\G×U which is analytic on U

for each fixed g and such that if S0 is a Siegel domain associated to a percuspidal
subgroup P0 of ∗M and F belongs to L

(
S(s),E(V,W )

)
, there are constants c and b

such that ∣∣p(H)E(mk,F,H)
∣∣ ⩽ cηb

(
a0(m)

)
for all m in S0, k in K, and all H in U . The function E(g, F,H) is for each g and
H a linear function of F and there is an integer n such that E(g, F,H) vanishes for
all g and H if the order of F is greater than n.
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(ii) If ∗a is a distinguished subspace of a(i) which is contained in s̃ and if a(j) contains ∗a

let †Ω(j)(s) be the set of distinct linear transformations from s into a
(j)
c obtained by

restricting the elements of †Ω(a(i), a(j)) to s. If s belongs to †Ω(j)(s) let

ss =
{
−(sH)

∣∣∣ H ∈ s
}
;

ss is a complex affine subspace of a(j). Suppose the cuspidal subgroup ∗P with
split component ∗a, the group P in ∗{P}(i), and the group P ′ in ∗{P}(j) are given.
Then for every s in †Ω(j)(s) there is a function N(s,H) on †s with values in the
space of linear transformations from L

(
S(s),E(V,W )

)
to S(ss) ⊗ E(V ′,W ) such

that for all F in L
(
S(s),E(V,W )

)
and all F ′ in L

(
S(ss),E(V

′,W )
)
the function(

N(s,H)F, F ′) is meromorphic on †s. If H0 is a point of †s there is a polynomial

p(H) and a neighbourhood U as before such that p(N)
(
N(s,H)F, F ′) is analytic

on U for all F and F ′. Moreover there is an integer n such that
(
N(s,H)F, F ′)

vanishes identically if the order of F or of F ′ is greater than n. Finally, if
†P ′ = ∗N\P ′ ∩ ∗S

then

(7.b)

∫
∗Θ∩†N ′\†N ′

E(nmk, F,H) dn

=
∑

s∈†Ω(j)(s)

exp

(〈
†H ′(m), sH

〉
+ ρ
(
†H ′(m)

))
N(s,H)F (mk)

provided both sides are defined. However, if P ′′ is a cuspidal subgroup to which ∗P
belongs and P ′′ does not belong to {P} then the cuspidal component of∫

∗Θ∩†N ′′\†N ′′
E(nmk, F,H) dn

is zero.
(iii) Suppose ∗P1, with split component ∗a1, is a cuspidal subgroup belonging to some

element of {P} and ∗P , with split component ∗a, is a cuspidal subgroup belonging

to ∗P1 and suppose s̃ contains ∗a1. If P belongs to ∗{P}(i)1 and hence to ∗{P}(i)
and F belongs to L

(
S(s),E(V,W )

)
then E1(·, F, ·) and E(·, F, ·) are functions on

∗A1
∗T1\G× †s1 and ∗A ∗T\G× †s respectively. If H belongs to †s let H = H∗ + †H

where ∗H belong to the complexification of the orthogonal complement of ∗a in ∗a1
and †H belongs to †s1; if H belongs to⋃

∗a1⊆a(j)

⋃
s∈†Ω1(a(i),a(j))

s−1(†U (j))

then

(7.c) E(g, F,H) =
∑

∗∆1\∗∆

exp
(〈∗H1(γg),

∗H
〉
+ ρ0

(∗H1(γg)
))
E1(γg, F,

†H)

if E1(·, F, ·) is analytic at †H. Here ρ0
(∗H(g)

)
is the value of ρ at the projection of

∗H1(g) on the orthogonal complement of ∗a. The convergence of (7.c) is implied by
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the remarks following the proof of Lemma 4.1. Moreover if P ′ belongs to ∗{P}(j)1

and s belongs to †Ω
(j)
1 (s) then

N(s,H) = N1(s,
†H).

(iv) Suppose ∗P1 and ∗P2 are cuspidal subgroups with the split component ∗a which both

belong to elements of {P} and suppose s̃ contains ∗a. Suppose P1 belongs to ∗{P}(i)1

and P2 belongs to ∗{P}(i)2 and suppose there is a γ in Γ such that γ∗P1 =
∗P2γ and

γP1 = P2γ. If H belongs to †s let D(H) be the map from E(V1,W ) to E(V2,W ) and
D be the map from functions on ∗A1

∗T1\G to the functions on ∗A2
∗T2\G which were

defined in Section 4; then if F belongs to L
(
S(s),E(V,W )

)
(7.d) DE1(g, F,H) = E2

(
g, dD(H)F,H

)
.

Moreover if P ′
1 and P ′

2 belong to ∗{P}(j)1 and ∗{P}(j)2 respectively and there is a δ in
Γ with

δP ′
1 = P ′

2δ

and
δ∗P1 =

∗P2δ

so that the map D(H) from E(V ′
1 ,W ) to E(V ′

2 ,W ) is defined for all H in †s and if s
belongs to †Ω(j)(s) then

(7.e)
(
N1(s,H)F, F ′) = (N2(s,H)

(
dD(H)F

)
, dD(−sH)F ′

)
for all F and F ′.

(v) If k is in K then

λ(k)E(g, F,H) = E
(
g, λ(k)F,H

)
and if f belongs to C(W,W ) then

λ(f)E(g, F,H) = E
(
g, d
(
π(f,H)

)
F,H

)
.

Suppose that s = a(i). Then S(s) is just the space of constants so that, for all P in {P}(i),
the map F → F (1) defines an isomorphism of L

(
S(s),E(V,W )

)
with E(V,W ). If ∗P is a

cuspidal subgroup with split component ∗a which belongs to some element of {P}, if ∗a is
contained in a(i), if P belongs to ∗{P}(i), and if F belongs to L

(
S(s),E(V,W )

)
we let

E(g, F,H) =
∑
∆\∗∆

exp
(〈
H(γg), H

〉
+ ρ0

(
H(γg)

))
Φ(γg)

if H belongs to †A(i). Here Φ = F (1) and ρ
(
H(g)

)
is the value of ρ at the projection of

H(g) on the orthogonal complement of ∗a. This collection of functions certainly defines an
Eisenstein system and, as remarked before, all the other Eisenstein systems of interest to us
will be obtained from systems of this type by taking residues. Let us see explicitly how this
is done.

Suppose that s is a subspace of a = a(i) defined by equations of the same form as before
and suppose that ϕ(·) is a function meromorphic on all of s whose singularities lie along
hyperplanes of the form α(H) = µ where α is a real linear function a and µ is a complex
number. Suppose we have a hyperplane t, not necessarily a singular hyperplane of ϕ(·), of this
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form and suppose we choose a real unit normal H0 to t. Then we can define a meromorphic
function Rest ϕ(·) on t by

Res
t
ϕ(H) =

δ

2πi

∫ 1

0

ϕ(H + δe2πiΘH0) d(e
2πiΘ)

if δ is so small that ϕ(H + zH0) has no singularities for 0 < |z| < 2δ. It is easily verified that
the singularities of Rest ϕ(·) lie on the intersections with t of the singular hyperplanes of ϕ(·)
different from t. Now suppose we have an Eisenstein system

{
E(·, ·, ·)

}
belonging to s and

suppose t is a hyperplane of s defined by an equation of the form α(H) = µ where α is a
positive root of a. We now define an Eisenstein system belonging to t. Suppose that ∗P is a
cuspidal subgroup belonging to some element of {P} and suppose that the split component
∗a of ∗P is contained in t̃. Then ∗a is also contained in s̃ so that if P belongs to ∗{P}(i) there
is a function E(·, ·, ·) defined on

∗A ∗T\G× L
(
S(s),E(V,W )

)
× †s.

If g is in G and Φ(·) is a function on ac with values in E(V,W ) which is defined and analytic
in a neighbourhood of H in †a(i) then Res†tE

(
g, dΦ(·), ·

)
is defined in a neighbourhood of H

in t. Let

dΦ(H + zH0) =
∞∑
x=0

zx

x!
d
(
D(Hx

0 )Φ(H)
)

and let

E(g, F,H + zH0) =
∞∑

y=−∞

zyEy(g, F,H)

if F belongs to L
(
S(s),E(V,W )

)
. Of course only a finite number of terms with negative y

actually occur. Then

Res
†t
E
(
g, dΦ(H), H

)
=

∑
x+y=−1

1

x!
Ey

(
g, d
(
D(Hx

0 )Φ(H)
)
, H
)
.

If F belongs to L
(
S(t),E(V,W )

)
we set

Res
t
E(g, F,H) =

∑
x+y=−1

1

x!
Ey(g,H

x
0 ∨ F,H)

We must verify that the collection of functions of RestE(·, ·, ·) is an Eisenstein system
belonging to t. Condition (i) is easily verified. If ∗P and P are as above and if P ′ belongs to
∗{P}(j) then∫

∗Θ∩†N ′\†N ′
Res
t
E(nmk, F,H) =

∑
x+y=−1

1

x!

∫
∗Θ∩†N ′\†N ′

Ey(nmk,H
k
0 ∨ F,H) dn.

Suppose that, for s in †Ω(j)(s),

N(s,H + zH0) =
∞∑

v=−∞

zvNv(s,H),

then ∫
∗Θ∩†N ′\†N ′

Ey(nmk,H
x
0 ∨ F,H) dn
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is equal to the sum over s in †Ω(j)(s) of

exp

(〈
†H ′(m), sH

〉
+ ρ
(
†H ′(m)

)) ∑
u+v=y

1

u!

〈
†H ′(m), sH0

〉u(
Nv(s,H)(Hx

0 ∨ F )
)
(mk).

If for t in †Ω(j)(t) we take RestN(t,H) be that linear transformation from L
(
S(t),E(V,W )

)
to S(tt)⊗ E(V ′,W ), where

tt =
{
−(tH)

∣∣∣ H ∈ t
}
,

which sends F in L
(
S(t),E(V,W )

)
to∑

s

∑
x+y+v=−1

1

x!u!
(sH0)

u ⊗Nv(s,H)(Hx
0 ∨ F ),

where the outer sum is over those s in †Ω(j)(s) whose restriction to t equals t, then∫
∗Θ∩†N ′\†N ′

Res
t
E(nmk, F,H) dn

is equal to ∑
t∈†Ω(j)(t)

exp

(〈
†H ′(m), tH

〉
+ ρ
(
†H ′(m)

))(
Res
t
N(t,H)F

)
(mk).

It is now an easy matter to complete the verification of condition (ii). It should be remarked
that if Φ(·) is a function with values in E(V,W ) which is defined and analytic in a neigh-
bourhood of H in †a(i) and if Ψ(·) is a function with values in E(V ′,W ) which is defined and
analytic in an open set of †a(j) containing{

−sH
∣∣∣ s ∈ †Ω(j)(s)

}
then

Res
†t


∑

s∈†Ω(j)(s)

(
N(s,H) dΦ(H), dΨ(−sH)

)
is equal to ∑

t∈†Ω(k)(t)

Res
t

(
N(t,H) dΦ(H), dΨ(−sH)

)
.

The conditions of (iii), (iv), and (v) are also verified easily.
There is a lemma which should be proved before we leave the subject of residues. It

appears rather complicated because it is stated in such a form that it is directly applicable
in the proof of Theorem 7.1, which is the only place it is used; however, it is essentially a
simple consequence of the usual residue theorem. If s is a subspace of a = a(i), for some i
with 1 ⩽ i ⩽ r, defined by the equations of the usual form and if

{
E(·, ·, ·)

}
is an Eisenstein

system belonging to s then a hyperplane t of s will be called a singular hyperplane of the
Eisenstein system if there is a cuspidal subgroup ∗P whose split component ∗a is contained in
t and a cuspidal subgroup P contained in ∗{P}(i) such that the projection of t on †s is either a
singular hyperplane of E(·, F,H) for some F in L

(
S(s),E(V,W )

)
or a singular hyperplane of(

N(s,H)F, F ′) for some F in L
(
S(s),E(V,W )

)
, some P ′ in ∗{P}(j), some s in †Ω(j)(s), and
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some F ′ in L
(
S(s),E(V ′,W )

)
. Only a finite number of singular hyperplanes of the Eisenstein

system meet each compact subset of s. Let

ŝ = X(s) + (s̃ ∩ a)

If Z is a point in ŝ and a is a positive number or infinity let

U(s, Z, a) =
{
Z + iH

∣∣ H ∈ s̃ ∩ a, ∥H∥ < a
}

and if ∗a is a distinguished subspace of a which is contained in s̃ let U(†s, Z, a) be the
projection of U(s, Z, a) on †s. Let a be a positive number and let Z1 and Z2 be two distinct
points in ŝ. If 0 ⩽ x ⩽ 1 let

Z(x) = xZ1 + (1− x)Z2

and suppose that there is a number x0 with 0 < x0 < 1 such that no singular hyperplane of
the Eisenstein system meets the closure of U

(
s, Z(x), a

)
if x ̸= x0 and such that any singular

hyperplane which meets the closure of U
(
s, Z(x0), a

)
is defined by an equation of the form

⟨H,Z2 − Z1⟩ = µ where µ is a complex number. If ∗P , P , P ′ and s are given we want to
consider

(7.f)
1

(2πi)m

∫
U(†s,Z2,a)

E
(
g, dΦ(H), H

)
dH − 1

(2πi)m

∫
U(†s,Z1,a)

E
(
g, dΦ(H), H

)
dH

as well as the sum over s in Ω(j)(s) of

(7.g)
1

(2πi)m

{∫
U(†s,Z2,a)

(
N(s,H) dΦ(H), dΨ(−sH)

)
dH

−
∫
U(†s,Z1,a)

(
N(s,H), dΦ(H), dΨ(−sH)

)
dH

}
.

The function Φ(H) is a function with values in E(V,W ) that is defined and analytic in a
neighbourhood of the closure of

⋃
0⩽x⩽1 U(

†s, Z, a) in †a(i) and Ψ(H) is a function with values
in E(V ′,W ) which is defined and analytic in a neighbourhood of⋃

s∈†Ω(j)(s)

⋃
0⩽x⩽1

U(†ss,−sZ, a)

in †a(j). The dimension of †s is m.
Choose coordinates z = (z1, . . . , zm) on

†s such that H(z) belongs to ŝ if and only if z is
real, such that 〈

H(z), H(w)
〉
=

m∑
k=1

zkwk,

such that †Z1, the projection of Z1 on †s, is equal to H(0, . . . , 0), and such that †Z2 =

H(0, . . . , 0, c) with some positive number c. Set w = (0, . . . , c). If a′ =
(
a2 −

∥∥ImX(s)
∥∥2)1/2

the above differences are equal to

(7.h)

(
1

2π

)m ∫
|y|<a′

ϕ(w + iy) dy1 · · · dym −
(

1

2π

)m ∫
|y|<a′

ϕ(iy) dy1 · · · dym
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with ϕ(z) equal to E
(
g, dΦ

(
H(z)

))
or to∑

s∈†Ω(j)(s)

(
N
(
s,H(z)

)
dΦ
(
H(z)

)
, dΨ

(
−sH(z)

))
.

Choose b > a′ so that no singular hyperplane of ϕ(·) intersects (iy1, . . . , iym−1, x+ iym)

∣∣∣∣∣∣
m∑
k=1

|yi|2 < b2, 0 ⩽ x ⩽ c, x ̸= x0c

,
and so that any singular hyperplane which intersects (iy1, . . . , iym−1, x0c+ iym)

∣∣∣∣∣∣
m∑
k=1

|yk|2 < b2


is defined by an equation of the form zm = µ. Choose, in the m− 1-dimensional coordinate
space, a finite set of half-open rectangles J (ℓ), 1 ⩽ ℓ ⩽ n, defined by

α
(ℓ)
k < yk < β

(ℓ)
k , 1 ⩽ k ⩽ m− 1

and for each ℓ a positive number γℓ such that
n⋃

ℓ=1

{
(y1, . . . , ym−1, ym)

∣∣∣ (y1, . . . , ym−1) ∈ J ℓ, |ym| < γℓ
}

contains the closed ball of radius a′ and is contained in the open ball of radius b. The
expression (7.h) differs from

(7.i)
n∑

ℓ=1

1

(2π)m−1

∫ βℓ
1

αℓ
1

dy1 · · ·
∫ βℓ

m−1

αℓ
m−1

dym−1
1

2πi

{∫ c+iγk

c−iγk

−
∫ iγk

−iγk

ϕ(iy1, . . . , iym−1, zm) dzm

}
by the sum of two integrals. Each of these integals is of the form

(7.k)
1

(2πi)m

∫
Y

ϕ(z) dz1 ∧ · · · ∧ dzm

where U is an open subset of a real oriented subspace of the coordinate space which is of
dimension m and is contained in{

z = (zm, . . . , zm)
∣∣ ∥Im z∥ > a′

}
.

If zm = µj, 1 ⩽ j ⩽ p are the singular hyperplanes of ϕ(z) which meet (iy1, . . . , iym−1, x0c+ iym)

∣∣∣∣∣∣
m∑
i=1

|yi|2 < b


and ϕj(z1, . . . , zm−1) is the residue of ϕ(z1, . . . , zm−1, zm) at µj the sum (7.i) differs from

p∑
j=1

n∑
ℓ=1

1

(2π)m−1

∫
Jℓ

ϕj(iy1, . . . , iym−1) dy1 · · · dym−1
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by an integral of the form (7.k). The latter sum differs from
p∑

j=1

1

(2π)m−1

∫
|y|<a′j

ϕj(iy1, . . . , iym−1) dy1 · · · dym−1

with a′j =
(
(a′)2 − (Imµj)

2
)1/2

by a sum of the form

p∑
j=1

1

(2πi)m−1

∫
Uj

ϕj(z) dz1 ∧ · · · ∧ dzm−1

where Uj is an open subset of a real oriented subspace of dimension m− 1 of the hyperplane
zm = µj which is contained in{

z = (z1, . . . , zm−1, zm)
∣∣ ∥Im z∥ > a′

}
.

Let t1, . . . , tn be the singular hyperplanes of the Eisenstein system which meet the closure of
U
(
s, Z(x0), a

)
. If none of the t̃ℓ, 1 ⩽ ℓ ⩽ n contain ∗a then the expression (7.f) is equal to a

sum of integrals of the form

(7.ℓ)
1

(2πi)m′

∫
U ′
E ′(g, dΦ(H), H

)
dH

where U ′ is an open subset of some real subspace of dimension m′ of the space †t, the
projection on †a(i) of t, which is s itself or a singular hyperplane of the Eisenstein system
such that t̃ contains ∗a, and is contained in

{
H
∣∣ ∥ImH∥ > a

}
and E ′(·, ·, ·) is E(·, ·, ·) or

RestE(·, ·, ·). If ∗a is contained in one, and hence all, of the t̃ℓ then the expression (7.f) differs
from

m∑
ℓ=1

1

(2πi)m−1

∫
U(†tℓ,Wℓ,a)

Res
tℓ
E
(
g, dΦ(H), H

)
dH,

where Wℓ is a point in X(tℓ) + (tℓ ∩ a(i)) such that ReWℓ is in the convex hull of ReZ1

and ReZ2, by a sum of integrals of the form (7.ℓ). A similar assertion is valid for the
expression (7.g). The last sum is replaced by

n∑
ℓ=1

∑
t∈†Ω(j)(tℓ)

1

(2πi)m−1

∫
U(†tℓ,Wℓ,a)

(
Res
t
N(t,H) dΦ(H), dΨ(−tH)

)
dH

and the integrals (7.ℓ) are replaced by

(7.m)
1

(2πi)m′

∫
U ′

(
N ′(t,H) dΦ(H), dΨ(−tH)

)
dH

with t in †Ω(j)(t′) and N ′(t,H) equal to N(t,H) if t′ = s and to Rest′ N(t,H) if t′ is a singular
hyperplane. The lemma we need is a refinement of these observations. In stating it we keep
to our previous notation.

Lemma 7.1. Suppose that for every positive number a there is given a non-empty open
convex subset V (a) of

X(s) = (s̃ ∩ a(1))
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such that no singular hyperplane intersects the closure of U(s,W, a) if W belongs to V (a) and
such that V (a1) contains V (a2) if a1 is less that a2. Let Z be a given point in X(s)+ (̃s∩ a(i))
and if W belongs to X(s) + (s̃ ∩ a(i)) let

W (x) = (1− x)Z + xW.

Then there is a subset T of the set S of singular hyperplanes, and for each t in T a distinguished
unit normal, and for each a > 0 a non-empty open convex subset W (a) of V (a), and, for each
t, a non-empty open convex subset V (t, a) of X(t)+ (̃t∩ a(i)) such that, for any ∗P , P , and P ′

such that s̃ contains ∗a, any W in V (a), any choice of W (t) in V (t, a), and any ϵ > 0 such
that no element of T meets the closure of U

(
s,W (x), a

)
if 0 < x ⩽ ϵ, the difference between

1

(2πi)m

∫
U(†s,W,a)

E
(
g, dΦ(H), H

)
dH

and, if 0 < x ⩽ ϵ,

1

(2πi)m

∫
U(†s,W (x),a)

E
(
g, dΦ(H), H

)
dH

+
∑ 1

(2πi)m−1

∫
U(†t,W (t),a)

Res
t
E
(
g, dΦ(H), H

)
dH

is a sum of integrals of the form (7.ℓ). In the above expression the second sum is over those t
in T such that t̃ contains ∗a. Moreover the difference between∑

s∈†Ω(j)(s)

1

(2πi)m

∫
U(†s,W,a)

(
N(s,H) dΦ(H), dΨ(−sH)

)
dH

and the sum of ∑
s∈†Ω(j)(s)

1

(2πi)m

∫
U(†s,W (x),a)

(
N(s,H) dΦ(H), dΨ(−sH)

)
dH

and ∑ ∑
t∈†Ω(j)(t)

1

(2πi)m−1

∫
U(†t,W (t),a)

(
Res
t
N(t,H) dΦ(H), dΨ(−tH)

)
dH

is a sum of integrals of the form (7.m). The sets U ′ appearing in the integrals of the form (7.ℓ)
and (7.m) can be taken to be such that {ReH | H ∈ U ′ } lies in the convex hull of ReZ and{
ReH

∣∣ H ∈ V (a)
}
. The sets V (t, a) can be chosen so that

{
ReH

∣∣ H ∈ V (t, a)
}
lies in

the interior of the convex hull of ReZ and
{
ReH

∣∣ H ∈ V (a)
}
, and so that V (t, a1) contains

V (t, a2) if a1 is less that a2, and no singular hyperplane of the Eisenstein system belonging
to t meets the closure of U(t,W, a) if W lies in V (t, a). If no singular hyperplane meets the
closure of U(s, Z, a) the conclusions are valid when x = 0.

We have not troubled to be explicit about the conditions on the functions Φ(·) and Ψ(·).
They will become clear. Replacing V (a) by V

(
N(a)

)
where N(a) is the integer such that

N(a)− 1 < a ⩽ N(a)

we can suppose that
V (a) = V

(
N(a)

)
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Let P (a) be the set of hyperplanes of ŝ which are the projections on ŝ of those elements of
S which meet

{
H
∣∣ ∥ImH∥ ⩽ a

}
. If N is a positive integer the set of points W in V (N)

such that the interior of the segment joining Z and W does not contain a point belonging
to two distinct hyperplanes in P (N) is a non-empty open subset of V (N). Let W (N) be a
non-empty convex open subset of this set and let

W (a) = W
(
N(a)

)
if a > 0. If the sets are chosen inductively it can be arranged that W (N1) contains W (N2)
if N1 is less than N2. Let T (a) be the set of singular hyperplanes whose projection on ŝ
separates Z and W (a) and let

T =
⋃
a>0

T (a)

If t belongs to T and t intersects {
H
∣∣ ∥ImH∥ ⩽ a

}
,

so that t belongs to T (a) let V (t, a) be the inverse image in t̂ of the intersection of the
projection of t on ŝ with the convex hull of Z and W (a); let the distinguished normal to t be
the one which points in the direction of W (a). If t does not intersect

{
H
∣∣ ∥ImH∥ ⩽ a

}
let

b be the smallest number such that t intersects
{
H
∣∣ ∥ImH∥ ⩽ b

}
and set

V (t, a) = V (t, b).

In proving the lemma it may be assumed that W (t) is the inverse image in t̂ of the
intersection of the projection of t on ŝ with the line joining Z and W . Choosing a polygonal
path Z0, Z1, . . . , Zn from W (x) to W which lies in the convex hull of Z and W (a), which
meets no element of P (a) except the projections of the elements of T (a) and these only once
and in the same point as the lines joining Z and W , and which is such that no point Zj,
1 ⩽ j ⩽ n lies on any element of P (a) and such that any line segment of the path crosses
at most one element of P (a) and crosses that in a normal direction, and observing that the
difference between the integrals over U(†s,W, a) and U

(†s,W (x), a
)
is equal to the sum of

the differences between the integrals over U(†s, Zj, a) and U(
†s, Zj−1, a), 1 ⩽ j ⩽ n, we see

that the lemma is a consequence of the discussion preceding it. To conform to the definition
of an Eisenstein system we have to remove those t for which all functions RestE(·, ·, ·) vanish.

Unfortunately this lemma on residues is not sufficient for our needs; it must be supple-
mented by another which we state informally but, for an obvious reason, do not prove. If s is
as above and ϵ and a are positive numbers let

C(s, ϵ, a) =

{
X(s) +H

∣∣∣∣ H ∈ s̃, ∥ReH∥ < ϵ,
∥∥∥Im(X(s) +H

)∥∥∥ < a

}
.

If U is an open set of the sphere of radius ϵ in s̃ ∩ a(i) then{
xX(s) + (1− x)Z

∣∣ 0 < x < 1, Z ∈ U
}

will be called a cone of radius ϵ and centre X(s). Suppose that, just as in the lemma, we
are given an Eisenstein system belonging to s. Suppose that for every a > 0 there are two
non-empty convex cones Vi

(
s, ϵ(a), a

)
, i = 1, 2 of radius ϵ(a) and centre X(s) such that no

singular hyperplane meets the closure of U(s,W, a) if W belongs to Vi
(
s, ϵ(a), a

)
and such

that
Vi
(
s, ϵ(a1), a1

)
⊇ Vi

(
s, ϵ(a2), a2

)
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if a1 ⩽ a2. Suppose that, for all a, every singular hyperplane which meets the closure of
C
(
s, ϵ(a), a

)
meets the closure of U

(
s, X(s), a

)
. Then there is a subset T of the set of singular

hyperplanes such that ReX(s) = X(t) for all t in T , and for each t in T a distinguished unit
normal to t, and, for each a > 0, two non-empty convex cones Wi

(
s, ϵ(a), a

)
of radius ϵ(a)

and centre X(t) such that
Wi

(
s, ϵ(a), a

)
⊆ Vi

(
s, ϵ(a), a

)
and, for each t in T , an open convex cone V

(
t, ϵ(a), a

)
of radius ϵ(a) and centre X(t) such

that if, for some a > 0, Wi belongs to Wi

(
s, ϵ(a), a

)
and W (t), t ∈ T , belongs to V

(
t, ϵ(a), a

)
then the difference between the sum over s in †Ω(j)(s) of

1

(2πi)m

{∫
U(†s,W1,a)

(
N(s,H) dΦ(H), dΨ(−sH)

)
dH

−
∫
U(†s,W2,a)

(
N(s,H) dΦ(H), dΨ(−sH)

)
dH

}
and ∑ ∑

t∈†Ω(j)(t)

1

(2πi)m−1

∫
U(†t,W (t),a)

(
Res
t
N(t,H) dΦ(H), dΨ(−tH)

)
dH

is the sum of integrals of the form (7.m). It is clear that one again has some control over
the location of the sets U ′ which occur. Moreover if t is in T any singular hyperplane of
the associated Eisenstein system which meets the closure of C

(
t, ϵ(a), a

)
meets the closure

of U
(
t, X(t), a

)
and we can assume that if W lies in V

(
t, ϵ(a), a

)
then no such hyperplane

meets the closure of U(t,W, a).
Suppose that for each i, 1 ⩽ i ⩽ r, we are given a collection S(i) of distinct affine subspaces

of dimension m which are defined by equations of the usual form. Let

S =
r⋃

i=1

S(i)

and suppose that for each s in S we are given an Eisenstein system belonging to s. In order
to appreciate Theorem 7.7 we have to have some understanding of the relations which the
functions in this collection of Eisenstein systems may satisfy and of the conditions under
which the relations must be satisfied. The next four lemmas provide us with the necessary
understanding. In other words Theorem 7.7 can be regarded, if one is thinking only of the
Eisenstein series, as asserting that all Eisenstein series satisfy certain conditions and we
are about to show that all Eisenstein series satisfying these conditions satisfy functional
equations.

If s is a subspace of a(i) and t is a subspace of a(j) defined by equations on the usual form
and if ∗a is a distinguished subspace of both a(i) and a(j) which is contained in s̃ and t̃ we let
†Ω(s, t) be the set of distinct linear transformations in †Ω(j)(s) such that ss = t. Two linear
transformations of Ω(a(i), a(j)) which have the same effect on every element of s have the
same effect on every element of the space s′ spanned by s and zero and on

s′ =
{
H
∣∣∣ H ∈ s′

}



7. THE MAIN THEOREM 119

Thus †Ω(s, t) can also be regarded as a set of linear transformations from s′ to t
′
or from s′ to

t′. Such a convention is necessary in order to make some of the expressions belong meaningful.
Suppose that for every element s of the collection S there is an element s0 of Ω(s, s) which
fixes each element of s̃. Certainly s0 is unique. If ∗a is a distinguished subspace of h let

∗S(i) =
{
s ∈ S(i)

∣∣∣ ∗a ⊆ s̃
}

and let

∗S =
r⋃

i=1

∗S(i).

Two elements s and t of ∗S are said to be equivalent if †Ω(s, t) is not empty.

Lemma 7.2. Suppose that for each i, 1 ⩽ i ⩽ r, S(i) is a collection of distinct affine subspaces
of dimension m, of a(i), defined by equations of the form α(H) = µ where α is a positive
root of a(i) and µ is a complex number, such that only a finite number of the elements of S(i)

meet each compact subset of a(i). Suppose that if s belongs to S(i) and a is the orthogonal
complement of the distinguished subspace of largest dimension which is contained in ŝ then
ReX(s) belongs to +a and lies in a fixed compact subset of a(i) and suppose that for each s in
S the set Ω(s, s) contains an element which leaves each point of s̃ fixed. Finally suppose that
if s is in S there is given an Eisenstein system belonging to s and that if ∗P is a cuspidal
subgroup, with split component ∗a, if P belongs to ∗{P}(i), P ′ belongs to ∗{P}(j), s belongs to
∗S(i), and s belongs to †Ω(j)(s) then N(s,H) vanishes identically unless s belongs to †Ω(s, t)
for some t in ∗S(j). Then S is finite and for each s in S the point X(s) is real. Moreover,
for any choice of ∗a, every equivalence class in ∗S contains an element s such that s̃ is the
complexification of a distinguished subspace of h.

There is another lemma which must be proved first.

Lemma 7.3. Suppose that ϕ is a function in L
(
{P}, {V },W

)
and suppose that there is an

integer N such that if P belongs to {P} and
{
py
∣∣ 1 ⩽ y ⩽ x

}
is a basis for the polynomials

on a, the split component of P , of degree at most N then there are distinct points H1, . . . , Hu

in ac and functions Φx,y, 1 ⩽ x ⩽ u, 1 ⩽ y ⩽ v in E(V,W ) such that

(7.n)

∫
Γ∩N\N

ϕ(ng) dn =
u∑

x=1

exp
(〈
H(g), Hx

〉
+ ρ
(
H(g)

))
v∑

y=1

Py

(
H(g)

)
Φx,y(g)

.
If

v∑
y=1

py
(
H(g)

)
Φx,y

does not vanish identically then Hx is real.

If we agree that an empty sum is zero then we can suppose that
v∑

y=1

py
(
H(g)

)
Φx,y(g)

is never identically zero. The lemma will be proved by induction on the rank of the elements
in {P}. If that rank is zero there is nothing to prove; so suppose it is a positive number q
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and the lemma is true for families of cuspidal subgroups of rank q − 1. If P belongs to {P}
and P ′ = γPγ−1, γ in Γ, then∫

Γ∩N ′\N ′
ϕ(n′γg) dn′ =

∫
Γ∩N\N

ϕ(ng) dn,

so that the right side of (7.n) is equal to

u′∑
x=1

exp
(〈
H ′(γg), H ′

x

〉
+ ρ
(
H ′(γg)

)) v∑
y=1

py
(
H(g)

)
Φ′

x,y(g).

Since H ′(γg) = H(g) +H ′(γ), the sets {H1, . . . , Hu} and {H ′
1, . . . , H

′
u} are the same. Thus

for 1 ⩽ i ⩽ r the set ⋃
P∈{P}(i)

{Hi, . . . , Hu} = Fi

is finite.
If P belongs to {P}(i) let Xy be that element of S

(
{0}
)
such that pXy = py and let

Tx =
v∑

y=1

Xy ⊗ Φx,y.

If ψ belongs to D(V,W ) it follows from the relation (7.a) that

(ϕ, ψ̂) =
u∑

x=1

(
Tx, dΨ(−Hx)

)
.

If
f(·) =

(
f1(·), . . . , fr(·)

)
is such that λ(f) can be defined as in Section 6 then(

λ(f)ϕ, ψ̂
)
=
(
ϕ, λ(f ∗)ψ̂

)
is equal to

u∑
x=1

(
Tx, d(f

∗
i Ψ)(−Hx)

)
.

In particular, if for each i, fi vanishes to a sufficiently high order at each point of Fi then
λ(f)ϕ = 0. If H belongs to Fi and H

′ belongs to Fj and there is no s in Ω(a(i), a(j)) such
that sH = H ′ then we can choose an f(·) so that fi(H) ̸= fj(H

′). Consequently we can find
f (1), . . . , f (w) such that

ϕ =
w∑

x=1

λ(f (x))ϕ

and λ(f (x))ϕ satisfies the same conditions as ϕ except that if H belongs to F
(x)
i , the analogue

of Fi, and H
′ belongs to F

(x)
j then H ′ = sH for some s in Ω(a(i), a(j)). Since it is enough to

prove the lemma for each λ(f (x))ϕ, we assume that ϕ already satisfies this extra condition. Let
c(f) be the value of fi at one and hence every point in Fi. Since λ(f) is normal λ(f)ϕ = c(f)ϕ
and λ(f ∗)ϕ = c(f)ϕ = c(f ∗)ϕ. Thus, if H belongs to Fi, fi(H) = fi(−H) and there is an s
in Ω(a(i), a(i)) such that sH = H and ⟨H,H⟩ is real.
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To prove the lemma we need only show that for some P in {P} one of H1, . . . , Hu is real.
It is not difficult to see that for each P in {P} the points −ReHx, 1 ⩽ x ⩽ u, belong to
+a. We forego describing the proof in detail because in all applications we shall make of the
lemma it will be apparent that this is so. Let

µ = max
1⩽k⩽q

{
⟨α,k, α,k⟩−1/2α,k(ReHx)

}
and if {H1, . . . , Hu} is not empty let

µ(P ) = max
1⩽x⩽u

µx.

If ϕ does not vanish identically choose P0 so that

µ0 = µ(P0) ⩾ µ(P )

for all P in {P}; the number µ0 is negative. Let

∥α,ℓ0∥µ(P0) = α,ℓ0(ReHx0)

and let ∗P be the cuspidal subgroup belonging to P0 with split component
∗a =

{
H ∈ a0

∣∣ αℓ,(H) = 0, ℓ ̸= ℓ0
}
.

It follows without difficulty from Lemma 4.2 that if
{
qy
∣∣ 1 ⩽ y ⩽ v′

}
is a basis for the

polynomials on ∗a of degree at most N then there are distinct points ∗Hx, 1 ⩽ x ⩽ u′, in ∗ac
and functions ϕxy in ∗A ∗T\G such that∫

Γ∩∗N\∗N
ϕ(ng) dn

is equal to
u′∑

x=1

exp
(〈∗H(g), ∗Hx

〉
+ ρ
(∗H(g)

))
v′∑

y=1

qy
(∗H(g)

)
ϕx,y(g)

.
It follows from formula (3.d) that if P is an element of ∗{P} and g = amk with a in ∗A, m in
∗M , and k in K then

u∑
x=1

exp
(〈
H(g), Hx

〉
+ ρ
(
H(g)

))
v∑

y=1

Py

(
H(g)

)
Φx,y(g)


is equal to

u′∑
x=1

exp
(〈∗H(g), ∗Hx

〉
+ ρ
(∗H(g)

))
v′∑

y=1

qy
(∗H(g)

) ∫
∗Θ∩†N\†N

ϕxy(nmk) dn

.
Applying this relation to P0 we see that if the indices are chosen appropriately we can suppose
that the projection of Hx0 on ∗ac is

∗H1. Let∫
∗Θ∩†N\†N

ϕ1y(nmk) dn

equal
u′′∑
x=1

exp

(〈
†H(m), †Hx

〉
+ ρ
(
†H(m)

))
v′′∑
z=1

rz

(
†H(m)

)
Φx,y,z(g)
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where { rz | 1 ⩽ z ⩽ v′′ } is a basis for the polynomials of degree at most N on †a, the
orthogonal complement of ∗a in a, and Φx,y,z belongs to E(V,W ). We suppose that for each x
there is a y such that

v′′∑
z=1

rz

(
†H(m)

)
Φx,y,z

does not vanish identically. If we show that −Re(†Hx) belongs to
+(†a) for 1 ⩽ x ⩽ u′′ it

will follow from the corollary to Lemma 5.1 that ϕ1,y is square integrable. It is then obvious
that it belongs to ∗L

(
{P}, {V },W

)
. The induction assumption implies that †Hx is real for

1 ⩽ x ⩽ u′′. In particular we can choose x1 so that

Hx0 =
∗H1 +

†Hx1 .

Since
⟨Hx0 , Hx0⟩ = ⟨∗H1,

∗H1⟩+ ⟨†Hx1 ,
†Hx1⟩

is real the number ⟨∗H1,
∗H1⟩ is real and ∗H1 is either real or purely imaginary. It is not

purely imaginary since α,ℓ0(ReHx0) = α,ℓ0(Re
∗H1). Consequently Hx0 is real. To show that

−Re(†Hx) belongs to
+(†a) we have to show that α,ℓ(Re

†Hx) < 0 if ℓ ̸= ℓ0. Certainly

α,ℓ

(
Re(∗H1 +

†Hx)
)
⩽ ⟨α,ℓ, α,ℓ⟩1/2µ0

and
α,ℓ0

(
Re(∗H1 +

†Hx)
)
= −α,ℓ0(Re

∗H1) = ⟨α,ℓ0 , α,ℓ0⟩1/2µ0.

Thus
α,ℓ(

†Hx) ⩽ ⟨α,ℓ, α,ℓ⟩1/2
{
µ0 − ⟨α,ℓ, α,ℓ⟩−1/2⟨α,ℓ0 , α,ℓ0⟩−1/2⟨α,ℓ, α,ℓ0⟩µ0

}
< 0

if ℓ ̸= ℓ0.
Suppose that, for each P in {P}(i) and 1 ⩽ x ⩽ u, Tx has the same meaning as above. It

has been observed that
u∑

x=1

(
Tx, dfiΨ(−Hx)

)
=

u∑
x=1

f i(−Hx)
(
Tx, dΨ(−Hx)

)
if f(·) =

(
f1(·), . . . , fr(·)

)
, if, for each i, fi(·) is a bounded analytic function on Di, and if

fj(sH) = fi(H) if s belongs to Ω(a(i), a(j)). It is clear that the equality must also be valid for
any function f(·) such that fi(·) is analytic in a neighbourhood of

r⋃
j=1

⋃
s∈Ω(a(j),a(i))

{
−sH

∣∣∣ H ∈ Fj

}
.

Indeed for any such function(
Tx, dfiΨ(−Hx)

)
= f i(−Hx)

(
Tx, dΨ(−Hx)

)
.

We turn to the proof of Lemma 7.2. Let C be an equivalence class in ∗S and choose s in
C so that s̃ contains a distinguished subspace of the largest possible dimension. Replace, if
necessary, ∗a by this larger space and suppose that this distinguished subspace is ∗a itself. Of
course the equivalence class to which s belongs may become smaller but this is irrelevant.
Suppose s lies in ∗S(i) and let †s be the projection of s on the orthogonal complement of
∗a. A point H in †s which does not lie on a singular hyperplane of any of the functions
E(·, ·, ·) which are defined on †s and which is such that if s1 and s2 are in †Ω(j)(s) for some
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j then s1H = s2H only if s1 = s2 will be called a general point of †s. There is at least one
cuspidal subgroup ∗P with ∗a as split component and one element of ∗{P}(i) such that for some
F in L

(
S(s),E(V,W )

)
the function E(g, F,H) on ∗A ∗T\G× ∗s does not vanish identically.

Suppose that the general point H lies in U
(†s, X(s),∞

)
. If P ′ belongs to ∗{P}(j) then∫

∗Θ∩†N ′\†N ′
E(nmk, F,H)

is equal to ∑
s∈†Ω(j)(s)

exp
(〈
H ′(g), sH

〉
+ ρ
(
H ′(g)

))
N(s,H)F (g).

The factor N(s,H) is zero unless s belongs to †Ω(s, t) for some t in ∗S(j). Moreover t belongs
to C and ∗S(j) the largest distinguished subspace which t contains is ∗a. Thus if N(s,H)F is
not zero then

−Re(sH) = Re(Xss)

belongs to +(†a(j)) if †a(j) is the orthogonal complement of ∗a in a(j). Lemma 7.3 implies
that sH is real for all such s. If s̃ were not the complexification of ∗a we could choose an H
which was not real so that E(g, F,H) did not vanish identically and obtain a contradiction.
Consequently †s =

{
X(s)

}
and X(s) is real. If s and t are equivalent then X(t) is real if and

only if X(s) is; so it has only to be shown that S is finite. This of course follows immediately
from the assumptions of the lemma and the fact that

X(s) = ReX(s)

for all s in S.
Suppose ∗P with the split component ∗a is a cuspidal subgroup belonging to one of the

elements of {P}. Let P (i,k), 1 ⩽ k ⩽ mi, be a complete set of representatives for the elements
of ∗{P}(i) and let

E(i) =

mi⊕
k=1

E(V (i,k),W ).

If S is as above and s belongs to ∗S(i), t belongs to ∗S(j), and s belongs to Ω(s, t) let M(s,H)

be that linear transformation from L
(
S(s),E(i)

)
to S(t) ⊗ E(j) such that if F belongs to

L
(
S(s),E(V (i,k),W )

)
then the component of M(s,H)F in S(t)⊗ E(V (j,ℓ),W ) is N(s,H)F .

Of course N(s,H) depends on P (i,k) and P (j,ℓ). If C is an equivalence class in ∗S choose s in
C so that s̃ = ac where, if s belongs to ∗S(i), a is a distinguished subspace of a(i). Let

Ω(s, C) =
⋃
t∈C

†Ω(s, t)

and let Ω0(s, C) be the set of elements in Ω(s, C) which leave each point of s̃ fixed. Let s0 be
the linear transformation in Ω(s, s) which induces the identity on s̃. If t1 and t2 belong to C
then every element of Ω(t1, t2) can be written as a product ts0s−1 with s in Ω(s, t1) and t in
Ω(s, t2). If H is in †s we form the two matrices

M(H) =
(
M(ts0s−1, ss0H)

)
; s, t ∈ Ω(s, C)

M =
(
M(ts0s−1, ss0H)

)
; s, t ∈ Ω0(s, C)
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The first matrix is a meromorphic function of H; the second is a constant. If s belongs to
Ω(s, C) there is a unique js such that ss belongs to

∗S(js). The matrix M(H) can be regarded
as a linear transformation from ∑

s∈Ω(s,C)

L
(
S(ss),E

(js)
)

to ∑
s∈Ω(s,C)

S(ss)⊗ E(js).

It has a finite-dimensional range and the dimension of its range is its rank. A similar remark
applies to M . We shall see that the functional equations for all the Eisenstein series are a
consequence of the following lemma.

Lemma 7.4. Suppose that, for 1 ⩽ i ⩽ r, S(i) is the collection of Lemma 7.2 and suppose
that for any ∗P , any s in ∗S(i), any t in ∗S(j), any P in ∗{P}(i), any P ′ in ∗{P}(j), and any s
in †Ω(s, t) the functions N(s,H) and N∗(s−1,−sH) are equal. If ∗P with the split component
∗a is given, if C is an equivalence class in ∗S, if s belongs to C and s̃ is the complexification
of a distinguished subspace of h, then, if M(·) is defined at H, the rank of M(H) is the same
as the rank of M .

If M(·) is defined at H and if sH = tH for some s and t in Ω(s, C) implies sH ′ = tH ′

for all H ′ in †s then H is said to be a general point of †s. Since the rank of M(H) is never
less than the rank of M it is enough to show that at a general point the rank of M(H) is no
greater than the rank of M . If t belongs to ∗S(j) and

F =
m⊕
ℓ=1

Fℓ

belongs to

L
(
S(t),E(j)

)
=

mi⊕
ℓ=1

L
(
S(t),E(V (j,ℓ),W )

)
,

let

E(g, F,H) =

mi∑
ℓ=1

E(g, Fℓ, H).

If F =
⊕

Fs belongs to ⊕
s∈Ω(s,C)

L
(
S(ss),E

(js)
)

and H belongs to †s, let

E(g, F,H) =
∑
s

E(g, Fs, ss
0H).

Suppose that H is a general point and for some such F the function E(·, F,H), which is
defined, is zero. If m belongs to ∗M and k belongs to K then∫

∗Θ∩†N(j,ℓ)\†N(j,ℓ)

E(nmk, F,H) dn
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is equal to

(7.o)
∑
t

exp

(〈
H(j,ℓ)(m), tH

〉
+ ρ
(
H(j,ℓ)(m)

)) ∑
s∈Ω(s,C)

Φ
(j,ℓ)
t,s (mk)


where the outer sum is over those t in Ω(s, C) such that jt = j and Φ

(j,ℓ)
t,s is the function on

∗AT (j,ℓ)\G associated to the projection of M(ts0s−1, ss0H)Fs on

S(st)⊗ E(V (j,ℓ),W ).

Since H is a general point it follows that∑
s∈Ω(s,C)

Φ
(j,ℓ)
t,s

is zero; consequently ∑
s∈Ω(s,C)

M(ts0s−1, ss0H)Fs = 0

for all t in Ω(s, C).
If the dimension of ∗a is m, the dimension of the elements of S, there is nothing to prove.

We treat the case that the dimension of ∗a is m− 1 first. Let H be a general point of †s and
suppose that ImH ̸= 0 and

ReH = X(s) +H ′

with α(H ′) small and positive if α is the unique simple root of †a. As usual s̃ = ac and
†a is

the orthogonal complement of ∗a in a. Let us show that if

F =
⊕

s∈Ω(s,C)

Fs

is such that ∑
s∈Ω(s,C)

M(ts0s−1, ss0H)Fs

is zero for t in Ω0(s, C) then it is zero for all t. Lemma 7.3 implies that E(·, F,H) can not
belong to ∗L

(
{P}, {V },W

)
and be different from zero; so we show that E(·, F,H) belongs to

∗L
(
{P}, {V },W

)
. In the expression (7.o) the sum can be replaced by a sum over the elements

t of the complement of Ω0(s, C) in Ω(s, C) such that jt = j. The corollary to Lemma 5.1
can be applied if it is shown that, for all such t, −Re(tH) belongs to +(†a(j)) provided α(H ′)
is sufficiently small. Since −Re(tH) is close to X(st) this is perfectly obvious if ∗a is the
largest distinguished subspace contained in s̃t. If it is not then st is the complexification of a
distinguished subspace a′ of a(j). If α′ is the unique simple root of the orthogonal complement
of ∗a in a′ then it follows from Lemma 2.13 that α′(tH ′) is negative. Lemma 2.5 implies that
−tH belongs to +(†a(j)).

Since the set of points satisfying the condition of the previous paragraph is open it is
enough to prove that the rank of M(H) is not greater than the rank of M when H is in this
set. Every element

G =
⊕

t∈Ω(s,C)

Gt
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in the range of M(H) is of the form

Gt =
∑

s∈Ω(s,C)

M(ts0s−1, ss0H)Fs

with Fs in L
(
S(ss),E

(js)
)
. The map

G→
⊕

t∈Ω0(s,C)

Gt

is an injection of the range of M(H) into⊕
t∈Ω0(s,C)

S(st)⊗ E(jt).

It is sufficient to show that the image is contained in the range of M . If not there would be a
set {

F ′
t

∣∣ t ∈ Ω0(s, C)
}

such that ∑
t∈Ω0(s,C)

∑
s∈Ω0(s,C)

(
M(ts0s−1, ss0H)Fs, F

′
t

)
= 0

for all sets
{
Fs

∣∣ s ∈ Ω0(s, C)
}
and∑

t∈Ω0(s,C)

∑
s∈Ω(s,C)

(
M(ts0s−1, ss0H)Fs, F

′
t

)
̸= 0

for some set
{
Fs

∣∣ s ∈ Ω(s, C)
}
. However, the first relation is independent of H so that,

replacing H by −s0H and using the relation

M(ts0s−1,−sH) =M∗(ss0t−1, ts0H),

we deduce that ∑
t∈Ω0(s,C)

M(ss0t−1, ts0H)F ′
t = 0

for all s in Ω0(s, C) and hence for all s and all H. But the complex conjugate of the expression
on the left of the second relation is∑

s∈Ω(s,C)

 ∑
t∈Ω0(s,C)

(
M
(
ss0t−1, ts0(−s0H)

)
F ′
t , Fs

)
and must be zero.

The general case will be treated by induction. Suppose that the dimension of ∗a is n
with n less than m− 1 and that the assertion of the lemma is valid if the dimension of ∗a is
greater than n. Let Ω′(s, C) be the set of all s in Ω(s, C) such that s̃ contains a distinguished
subspace which is larger than ∗a and let

M ′(H) =
(
M(ts0s−1, ss0H)

)
; s, t ∈ Ω′(s, C)
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We first show that the rank of M(H) is no larger than the rank of M ′(H). It is enough to
show this when H is a general point in U

(†s, X(s),∞
)
which is not real. The argument is

then very much like the one just presented. Indeed if

F =
⊕

s∈Ω(s,C)

Fs

and ∑
s∈Ω(s,C)

M(ts0s−1, ss0H)Fs = 0

for all t in Ω′(s, C) then E(·, F,H) is zero because −Re(sH) = ReX(ss) lies in
+(†a(j)) if as

belongs to ∗S(j) and s does not belong to Ω′(s, C). Consequently this equality is valid for all
t. As before the restriction of the map⊕

s∈Ω(s,C)

Gs →
⊕

s∈Ω′(s,C)

Gs

to the range of M(H) can be shown to be an injection into the range of M ′(H). It remains
to show that the rank of M ′(H) is no larger than the rank of M .

Suppose ∗P1 is a cuspidal subgroup with split component ∗a1 belonging to an element
of {P}. Suppose also that ∗P belongs to ∗P1 and that ∗a is properly contained in ∗a1. For

each i, 1 ⩽ i ⩽ r, ∗{P}(i)1 is a subset of ∗{P}(i). Let P (i,k)
1 , 1 ⩽ k ⩽ mi, be a complete set of

representatives for the conjugacy classes in ∗{P}(i)1 . It may as well be supposed that P
(i,k)
1

is conjugate to P (i,k), 1 ⩽ k ⩽ m′
i. The elements of C which belong to ∗S1 break up into a

number of equivalence classes C1, . . . , Cu. In each Cx, 1 ⩽ x ⩽ u, choose an sx such that s̃x
is a distinguished subspace of h. For each x fix sx in Ω(s, sx) and let Ω(s, Cx) be the set of all
s in Ω(s, C) such that ss0s−1

x belongs to Ω(sx, Cx) and let Ω0(s, Cx) be the set of all s such
that ss0s−1

x belongs to Ω0(sx, Cx). The induction assumption will be used to show that if Fs,
s ∈ Ω(s, Cx), belongs to

m′
js⊕

ℓ=1

L
(
S(ss),E(V

(js,ℓ),W )
)

if H is a general point of †s, and if∑
s∈Ω(s,Cx)

M(ts0s−1, ss0H)Fs = 0

for all t in Ω0(s, Cx) then this relation is valid for all t in Ω(s, C). It is sufficient to establish
this when sxs

0H belongs to the intersection of †s and⋃
∗a1⊆a(j)

⋃
s∈†Ω1(a(i),a(j))

s−1(†A(j))

where i is such that sx ∈ ∗S
(i)
1 . If

Fs =

m′
js⊕

ℓ=1

F ℓ
s , t = ss0s−1

x ,
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and D(H) is the linear transformation from E(V (js,ℓ),W ) to E(V
(js,ℓ)
1 ,W ) defined in Section 4,

let Gℓ
t = dD(H)F ℓ

s and let

Gt =

m′
js⊕

ℓ=1

Gℓ
t.

The relation (7.e) and the last part of condition (iii) for an Eisenstein system imply that∑
s∈Ω(sx,Cs)

M1(ts
0
xs

−1, ss0xHx)Gs = 0

for all t in Ω0(sx, Cx) if Hx is the projection of

s0xsxH = sxs
0H

on the orthogonal complement of ∗a1. According to the induction assumption the relation
must then be valid for all t in Ω(sx, Cx). Consequently∑

s∈Ω(sx,Cx)

E1(g,Gs, ss
0
xHx) = 0.

The relations (7.c) and (7.d) imply that∑
s∈Ω(s,Cx)

E(g, Fx, ss
0H) =

∑
s∈Ω(sx,Cx)

E(g,Gs, ssxH) = 0.

We obtain the assertion by appealing to the remarks made when we started the proof.
Suppose that for each s in Ω(s, Cx) we are given Fs in

m′
js⊕

k=1

L
(
S(ss),E(V

(js,ℓ),W )
)
.

It will also be necessary to know that we can find for each s in Ω0(s, Cx) an element F ′
s of

m′
js∑

k=1

L
(
S(ss),E(V

(js,ℓ),W )
)

such that ∑
s∈Ω(s,Cx)

M(ts0s−1, ss0H)Fs =
∑

s∈Ω0(s,Cx)

M(ts0s−1, ss0H)F ′
s

for all t in Ω(s, C). If Gs is defined for s in Ω(sx, Cx) as before the induction assumption
guarantees the existence of a set {

G′
s

∣∣ s ∈ Ω0(sx, Cx)
}

such that ∑
s∈Ω(sx,Cx)

M1(ts
0
xs

−1, ss0xHx)Gs =
∑

s∈Ω0(sx,Cx)

M1(ts
0
xs

−1, ss0xHx)G
′
s

for all t in Ω(sx, Cx). We need only choose a set{
F ′
s

∣∣ s ∈ Ω0(s, Cx)
}

which is related to {G′
s} the way {Fs} is related to {Gs}.

Let
M ′

0(H) =
(
M(ts0s−1, ss0H)

)
, s ∈ Ω(s, C), t ∈ Ω′(s, C).
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Choosing ∗a1 so that its complexification is s̃ we see that the ranks of M ′
0(H) and M are the

same. It will now be shown that the range of M ′(H) is contained in the range of M ′
0(H)

and this will complete the proof of the lemma. Suppose that t in ∗S(j) belongs to C, that F

belongs to L
(
S(t),E(V (j,ℓ),W )

)
for some ℓ, 1 ⩽ ℓ ⩽ mj, and that there is an r in Ω′(s, C)

with sr = t. Let us show that ⊕
t∈Ω′(s,C)

M(ts0r−1, rs0H)F

belongs to the range of M ′
0(H). Choose ∗a1 so that t̃ contains ∗a1 and choose ∗P1 so that ∗P1

belongs to P (j,ℓ). If t belongs to Cx then we can choose for each s in Ω0(s, Cx) an element Fx

of
m′

js⊕
k=1

L
(
S(ss),E(V

(js,k),W )
)

so that ∑
s∈Ω0(s,Cx)

M(ts0s−1, ss0H)Fs =M(ts0r−1, rs0H)F

for all t. We may as well assume then that t̃ is the complexification of a distinguished subspace
of h.

Since the lemma is true for n = m− 1 the set of t in C such that t̃ is the complexification
of a distinguished subspace satisfies the hypothesis of the second corollary to Lemma 2.13.
The assertion will be proved by induction on the length of r. Suppose that t′ is another
element of C such that t̃′ is the complexification of a distinguished subspace and suppose
that r = pt0r′ where r′ belongs to Ω(s, t′) and has length one less than that of r, t0 belongs
to Ω(t′, t′) and leaves every element of t̃′ fixed, and p is a reflection in Ω(t′, t). Choose ∗a1 so
that ∗a1 is of dimension m− 1, is contained in t̃ and t̃′, and is such that p leaves each element
of ∗a1 fixed and let ∗P1 belong to P (j,ℓ). There is an x such that t and t′ both belong to Cx.
Let sx = t′ and sx = r′. It has been shown that for each s in Ω0(s, Cx) we can choose Fs in

m′
js⊕

k=1

L
(
S(ss),E(V

(js,k),W )
)

such that ∑
s∈Ω0(s,Cx)

M(ts0s−1, ss0H)Fs =M(ts0r′
−1
, r′s0H)F

for all t. Since the length of each s in Ω0(s, Cx) is the same as that of r′, the proof may be
completed by applying the induction assumption.

Corollary 1. Suppose the collections S(i), 1 ⩽ i ⩽ r, and the associated Eisenstein systems
satisfy the conditions of Lemmas 7.2 and 7.3. Suppose moreover that if ∗P is a cuspidal sub-

group belonging to an element of {P}, if a(i), 1 ⩽ i ⩽ r′, are the elements of
{
a(i)

∣∣∣ 1 ⩽ i ⩽ r
}

which contain ∗a, the split component of ∗P , and if, for 1 ⩽ i ⩽ r′, pi is a polynomial on †a(i),
the orthogonal complement of ∗a in a(i), and pj(sH) = pi(H) for all H in †a(i) and all s in
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†Ω(a(i), a(j)) then for any s in ∗S(i), any P in ∗{P}(i), any F in L
(
S(s),E(V,W )

)
, any t in

∗S(j), any P ′ in ∗{P}(j), any F ′ in L
(
S(t),E(V,W ),

)
, and any s in Ω(s, t)(

N(s,H) dpi(H)F, F ′) ≡ (N(s,H)F, dp∗j(−sH)F ′
)

Then for any ∗P , p1(·), . . . , pr′(·), s, P , F , t, P ′, and s as above

E
(
g, dpi(H)F,H

)
≡ pi(H)E(g, F,H)

and
N(s,H)

(
dpi(H)F

)
≡ pi(H)N(s,H)F.

Of course the equalities above are not valid for literally all H in †s; rather the two sides
are equal as meromorphic functions. It is enough to prove the equalities when H is a general
point of †s. Since the two equalities are then equivalent, it is only necessary to prove one
of them. Suppose first of all that s̃ is the complexification of ∗a. It was seen in the proof of
Lemma 7.2 that if H = X(s) then E(·, F,H) belongs to ∗L

(
{P}, {V },W

)
. If ψ belongs to

∗D(V ′,W ) then ∫
∗Θ\∗M×K

E(mk, F,H)ψ̂(mk) dmdk

is equal to ∑
t∈∗S(j)

∑
s∈†Ω(s,t)

(
N(s,H)F, dΨ(−sH)

)
According to the remarks following the proof of Lemma 7.3,(

N(s,H)F, d
(
p∗jΨ(−sH)

))
= pi(H)

(
N(s,H)F, dΨ(−sH)

)
for all s. Thus for all F ′ in L

(
S(t),E(V,W )

)
(
N(s,H) dpi(H)F, F ′) = (N(s,H)F, dp∗j(−sH)F ′

)
= pi(H)

(
N(s,H)F, F ′)

This proves the second equality in this case. Next suppose that s̃ is the complexification of a
distinguished subspace of a(i). It follows from the relation (7.e) that the first equality is valid
on an open set and hence on all of †s.

In the general case we prove the second equality. Because of the relation (7.e) it is
enough to show that if C is an equivalence class in ∗S and if an s in C such that s̃ is the
complexification of a distinguished subspace of h is chosen, then for all s and t in Ω(s, C)
and all F in E(js)

M(ts0s−1, ss0H)
(
dpjs(ss

0H)F
)
= pjs(ss

0H)M(ts0s−1, ss0H)F.

It follows from Lemma 7.4 that if for a given s and F this relation is valid for all t in Ω0(s, C)
then it is true for all t in Ω(s, C). It has just been proved that it is valid for s in Ω0(s, C)
and t in Ω(s, C) and it remains to prove that it is valid for s in Ω(s, C) and t in Ω0(s, C).
Take such an s and t and let F belong to E(js) and F ′ to E(jt); then(

M(t0s−1, ss0H)
(
dpjs(ss

0H)F
)
, F ′
)
=
(
M(ts0s−1, ss0H)F, dp∗jt(−tH)F ′

)
which is the complex conjugate of(

M(ss0t−1,−tH)
(
dp∗jt(−tH)F ′

)
, F

)
= p∗jt(−tH)

(
M(ss0t−1,−tH)F ′, F

)
.
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Since the complex conjugate of the right hand side is

pjs(ss
0H)

(
M(ts0s−1, ss0H)F, F ′),

we are done.
The next corollary can be obtained by an argument essentially the same as the one just

given. Since it is of no great importance the proof will be omitted.

Corollary 2. If the collections S(i), 1 ⩽ i ⩽ r, and the associated Eisenstein systems satisfy
the hypotheses of Lemmas 7.2 and 7.4, they are uniquely determined if for every cuspidal
subgroup ∗P of rank m belonging to some element of {P} the sets ∗S(i), 1 ⩽ i ⩽ r are given
and if for every s in ∗S(i), every P in ∗{P}(i), and every F in L

(
S(s),E(V,W )

)
the function

E
(
·, X(s), F

)
is given.

It is now necessary to find some conditions on the collections S(i), 1 ⩽ i ⩽ r, and the
associated Eisenstein systems which imply the hypotheses of Lemmas 7.2 and 7.4 and the
first corollary but which are, at least in our context, easier to verify. It must be expected
that they will be rather technical. For convenience, if ∗P and †a(i), 1 ⩽ i ⩽ r′, are as in the
first corollary we will denote the collection of r′-tuples p(·) =

(
p1(·), . . . , pr′(·)

)
satisfying the

conditions of that corollary by †I. The collection of r′-tuples f(·) =
{
f1(·), . . . , fr′(·)

}
where

fi(·) is a bounded analytic function on
{
H ∈ †a(i)

∣∣∣ ∥ReH∥ < R
}

and fi(H) = fj(sH) if

s belongs to †Ω(a(i), a(j)) will be denoted by †I0. The number R has been introduced in
Section 4.

Lemma 7.5. Suppose that S(i), 1 ⩽ i ⩽ r, is a collection of distinct affine subspaces of a(i)

which are of dimension m and which are defined by equations of the form α(H) = µ where α
is a positive root of a(i) and µ is a complex number and suppose that there is an Eisenstein
system associated to each element of S =

⋃r
i=1 S

(i). Suppose that if s belongs to S(i) and a is
the orthogonal complement in a(i) of the distinguished subspace of largest dimension which
is contained in s̃ then ReX(s) belongs to +a and X(s) lies in Di. Suppose also that only a

finite number of elements of S(i) meet any compact subset of a
(i)
c . Finally suppose that if ∗P

is a cuspidal subgroup with split component ∗a belonging to an element of {P} and if a(i),

1 ⩽ i ⩽ r′, are the elements of
{
a(i)

∣∣∣ 1 ⩽ i ⩽ r
}
which contain ∗a then there is an orthogonal

projection Q, which commutes with λ(f) if f(·) belongs to †I0, of
∗L
(
{P}, {V },W

)
onto a

subspace and for every positive number a and each i a polynomial ri on
†a(i) which does not

vanish identically on †s if s belongs to ∗S(i) such that if P belongs to ∗{P}(i), P ′ belongs to
∗{P}(j), Φ′(·) belongs to ∗H(V,W ),

Φ(·) = ri(·)Φ′(·)
and Ψ(·) belongs to ∗H(V ′,W ) then the difference (7.p) between(

R(λ,A)Qϕ̂, ψ̂
)

and ∑
s∈∗S(i)

∑
s∈†Ω(j)(s)

1

(2πi)m

∫
U(†s,X(s),a)

(
N(s,H) d

((
λ− ⟨H,H⟩

)−1
Φ(H)

)
, dΨ(−sH)

)
dH
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and the difference (7.q) between (
Qϕ̂,R(λ,A)ψ̂

)
and∑

s∈∗S(i)

∑
s∈†Ω(j)(s)

1

(2πi)m

·
∫
U(†s,X(s),a)

(
N(s,H) dΦ(H), d

((
λ− ⟨−sH,−sH⟩

)−1

Ψ(−sH)

))
dH

are analytic for Reλ < R2 − a2. Then for every s in S the set Ω(s, s) contains an element
which leaves each point of s̃ fixed. Moreover if ∗P is a cuspidal subgroup with split component
∗a, P belongs to ∗{P}(i), P ′ belongs to ∗{P}(j), s belongs to ∗S(i), and s belongs to †Ω(j)(s)
then N(s,H) vanishes identically unless ss = t for some t in ∗S(j) and then

N(s,H) = N∗(s−1,−sH)

Finally, if F belongs to L
(
S(s),E(V,W )

)
, F ′ belongs to L

(
S(t),E(V ′,W )

)
, and p(·) belong

to †I then (
N(s,H) dpi(H)F, F ′) ≡ (N(s,H)F, dp∗j(−sH)F ′

)
.

There is one simple assertion which is central to the proof of this lemma. We first establish
it. Let a be a positive number, let ∗P be a cuspidal subgroup belonging to some element
of {P}, let s belong to ∗S(i), let P belong to ∗{P}(i), let P ′ belong to ∗{P}(j) and suppose
that for each s in †Ω(j)(s) there is a given function M(s,H) on †s with values in the space of
linear transformations from L

(
S(s),E(V,W )

)
to S(ss)⊗E(V ′,W ) such that

(
M(s,H)F, F ′)

is meromorphic on †s for all F and F ′ and vanishes identically if the order of F or of F ′ is
sufficiently large. Suppose that if

Φ(·) = ri(·)Φ′(·)
with Φ′(·) in ∗H(V,W ) and Ψ(·) belongs to ∗H(V ′,W ) then(

M(s,H) dΦ(H), dΨ(−sH)
)

is analytic on the closure of U
(†s, X(s), a

)
for all s and∑

s∈†Ω(j)(s)

1

(2πi)m

∫
U(†s,X(s),a)

(
M(s,H) d

((
λ− ⟨H,H⟩

)−1
Φ(H)

)
, dΨ(−sH)

)
dH

is analytic for Reλ < R2 − a2; then if

Re
〈
X(s), X(s)

〉
> R2 − a2,

each of the functions M(s, ·) is identically zero. Suppose not and suppose that M(s,H)F
vanishes identically for all s if the order of F is greater than n but that for some s and some
F = F0 of order n the function M(s,H)F0 does not vanish identically. There are polynomials
hk, 1 ⩽ k ⩽ ℓ on †a(i) and functions Φi, 1 ⩽ k ⩽ ℓ, in E(V,W ) such that the order of

F0 − d

∑
k

hk(H)Φk
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is greater than n. Let

Φ′(·) = f(·)


ℓ∑

k=1

hk(·)Φk


with some scalar valued function f(·); then(

M(s,H) d
((
λ− ⟨H,H⟩

)−1
Φ(H)

)
, dΨ(−sH)

)
=
(
λ− ⟨H,H⟩

)−1
f(H)ri(H)

(
M(s,H)F0, dΨ(−sH)

)
.

Let
g(H) =

∑
s∈†Ω(j)(s)

ri(H)
(
M(s,H)F0, dΨ(−sH)

)
.

Then ∫
U(†s,X(s),a)

(
λ− ⟨H,H⟩

)−1
f(H)g(H) dH

is analytic for Reλ > R2 − a2. Let B be the unit sphere in s̃∩ †a(i) and let dB be the volume
element on B. Set

ξ(r) =

∫
B

f
(
X(s) + ir1/2H

)
g
(
HX(s) + ir1/2H

)
dB.

If
〈
ReX(s),ReX(s)

〉
= µ and

〈
ImX(s), ImX(s)

〉
= ν then

ζ(λ) =

∫ a2−ν

0

(λ+ r)−1ξ(r)rn/2−1 dr

is analytic for
Reλ > R2 − a2 − µ+ ν

and the right side is negative. On the other hand if 0 < ϵ < a2 − ν,

lim
δ↘0

1

2πi

{
ζ(−ϵ+ iδ)− ζ(−ϵ− iδ)

}
= ξ(ϵ)ϵn/2−1,

so that
ξ(r) = 0

for 0 < r < µ+ a2 −R2 − ν and hence for all r. Since f(H) can be taken to be the product
of exp⟨H,H⟩ and any polynomial we conclude that g(H) vanishes identically. A simple
approximation argument which has been used implicitly before allows us to conclude that

M(s,H)F0 = 0

for all s and this is a contradiction.
Let ∗P be a cuspidal subgroup belonging to some element of {P}, let P belong to ∗{P}(i),

let P ′ belong to ∗{P}(j), and let s belong to ∗S(i). Let q(·) be a polynomial on a(i) which
vanishes to such a high order on every element t of ∗S(j) different from s itself that if t belongs
to †Ω(j)(t) then N(t,H) ◦ dq(H) vanishes identically on †t and to such a high order on every
space tt, with t in ∗S(j) and t in †Ω(j)(t), different from s itself that d∗q(−tH)N(t,H) vanishes
identically on †t but which does not vanish identically on s itself. Of course d∗q(H) is defined
by the condition that (

d∗q(H)T, F
)
=
(
T, dq(H)F

)
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for all T in S(tt)⊗ E(V,W ) and all F in L
(
S(tt),E(V,W )

)
. In (7.p) replace Φ(·) by q(·)Φ(·)

and let
Ψ(·) = rj(·)Ψ′(·)

and in (7.q) replace j by i, λ by λ, Φ(·) by
Ψ(·) = rj(·)Ψ′(·)

and Ψ(·) by q(·)Φ(·); then subtract the complex conjugate of (7.q) from (7.p). Since the

complex conjugate of
(
Qψ̂,R(λ,A)ϕ̂

)
is(
R(λ,A)Qϕ̂, ψ̂

)
,

the result is∑
s∈†Ω(j)(s)

1

(2πi)m

∫
U(†s,X(s),a)

(
M(s,H) d

((
λ− ⟨H,H⟩

)−1
Φ(H)

)
,Ψ(−sH)

)
dH

where M(s,H) equals
d∗rj(−sH)N(s,H) dq(H)

if ss does not belong to ∗S(j) and equals

d∗rj(−sH)
{
N(s,H)−N∗(s−1,−sH)

}
dq(H)

if ss does belong to ∗S(j). Since a can be taken as large as necessary we conclude that

N(s,H) ≡ 0

if ss does not belong to ∗S(j) and that

N(s,H) ≡ N∗(s−1,−sH)

if ss does belong to ∗S(j). If f(·) belong to †I0 then(
R(λ,A)Qλ(f)ϕ̂, ψ̂

)
=
(
R(λ,A)Qϕ̂, λ(f ∗)ψ̂

)
.

Thus we can also conclude that if

M(s,H) =

{
N(s,H) df(H)− d∗

(
f ∗(−sH)

)
N(s,H)

}
dq(H)

then ∑
s∈†Ω(j)(s)

1

(2πi)m

∫
U(†s,X(s),a)

(
M(s,H) d

((
λ− ⟨H,H⟩

)−1
Φ(H)

)
,Ψ(−sH)

)
dH

is analytic for Reλ > R2 − a2. Consequently

N(s,H) df(H) = d∗
(
f ∗(−sH)

)
N(s,H)

for f(·) in †I0 and hence, by a simple approximation argument, for f(·) in †I. The first
assertion of the lemma has still to be proved.

Suppose s belongs to ∗S(i). Let ∗P be a cuspidal subgroup belonging to some element of
{P} such that E(·, ·, ·) is not identically zero for some P in ∗{P}(i). Suppose that E(·, F, ·) ≡ 0
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if O(F ) > n but E(·, F, ·) ̸≡ 0 for some F in O(F ) = n. Let h(·) be a polynomial on a
(i)
c such

that
h
(
H −X(s)

)
= pX(H)

where X lies in S(s) and is homogeneous of degree n, and such that

E
(
·, dh(H)F, ·

)
̸≡ 0

for some F in L
(
S(s),E(V,W )

)
. We first show that if we take P ′ = P then for some s in

†Ω(s, s) the function

d∗
(
h∗(−sH)

)
N(s,H) dh(H) ̸≡ 0

Suppose the contrary. Fix some positive number a with〈
ReX(s),ReX(s)

〉
> R2 − a2.

Choose q(·) as above; let Φ′(·) belong to ∗H(V,W ); and set

Φ(·) = ri(·)q(·)h(·)Φ′(·)

Replacing Ψ(·) by Φ(·) in (7.q) we obtain
(
R(λ,A)Qϕ̂,Qϕ̂

)
, which must be analytic for

Reλ > R2 − a2. It follows from Theorem 5.10 of [21] that Qϕ̂ belongs to the range of
E(R2 − a2). However, if this is so then for any P ′ in ∗{P}(j) and any Ψ(·) in ∗H(V ′,W ) the

function
(
R(λ,A)Qϕ̂, ψ̂

)
is analytic for Reλ > R2 − a2; consequently∑

s∈†Ω(i)(s)

1

(2πi)m

∫
U(†s,X(s),a)

(
N(s,H) d

((
λ− ⟨H,H⟩

)−1
Φ(H)

)
, dΨ(−sH)

)
dH

is analytic for Reλ > R2 − a2. Thus

N(s,H) dh(H) ≡ 0

for all s which is impossible. In particular there is some s in Ω(s, s). For such an s,

sX(s) = −X(s)

consequently
〈
X(s), X(s)

〉
is real. Choose Φ in E(V,W ) so that

d∗
(
h∗(−sH)

)
N(s,H) d

(
h(H)Φ

)
̸≡ 0

for some s in †Ω(i)(s, s). If
Φ(·) = f(·)ri(·)q(·)h(·)Φ

and
Ψ(·) = g(·)ri(·)q(·)h(·)Ψ

and if b < a, and µ =
〈
X(s), X(s)

〉
− b2 then((

I − E(µ)
)
Qϕ̂, ψ̂

)
=

1

(2πi)m

∑
s∈†Ω(i)(s,s)

∫
U(†s,X(s),b)

f(H)g(−sH)ξ(s,H) dH

with
ξ(s,H) =

(
N(s,H) d

(
ri(H)q(H)h(H)Φ

)
, d
(
ri(H)q(H)h(H)Ψ

))
For some s the function ξ(s,H) does not vanish identically. Consequently the expression on
the right is a positive semi-definite Hermitian symmetric form in f(·) and g(·) which does
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not vanish identically. A simple approximation argument shows that there must be an s0 in
†Ω(i)(s, s) such that H = −s0H for all H in U

(†s, X(s), b
)
. Choosing b sufficiently close to a

we conclude that H = −s0H for all H in U
(†s, X(s),∞

)
and that s0 leaves every element of

s̃ fixed.
Collections of subspaces and Eisenstein systems satisfying the conditions of Lemma 7.5

are just what we need to describe the spectral decomposition of the spaces ∗L
(
{P}, {V },W

)
.

Let us see how to associate to each such collection a closed subspace of each of the spaces
∗L
(
{P}, {V },W

)
.

Lemma 7.6. Suppose that S(i), 1 ⩽ i ⩽ r, is a collection of distinct affine subspaces of
a(i) and that if s belongs to S =

⋃r
i=1 S

(i) there is given an Eisenstein system belonging to s.
Suppose that S and the associated Eisenstein systems satisfy the hypotheses of Lemma 7.5.
Let ∗P be a cuspidal subgroup belonging to some element of {P} and let ∗L′({P}, {V },W

)
be the closed subspace of ∗L

(
{P}, {V },W

)
generated by functions of the form

(
I − E(λ)

)
Qϕ̂

where λ and Φ(·) are such that for some positive number a, some i, and some P in ∗{P}(i)
the inequality R2 − λ < a2 is satisfied and

Φ(·) = ri(·)Φ′(·)
with Φ′(·) in ∗H(V,W ). Let C1, . . . , Cu be the equivalence classes in ∗S and for each x,
1 ⩽ x ⩽ u, choose sx in Cx such that s̃x is the complexification of a distinguished subspace of
h. If P belongs to {P}(i) and Φ(·) belongs to ∗H(V,W ) then∑

s∈Ω(i)(sx,Cx)

E
(
g, dΦ(ss0xH), ss0xH

)
is analytic on U

(†sx, X(sx),∞
)
, where

Ω(i)(sx, Cx) =
{
s ∈ Ω(sx, Cx)

∣∣ js = i
}

and if ωx is the number of elements in †Ω(sx, sx) then

ϕ(g, a) =
u∑

x=1

1

ωx(2πi)m

∫
U(†sx,X(sx),a)

∑
s∈Ω(i)(sx,Cx)

E
(
g, dΦ(ss0xH), ss0xH

)
dH

belongs to ∗L′({P}, {V },W
)
and the projection of ϕ̂ on ∗L′({P}, {V },W

)
is equal to

lim
a→∞

ϕ(·, a).

Moreover if P ′ belongs to ∗{P}(j) and Ψ(·) belongs to ∗H(V ′,W ) then∑
t∈Ω(j)(sx,Cx)

∑
s∈Ω(i)(sx,Cx)

(
N(ts0xs

−1, ss0xH) dΦ(ss0xH), dΨ(−tH)
)

is analytic on U
(†sx, X(sx),∞

)
and the inner product of the projections of ϕ̂ and ψ̂ on

∗L′({P}, {V },W
)

is equal to
u∑

x=1

1

ωx(2πi)m

∫ ∑∑(
N(ts0xs

−1, ss0xH) dΦ(ss0xH), dΨ(−tH)
)
dH.
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The inner sums are over t ∈ Ω(j)(sx, Cx) and s ∈ Ω(i)(sx, Cx). The integral is over

U
(
†sx, X(sx),∞

)
.

Suppose a is a positive number, P belongs to ∗{P}(i),
Φ(·) = ri(·)Φ′(·)

with Φ′(·) in ∗H(V,W ), P ′ belongs to ∗{P}(j), and Ψ(·) belongs to ∗H(V ′,W ). To begin the

proof of the lemma we calculate the inner product
((
I − E(λ)

)
Qϕ̂, ψ̂

)
when λ > R2 − a2.

Choose β > R2, α = λ, and γ > 0; according to Theorem 5.10 of [21]((
I − E(λ)

)
Qϕ̂, ψ̂

)
= lim

δ→0

1

2πi

∫
C(α,β,γ,δ)

(
R(z, A)Qϕ̂, ψ̂

)
dz.

Since (7.p) is analytic for Reλ > R2 − a2 it follows from the first corollary to Lemma 7.4
that the right side equals

lim
δ→0

1

2πi

∫
C(α,β,γ,δ)

{∑∑ 1

(2πi)m

∫ (
z − ⟨H,H⟩

)−1
(
N(s,H) dΦ(H), dΨ(−sH)

)
dH

}
dz.

The sums are over s ∈ ∗S(i) and s ∈ †Ω(j)(s). The inner integral is over U
(†s, X(s), a

)
. Let〈

X(s), X(s)
〉
= µ(s).

Then a >
(
µ(s)− λ

)1/2
; so this limit equals∑

s∈∗S(i)

∑
s∈†Ω(j)(s)

1

(2πi)m

∫
U

(
†s,X(s),(µ(s)−λ)

1/2
)(N(s,H) dΦ(H), dΨ(−sH)

)
dH

which we prefer to write as

(7.r)
u∑

x=1

∑∑ 1

ωx(2πi)m

∫ (
N(ts0xs

−1, ss0xH) dΦ(ss0xH), dΨ(−tH)
)
dH

The inner sums are over t ∈ Ω(j)(sx, Cx) and s ∈ Ω(i)(sx, Cx). The inner integral is

over U
(
†sx, X(sx),

(
µ(sx)− λ

)1/2)
. It should perhaps be observed that if H belongs to

U
(†sx, X(sx),∞

)
then

−tH = ts0xH.

Let
X(V,W ) =

∑
s∈Ω(i)(sx,Cx)

L
(
S
(
(sx)s

)
,E(V,W )

)
, 1 ⩽ x ⩽ u,

and define Xx(V
′,W ) is a similar fashion. If F =

⊕
Fs belongs to Xx(V,W ) and F ′ =

⊕
F ′
s

belongs to Xx(V
′,W ) let

[F, F ′] =
∑

t∈Ω(j)(sx,Cx)

∑
s∈Ω(i)(sx,Cx)

(
N(ts0xs

−1, ss0xH)Fs, F
′
t

)
.

Of course [F, F ′] depends on H. A simple approximation argument shows that, when H
belongs to U

(
sx, X(sx),∞

)
,

(7.s) [F, F ] ⩾ 0;
∣∣[F, F ′]

∣∣2 ⩽ [F, F ][F ′, F ′].
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At this point we need to remind ourselves of a number of simple facts from the theory of
integration (cf. [5, Ch. II]). Let Lx(V,W ;λ) be the space of all functions

F (H) =
⊕

Fs(H)

on U
(
†sx, X(sx),

(
µ(sx)− λ

)1/2)
with values in Xx(V,W ) such that

[
F (H), F

]
is measurable

for every F in Xx(V,W ),
Fss0xr

(H) = Fs(s
0
xrH)

for all r in †Ω(sx, sx), and

1

ωx(2π)m

∫
U

(
†sx,X(sx),(µ(sx)−λ)

1/2
)[F (H), F (H)

]
|dH| =

∥∥F (·)∥∥2
is finite. If two functions whose difference has norm zero are identified, Lx(V,W ;λ) becomes
a Hilbert space.

u⊕
x=1

Lx(V,W ;λ) = L(V,W ;λ)

is also a Hilbert space with the dense subset

K(V,W ;λ) =


u⊕

x=1

⊕
s∈Ω(i)(sx,Cx)

dΦ(ss0xH)

∣∣∣∣∣∣∣ Φ(·) = ri(·)Φ′(·), Φ′(·) ∈ ∗H(V,W )

.
The map

Φ(·) →
(
I − E(λ)

)
Qϕ̂

can be extended to an isometric map of L(V,W ;λ) into ∗L′({P}, {V },W
)

F (·) → f̂

where

F (·) =
u⊕

x=1

Fx(·).

Let Lx(V,W ) be the set of all functions

F (·) =
⊕

Fs(·)

on U
(†sx, X(sx),∞

)
with values in Xx(V,W ) such that

[
F (H), F

]
is measurable for every F

in Xx(V,W ),
Fss0xr

(H) = Fs(rs
0
xH)

for all r in †Ω(sx, sx), and

1

ωx(2π)m

∫
U(†sx,X(sx),∞)

[
F (H), F (H)

]
|dH| =

∥∥F (·)∥∥2
is finite. The set Lx(V,W ) is also a Hilbert space; let

u⊕
x=1

Lx(V,W ) = L(V,W ).
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The spaces L(V,W ;λ) can be regarded as subspaces of L(V,W ) and
⋃

λ L(V,W ;λ) is dense

in L(V,W ). The map F (·) → f̂ can be extended to an isometric mapping of L(V,W ) into
∗L′({P}, {V },W

)
. It follows readily from (7.r) that if F (·) belongs to L(V,W ) and G(·)

belong to L(V ′,W ) then

(f̂ , ĝ) =
u∑

x=1

1

ωx(2π)m

∫
U(†sx,X(sx),∞)

[
F (H), G(H)

]
|dH|.

Let F x(·) =
⊕

F x
s (·), 1 ⩽ x ⩽ u, be a function in U

(†sx, X(sx),∞
)
with values in Xx(V,W )

such that
F x
ss0xr

(H) = Fs(rs
0
xH)

for all r in †Ω(sx, sx) and suppose that if G(·) =
⊕u

x=1Gx(·) belongs to K(V,W ;λ) for some
λ then

[
Fx(H), Gx(H)

]
is measurable for 1 ⩽ x ⩽ u and

u∑
x=1

1

ωx(2π)m

∫
U

(
†sx,X(sx),(µ(sx)−λ)

1/2
)[Fx(H), Gx(H)

]
dH

is defined and is at most c
∥∥G(·)∥∥ where c is some constant. Then F (·) belongs to L(V,W )

and its norm is at most c.
If Φ(·) belongs to ∗H(V,W ) and

Fx(H) =
⊕

s∈Ω(i)(sx,Cx)

dΦ(ss0xH),

this condition is satisfied with c = ∥Φ̂∥. If P ′ belongs to ∗{P}(j) and Ψ(·) belongs to ∗H(V ′,W )
it then follows from (7.s) that∑

t∈Ω(j)(sx,Cx)

∑
s∈Ω(i)(sx,Cx)

(
N(ts0xs

−1, ss0xH) dΦ(ss0xH), dΨ(−tH)
)

is integrable on U
(†sx, X(sx),∞

)
. However, it is a meromorphic function with singularities

which lie along hyperplanes of the form α(H) = µ; so it is integrable over U
(†sx, X(sx),∞

)
only if it is analytic on this set. Applying the map F (·) → f̂ to the above element of L(V,W )
we obtain a function ϕ′ in ∗L′({P}, {V },W

)
. To prove the final assertion of the lemma it is

sufficient to show that ϕ′ is the projection of ϕ̂ on ∗L′({P}, {V },W
)
or that((

I − E(λ)
)
Qψ̂, ϕ̂

)
=
((
I − E(λ)

)
Qψ̂, ϕ′

)
whenever there is a positive number a and a P ′ in ∗{P}(j) for some j such that R2 − λ < a2

and Ψ(·) = rj(·)Ψ′(·) with Ψ′(·) in ∗H(V ′,W ). This follows from the formula (7.r) with Φ(·)
and Ψ(·) interchanged.

Take Φ(·) as in the last paragraph and suppose that for some x∑
s∈Ω(i)(sx,Cx)

E
(
·, dΦ(ss0xH), ss0xH

)
= E(·, H)

is not analytic on U
(†sx, X(sx),∞

)
. Let t be a singulary hyperplane which intersects

U
(†sx, X(sx),∞

)
. Select a unit normal to t, take an arbitrary analytic function g(·) on †s,
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and consider Rest
{
g(H)E(·, H)

}
. If P ′ belongs to ∗{P}(j) for some j and ψ belongs to

∗D(V,W ) then ∫
∗Θ\∗M×K

Res
t

{
g(H)E(mk,H)

}
ψ̂(mk) dmdk

is equal to

Res
t

{∫
∗Θ\∗M×K

g(H)E(mk,H)ψ̂(mk) dmdk

}
.

If ψ is the Fourier transform of Ψ(·) the expression in brackets is equal to

g(H)
∑

t∈Ω(j)(sx,Cx)

∑
s∈Ω(i)(sx,Cx)

(
N(ts0xs

−1, ss0xH) dΦ(ss0xH), dΨ(−tH)
)
.

Since no singular hyperplanes of this function intersect U
(†sx, X(sx),∞

)
the residue is zero.

Comparing this conclusion with Lemma 3.7 we obtain a contradiction. Suppose that ϕ′(·, a)
is the image in ∗L′({P}, {V },W

)
of the element

u⊕
x=1

Fx(H)

of L(V,W ) where

Fx(H) =
⊕

s∈Ω(i)(sx,C)

dΦ(ss0xH)

if ∥ImH∥ < a and Fx(H) = 0 if ∥ImH∥ ⩾ a. Certainly the limit of ϕ′(·, a) as a approaches
infinity is equal to the function ϕ′ of the previous paragraph. To complete the proof of the
lemma it has to be shown that ϕ′(·, a) = ϕ(·, a). To do this we show that if P ′ belongs to
∗{P}(j) for some j and ψ belongs to ∗D(V,W ) then(

ϕ′(·, a), ψ̂
)
=
(
ϕ(·, a), ψ̂

)
.

Now
(
ϕ(·, a), ψ̂

)
is equal to

u∑
x=1

1

ωx(2πi)m

∫ ∑{∫
∗Θ\∗M×K

E
(
mk, dΦ(ss0xH), ss0xH

)
ψ̂(mk) dmdk

}
dH.

The outer integral is over U
(†s, X(s), a

)
and the inner sum is over s ∈ Ω(i)(sx, Cx). Referring

to (7.a) we see that if ψ is the Fourier transform of Ψ(·) this equals
u∑

x=1

1

ωx(2πi)m

∫ ∑
t

∑
s

(
N(ts0xs

−1, ss0xH) dΦ(ss0xH), dΨ(−tH)
)
dH

which is, of course, equal to
(
ϕ′(·, a), ψ̂

)
.

There is a corollary to this lemma which is of great importance to us.

Corollary. Let ∗P be a cuspidal subgroup belonging to some element of {P} let P belong
to ∗{P}(i), let s belong to ∗S(i) and let F belong to L

(
S(s),E(V,W )

)
. If a is the largest

distinguished subspace which s̃ contains and if r is the inverse image in s of a singular
hyperplane of the function E(·, F,H) on †s which meets U

(†s, X(s),∞
)
then r̃ contains a.
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Suppose that s̃ is the complexification of a distinguished subspace a of h. The assertion
in this case is that E(·, F,H) has no singular hyperplanes which meet U

(†s, X(s),∞
)
and it

will be proved by induction on dim a− dim ∗a. We first take this difference to be one. Let H0

be a unit vector in †s ∩ a(i). If X is a singular point of E(·, F,H) lying in U
(†s, X(s),∞

)
let

E(g, F,X + izH0) =
∞∑

k=−m

zkEk(g)

with m > 0 and E−m(g) ̸≡ 0. If s belongs to Cx choose sx = s and let F n(·), for sufficiently
large n, be that element of Lx(V,W ) such that F n

s (H) vanishes identically if s is not in
†Ω(s, s), Fs0(H) equals nzmF if H = X + izH0 with 1/2n < z < 1/n and equals zero
otherwise, and Fr(H) = Fs0(rs

0H) if r belongs to †Ω(s, s). Since, for large n,∥∥F n(·)
∥∥2 = n2/2π

∫ 1/n

1/2n

(
N(s0, X)F, F

)
dz,

we conclude that limn→∞
∥∥F n(·)

∥∥2 = 0. Let fn be the image of F n(·) in ∗L′({P}, {V },W
)
.

An argument like that used in the proof of the lemma shows that

fn(g) = n/2π

∫ 1/n

1/2n

zmE(g, F,X + izH0) dz

= n/2π
∞∑

k=−m

∫ 1/n

1/2n

zm+kEk(g) dz,

so that

lim
n→∞

fn(g) =
1

4π
E−m(g)

uniformly on compact sets. Comparing the two results we conclude that E−m(g) ≡ 0, and
this is impossible.

Suppose that dim a− dim ∗a = n is greater than one and that the assertion is true when
dim a − dim ∗a is less than n. If t in ∗S(j) belongs to the same equivalence class as s, if P
belongs to ∗{P}(i), if F belongs to L

(
S(s),E(V,W )

)
, if P ′ belongs to ∗{P}(j), if F ′ belongs

to L
(
S(t),E(V,W )

)
, if s belongs to †Ω(s, s), and if t belongs to †Ω(s, t) then∣∣∣(N(ts0s−1, ss0H)F, F ′)∣∣∣2

is at most (
N(ss0s−1, ss0H)F, F

)(
N(ts0t−1, ts0H)F ′, F ′)

which in turn equals (
N(s0, ss0H)F, F

)(
N(t0, ts0H)F ′, F ′)

if H belongs to U
(†s, X(s),∞

)
. Consequently if a singular hyperplane of the function(

N(ts0s−1, ss0H)F, F ′) meets U
(†s, X(s),∞

)
it must be a singular hyperplane of(

N(t0, ts0H)F ′, F ′).
This fact will be used to show that, if for some F in L

(
S(s),E(V,W )

)
the hyperplane †r

meets U
(†s, X(s),∞

)
and is a singular hyperplane of E(·, F,H), then for some j, some t in

∗S(j) such that the largest distinguished subspace contained in t̃ is larger than ∗a, some P ′ in
∗{P}(j), some F ′ in L

(
S(t),E(V ′,W )

)
, and some t in Ω(s, t) the function

(
N(t0, ts0H)F ′, F ′)
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has †r as a singular hyperplane. Suppose not, and let r be the inverse image of †r in s. Select
a unit normal to r and consider the function ResrE(·, ·, ·) defined on

∗A ∗T\G× L
(
S(r), E(V,W )

)
× {†r}.

If r belongs to †Ω(j)(r) for some j, then ResrN(r, ·) is zero unless there is a t in ∗S(j) such
that the largest distinguished subspace contained in t̃ is ∗a, and a t in †Ω(s, t) such that r is
the restriction to r of t. Then

Re
{
−r
(
X(r)

)}
= −r

(
X(s)

)
= X(t)

belongs to +(†a(j)). It follows from the corollary to Lemma 5.1 that if F is in L
(
S(r),E(V,W )

)
and ResrE(·, F,H) is defined at H in U

(†r, X(r),∞
)
, then it belongs to ∗L

(
{P}, {V },W

)
.

Choosing such an H which is not real we contradict Lemma 7.3.
Let us, for brevity, call those s in S such that s̃ is the complexification of a distinguished

subspace principal. To complete the induction and to prove the lemma for those elements of
S which are not principal we will use the functional equations proved in Lemma 7.4. Let C be
an equivalence class in ∗S and choose a principal element s in C. If s1 is in ∗S(i) and belongs
to C and if P in ∗{P}(i) is given we can choose the set of representatives P (i,k), 1 ⩽ k ⩽ m′

i,
so that it contains P . Choose

F y =
⊕

s∈Ω0(s,C)

F y
s

with F y
s in L

(
S(ss),E

(js)
)
so that the set of vectors

⊕
t∈Ω(s,C) F

y
t (H) with

F y
t (H) =

∑
s∈Ω0(s,C)

M(ts0s−1, ss0H)F y
s

is a basis for the range of M(H) when M(H) is defined. There are elements

Gy =
⊕

s∈Ω0(s,C)

Gy
s

such that if
{
Gt

∣∣ t ∈ Ω(s, C)
}
belongs to the range of M(H) and

Gt =
v∑

y=1

cyF
y
t

for all t then
cy =

∑
s∈Ω0(s,C)

(Gs, G
y
s).

If F belongs to L
(
S(s1),E(V

(i,k),W )
)
for some k, s1 belongs to †Ω(s, s1), and

v∑
y=1

cy(H)F y
t (H) =M(ts0s−1

1 , s1s
0H)F

for all t then

(7.t) E(g, F, s1s
0H) =

v∑
y=1

cy(H)

 ∑
s∈Ω0(s,C)

E(g, F y
s , ss

0H)

.
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Suppose that s1 is principal and that r1 is the inverse image in s1 of a singular hyperplane
of E(·, F, ·). Let t in ∗S(j) be an element of C which contains a distinguished subspace ∗a1
larger than ∗a such that for some P ′ in ∗{P}(j), some F ′ in L

(
S(t),E(V ′,W )

)
, and some

t1 in †Ω(s1, t) the function
(
N(t0, t1s

0
1H)F ′, F ′) has †r1 as a singular hyperplane. Since

N(t0, t1s
0
1H) depends only on the projection of t1s

0
1H on the orthogonal complement of ∗a1

the hyperplane t1s
0
1(̃r1) contains

∗a1. There is a principal element in ∗S1 which is equivalent
to t; it may be supposed that we have chosen s to be this element. Choose a t in Ω(s, t)
which leaves every element of ∗a1 fixed. Let us take s1 to be t−1

1 t0t. Then E(g, F, s1s
0H) has

a singular hyperplane †r which meets U
(†s, X(s),∞

)
such that r̃ contains ∗a1. As usual the

inverse image r of †r in s is written as X(r) + r̃. Now

cy(H) =
∑

t∈Ω0(s,C)

(
M(ts0s−1

1 , s1s
0H)F,Gy

t

)
and is thus analytic on U

(†s, X(s),∞
)
. Consequently for some s in Ω0(s, C) the function

E(·, F y
s , ss

0H) has r for a singular hyperplane. In other words we can suppose that if s
belongs to ∗S(k), there is a P in ∗{P}(k), and an F in L

(
S(s),E(V,W )

)
such that E(·, F, ·)

has a singular hyperplane †r which meets U
(†s, X(s),∞

)
and is such that r̃ contains ∗a1. Let

∗P1 be the cuspidal subgroup with split component ∗a1 which belongs to P and let E1(·, ·, ·)
be the associated function on

∗A1
∗T1\G× L

(
S(s),E(V,W )

)
× †s

′

if †s′ is the projection of s on the orthogonal complement of ∗a1. It follows from the relation (7.c)
that E1(·, F, ·) must have a singular hyperplane in †s′ which meets U

(†s′, X(s′),∞
)
and this

contradicts the induction assumption.
The general case now follows readily from the relation (7.t). Indeed a singular hyperplane

of the function E(·, F,H) defined on †s1, the projection of s1 on the orthogonal complement
of ∗a, can meet U

(†s, X(s),∞
)
only if it is a singular hyperplane of

(
M(ts0s−1

1 , H)F,Gt

)
for

some s1 in †Ω(s, s1) and some t in Ω0(s, C) and hence, by (7.s), a singular hyperplane of(
M(s01, H)F, F

)
. Since M(s01, H) depends only on the projection of H on the orthogonal

complement of the largest distinguished subspace contained in s̃1 the corollary follows.
The principal assertion of the paper can now be formulated as follows.

Theorem 7.1. There are q+1 unique collections Sm =
⋃r

i=1 S
(i)
m of affine spaces of dimension

m and unique Eisenstein systems, one belonging to each element of Sm, 0 ⩽ m ⩽ q, which
satisfy the hypotheses of Lemma 7.5 such that if ∗P is a cuspidal subgroup belonging to some
element of {P} and ∗Lm

(
{P}, {V },W

)
is the closed subspace of ∗L

(
{P}, {V },W

)
associated

to Sm by Lemma 7.6 then, if ∗q is the dimension of ∗a,

∗L
(
{P}, {V },W

)
=

q∑
m=∗q

∗Lm

(
{P}, {V },W

)
and ∗Lm1

(
{P}, {V },W

)
is orthogonal to ∗Lm2

(
{P}, {V },W

)
if m1 ̸= m2.

We will use induction onm to establish the existence of these collections and the associated
Eisenstein system. Let us first describe the form the induction step takes, then show how to
start the induction, and then carry it out in general. Let m be an integer with 0 ⩽ m ⩽ q

and suppose that we have defined the collections S
(i)
n , 1 ⩽ i ⩽ r for all n > m and that
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if n1 ̸= n2 the spaces ∗Ln1

(
{P}, {V },W

)
and ∗Ln2

(
{P}, {V },W

)
are orthogonal. Suppose

that for 1 ⩽ i ⩽ r we have also defined a collection S(i) of distinct affine subspaces of a
(i)
c

of dimension m and a collection T (i) of not necessarily distinct affine subspaces of a
(i)
c of

dimension m− 1 and that we have associated an Eisenstein system to each element of S(i)

and T (i). Suppose that every space in S(i) or T (i) meets Di and that only a finite number of

the elements of S(i) or T (i) meet each compact subset of a
(i)
c . In particular then if s belongs

to S(i) or T (i) the point X(s) lies in Di; we assume also that ReX(s) belongs to +a if a is
the orthogonal complement of the largest distinguished subspace contained in s̃ and to the
closure of +a(s) if a(s) is the orthogonal complement of s̃ in a(i). Recall that +a(s) has been
defined in the discussion preceding Lemma 2.6. If s belongs to S(i) it is said to be of type A
if for every positive number a we have defined a non-empty convex cone V (s, a) with centre
X(s) and radius ϵ(a) so that if a1 is less than a2 then V (s, a1) contains V (s, a2), so that
every singular hyperplane of the associated Eisenstein system which meets the closure of the
cylinder C

(
s, ϵ(a), a

)
meets the closure of U

(
s, X(s), a

)
but no singular hyperplane meets the

closure of U(s, Z, a) if Z belongs to V (s, a), and so that the closure of V (s, a) is contained in
Di. An element t of T (i) is said to be of type B if it satisfies, in addition to these conditions,
the condition we now describe. Let P belong to {P}(i), let ∗P belong to P , and let F belong
to L

(
S(t),E(V,W )

)
. If a is the largest distinguished subspace which t̃ contains and if r is

the inverse image in t of a singular hyperplane of the function E(·, F, ·), which is defined on
†t, which meets U

(†t, X(t),∞
)
then r̃ contains a. If t lies in T (i) it is said to be of type C

if for every positive number a we have defined a non-empty open convex subset V (t, a) of
t̃ so that if a1 is less than a2 then V (t, a1) contains V (t, a2) so that no singular hyperplane
meets the closure of U(t, Z, a) if Z belongs to V (t, a), and so that

{
ReZ

∣∣ Z ∈ V (t, a)
}
is

contained in the interior of the convex hull of (a(i))+ and the closure of +a(t). We assume
that every element of S(i) is of type A and every element of T (i) is of type B or C.

Suppose that ∗P is the cuspidal subgroup belonging to some element of {P} and let Q be
the projection of ∗L

(
{P}, {V },W

)
onto the orthogonal complement of
q∑

n=m+1

∗Ln

(
{P}, {V },W

)
We suppose that Q is zero if m is less than ∗q but that if m ⩾ ∗q then for any P in ∗{P}(i),
any Φ(·) in ∗H(V,W ), any P ′ in ∗{P}(j), and Ψ(·) in ∗H(V ′,W ) and any positive number a

the difference between
(
R(λ,A)Qϕ̂, ψ̂

)
and the sum of∑

s∈∗S(i)

∑
s∈†Ω(j)(s)

1

(2πi)m′

∫ (
N(s,H) d

((
λ− ⟨H,H⟩

)−1
Φ(H)

)
, dΨ(−sH)

)
dH

and ∑
t∈∗T (i)

∑
t∈†Ω(j)(t)

1

(2πi)m′−1

∫ (
N(t,H) d

((
λ− ⟨H,H⟩

)−1
Φ(H)

)
, dΨ(−sH)

)
dH

is analytic for Reλ > R2 − a2 if Z(s) belongs to V (S, a) and Z(t) belongs to V (t, a). The
integrals are over U

(†s, Z(s), a) and U(†t, Z(t), a) respectively. The integer m′ equals m− ∗q.
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We also suppose that the difference between
(
Qϕ̂,R(λ,A)ψ̂

)
and the sum of

∑
s∈∗S(i)

∑
s∈†Ω(j)(s)

1

(2πi)m′

∫ (
N(s,H) dΦ(H), d

((
λ− ⟨−sH,−sH⟩

)−1

Ψ(−sH)

))
dH

and ∑
t∈∗T (i)

∑
t∈†Ω(j)(t)

1

(2πi)m′−1

∫ (
N(t,H) dΦ(H), d

((
λ− ⟨−sH,−sH⟩

)−1

Ψ(−sH)

))
dH

is analytic for Reλ > R2 − a2. The integrals are again over U
(†s, Z(s), a) and U(†t, Z(t), a).

It is an easy matter to verify that the collections S(i) satisfy the conditions of Lemma 7.5.
First of all, Lemma 7.6, with m replaced by n > m, make it obvious that λ(f) commutes
with Q if f(·) belongs to †I0, so that it is only necessary to verify that for each ∗P and
each positive number a there are polynomials ri(·), 1 ⩽ i ⩽ r′, on †a(i) for which (7.p) and
(7.q) have the required property. Since there are only a finite number of t in ∗T (i) for which
U
(†t, Z(t), a) is not empty, a polynomial ri(·) can be chosen so that, for all P and P ′, all

such t, and all t in †Ω(j)(t), the function N(t,H) dri(H) vanishes identically on †t but so that
ri(·) does not vanish identically on †s if s belongs to ∗S(i). It may also be supposed that if s
belongs to S(i) and s intersects {

H ∈ Di

∣∣ ∥ImH∥ ⩽ a
}

then, for all P and P ′ and all s in †Ω(j)(s), the functions N(s,H) dri(H) on †s has no singular
hyperplanes which meet {

H ∈ Di

∣∣ ∥ImH∥ ⩽ a
}

The conditions of the last paragraph imply that with such polynomials the conditions of
Lemma 7.5 are satisfied. To see this one has to use the argument preceding Lemma 7.1 in

the way that Lemma 7.1 is used below. We will take S
(i)
m to be S(i).

We must now examine the expression

(7.u)
∑

s∈∗S(i)

∑
s∈†Ω(j)(s)

1

(2πi)m′

∫
U(†s,Z(s),a)

(
N(s,H) dΦ(H), dΨ(−sH)

)
dH.

Since the set S =
⋃r

i=1 S
(i) is finite we may suppose that, for each positive a, the cones

V (s, a), s ∈ S, all have the same radius ϵ(a). We may also suppose that ϵ(a) is such that
for each a and each s there is a cone W (s, a) with centre X(s) and radius ϵ(a) such that
if s belongs to Ω(s, t) for some t in S and Z belongs to ss0

(
W (s, a)

)
there is no singular

hyperplane of the Eisenstein system associated to t which meets the closure of U(t, Z, a). It
may also be supposed that if r and s belong to S the collections{

ss0
(
W (s, a)

) ∣∣∣ s ∈ Ω(s, t)
}

and {
rrp
(
W (r, a)

) ∣∣∣ r ∈ Ω(r, t)
}

are the same if Ω(r, s) is not empty and that if s ∈ Ω(s, t) and t ∈ Ω(s, t) then

ss0
(
W (s, a)

)
∩ ts0

(
W (s, a)

)
̸= ∅



146 7. THE MAIN THEOREM

implies s = t. Choose for each s in S and each s in Ω(s, s) a point Z(s, s) in ss0
(
W (s, a)

)
.

According to the remarks following the proof of Lemma 7.1 there is a collection T
(i)
1 of

m− 1-dimensional affine spaces and for each t in T
(i)
1 an Eisenstein system belonging to t and

a cone V (t, a), with centre X(t) and some radius δ(a), such that, for all ∗P , (7.u) is equal to
the sum of

(7.v)
∑∑∑ 1

ω(s)(2πi)m

∫
U(†s,Z(s,r),a)

(
N(s,H) dΦ(H), dΨ(−sH)

)
dH

and

(7.w)
∑

t∈∗T
(i)
i

∑
t∈†Ω(k)(t)

1

(2πi)m′−1

∫
U(†t,Z(t),a)

(
N(t,H) dΦ(H), dΨ(−tH)

)
dH

with Z(t) in V (t, a), and a sum of terms of the same type as (7.m). The sums in (7.v) are
over s ∈ ∗S(i), r ∈ Ω(s, s), and s ∈ †Ω(j)(s) and the number of elements in Ω(s, s) is ω(s). We

can certainly suppose that, with the cones V (t, a), the elements of T
(i)
1 are all of type B. The

supplementary condition on elements of type B must of course be verified but that is not
difficult. We can also suppose that the sets U ′ occurring in the terms of the form (7.m) all
lie in {

H
∣∣ ∥ReH∥ < R, ∥ImH∥ ⩾ a

}
This implies that if Φ(H) is replaced by

(
λ− ⟨H,H⟩

)−1
Φ(H) or Ψ(H) is replaced by(

λ− ⟨H,H⟩
)−1

Ψ(H) the difference between (7.u) and the sum of (7.v) and (7.w) is analytic

for Reλ > R2 − a2. If t belongs to T
(i)
1 we will also have to know that if a is the orthogonal

complement of the largest distinguished subspace contained in t̃ then ReX(t) lies in +a
and that if a(t) is the orthogonal complement in a(i) of t̃ then ReX(t) lies in the closure of
+a(t). The space t is a singular hyperplane of some s in S(i) such that t meets U

(
s, X(s),∞

)
;

consequently ReX(t) = X(s). The first point follows from the corollary to Lemma 7.6
because according to it we can assume that the largest distinguished subspaces contained in
s̃ and t̃ are the same. If α is a positive root of a(i) let Hα be such that

⟨H,Hα⟩ = α(H)

for all H in a(i). The second point follows from the observation that the closures of +a(s) and
+a(t) are the non-negative linear combinations of the elements Hα where α varies over the
positive roots which vanish on s̃ and t̃ respectively.

Let C1, . . . , Cu be the equivalence classes in ∗S and for each x choose a principal element
sx in Cx. Let ryx, 1 ⩽ y ⩽ vx, be a subset of Ω(sx, sx) such that every element of Ω(sx, sx)
can be written in the form ss0xr

y
x with a unique y and a unique s in †Ω(sx, sx). Choose for

each x a point Zx in W (sx, a) and if s belongs to Cx and s belongs to Ω(s, s) let

Z(s, s) = ts0x(Zx)

if t is the unique element of Ω(sx, s) such that

ss0
(
W (s, a)

)
= ts0x

(
W (sx, a)

)
.



7. THE MAIN THEOREM 147

The expression (7.v) is equal to
u∑

x=1

vx∑
y=1

1

ω(sx)(2πi)m
′

∫ ∑∑(
N(ts0xs

−1, ss0xH) dΦ(ss0xH), dΨ(−tH)
)
dH.

The integral is taken over U
(†sx, ryx(Zx), a

)
and the sums are over t ∈ Ω(j)(sx, Cx) and

s ∈ Ω(i)(sx, Cx). It follows from Lemma 7.6 that each of these integrands is analytic in the
closure of C

(
sx, ϵ(a), a

)
; consequently the argument used in the proof of Lemma 7.1 shows

that the sum is equal to

(7.x)
u∑

x=1

1

ωx(2πi)m
′

∫ ∑∑(
N(ts0xs

−1, ss0xH) dΦ(ss0xH), dΨ(−tH)
)
dH.

(the integral is here taken over U
(†sx, X(sx), a

)
) plus a sum of terms of the form

1

ωx(2πi)m
′

∫
U ′

∑∑(
N(ts0xs

−1, ss0xH) dΦ(ss0xH), dΨ(−tH)
)
dH

where U ′ is an open subset of an m′-dimensional oriented real subspace of †sx which lies in{
H ∈ †sx

∣∣∣ ∥ReH∥ < R, ∥ImH∥ ⩾ a
}
.

In any case if Φ(H) is replaced by
(
λ− ⟨H,H⟩

)−1
Φ(H) or Ψ(H) is replaced by(

λ− ⟨H,H⟩
)−1

Ψ(H)

the difference between (7.x) and (7.v) is analytic for Reλ > R2 − a2. If ϕ̂m is the projection

of ϕ̂ on ∗Lm

(
{P}, {V },W

)
it follows readily from Lemma 7.6 that the difference between(

R(λ,A)ϕ̂m, ψ̂
)
and (7.x) with Φ(H) replaced by

(
λ− ⟨H,H⟩

)−1
Φ(H) is analytic for Reλ >

R2 − a2 and that the difference between
(
ϕ̂m, R(λ,A)ψ̂

)
and (7.x) with Ψ(H) replaced by(

λ− ⟨H,H⟩
)−1

Ψ(H) is analytic for Reλ > R2 − a2. In conclusion, if Q′ is the projection of
∗L
(
{P}, {V },W

)
on the orthogonal complement of

q∑
n=m

∗Lm

(
{P}, {V },W

)
and R(i) is the union of T

(i)
1 and T (i) then the difference between

(
R(λ,A)Q′ϕ̂, ψ̂

)
and∑∑ 1

(2πi)m′−1

∫ (
N(r,H) d

((
λ− ⟨H,H⟩

)−1
Φ(H)

)
, dΨ(−sH)

)
dH

and the difference between
(
Qϕ̂,R(λ,A)ψ̂

)
and

∑∑ 1

(2πi)m′−1

∫ (
N(r,H) dΦ(H), d

((
λ− ⟨−rH,−rH⟩

)−1

Ψ(−rH)

))
dH
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are analytic for Reλ > R2 − a2. The sums in the two displayed expressions are over r ∈ ∗R(i),
r ∈ †Ω(j)(r), and the integral is taken over U

(†r, Z(r), a). In particular if m = ∗q these sums

are empty so that
(
R(λ,A)Q′ϕ̂, ψ̂

)
is entire and, hence Q′ϕ̂ = 0. Consequently

∗L
(
{P}, {V },W

)
=

q⊕
m=∗q

∗Lm

(
{P}, {V },W

)
.

We observed after defining an Eisenstein system that, for 1 ⩽ i ⩽ r, we could define in a
simple manner an Eisenstein system belonging to a(i). If R(i) = {a(i)} and if for all positive

numbers a we take V (a(i), a) to be
{
H ∈ A(i) ∩ a(i)

∣∣∣ ∥H∥ < R
}

then it follows readily from

the relation (4.p) that the difference between
(
R(λ,A)ϕ̂, ψ̂

)
and∑∑ 1

(2πi)q′

∫ (
N(s,H) d

((
λ− ⟨H,H⟩

)−1
Φ(H)

)
, dΨ(−sH)

)
dH

and the difference between
(
ϕ̂, R(λ,A)ψ̂

)
and

∑∑ 1

(2πi)q′

∫ (
N(s,H) dΦ(H), d

((
λ− ⟨−sH,−sH⟩

)−1

Ψ(−sH)

))
dH

are analytic for Reλ > R2 − a2 if Z(r) belongs to V (r, a). The ranges of summation and
integration are the same as above, and the integer q′ equals q − ∗q.

We now change notations so that m − 1 or q is m and show that from the collections
R(i) we can construct collections S(i) and T (i) which satisfy the induction assumption. Apart
from the uniqueness this will complete the proof of the lemma. The construction is such
that the analytic conditions on the associated Eisenstein systems are manifest; so only the
less obvious geometrical conditions will be verified. Suppose that r belongs to R(i) and is
of type C; since

{
ReH

∣∣ H ∈ V (r, a)
}
lies in the interior of the convex hull of (a(i))+ and

the closure of +a(r) there is an open cone with centre X(r) whose projection on a(i) lies in
the interior of this convex hull. We tentatively let S(i) be the set of distinct affine subspaces
s of a(i) such that s = r for some r in R(i). For each s in S(i) and each positive number a
we choose a non-empty convex open cone V (s, a) with centre X(s) and radius δ(a) so that
V (s, a1) contains V (s, a2) if a1 is less than a2, so that if s = r and r belongs to R(i) then
every singular hyperplane of the Eisenstein system associated to r which meets the closure of
the cylinder C

(
s, δ(a), a

)
meets the closure of U

(
s, X(s), a

)
but so that no such hyperplane

meets the closure of U(s, Z, a) if Z belongs to V (s, a), and so that the closure of V (s, a) lies
in Di. If s = r with r in R(i) and of type C we further demand that

{
ReH

∣∣ H ∈ V (s, a)
}

lie in the interior of the convex hull of (s(i))+ and the closure of +a(s).
Suppose that r belongs to R(i) and is of type C. Choose the unique s in S(i) such that r = s.

Suppose that Y belongs to V (s, a), that Z belongs to V (r, a), and that the segment joining
ReY and ReZ meets the projection on a(i) of the singular hyperplane t of the Eisenstein
system belonging to r. We have observed that the closure of +a(r) is contained in the closure
of +a(t). Thus

{
ReH

∣∣ H ∈ V (r, a)
}
and

{
ReH

∣∣ H ∈ V (s, a)
}
lie in the interior of the

convex hull of (a(i))+ and the closure of +a(t). The intersection of the convex hull of these
two sets with {ReH | H ∈ t } also lies in this set. Take a point in this set, which is not
empty, and project it on a(t); the result is ReX(t). Thus ReX(t) lies in the interior of the
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convex hull of the closure of +a(t) and the projection of (a(i))+ on a(t). If α is a positive root
of a(t), if H lies in (a(i))+, and if H ′ is the projection of H on a(t) then α(H ′) = α(H) which
is positive. Thus ReX(t) lies in the interior of the convex hull of a+(t) and the closure of
+a(t). This is +a(t) itself. If β1,, . . . , βp, are the simple roots of a(t) then

ReX(t) =

p∑
j=1

bjHβj,

with bj > 0. Let α1,, . . . , αq, be the simple roots of a(i) and let

βj, =

q∑
k=1

bjkαk,

with bjk ⩾ 0. If
p∑

j=1

bjbjℓ = 0

for some ℓ then bjℓ = 0 for all j and t̃ contains the distinguished subspace of a(i) defined by
αk,(H) = 0, k ̸= ℓ. It follows readily that if a is the orthogonal complement of the largest

distinguished subspace which t̃ contains then ReX(t) lies in +a.
The elements of T (i) will arise in two ways. Suppose that r belongs to R(i) and is of

type C. Choose the unique s in S(i) such that r = s. As a consequence of Lemma 7.1 we

can choose a collection T
(i)
(r) of affine subspaces of a(i) of dimension m− 1 and a collection of

Eisenstein systems, one belonging to each element of T
(i)
(r) so that the difference between∑

r∈†Ω(j)(r)

1

(2πi)m′

∫
U(†r,Z(r),a)

(
N(r,H) dΦ(H), dΨ(−sH)

)
dH

and the sum of ∑
s∈†Ω(j)(s)

1

(2πi)m′

∫
U(†s,Z(s),a)

(
Nr(s,H) dΦ(H), dΨ(−sH)

)
dH

and ∑
t∈∗T (i)(r)

∑
t∈†Ω(j)(t)

1

(2πi)m′−1

∫
U(†t,Z(t),a)

(
N(t,H) dΦ(H), dΨ(−sH)

)
dH

is a sum of integrals of the form (7.m). Of course Z(r) belongs to V (r, a), Z(s) belongs to
V (s, a), and Z(t) belongs to a suitably chosen V (t, a). Referring to the previous paragraph
we see that t, with the given V (t, a), may be supposed to be of type C. The meaning of the
function Nr(s,H) is clear.

Suppose that r belongs to R(i) and is of type B. Choose the unique s in S(i) such that
r = s. Appealing now to the remarks following the proof of Lemma 7.1 we obtain the same
conclusions as above except that the elements of T (i)(r) are of type B. We let

T (i) =
⋃

r∈R(i)

T (i)(r)

If s belongs to S(i) we associate to s the Eisenstein system obtained by adding together the
Eisenstein systems belonging to those r in R(i) such that r = s. If the sum is not an Eisenstein
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system, that is, if it vanishes identically, we remove s from S(i). The collections S(i) and T (i)

satisfy the induction assumptions.
The proof of the uniqueness will merely be sketched. We apply the second corollary to

Lemma 7.4. Suppose that the collections Sm, 0 ⩽ m ⩽ q, of affine spaces together with an
associated collection of Eisenstein systems satisfy the conditions of the theorem. Let ∗P be a
cuspidal subgroup of rank m belonging to some element of {P}. If P belongs to ∗{P}(i) and
Φ(·) belongs to ∗H(V,W ) the projection of ϕ̂ on the subspace of ∗L

(
{P}, {V },W

)
spanned

by eigenfunctions of the operator A is uniquely determined and is equal to∑
s∈∗S(i)

E
(
·, dΦ

(
X(s)

)
, X(s)

)
It follows readily that the points X(s), s ∈ ∗S(i), and the functions E

(
·, F,X(s)

)
, F ∈

L
(
S(s),E(V,W )

)
, are uniquely determined.
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[5] Dixmier, J., Les algèbras d’opérateurs dans l’espace hilbertien, Paris (1957).
[6] Gelfand, I. M., Automorphic functions and the theory of representations, Proc. Int. Congress of Math.,

Stockholm, 1962.
[7] and I. I. Pjateckii-Shapiro, Unitary representations in homogeneous spaces with discrete

stationary groups, Soviet Math. Dokl. 3 (1962).
[8] and , Unitary representations in a space G/Γ where G is a group of

n× n real matrices and Γ is a subgroup of integer matrices, Soviet Math. Dokl. 3 (1962).
[9] Harish-Chandra, On some applications of the universal enveloping algebra of a semi-simple Lie algebra,

Trans. Amer. Math. Soc. 70 (1956).
[10] , Representations of semi-simple Lie groups, III, Trans. Amer. Math. Soc. 76 (1954).
[11] , Representations of semi-simple Lie groups, IV, Amer. J. Math. 77 (1955).
[12] , On a lemma of F. Bruhat, J. Math. Pures Appl. (9) 35 (1956).
[13] , Fourier transforms on a semi-simple Lie algebra, I, Amer. J. Math. 89 (1957).
[14] , Automorphic Forms on a semi-simple Lie group, Proc. Nat. Acad. Sci. U.S.A., 45

(1959).
[15] Jacobson, N., Lie algebras, New York, 1962.
[16] Mostow, G. D., Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956).
[17] Selberg, A., Harmonic analysis and discontinuous groups, J. Indian Math. Soc. 20 (1956).
[18] , On discontinuous groups in higher-dimensional symmetric spaces, Contributions to Function

Theory, Bombay, 1960.
[19] , Discontinuous groups and harmonic analysis, Proc. Int. Congress of Math., Stockholm 1962.
[20] Shimizu, H., On discontinuous groups operating on the product of the upper half-planes, Ann. of Math.

(2) 77 (1963).
[21] Stone, M. H., Linear transformation in Hilbert space and their applications to analysis, New York, 1932.
[22] Weil, A., On discrete subgroups of Lie groups (II), Ann. of Math. (2) 75 (1962).
[23] Whitney, H., Elementary structure of real algebraic varieties, Ann. of Math. (2) 66 (1957).

151





APPENDIX I

Dirichlet series associated with quadratic forms

1. The object of this paper is to describe and prove the functional equations for some
Dirichlet series suggested by Selberg in [6]. In that paper he introduces invariant differential
operators on the space of positive definite m×m matrices; it is unnecessary to describe the
operators explicitly now. The series considered here arise when one attempts to construct
eigenfunctions of these differential operators which are invariant under the unimodular
substitutions T → UTU ′. The integral matrix U has determinant ±1. As Selberg observes,
if s = (s1, . . . , sm) is a complex m-tuple and sm+1 = 0 then

ω(T, s) = |T |
m+1

4

m∏
k=1

|T |sk−sk+1− 1
2

k

is an eigenfunction of the invariant differential operators. Here |T |k is the subdeterminant
formed from the first k rows of columns of T . Since the differential operators are invariant,
if A is a non-singular m × m matrix ω(A′TA, s) is also an eigenfunction with the same
eigenvalues. In particular, if A is a sub-diagonal matrix with diagonal elements ±1 then
ω(ATA′, s) = ω(T, S). Consequently the function

(1) Ω(T, s) =
∑
{U}

ω(UTU ′, s)

is, at least formally, an eigenfunction which is invariant under unimodular substitutions.
The sum is over a set of representatives of right-cosets of the group, V , of sub-diagonal
matrices in the group of unimodular matrices. The series converges when Re(sk+1 − sk) >

1
2
,

k = 1, . . . ,m − 1. One hopes to obtain eigenfunctions for other values of s by continuing
Ω(T, s) analytically. If this is possible it is natural to expect that Ω(T, s) satisfies some
functional equations. The form of these equations is suggested by the eigenvalues of the
differential operators corresponding to the eigenfunction ω(T, s) for they are symmetric
functions of s. To be precise, if

a(t) = t(t− 1)π−tΓ(t)ζ(2t)

and

(2) Ψ(T, s) =
∏
i>j

a

(
1

2
+ si − sj

)
Ω(T, s)

then Ψ(T, s) is an entire symmetric function of s.
Similar series may be obtained from the modular group and the generalized upper

half-plane. If Z = X + iY with Y > 0, the functions

χ(Z, s) = ω

(
Y, s1 +

m+ 1

4
, . . . , sm +

m+ 1

4

)
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are eigenfunctions of the invariant differential operators. Moreover χ(Z, s) is invariant under
the group, N , of modular transformations of the form[

A B

0 A′−1

]
with A in V . Form the function

(3) X(Z, s) =
∑
{M}

χ
(
M(z), s

)
.

The sum is over a set of representatives of right cosets of N in the modular group. The series
converges when Re(sk+1 − sk) >

1
2
, k = 1, . . . ,m− 1, and Re(s1) >

1
2
. Let

(4) Φ(Z, s) =
∏
i>j

a

(
1

2
+ si − sj

)
a

(
1

2
+ si + sj

)∏
i

a

(
1

2
+ si

)
X(Z, s).

The function Φ(Z, s) may be analytically continued to an entire symmetric function of s.
Moreover

Φ(Z,±s1, . . . ,±sm) = Φ(Z, s1, . . . , sm).

So Φ is invariant under the Weyl group of the symplectic group just as Ψ is invariant
under the Weyl group of the special linear group.

Professor Bochner suggested the possibility of defining analogous functions for any
algebraic number field. In order to do this I describe alternative definitions of the series (1)
and (3). For this some elementary algebraic facts are required and it is convenient to state
these for an arbitrary algebraic number field, k, of finite degree over the rationals.

Let zm be the m-dimensional coordinate space over k. The elements of zm are taken to
be row vectors. All modules over o, the ring of integers of k are to be finitely generated and
to be contained in zm. Such a module, n, is said to be of rank k if the subspace z of zm
generated by n is of dimension k. The rank of a module will often be indicated by a subscript.
In the following m will denote some fixed module in zm of rank m. A submodule n of m is
said to be primitive (with respect to m) if n = z ∩m. If nk is a submodule of m the quotient
space zm/z may be identified with zm−k and the image of m is a module m′ in zm−k. If nk is
primitive the kernel of the mapping m → m′ is nk. It is known that there is a submodule p of
m which maps onto m′ such that m = nk ⊕ p.

Now suppose that k is the rational field and that m consists of the elements of zm with
integral coordinates. If U = (u′1, . . . , u

′
m)

′ is a unimodular matrix with rows u1, . . . , um let
nk be the submodule of m consisting of integral linear combinations of u1, . . . , uk. Here nk
is clearly of rank k and it is primitive. For, let U−1 = (w1, . . . , wn) then if u =

∑k
i=1 aiui is

integral uwj = αj, 1 ⩽ j ⩽ k, is integral. So to each unimodular U there is associated an
ascending chain n1 ⊂ · · · ⊂ nm of primitive submodules. If U and V give rise to the same
chain then

u1 = a11v1

u2 = a21v1 + a22v2
...

um = am1 + · · ·+ ammvm
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with integral aij; or U = AV with

A =


a11
a21 a22

am1 amm


Comparing determinants one sees that A is unimodular. Consequently U and V belong to
the same right-coset of V . Conversely let n1 ⊂ n2 · · · ⊂ nm be an ascending chain of primitive
submodules. There is a vector u1 such that n1 consists of integral multiples of u1. Let n1 ⊕ p1
be the decomposition of m described above. Then n2 ∩ p1 is of rank 1 and consists of integral
multiples of a vector u2. The elements of n2 are integral linear combinations of u1 and u2.
Continuing in this manner one obtains vectors u1, . . . , um such that nk consists of integral
linear combinations of u1, . . . , uk. Moreover the matrix (u′1, . . . , u

′
m)

′ is unimodular since
u1, . . . , um span nm = m. Thus there is a one-to-one correspondence between right-cosets of
V and ascending chains of primitive submodules.

It remains to describe ω(UTU ′, s) in terms of the chain. Suppose once again that k is an
arbitrary algebraic number field. For convenience in calculating, the kth exterior product
of zm is taken to be z(mk)

and the coordinates of the kth exterior product of the vectors

α1, . . . , αk are the k × k subdeterminants of the matrix (α′
1, . . . , α

′
k)

′. If n is a module in zm
then nk is the module in z(mk)

generated by the kth exterior products of the vectors in n. If

nk is of rank k it is often convenient to write nk instead of nkk; in this case nk is of rank 1.
Now if U = (u′1, . . . , u

′
m)

′ is a unimodular matrix and n1 ⊂ · · · ⊂ nm the associated chain
of submodules nk consists of integral multiples of uk = u1 ∧ · · · ∧ uk, the exterior product of
u1, . . . , uk. Moreover, if T k is the

(
m
k

)
×
(
m
k

)
matrix formed from the k × k subdeterminants

of T then, by the general Lagrange identity,

|UTU ′|k = ukT kuk
′
.

Since ukT kuk
′
depends only on T and nk it may be written T{nk}. Then

ω(U ′TU, s) = T{nm}
m+1

4

m∏
k=1

T{nk}sk−sk+1− 1
2

= T{m}
m+1

4

m∏
k=1

T{nk}sk−sk+1− 1
2

and

Ω(T, s) = T{m}
m+1

4

∑ m∏
k=1

T{nk}sk−sk+1− 1
2 .

The sum is over all ascending chains of primitive submodules of the module of integral vectors.
Now let k be an algebraic number field of degree n over the rationals. Let k1, . . . , kn be

the conjugates of k; as usual ki is real if 1 ⩽ i ⩽ r1 and complex if r1 < i ⩽ n; moreover
ki+r2 = ki, r1 < i ⩽ r1 + r2. Let T be the n-tuple (T1, . . . , Tn). Each Ti, 1 ⩽ i ⩽ r1, is
a positive definite m ×m symmetric matrix; Ti, ri < i ⩽ n, is a positive definite m ×m
Hermitian matrix, and Ti+r2 = T i, r1 < i ⩽ r1 + r2. If n is a module of rank 1 in zm let α be
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a nonzero vector in n and let a = { a ∈ k | aα ∈ n }. It is an ideal in k and n = aα. Let

T{n} = N2a
n∏

k=1

αkTkα
′
k

Of course αk is the kth conjugate of α. The matrix T{n} is independent of the vector α
chosen. If nk is of rank k set T{nk} = T k{nk}; T k = (T k

1 , . . . , T
k
n ). Finally, if m is a finitely

generated module in zm of rank m set

(1′) Ω(T,m, s) = T{m}
m+1

4

∑ m∏
k=1

T{nk}sk−sk+1− 1
2 .

This sum is over all ascending chains, n1 ⊂ n2 ⊂ · · · ⊂ nm, of primitive submodules of m. Let

a(t) = t(t− 1)π−nt2−2r2t∆tΓ(t)r1Γ(2t)r2ζ(2t),

∆ being the absolute value of the discriminant of k and ζ(·) is the zeta-function of k. Then
set

(2′) Ψ(T,m, s) =
∏
i>j

a

(
1

2
+ si − sj

)
Ω(T,m, s)

Theorem 1.

(i) The series (1′) converges if Re(sk+1 − sk) >
1
2
, k = 1, . . . ,m− 1.

(ii) Ψ(T,m, s) may be analytically continued to an entire symmetric function of s.

In order to carry out an induction on m it is necessary to add

(iii) If s = σ + iτ , then
∣∣Ψ(T,m, s)

∣∣ ⩽ f(σ)
∏

i ̸=j

(
|sk − sj|+ 1

)
.

Of course f depends on T and m but no attempt is made here to determine precise estimates
for Ψ.

Now consider the series (3). If M(Z) = X1 + iY1 and

M =

(
A B
C D

)
then Y1 = (CZ +D)′

−1
Y (CZ +D)−1 so Y −1

1 = (CZ +D)Y −1(CZ +D)∗. Moreover

ω(Y1, s1, . . . , sm) = ω′(Y −1
1 ,−sm, . . . ,−s1)

and if E is the matrix (δi,n+1−i),

ω′(Y, s) = ω(EY E, s).

Consequently the series (3) may be written∑
ω′
(
(CZ +D)Y −1(CZ +D)∗,−sm − m+ 1

4
, . . . ,−s1 −

m+ 1

4

)
.

From an m× 2m matrix forming the lower half of a modular matrix, M , we may construct
the chain n1 ⊂ · · · ⊂ nm of primitive lattices; nk is the lattice spanned by the last k rows of
M and nm is orthogonal to itself with respect to the skew-symmetric form

m∑
i=1

xiym+i − yixm+1 = xJy′
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Two modular matrices give rise to the same ascending chain if and only if they belong to the
same right coset of N .

Conversely, given such an ascending chain of lattices, let {u1, . . . , uk} span nk. Then it is
possible to choose v1, . . . , vm so that viJu

′
j = δij . Suppose v1, . . . , vp have been chosen. Select

vp+1 so that vp+1Ju
′
j = δp+1,j and then subtract a suitable linear combination of u1, . . . , up so

that vp+1Jv
′
j = 0, j = 1, . . . , p+1. It is clear that the matrix with rows vm, . . . , v1, um, . . . , u1

is modular.
Now let W be the real part of the matrix (Z, I)′Y −1(Z, I); then

(CZ +D)Y −1(CZ +D)∗ = (C,D)W (C,D)′.

Using the previous notation the series (3) may now be written∑ m∏
k=1

W{nk}sm−k−sm−k+1− 1
2 ;

the sum is over all ascending chains, n1 ⊂ · · · ⊂ nm, of primitive submodules of the module
of the integral vectors with the property that nm is orthogonal to itself.

Now let k be an algebraic number field as before. Let W = (W1, . . . ,Wn) be an n-tuple of
matrices satisfying the same conditions as above; let m be a module of rank 2m in z2m; and
let J be a non-degenerate skew-symmetric form with coefficients in k. We suppose, moreover,

that JiW
−1

i J
′
i = Wi, Ji denoting the conjugates of J , and that mJ = m−1, which has been

defined in Section 5. Then define

(3′) χ(W,m, s) =
∑ m∏

k=1

W{nk}sm−k−sm−k+1− 1
2

the sum is over all ascending chains, n1 ⊂ · · · ⊂ nm, of primitive submodules of M such that
nm is orthogonal to itself with respect to J . Let

(4′) Φ(W,m, s) =
∏
i>j

a

(
1

2
+ si − sj

)
a

(
1

2
+ si + sj

)∏
k

a

(
1

2
+ si

)
χ(W,m, s).

Theorem 2.

(i) The series (3′) converges if Re(sk+1 − sk) >
1
2
, k = 1, . . . ,m− 1 and Re(s1) >

1
2
.

(ii) Φ(W,m, s) may be analytically continued to an entire symmetric function of s.
(iii) Φ(W,m,±s1, . . . ,±sm) = Φ(W,m, s1, . . . , sm).

The discussion of Section 2 and pp. 58–77 of [5] should provide the reader with the
necessary facts about Hecke’s theta-formula and its relation to Dirichlet series. It leads
immediately to a proof of Theorem 1 when m = 2. For other values of m the theorem is
proved by induction in Section 4. Section 3 contains a preliminary discussion of the series (1′).
In Section 5 another functional equation for Ψ(T,m, s) is proved and Theorem 2 is proved
in Section 6. In Section 7 the relation of Ψ(T,m, s) to some Dirichlet series investigated by
Koecher is discussed and in Section 8 a result of Klingen on the convergence of Eisenstein
series is derived.
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2. Let T = (T1, . . . , Tn) be as above and consider the series

(5) Θ(T, a1, . . . , am) =
∑
α

e−
∏

c
∑n

k=1(αkTkα
′
k).

Here a1, . . . , am, are m ideals in k; c =
(∏

i ∆ai
)−1/mn

with ∆ai = ∆N2ai; the sum is over all
vectors α = (a1, . . . , am) with ai in ai; and αk is the kth conjugate of α. Let {ai1, . . . , ain} be
a basis for ai, then ai =

∑
j aijxij with integral xij and

n∑
k=1

αkTkα
′
k = (x11, . . . , x1n, x21, . . . , xmn)S(x11, . . . , xmn)

′

where, denoting for the moment conjugates by superscripts and setting Tk = (tkij), S is the
matrix

a111 an11

a11n an1n

a1m1 a1m1

a1mn anmn



·



t111 t11m

tn11 tn1m

t1m1 t1mn

tnm1 tnmm



·



a111 a111

an11 an1n

a1m1 a1mn

anm1 anmn


The usual considerations show that

(6) Θ(T, a1, . . . , am) =
∏
k

|Tk|−1/2Θ(T
−1
, a′1, . . . , a

′
m)

where, if d is the different, a′i = d−1a−1
i . It is not difficult to show that

(7)
∣∣Θ(T, a1, . . . , am)− 1

∣∣ ⩽ Ce−
1
2∥(πcS)−1∥−1∥∥(πcS)−1

∥∥mn/2
.
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Let m be a module in zm of rank m and consider the series

φ(T,m, t) =
∑
{n1}

T{n1}−t;

the sum is over all primitive submodules of m of rank 1. If n is any submodule of m of
rank 1 let z be the one-dimensional subspace of zm generated by n and set n1 = z ∩m. The
ideal n1 is primitive and if b = { a ∈ k | an1 ∈ n } then b is an integral ideal and n = bn1.
This representation of n as the product of an integral ideal and a primitive submodule is
unique. Thus

ζ(2t)φ(T,m, t) =
∑
n

T{n}−t.

The sum is now over all submodules of m of rank 1 and ζ(2t) is the zeta function of k. It is
known that m = Am′; A is some m×m matrix in k and

m′ =
{
α = (a1, . . . , am)

∣∣ a1 ∈ a, a2, . . . , am ∈ o
}
,

a being some ideal in k. If A′TA = (A′
1T1A1, . . . , A

′
nTnAn), Ai being the conjugates of A,

then φ(T,m, t) = φ(A′TA,m′, t). Consequently it may be assumed that m = m′. It is also
convenient to take |Ti| = 1, i = 1, . . . ,m; then

ζ(2t)φ(T,m, t) =
∑
{ai}

(N2ai)
−t
∑
α

m∏
k=1

(αkTkα
′
k)

−t.

In the sum ai runs over a set of representatives of ideal classes; α = (a1, . . . , an) with
a1 ∈ aa−1

i , aj ∈ a−1
i , j = 2, . . . ,m; α = 0 is excluded from the sum and no two α differ by

multiplication with a unit. For if α is of this form for some i then aiα is a submodule of
rank 1 in m. Conversely if n is a submodule of rank 1 it has previously been observed that it
may be written as bβ where β is a vector in zm and b is an ideal in k. If b is in the class
of ai, let b = ai(a) and α = aβ, then n = aiα and α is of the above form. Moreover α is
uniquely determined up to multiplication by a unit.

Multiply by
(Na)2t/mπ−nt2−2r2t∆tΓ(t)r1Γ(2t)r2 .

and apply the usual transformation to obtain∑
{ai}

∑
α

∫ ∞

−∞
dz1 · · ·

∫ ∞

−∞
dzr+1e

−πc
∑r+1

k=1 dk(αkTkα
′
k)e

zket
∑r+1

k=1 dkzk ,

r+1 = r1+ r2, ci =
(
∆(aa−1

i )∆(a−1
i )m−1

)−1/mn
and di = 1, 1 ⩽ i ⩽ r1, di = 2, ri < i ⩽ r+1.

The familiar change of variables gives

(8)
∑
{ai}

N

w

∫ ∞

−∞
entv dv

∫ 1/2

−1/2

dη1 · · ·
∫ 1/2

−1/2

dηr

Θ

evT r∏
ℓ=1

|ϵℓ|2ηℓ , aa−1
i , a−1

i , . . . , a−1
i

− 1

.
Here w is the order of the group of roots of unity in k and {ϵ1, . . . , ϵr} is a system of
fundamental units; for the meaning of N the reader is referred to [5].

It is easy to conclude from the estimate (7) that, if t = σ + iτ and σ > m
2
⩾ 1

2
,

(9)
∣∣φ(T,m, t)∣∣ ⩽ f(σ) 1
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Breaking the region of integration into two parts and changing the variable of integration,
(8) becomes

∑
{ai}

N

w

∫ ∞

0

entv
∫ 1/2

−1/2

dη1 · · ·
∫ 1/2

−1/2

dηr

Θ

evT r∏
ℓ=1

|ϵℓ|2ηℓ , aa−1
i , . . . , a−1

i

− 1


+
∑
{ai}

N

w

∫ ∞

0

e−ntv

∫ 1/2

−1/2

dη1 · · ·
∫ 1/2

−1/2

dηr

Θ

e−vT
r∏

ℓ=1

|ϵℓ|2ηℓ , aa−1
i , . . . , a−1

i

− 1

.
Apply the formula (6) to obtain

∑
{ai}

N

w

∫ ∞

0

entv
∫ 1/2

−1/2

dη1 · · ·
∫ 1/2

−1/2

dηr

Θ

evT r∏
ℓ=1

|ϵℓ|2ηℓ , aa−1
i , a−1

i , . . . , a−1
i

− 1


+
∑
{ai}

N

w

·
∫ ∞

0

en(
m
2
−t)v

∫ 1/2

−1/2

dη1 · · ·
∫ 1/2

−1/2

dηr

Θ

evT−1
r∏

ℓ=1

|ϵℓ|2ηℓ , d−1a−1ai, d
−1ai, . . . , d

−1ai

− 1


− Nh

wnt
− Nh

wn
(
m
2
− t
) .

The integer h is the class number of the field.
It is now easy to prove Theorem 1 when m = 1 or 2. Indeed if m = 1, z1 = k, m is an

ideal a, and Ψ(T,m, s) = N2sa
∏n

i=1 t
s
i . Since, when m = 2, Ψ(T,m, s1, s2) is homogeneous of

degree s1 + s2 in Ti, i = 1, . . . , n, it may be assumed that |Ti| = 1. It may also be assumed
that m has the form of the module m′ described above. Then

(10) Ω(T,m, s1, s2) = T{m}s2+
1
4φ

(
T,m,

1

2
+ s2 − s1

)
and the series (1′) converges when Re

(
1
2
+ s2 − s1

)
> 1 or Re(s2 − s1) >

1
2
. Moreover, since

T{m} = N2a, Ψ(T,m, s1, s2) is
(
(s2 − s1)

2 − 1
4

)
T{m}s1+s2 times the function represented by

(10) when t = 1
2
+ s2 − s1. Thus it is an entire function. Since |Ti| = 1

T
−1

i =

[
0 1

−1 0

]
Ti

[
0 −1
1 0

]
and

Θ

evT−1
r∏

ℓ=1

|ϵℓ|2ηℓ , d−1a−1ai, d
−1ai

 = Θ

evT r∏
ℓ=1

|ϵℓ|2ηℓ , d−1ai, d
−1a−1ai

.
1Here and in the following f(σ) is used to denote a function of the real part of a complex vector which

majorizes a function of the complex vector. The function it denotes may vary from line to line.
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However the function (10) does not depend on the representatives of the ideal classes chosen;
so ai could be replaced by daa−1

i . The result is the same as that obtained by interchanging
s1 and s2; thus (10) is a symmetric function of s1 and s2 and so is Ψ(T,m, s1, s2).
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3. If nk and mk are two primitive submodules of m of rank k such that that nkk = mk
k

then nk and mk lie in the same k-dimensional subspace of zm and, thus, must be the same.
Consequently the series for Ω(T,m, s) is majorized by, setting s = σ + iτ ,

T{m}σm+m−1
4

m−1∏
k=1

φ

(
T k,mk,

1

2
+ σk+1 − σk

)
.

So, when 1
2
+ σk+1 − σk >

1
2

(
m
k

)
, k = 1, . . . ,m− 1, the series converges and, using (9),

(11)
∣∣Ψ(T,m, s)

∣∣ ⩽ f(σ)
∏
i ̸=j

(
|si − sj|+ 1

)
.

This is not the region of convergence promised in part (i) of Theorem 1; however (i) will
follow from (ii) and Landau’s Theorem on Dirichlet series with positive coefficients.

Before proceeding with the proof of (ii) it will be convenient to describe certain useful
arrangements of the series (1′). That series may be written

T{m}
m+1

4

∑
{nk}

∑
k∏

j=1

T{nj}sj−sj+1− 1
2


∑

m∏
j=k+1

T{nj}sj−sj+1− 1
2

.
The outer sum is over all primitive submodules of rank k. The first inner sum is over all
chains, n1 ⊂ n2 ⊂ · · · ⊂ nk, of primitive submodules ending at nk; the second is over all
chains, nk ⊂ nk+1 ⊂ · · · ⊂ nm, beginning at nk.

It was observed above that for each nk there is a submodule p such that m = nk ⊕ p.
Choose bases {α1, . . . , αk} and {αk+1, . . . , αm} for the subspace of zm generated by nk and p
respectively. Then

n′ =
{
α = (a1, . . . , ak)

∣∣∣ ∑ aiαi ∈ nk

}
and

p′ =
{
β = (bk+1, . . . , bm)

∣∣∣ ∑ biαi ∈ p
}

are finitely generated modules in zk and zm−k. To simplify calculations assume that n′ ={
(a1, . . . , ak)

∣∣ a1 ∈ b, a2, . . . , ak ∈ o
}
; b is some ideal in k. Let B be the matrix (α′

1, . . . , α
′
k)

′

and A the matrix (α′
1, . . . , α

′
m)

′; then set R = BTB
′
. It is convenient to omit any explicit

reference to the components in such equations.
There is a one-to-one correspondence between chains n1 ⊂ · · · ⊂ nk ending at nk and

chains n′1 ⊂ · · · ⊂ n′k in n′. Moreover T{nj} = R{n′j}. Consequently the first inner sum is

Ω

(
R, n′, s1 − sk+1 −

k + 1

4
, . . . , sk − sk+1 −

k + 1

4

)
.

There is also a one-to-one correspondence between chains nk ⊂ nk+1 ⊂ · · · ⊂ nm, chains
in p, and chains q1 ⊂ q2 ⊂ · · · ⊂ qm−k in p′. Introduce the n-tuple of matrices

S =


ATA

′
(1,...,k,k+1; 1,...,k,k+1) ATA

′
(1,...,k,k+1; 1,...,k,m)

ATA
′
(1,...,k,m; 1,...,k,k+1) ATA

′
(1,...,k,m; 1,...,k,m)
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If H = (hij) is any matrix H(i1,...,iℓ; j1,...,jℓ) is the determinant of the matrix (hiujv), u, v =
1, . . . , ℓ. Since

S(i1,...,iℓ; j1,...,jℓ)

is equal to

(ATA
′
(1,...,k; 1,...,k))

ℓ−1 × ATA
′
(1,...,k,i1,...,iℓ; 1,...,k,j1,...,jℓ)

,

it is not difficult to show that

(12) T{nk+ℓ} = N2b
∏

(ATA
′
(1,...,k; 1,...,k))

1−ℓS{qℓ}.

The product is the product of the indicated subdeterminants of the components of ATA
′
.

Consequently the second inner sum with the factor T{m}m+1
4 incorporated is the product of

T{m}k/4(N2b)sk+1−m−k−1
4

∏
(ATA

′
(1,...,k; 1,...,k))

−sk+2−···−sm−m−k−1
4

and
Ω(S, p′, sk+1, . . . , sm).

However

(13) N2b
∏

ATA
′
(1,...,k; 1,...,k) = T{nk}

and the factor T{nk}−sk+2−···−sm−m−k−1
4 may be absorbed into the first sum. The result is

T{m}k/4
∑
{nk}

(N2b)sk+1+···+smΩ(S, p′, sk+1, . . . , sm)Ω(R, n
′, r)

with

r =

(
s1 − sk+1 − · · · − sm − m

4
, . . . , sk − sk+1 − · · · − sm − m

4

)
.

There is a corresponding representation of Ψ:

(14) Ψ(T,m, s) = γk(s)T{m}k/4
∑
nk

(N2b)sk+1+···+smΨ(S, p′, sk+1, . . . , sm)Ψ(R, n′, r)

with

γk(s) =
∏
i>k
j⩽k

a

(
1

2
+ si − sj

)
.

The series (14) converges if σk+1−σk ⩾ b (b is a suitable positive constant), k = 1, . . . ,m−1.
Assume that parts (ii) and (iii) of the theorem are true for k and m− k. Then the series is
symmetric in the first k and last m− k coordinates of s. Thus, if for some permutation π of
{1, . . . ,m} which leaves the sets {1, . . . , k} and {k + 1, . . . ,m} invariant σπ(k+1) − σπ(k) ⩾ b,
k = 1, . . . ,m− 1, the series will converge and the estimate (11) will be valid. It will now be
shown that the series converges in the region defined by

(15) σi − σj ⩾ cm−k(b) + ck(b); i > k, j ⩽ k

The constants cm−k(b) and ck(b) are obtained from the following lemma.

Lemma. If γ = (γ1, . . . , γm) is an m-tuple of real numbers and b is a positive constant there
are m-tuples of γ′, γ′′ such that

(i) γ = 1
2
(γ′ + γ′′),

(ii) |γi − γ′i| ⩽ cm(b) and |γi − γ′′i | ⩽ cm(b),
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(iii) there are permutations π′ and π′′ such that

γ′π′(k+1) − γ′π′(k) ⩾ b, γ′′π′′(k+1) − γ′′π′′(k) ⩾ b, k = 1, . . . ,m− 1.

cm(b) is a constant depending only on m and b.

Suppose the lemma has been proven for 1, . . . ,m− 1. It may be supposed that c1(b) ⩽
c2(b) ⩽ · · · ⩽ cm−1(b) and that γ1 ⩾ γ2 ⩾ · · · ⩾ γm. If γ1 − γm ⩾ (m − 1)

(
2cm−1(b) + b

)
then for some k, γk − γk+1 ⩾ 2cm−1(b) + b. Apply the lemma to the vectors (γ1, . . . , γk) and
(γk+1, . . . , γm) to obtain γ′1, . . . , γ

′
m, γ

′′
1 , . . . , γ

′′
m. These m-tuples satisfy the conditions of the

lemma if cm(b) ⩾ cm−1(b). If γ1 − γm < (m− 1)
(
2cm−1(b) + b

)
set a = 2(m− 1)cm−1(b) +mb

and

γ′1 = γ1 + (m− 1)a, γ′2 = γ2 + (m− 2)a, . . . , γ′m = γm,

γ′′1 = γ1 − (m− 1)a, γ′′2 = γ2 − (m− 2)a, . . . , γ′′m = γm.

Then

γ′k − γ′k+1 = a+ γk − γk+1 ⩾ a− (m− 1)
(
2cm−1(b) + b

)
= b,

γ′′k+1 − γ′′k = a+ γk+1 − γk ⩾ a− (m− 1)
(
2cm−1(b) + b

)
= b.

This proves the lemma if cm(b) = (m− 1)a.
If s = (s1, . . . , sm) = (σ1 + iτ1, . . . , σm + iτm) is in the region defined by (13) apply the

lemma to (σ1, . . . , σk) and (σk+1, . . . , σm) to obtain σ′
1, . . . , σ

′
m, σ

′′
1 , . . . , σ

′′
m. Set

s′ = (σ′
1 + iτ, . . . , σ′

m + iτm),

s′′ = (σ′′
1 + iτ, . . . , σ′′

m + iτm),

s(t) = ts′ + (1− t)s′′.

Then the series (14) may be written

(16) T{m}k/4
∑
{nk}

e−1/4

2πi

∫ 1+i∞

1−i∞
dt+

∫ −i∞

i∞
dt et

2

γk
(
s(t)
)
(N2b)sk+1(t)+···+sm(t)

·Ψ
(
S, p′, sk+1(t), . . . , sm(t)

)
Ψ
(
R, n′, r(t)

)
.

Because of the assumed validity of (iii) the integrals converge. Inverting the order of integration
and summation gives a series with a convergent majorant of the form

|et2 |
∏
i ̸=j

(∣∣si(t)− sj(t)
∣∣+ 1

)∑
{nk}

f(nk, σ),

σ being the real part of t. Consequently (14) converges and is equal to

T{m}k/4 e
−1/4

2πi

∫ 1+∞

1−∞
dt+

∫ −i∞

i∞
dt et

2

Ψ
(
T,m, s(t)

)
.
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So Ψ(T,m, s) is defined; moreover

∣∣Ψ(T,m, s)
∣∣ ⩽ c

∫ ∞

−∞
e−t2

∏
i ̸=j

(∣∣si(it)− sj(it)
∣∣+ 1

)
f(σ′)

+
∏
i ̸=j

(∣∣si(1 + it)− sj(1 + it)
∣∣+ 1

)
f(σ′′)

 dt

⩽ f(σ)
∏
i ̸=j

(
|si − sj|+ 1

)
,

σ being the real part of s.
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4. The theorem will now be proved by induction. It is sufficient to show that for each
N > 0, Ψ(T,m, s) may be continued analytically to the region:

∑m−2
i=1 |σi| < N , σm−1 and

σm arbitrary. The diagram represents a decomposition of this region into four overlapping
parts. The region I lies in the region defined by (15) when k = m − 1. The region II lies
in the region defined by (15) when k = m − 2. Moreover when k = m − 1 or m − 2 the
assumption of Section 3 is part of the induction hypothesis. Consequently Ψ(T,m, s) may be
continued analytically to the regions I and II. Moreover it will be symmetric there in s1 and
s2; consequently it may be extended to III. The inequality (11) will be valid in these regions.

IV

III

I

II

To extend Ψ to the region IV let

ξ1 = sm−1 + sm

ξ2 = sm−1 − sm

Then, taking c large enough, the formula

Ψ(T,m, s) =
e−ξ22

2πi

∫ c+i∞

c−i∞
dζ +

∫ −c−i∞

−c+i∞

eζ
2
Ψ
(
T,m, s1, . . . , sm−2,

ξ1+ζ
2
, ξ1−ζ

2

)
ζ − ξ2

effects the desired continuation to IV. Moreover the inequality (11) is easily shown to remain
valid.
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5. If m is a module of rank m in zm let m−1 = { β | αβ′ ∈ o for all α ∈ m }. As an
essentially simple consequence of the definition

(17) Ψ(T,m, s) = Ψ(T
−1
,m−1,−s)

Indeed, to establish this it is sufficient to show that

(18) Ω(T,m, s1, . . . , sm) = Ω(T
−1
,m−1,−sm, . . . ,−s1)

in the common region of convergence for the two series. If nk is a submodule of rank k let
qm−k =

{
β ∈ m−1

∣∣ αβ′ = 0 for all α ∈ nk
}
. Then qm−k is primitive and corresponding to

the chain n1 ⊂ · · · ⊂ nm is the chain q1 ⊂ · · · ⊂ qm = m−1. To prove (18) it is sufficient to
show

(19) T{m}
m+1

4

m∏
k=1

T{nk}sk−sk+1− 1
2 = T

−1{m−1}
m+1

4

m−1∏
k=1

T
−1{qm−k}sk−sk+1− 1

2

Of course, s0 = 0. Replacing T by ATA
′
if necessary, it may be assumed that

nk =
{
α = (a1, . . . , ak, 0, . . . , 0)

∣∣ ai ∈ ai
}
, k = 1, . . . ,m,

ai, i = 1, . . . ,m, being some ideal in k. Then

qm−k =
{
β = (0, . . . , 0, bk+1, . . . , bm)

∣∣ bi ∈ a−1
i

}
, k = 0, . . . ,m− 1.

Since both sides are homogeneous of degree
∑

i si in Tj it may be assumed that |Tj| = 1,
j = 1, . . . , n. Then

T{nk} = N2(a1 · · · ak)
∏

T(1,...,k; 1,...,k)

and

T
−1{qm−k} = N2(a−1

m · · · a−1
k+1)

∏
T

−1

(k+1,...,m; k+1,...,m)

= N2(a−1
m · · · a−1

k+1)
∏

T(1,...,k; 1,...,k).

The product is over the indicated subdeterminants of the components of T or T
−1
; there is

no convenient place for the subscripts. Thus the left side of (19) is

(N2a1)
s1+

1−m
4 (N2a2)

s1+
3−m

4 · · · (N2am)
sm+m−1

4

m∏
k=1

∏
(T(1,...,k; 1,...,k))

sk−sk+1− 1
2

and the right side is

(N2a−1
m )−sm+ 1−m

4 · · · (N2a−1
1 )−s1+

m−1
4

m∏
k=1

∏
(T(1,...,k; 1,...,k))

sk−sk+1− 1
2 ,

which establishes (19).
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6. The proof of Theorem 2 will now be given omitting, however, that part of the analysis
which is merely a repetition of the above. As in the proof of Theorem 1, the series for
χ(W,m, s) is majorized by

m∏
k=1

φ

(
W k,mk,

1

2
+ sm−k+1 − sm−k

)
with s0 = 0. Consequently it converges for

(20) Re(sk+1 − sk) > b, k = 1, . . . ,m− 1, Re(s1) > b,

b being some positive constant. The series for Φ(W,m, s) may be written∏
i>j

a

(
1

2
+ si − sj

)∏
i

a

(
1

2
+ si

)∑
{nm}

∑∏
i>j

a

(
1

2
+ si − sj

) m∏
k=1

W{nk}sm−k−sm−k+1− 1
2 .

The outer sum is over all primitive submodules which are orthogonal to themselves with
respect to J ; the inner sum is over all chains n1 ⊂ · · · ⊂ nm of primitive submodules which
end at nm. For each nm choose a basis {α1, . . . , αm} for the subspace of z2m spanned by nm.

Set A = (α′
1 · · ·α′

m)
′ and let V = AWA

′
; then the inner sum is

Ψ

(
V, n,−sm − m+ 1

4
, . . . ,−s1 −

m+ 1

4

)
with n =

{
(a1, . . . , am)

∣∣ ∑ aiαi ∈ nm
}
. Then

(21) Φ(W,m, s) =
∏
i>j

a

(
1

2
+ si + sj

)∏
i

a

(
1

2
+ si

)
·
∑

Ψ

(
V, n,−sm − m+ 1

4
, . . . ,−s1 −

m+ 1

4

)
Using the lemma and the techniques of Section 3 it can be shown that the series (21) converges
for Re(si) > bi, i = 1, . . . ,m, and represents a symmetric function of (s1, . . . , sm).

To continue the function to negative values of the arguments the arrangement

(22)
∏
i>j

a

(
1

2
+ si + sj

)
a

(
1

2
+ si − sj

)

·
m∏
i=2

a

(
1

2
+ si

)∑∑
a

(
1

2
+ s1

) m∏
k=1

W{nk}sm−k−sm−k+1− 1
2

is used. The outer sum is over all chains n1 ⊂ · · · ⊂ nm−1 such that nm−1 is orthogonal to
itself; the inner sum is over all primitive submodules nm such that nm−1 ⊂ nm ⊂ n⊥m−1, n

⊥
m−1

is the orthogonal complement of nm−1 with respect to J .
Let {β1, . . . , βm+1} be a basis for the subspace of z2m generated by nm−1. Set B =

(β′
1 · · · β′

m+1)
′ and U = BWB

′
. Let

p =
{
(b1, . . . , bm+1)

∣∣∣ ∑ biβi ∈ n⊥m−1

}
and

q =
{
(b1, . . . , bm+1)

∣∣∣ ∑ biβi ∈ nm−1

}
.
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Now in the argument preceding (12) replace nk by q, m by p and T by U . We conclude
that there is a module q2 of rank 2 in z2, an n-tuple S of 2× 2 matrices, an ideal b, and a
one-to-one correspondence between the primitive submodules nm and primitive submodules,
q1, of rank 1 in q2 such that

W{nm} = N2bS{q1}.
Consequently the inner sum is

m−1∏
k=1

W{nk}sm−k−sm−k+1− 1
2 (N2b)−s1− 1

2Ψ

(
S, q2,−s1 −

1

4
,−1

4

)
which equals

m−1∏
k=1

W{nk}sm−k−sm−k+1− 1
2 (N2b)−s1− 1

2Ψ

(
S, q2,−

1

4
,−s1 −

1

4

)
or

m−1∏
k=1

W{nk}sm−k−sm−k+1− 1
2 (N2b)−s1− 1

2S{q2}−s1Ψ

(
S, q2, s1 −

1

4
,−1

4

)
However, by formulae (12) and (13)

S{q2} = (N2b)−2W{n⊥m−1}W{nm−1}.
By the proof of the formula (19)

W{n⊥m−1} = W{m}W−1{qm−1},
qm−1 being the orthogonal complement of n⊥m−1 in m−1. Since m−1 = mJ , qm−1 = nm−1J .
Moreover W{m} =

∏
i|Wi|N2(m2m) and (m−1)2m = |J |m2m, so that N2(n2m) = N−1

(
|J |
)
.

Moreover, JiW
−1

i J
−1

i = Wi, so that N2
(
|J |
)
=
∏

i|Wi|2. Consequently W{m} = 1. Finally

W{n⊥m−1} = W
−1{nm−1J} = W{nm−1}.

Thus the inner sum in (22) equals

m−1∏
k=1

W{nk}sm−k−sm−k+1− 1
2W{nm−1}−s1−s2− 1

2 (N2b)s1−
1
2Ψ

(
S, q2, s1 −

1

4
,−1

4

)
.

So it is an entire function of s1 which is invariant when s1 changes sign. Using the previous
methods it may be concluded that Φ(T,m, s) may be continued to the region: Re(si) > bi,
i = 2, . . . ,m, s1 arbitrary. It may then be continued to any domain obtained from this one by
permuting the variables. The continuation to the entire m-dimensional space is then effected
by Cauchy’s integral formula.
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7. Koecher [4] establishes, at least when the basic algebraic number field is the rational
field, a functional equation for the series

(23) ζk(T,m, t) =
∑
{n}

T{n}−t

where the sum is taken over all submodules of rank k of a given module m, of rank m,
contained in zm. It will be shown in this section that for special values of s the function
Ψ(T,m, s) reduces, apart from a factor depending only on t, to ζk(T,m, t) and that the
functional equation for ζk is a special case of the functional equations for Ψ. The factor
however has too many zeros and it is apparently not possible to deduce Koecher’s results
on the poles of ζk from the fact that Ψ is entire. These may be established by separate
arguments similar to those above.

The series in (23) may be reduced to a sum over primitive submodules. If n is a submodule
of rank k then n may be uniquely represented as ank; nk is a primitive submodule and a is
an integral right ideal in the ring of endomorphisms of nk. Using the theory of algebras, as
presented in [1], it is not difficult to show that (23) equals

(24) ζ(2t) · · · ζ
(
2t− (k − 1)

)∑
{nk}

T{nk}−t,

the sum now being over all primitive submodules of rank k. Here ζ(·) is the zeta-function of
the given field k.

Using formula (14) of Section 3 it may be shown by induction that

(25) Ψ

(
T,m, t− m− 1

4
, t− m− 3

4
, . . . , t+

m− 1

4

)
= γmT{m}t

with

γm =

(
Nh

wn

)m−1(
2 · 1
4

)m−2(
3 · 2
4

)m−3

· · · (m− 1)(m− 2)

4

· m!

2m−1
b(1)m−1b

(
3

2

)m−2

· · · b
(
m− 1

2

)
b(t) = π−nt2−2r2t∆tΓ(t)r1Γ(2t)r2ζ(2t).

Indeed, by the induction hypothesis and formula (14) with k = 1

Ψ

(
T,m, s1, t−

m− 3

4
, . . . , t+

m− 1

4

)
=

m∏
i=2

a

(
1

2
+ si − s1

)
γm−1T{m}t+

1
2

∑
{n1}

T{n1}s1−t−m+1
4

Setting s1 − t− m+1
4

= −m
2
or s1 = t− m−1

4
and applying formula (10), we obtain (25).

As a consequence

Ψ

(
T,m, s1, . . . , sk,−

m− 1

4
,−m− 1

4
+

1

2
, . . . ,−m− 1

4
+
m− k − 1

2

)
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is equal to

γk(s)γm−kT{m}k/4
∑
{nk}

(N2b)sk+1+···+smS(p′)−k/4Ψ

(
R, n′, s1 + (m− k)

k

4
− m

4
, . . .

)
or

γk(s)γm−k

∑
{nk}

Ψ

(
R, n′, s1 −

m− k

4
, . . . , sk −

m− k

4

)
.

Now let sk = −t+ m−1
4
, . . . , s1 = −t+ m−1

4
− k−1

2
and apply (25) again to obtain

(26) γkγm−kγk(s)
∑
{nk}

T{nk}−t.

Let

a′(t) = π−nt2−2r2t∆tΓ(t)r1Γ(2t)r2 ,

ψ(t) = t

(
t− 1

2

)
a′(t)ζ(2t),

and

Ψk(T,m, t) =
k−1∏
j=0

(
t− j

2

)(
t− m− j

2

)
a′
(
t− j

2

)
ζk(T,m, t).

Finally, let Ψk(t) be the function obtained by multiplying together all terms of the matrix

ψ
(
t− k

2

)
ψ
(
t− k+1

2

)
ψ
(
t− m−2

2

)
ψ
(
t− k−1

2

)

ψ
(
t− 1

2

)
ψ
(
t− m−k−1

2

)


Then, if k < m, (26) equals

γkγm−kψk(t)Ψk(T,m, t).

Since ψ(t) = ψ
(
1
2
− t
)
, replacing t by m

2
− t in the above matrix gives the same result as

reflecting it in its centre. Consequently

ψk(t) = ψk

(
m

2
− t

)
.

Making use of the functional equations for Ψ, we see that

γkγm−kψk(t)Ψk(T,m, t)

is equal to

Ψ

(
T,m,−t+ m− 1

4
− k − 1

2
, . . . ,−t+ m− 1

4
,−m− 1

4
, . . . ,−m− 1

4
+
m− k − 1

2

)
or

Ψ

(
T

−1
,m−1, t− m− 1

4
, . . . , t− m− 1

4
+
k − 1

2
,
m− 1

4
− m− k − 1

2
, . . . ,

m− 1

4

)
.
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This is the same as

T{m}−k/2Ψ

(
T

−1
,m−1, t− m

2
+
m− 1

4
− k − 1

2
,

. . . , t− m

2
+
m− 1

4
,−m− 1

4
, . . . ,−m− 1

4
+
m− k − 1

2

)
which equals

γkγm−kψk

(
m

2
− t

)
T{m}−k/2Ψk

(
T

−1
,m−1,

m

2
− t

)
.

So

Ψk(T,m, t) = T{m}−k/2Ψk

(
T

−1
,m−1,

m

2
− t

)
.

This is the functional equation of Koecher.
Suppose for the moment that the number field is the rational field. According to

equation (3.17) of [4], Ψk(T,m, t) is zero at the numbers common to
{
0, 1

2
, . . . , k−1

2

}
and{

m−k+1
2

, . . . , m
2

}
. However if k = m, T is the identity matrix, and m is the lattice of integral

vectors, then

Ψk(T,m, t) =
m−1∏
j=0

Ψ

(
t− j

2

)
But, as is well known, Ψ(t) does not vanish for real values of t.

In view of this it seems worthwhile to sketch a proof of the

Proposition. Ψk(T,m, t) is an entire function.

It is only necessary to establish this for k < m since Ψm(T,m, t) may be expressed in
terms of the zeta-function of k and the proposition follows from the known properties of this
zeta function. The proof is by induction. For k = 1 the proposition is a consequence of the
discussion in Section 2. Suppose it is true for k − 1. Set

α(t) = t

(
t− k

2

)
a′(t)ζ(2t),

β(t) =
k−2∏
j=0

(
t− j

2

)(
t− m− j − 1

2

)
a′
(
t− j

2

)
ζ(2t− j),

γ(t) = t

(
t− m− k + 1

2

)
a′(t)Ψ(2t),

and consider the series

(27) α(s1)β(sk)γ

(
s1 + sk −

k − 1

2

) ∑
n1⊂nk

T{n1}−s1T{nk}−sk .

The sum is over all chains of primitive submodules of ranks 1 and k. Call the function
defined by (27) φ(T,m, s1, sk). To establish the proposition it will be shown that φ is an
entire function of s1 and sk and that

φ(T,m, 0, t) =
Nhk

2wn
Ψk(T,m, t).
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If σ1 and σk are the real parts of s1 and sk the diagram represents a decomposition of the
(s1, sk) space. The function φ(T,m, s1, sk) is clearly analytic in the region I. As before the
continuation into the regions II, III, IV is effected by suitable arrangements of the series (27).
Moreover in the regions I, II, III, IV, φ will have only polynomial growth on vertical lines. The
proof of this is omitted; the analysis required is the same as above. Consequently Cauchy’s
integral formula may be applied to effect the continuation to the entire (s1, sk) space.

σk

II

σ1

IV

I

III

Since, in the notation of Section 5,∑
{qk}

T
−1{qk}−t = T{m}t

∑
{nm−k}

T{nm−k}−t,

the functional equation for Ψk(T,m, t) yields the equality of

(28a)
k−1∏
j=0

(
t− j

2

)(
t− m− j

2

)
a′
(
t− j

2

)
ζ(2t− j)

∑
{nk}

T{nk}−t

and

(28b) T{m}
m−k

2
−t

k−1∏
j=0

(
t− j

2

)(
t− m− j

2

)
a′
(
m− j

2
− t

)
ζ(m−j−2t)

∑
{nm−k}

T{nm−k}t−
m
2 ,

in the sense that the functions represented by these series are equal. For brevity some
equalities in the proof of the proposition have been written in this manner.

The first arrangement of the series is, in the notation of the argument preceding for-
mula (12),

(29) β(sk)γ

(
s1 + sk −

k − 1

2

)∑
{nk}

T{nk}−skΨ1(R, n
′, s1)

which, as a consequence of (28), equals

(30) α

(
k

2
− s1

)
β(sk)γ

(
s1 + sk −

k − 1

2

) ∑
nk−1⊂nk

T{nk−1}s1−
k
2T{nk}

k−1
2

−s1−sk .

(30) converges in the part of the region II which is sufficiently far to the left of the σk axis.
(29) converges wherever (27) or (30) converge. Arguments similar to those of Section 3 show
that it converges in all of I and II. In particular, if in (29), s1 is set equal to zero the result is
Nhk
2wn

Ψk(T,m, sk).
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The second arrangement is, in the notation of Section 3 but with n1 representing nk,

(31) α(s1)γ

(
s1 + sk −

k − 1

2

)∑
{n1}

T{n1}−s1(N2b)−skΨk−1(S, p
′, sk).

Using (28) and simplifying, (31) becomes the product of

(32a) α(s1)β

(
m− 1

2
− sk

)
γ

(
s1 + sk −

k − 1

2

)
T{m}

m−k
2

−sk

and

(32b)
∑

T{n1}
k−1
2

−s1−skT{nm−k+1}sk−
m−1

2 .

The sum is over all chains n1 ⊂ nm−k+1. This series converges in that part of the region III
which is sufficiently far below the σ1-axis. Consequently (31) converges in the regions I and
III.

Replacing nk by nm−k+1 in the definition of R and n′, write (32) as

α(s1)β

(
m− 1

2
− sk

)
T{m}

m−k
2

−sk

times ∑
{nm−k+1}

T{nm−k+1}sk−
m−1

2 Ψ1

(
R, n′, s1 + sk −

k − 1

2

)
.

This is similar to the series (29) and by the same argument may be shown to converge in IV.
It should be remarked that if this sequence of rearrangements is carried one step further

the functional equation is obtained.
The proposition implies that ζk(T,m, t) is a meromorphic function with at most a simple

pole at t = m
2
, . . . , m−k+1

2
. Some information about the residues may be obtained from the

equations

γkγm−kψk

(
j

2

)
Ψk

(
T,m,

j

2

)
= γjγm−jψj

(
k

2

)
Ψj

(
T,m,

k

2

)
if 1 ⩽ j, k < m and

γkγm−kψk

(
m

2

)
Ψk

(
T,m,

m

2

)
= γmT{m}−k/2

if 1 ⩽ k < m and j = m. To prove it observe that the left side is the value of Ψ at(
−j
2
+
m− 1

4
− k − 1

2
, . . . ,−j

2
+
m− 1

4
, . . . ,−m− 1

4
, . . . ,−m− 1

4
+
m− k − 1

2

)
and the right side is the value of Ψ at(

−k
2
+
m− 1

4
− j − 1

2
, . . . ,−k

2
+
m− 1

4
, . . . ,−m− 1

4
, . . . ,−m− 1

4
+
m− j − 1

2

)
.

But the second vector is obtained by permuting the coordinates of the first.
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8. Let Zj = Xj + iYj, Yj > 0, be n m×m matrices in the generalized upper half-plane
and let k be a totally-real field of degree n. If nm is a module of rank m in z2m, let α1, . . . , αm

be a basis for the vector space generated by nm and let mm be the module generated over o
by α1, . . . , αm. Then nm = amm, where a is some ideal in k whose class depends only on nm.
Let A = (α′

1 · · ·α′
m)

′ and set

λ(Z1, . . . , Zn; nm) = Na
∏
i

∣∣Ai(Zi, I)
∣∣,

where Ai, i = 1, . . . , n, are the conjugates of A. Moreover λ(Z1, . . . , Zn; nm) does not depend
on the basis chosen. Then the Eisenstein series are defined by

(33) φg(Z1, . . . , Zn; j) =
∑
{nm}

λ(Z1, . . . , Zn; nm)
−g

The sum is over those primitive submodules of rank m of the module of integral vectors in z2m
which are orthogonal to themselves with respect to the skew-symmetric form

∑
xiym+i−yixm+i

and such that the ideal a is in the class j. The integer g is even. It will now be shown that
the series converges absolutely if g > m+ 1 (cf. [3]).

Let Wi be the real part of the matrix (Zi, I)
′Y −1

i (Zi, I) and W the n-tuple (W1, . . . ,Wn).
It follows from the discussion in Section 1 that

(34)
∣∣λ(Z1, . . . , Zn; nm)

∣∣2 =∏
i

|Yi|W{nm}.

In the formula (21) set sm = t− 1
2
, sm−1 = t− 1, . . . , s1 = t− m

2
and obtain, by formula (25),

(35) γm
∏
i>j

a

(
1

2
+ si + sj

)∏
i

a

(
1

2
+ si

)∑
W{nm}−t,

for V {n} = W{nm}. The sum is over all primitive submodules of rankm which are orthogonal
to themselves. Since (35) is an entire function the series converges to the right of the first
real zero of the coefficient ∏

i>j

a

(
1

2
+ si + sj

)∏
i

a

(
1

2
+ si

)
That is, where si >

1
2
, i = 1, . . . ,m, or t > m+1

2
. It follows from (34) that (33) converges

absolutely if g > m+ 1.
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APPENDIX II

Adèle groups

The principal theorem in the text, Theorem 7.7 is so formulated that it is impossible to
understand its statement without knowing its proof as well, and that is technically complicated.
In an attempt to remedy the situation, whose disadvantages are manifest, I shall reformulate
the theorem in this appendix.

The first, obvious point is that it should be formulated adelicly, for a reductive algebraic
group over a number field F . The adèle ring of F will be denoted A. The typical function
space which one has to understand in applications of the trace formula is of the following
sort. Suppose Z is the centre of G and Z0 a closed subgroup of Z(A) for which Z0Z(F ) is
also closed and Z0Z(F )\Z(A) is compact. Let ξ be a character of Z0 trivial on Z0 ∩ Z(F ),
which for the moment we take to be unitary, in order to postpone the explanation that
would otherwise be necessary. Let L = L(ξ) be the space of measurable functions on φ on
G(F )\G(A) satisfying

(i) φ(zg) = ξ(z)φ(g)

(ii)

∫
Z0G(F )\G(A)

∣∣φ(g)∣∣2 dg <∞

The space L is clearly a Hilbert space and, of course, G(A) acts by right translations. The
decompositions of L that we seek are to respect the action of G(A). An obvious decomposition
is

(1) L(ξ) =
⊕
ζ

L(ζ)

where ζ runs over all extensions of ξ to Z(F )\Z(A). It seems therefore that we might as
well take Z0 = Z(A).

However, this will not do for the induction which lies at the heart of the study of Eisenstein
series. It is even necessary to drop the assumption that Z0Z(F )\Z(A) is compact but it is
still demanded that ξ be unitary. In any case the set of all homomorphisms of Z0Z(F )\Z(A)
into R+ is a finite-dimensional vector space X(R) over R. Multiplication by the scalar r
takes χ to z → χ(z)r. The map that associates to χ⊗c the character z → χ(z)c extends to an
injection of X(C) into the set of characters of Z0Z(F )\Z(A). Thus the set D of extensions
ζ to ξ to Z0Z(F )\Z(A) is a complex manifold, each component being an affine space. The
component containing ζ is {

ζχ
∣∣ χ ∈ X(C)

}
.

The set D0 of unitary characters in a component, a real subspace of the same dimension, is
defined by Re ζ = 0, if

Re ζ = |ζ|.

177



178 II. ADÈLE GROUPS

The character |ζ| may be uniquely extended to a homomorphism ν of G(A) into R+. We
can define L(ζ) by substituting for the condition (ii), the following:

(ii′)

∫
Z(A)G(F )\G(A)

ν−2(g)
∣∣φ(g)∣∣2 dg <∞.

Since we may uniquely extend elements of X(R) to G(A), we may also regard the elements
of X(C) as characters of G(A). The map φ→ φ′ = χφ. That is,

φ′(g) = χ(g)φ(g)

is an isomorphism of L(ζ) with L(ζχ). This enables us to regard the spaces L(ζ) as an
analytic bundle over D, the holomorphic sections locally on ζ ∈ X(C) being of the form

χ(g)


n∑

i=1

ai(ζχ)φi(g)


with φi in L(ζ) and ai holomorphic with values in C.

If φ lies in L(ξ) and is smooth with support that is compact modulo Z0G(F ) and ζ lies
in D set

Φ(g, ζ) =

∫
Z0Z(F )\Z(A)

φ(zg)ζ−1(z) dz.

Then, if we take the dual Haar measure on D0,

(2) φ(g) =

∫
D0

Φ(g, ζ) |dζ|.

Indeed if χ ∈ X(R) is given then

φ(g) =

∫
Re ζ=χ

Φ(g, ζ) |dζ|.

There are various ways to define |dζ| on Re ζ = χ. The simplest is by transport of structure
from D0 to

D0χ = { ζ | Re ζ = χ }.
The most intuitive is to define |dζ| in terms of affine coordinates on the components. From
(2) one easily deduces the direct integral decomposition

(3) L(ξ) =
∫ ⊕

D0

L(ζ) |dζ|.

A cusp form in L is defined by the condition that whenever N is the unipotent radical of
a parabolic subgroup P over F different from G itself then∫

N(F )\N(A)

φ(ng) dn = 0

for almost all g. It is sufficient to impose this condition for those P containing a given
minimal P0. We consider henceforth only such P and these we divide into classes {P} of
associate parabolic subgroups. The class {G} consists of G alone. The space of cusp forms
on L(ξ) will be denoted by L

(
{G}, ξ

)
. For cusp forms the direct integral (3) becomes

L
(
{G}, ξ

)
=

∫ ⊕

D0

L
(
{G}, ζ

)
|dζ|.
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If Z0Z(F )\Z(A) is compact then L
(
{G}, ξ

)
decomposes into a direct sum of invariant,

irreducible subspaces, and any irreducible representation of G(A) occurs in L
(
{G}, ξ

)
with

finite, perhaps zero, multiplicity. This is in particular so when ξ is replaced by ζ in D.
Moreover the decomposition of L

(
{G}, ζ

)
and L

(
{G}, ζχ

)
, χ ∈ X(C), are parallel.

Suppose P is a parabolic subgroup of G with Levi factor M . It is understood that
P and M are defined over F and that P contains P0. Since Z is contained in the centre
of M , L

(
{M}, ξ

)
is defined as a space of functions on M(A) and M(A) acts on it. The

representation

Ind
(
G(A),M(A),L

(
{M}, ξ

))
is really a representation of G(A) induced from the representation of P (A) obtained from
the homomorphism P (A) →M(A) and the action of M(A) on L

(
{M}, ξ

)
. It acts on the

space of functions φ on N(A)\G(A) satisfying

(i) for all g ∈ G(A):
φ(ng) ∈ L

(
{M}, ξ

)
,

(ii) ∫
Z0N(A)P (F )\G(A)

∣∣φ(mg)∣∣2 dg <∞.

We denote this space of functions by E(P, ξ).
Let D(M) and D0(M) be the analogues of D and D0 when G is replaced by M . We

may also define Ind
(
G(A),M(A),L

(
{M}, ζ

))
for ζ ∈ D(M). The induced representation is

unitary if Re ζ = δ, where δ is defined by the condition that δ2(m) is the absolute value of
the determinant of the restrictions of Adm to n, the Lie algebra of N . It is easily seen that

Ind
(
G(A),M(A),L

(
{M}, ξ

))
=

∫ ⊕

D0(M)

Ind
(
G(A),M(A),L

(
{M}, ζδ

))
|dζ|.

Thus if φ is a well-behaved function in E(P, ξ) and

Φ(g, ζ) =

∫
Z0ZM (F )\ZM (A)

φ(ag)ζ−1(a)δ−1(a) da

then

φ(g) =

∫
D0(M)

Φ(ζ, g) |dζ|

We cannot easily describe what, at least for the purpose immediately at hand, a well-behaved
function in E(P, ξ) is, without stepping slightly outside the categories introduced above. Let
XM(R) be defined in the same way as X(R) except that M replaces G. Set

M0 =
{
m ∈M(A)

∣∣ χ(m) = 1 for all χ ∈ X(R)
}
.

Then M0 contains M(F ) and the definitions made for M(F )\M(A) could also have been
made for M(F )\M0. Fix a maximal compact subgroup of

∏
v G(Fv) ⊆ G(A), where the

product is taken over all infinite places. Let E0(P, ξ) be the space of continuous functions φ
in E(P, ξ) with the following properties.

(i) φ is K∞-finite.
(ii) φ is invariant under a compact open subgroup of G(Af ).
(iii) For all g ∈ G(A) the support of m → φ(mg), a function on M(A), is compact

modulo M0.
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(iv) There is an invariant subspace V of the space of cusp forms on M0 transforming
according to ξ which is the sum of finitely many irreducible subspaces, and for all
g ∈ G the function m→ φ(mg), now regarded as a function on M0, lies in V .

The functions φ in E0(P, ξ) will serve us well. In particular

φ̂(g) =
∑

P (F )\G(F )

φ(γg)

is a function in L(ξ). If φ1 lies in E0(P1, ξ) and φ2 lies in E0(P2, ξ) then φ̂1 and φ̂2 are
orthogonal if P1 and P2 are not associate. If {P} is a class of associate parabolic subgroups
we let L

(
{P}, ξ

)
be the closure of the linear span of the functions φ̂ with φ ∈ E0(P, ξ) and

P ∈ {P}. It is proved quite early in the theory (cf. Lemma 4.6) that

(4) L(ξ) =
⊕
{P}

L
(
{P}, ξ

)
.

Abstractly seen, the main problem of the theory of Eisenstein series is to analyze the space
L(ξ) or the spaces L

(
{P}, ξ

)
in terms of the cusp forms on the various M . This analysis is

carried out—in principle—in the text. However, one can be satisfied with a more perspicuous
statement if one is content to analyze L(ξ) in terms of the representations occurring discretely
in the spaces of automorphic forms on the groups M .

It is clear that

L
(
{P}, ξ

)
=

∫ ⊕

D0

L
(
{P}, ζ

)
|dζ|.

Let L
(
G, {P}, ζ

)
be the closure of the sum of irreducible invariant subspaces of L

(
{P}, ζ

)
and let

L
(
{G}, {P}, ξ

)
= L

(
G, {P}, ξ

)
=

∫ ⊕

D0

L
(
G, {P}, ζ

)
|dζ|.

We write {P} ≻ {P1} if there is a P ∈ {P} and a P1 ∈ {P1} with P ⊇ P1. We shall construct
a finer decomposition

(5) L
(
{P1}, ξ

)
=

⊕
{P}≻{P1}

L
(
{P}, {P1}, ξ

)
.

If P ∈ {P} let p = p
(
{P1}

)
be the set of classes of associate parabolic subgroups P1(M) of

M of the form
P1(M) =M ∩ P1

with P1 ∈ {P1} and P1 ⊆ P . The space L
(
{P}, {P1}, ξ

)
will be isomorphic to a subspace of

(6)
⊕

P∈{P}

⊕
p

Ind

(
G(A),M(A),L

(
M,
{
P1(m)

}
, ξ
))

which may also be written as

(7)
⊕

P∈{P}

⊕
p

∫ ⊕

D0(M)

Ind

(
G(A),M(A),L

(
M,
{
P1(m)

}
, ζδ
))

|dζ|

To describe these subspaces, we need the Eisenstein series.

The induced representations occurring in (6) act on a space E
(
P,
{
P1(M)

}
, ξ
)
of functions

φ on N(A)P (F )\G(A) that satisfy the condition: for all g ∈ G(A) the function m →
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φ(mg) lies in L
(
M,
{
P1, (M)

}
, ξ
)
. We may also introduce E0

(
P,
{
P1(M)

}
, ξ
)
in much the

same manner as we introduced E0(P, ξ). The induced representations in (7) act on spaces

E
(
P,
{
P1(M)

}
, ζδ
)
and the spaces E0

(
P,
{
P1(M)

}
, ζ
)
, just as above, form a holomorphic

vector bundle over D0(M).
If L is the lattice of rational characters of M over F then X(R) may be imbedded in

L⊗R, and the positive Weyl chamber in X(R) with respect to P is well-defined. We write

χ1 > χ2 if χ1χ
−1
2 lies in it. If Φ lies in E0

(
P,
{
P1, (M)

}
, ζδ
)
and Re ζ > δ the series

E(g,Φ) =
∑

P (F )\G(F )

Φ(γg)

converges. For each g it may be analytically continued to a meromorphic function on the
whole vector bundle, which will of course be linear on the fibres. It is an important part of
the Corollary to Lemma 7.6 that none of its singular hyperplanes—the singularities all lie
along hyperplanes—meet the set Re ζ = 0. If

φ =

∫
D0(M)

Φ(ζ) |dζ|,

with Φ(ζ) in E0

(
P,
{
P1(M)

}
, ζδ
)
, lies in E0

(
P,
{
P1(M)

}
, ξ
)
then

Tφ(g) = lim

∫
E
(
g,Φ(ζ)

)
|dζ|

exists, the limit being taken over an increasing exhaustive family of compact subsets of
D0(M). The linear transformation φ→ Tφ extends to a continuous linear transformation

from E
(
P,
{
P1(M)

}
, ξ
)
to L(ξ). By additivity we define it on⊕

P∈{P}

⊕
p

E
(
P,
{
P1(M)

}
, ξ
)
.

Then T commutes with the action on G(A) and its image is, by definition, L
(
{P}, {P1}, ξ

)
.

It has still to be explained how, apart from a constant factor, T is the composition of an
orthogonal projection and an isometric imbedding. The functional equations now begin to
play a role.

Suppose P and P ′ lie in {P}. If Φ =
⊕

Φp lies in⊕
p

E0

(
P,
{
P1(M)

}
, ξ
)

we set
E(g,Φ) =

∑
p

E(g,Φp).

If Re ζ > δ consider ∫
N ′(F )\N ′(A)

E(ng,Φ) dn.

Since, as a function,

Φ(g) =
∑
p

Φp(g),
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this integral is equal to ∑
w∈N ′(F )\G(F )/P (F )

∫
w−1P (F )w∩N ′(F )\N ′(A)

Φ(w−1ng) dn.

We are only interested in those w for which

wMw−1 =M ′.

Then the integral equals

Φ′(g) =

∫
wN(A)w−1∩N ′(A)\N ′(A)

Φ(w−1ng) dn

and
Φ → N(w)Φ = Φ′

is a linear transformation⊕
p

E0

(
P,
{
P1(m)

}
, ζδ
)
→
⊕
p′

E0

(
P ′,
{
P ′
1(M)

}
, ζw

−1

δ′
)
.

It is easy to turn

HomG(A)

⊕
p

E0

(
P,
{
P1(M)

}
, ζδ
)
,
⊕
p′

E0

(
P ′,
{
P ′
1(M)

}
, ζw

−1

δ′
)

into a holomorphic bundle on D(M) and N(w) can be extended to a meromorphic section of
it. Observe that N(mw) = N(w) if m ∈M(F ). The important functional equations are the
following.

(i) If w2Mw−1
2 =M ′ and w1M

′w−1
1 =M ′′ then

N(w1)N(w2) = N(w1w2).

(ii) For any w
E
(
g,N(w)Φ

)
= E(g,Φ).

They are consequences of the rather turbid Lemma 7.4, immediate once its meaning is
understood.

There is in addition a more elementary functional equation. We easily define a natural
sesquilinear pairing⊕

p

E0

(
P,
{
P1(M)

}
, ζδ
)×

⊕
p

E0

(
P,
{
P1(M)

}
, ζ

−1
δ
)→ C.

If K is a compact subgroup of G(A) and G(A) is a finite disjoint union⋃
N(A)M(A)giK,

there are constants ci such that∫
G(A)

f(g) dg =
∑
i

ci

∫
N(A)

dn

∫
M(A)

dm

∫
K

dk f(nmgik).
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The pairing is

⟨ψ1, ψ2⟩ =
∑
i

ci

∫
ZM (A)\M(A)

dm

∫
K

dk ψ1(mgik)ψ2(mgik).

According to Lemma 7.5 the adjoint N∗(w) of

N(w) :
⊕

E0

(
P,
{
P1(m)

}
, ζδ
)
→
⊕

E0

(
P ′,
{
P ′
1(M)

}
, ζw

−1

δ
)

is

N(w−1) :
⊕

E0

(
P ′,
{
P ′
1(M)

}
, ζ

−w−1

δ

)
→
⊕

E0

(
P,
{
P1(M)

}
, ζ

−1
δ
)
.

The functional equations

N(w−1)N(w) = N(w)N(w−1) = I

then imply that N(w) is an isomorphism and an isometry when ζ is unitary.
The functional equations for Eisenstein series imply that if

φ =
⊕

φP

then Tφ(g), which is given by,

l.i.m.
∑

P∈{P}

∫
E
(
g,ΦP (ζ)

)
|dζ|

is also equal to

l.i.m.
∑

P∈{P}

∫
E

(
g,

1

ω

∑
N(w)ΦP (ζ

w)

)
|dζ|.

Here the sum is over all w such that, for some P ′ ∈ {P}, wMw−1 =M ′ taken modulo M(F ),
and ω is the number of terms in the sum. It is implicit that we have fixed a Levi factor of
each P in {P}. The linear transformation⊕

Φ(ζ) →
⊕{

1

ω

∑
N(w)ΦP (ζ

w)

}
is the orthogonal projection U of the space (5) onto the closed, G(A)-invariant subspace
defined by the equations

ΦP ′(ζw
−1

) = N(w)ΦP (ζ)

whenever wMw−1 = M ′. It is clear that T = TU . If
⊕

ΦP (ζ) lies in the range of U then
(Lemma 7.6)

∥Tφ∥2 = ω∥φ∥2

The main results of the text summarized, I would like to draw attention to a couple of
questions that it seems worthwhile to pursue. The first, which I mention only in passing, is
to extend the decompositions (4) and (5) to other function spaces, especially those needed for
the study of cohomology groups (cf. [6]). The second involves a closer study of the operators
N(w). They have already led to many interesting, largely unsolved problems in the theory of
automorphic forms and group representations ([4, 5]).

Suppose V is an irreducible invariant subspace of∑
p

L
(
M,
{
P1(M)

}
, ζ0δ

)
.
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If ζ = ζ0χ lies in the same component as ζ0 we may define

Vζ =
{
χ(m)φ(m)

∣∣ φ ∈ V
}

as well as the spaces E(P, Vζ) on which the induced representations

Ind
(
G(A),M(A), ρζ

)
act. Here ρζ is the representation of M(A) on Vζ . We may also introduce E0(P, Vζ).

There are two ways of regarding the functions Φ in E(P, Vζ). First of all, Φ may be
considered a function on N(A)P (F )\G(A) for which the function

m→ Φ(mg)

is for all g an element F (g) of V . We may on the other hand emphasize F , from which Φ
may be recovered; it is a function on N(A)\G(A) with values in Vζ and

F (mg) = ρζ(m)F (g)

for all m and g.
If wMw−1 =M ′ and ζ ′ = ζw

−1
, we can introduce a space V ′

ζ′ and a representation ρ′ζ′ of
M ′(A) on it in two different ways. Either Vζ′ is Vζ and

ρ′ζ′(m
′) =

δ′(m′)

δ(m)
ρζ(m), m = w−1m′w,

or

Vζ′ =

{
φ′
∣∣∣∣ φ′(m′) =

δ′(m′)

δ(m)
φ(m)

}
and ρζ′ acts by right translations. With the second definition V ′

ζ′ is clearly a subspace of
L(ζ ′δ′). Since N(w) is easily seen to take E0(P, Vζ) to E0(P

′, V ′
ζ′) we conclude that V ′

ζ′ lies in⊕
ρ′

L
(
M ′,

{
P1(M

′)
}
, ζ ′δ′

)
.

In terms of F and F ′ and the first definition of V ′
ζ′ , we have

F ′(g) =

∫
wN(A)w−1∩N ′(A)\N ′(A)

F (w−1ng) dn.

The integrals are now vector-valued. It is this definition of N(w), which now takes F to F ′,
that we prefer to work with. Of course the formula above is only valid for Re ζ > δ. We write
V as a tensor product over the places of F

V =
⊗

Vv

Then N(w) too becomes a product of local operators Nv(w) : Fv → F ′
v with

F ′
v(g) =

∫
wN(Fv)w−1∩N ′(Fv)\N ′(Fv)

Fv(w
−1ng) dn, g ∈ G(Fv).

Suppose, in order to describe the second problem, that the L-functions and ϵ-factors
intimated in [4] have been defined for all irreducible representations of M(Fv) and all relevant
representations of the associate group M∨ of M . Using the notions of [4] we see that M∨

acts on n∨ ∩w−1n′∨w\w−1n′∨w. Here n∨, n′∨ lie in the Lie algebra of the associate group G∨

and w is obtained from the isomorphism of the Weyl groups of G and G
◦
∨. Denote the above

representation of the group M∨ by r(w) and, in order to make room for a subscript, denote
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ρζ by ρ(ζ). The calculations of [2], [3], and [5] suggest the introduction of a normalized
intertwining operator Rv(w) by the equation

Nv(w) =
L
(
0, ρv(ζ), r̃(w)

)
ϵ
(
0, ρv(ζ), r(w), ψv

)
L
(
1, ρv(ζ), r̃(w)

)Rv(w),

where r̃(w) is contragredient to r(w). Exploiting the anticipated functional equation we
obtain the global formula

N(w) =
⊗
v

Nv(w) =
L
(
0, ρ(ζ), r̃(w)

)
L
(
0, ρ(ζ), r(w)

) ⊗v Rv(w).

If s(w) is the representation of M∨ on w−1n′∨w then

r(w)− r̃(w) = s(w)− s(1)

and
L
(
0, ρ(ζ), r̃(w)

)
L
(
0, ρ(ζ), r(w)

) =
L
(
0, ρ(ζ), s(1)

)
L
(
0, ρ(ζ), s(w)

) .
If w2Mw−1

2 =M ′ and w1M
′w−1

1 =M ′′ then s′(1) composed with m→ w2mw
−1
2 is s(w2) and

s′(w1) composed with the same homomorphism is s(w1w2). Consequently the quotient of the
two L-functions is multiplicative in w.

We are led to the following questions:

Is it possible to continue analytically the operators Rv(w), which are at first defined for
Re ζv > 0 to meromorphic functions on an entire component of the local analogue of D(m)?
Is Rv(w) then unitary on D0(M)? Is the functional equation

Rv(w1)Rv(w2) = Rv(w1w2)

satisfied?

If r is archimedean, the L-functions and ϵ-factors can be defined ([7]). It is very likely
that, in this case, answers to the above questions are contained in the work of Knapp-Stein
[1]; but I have not tried to check this.
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APPENDIX III

Examples for §7

It might be a help to the reader who resolves to force his way through the jungle
of Paragraph §7 to know the sources, apart from the author’s expository inadequacy, of
the complexity of the notation and the proofs. A number of unexpected and unwanted
complications must be taken into account, and it may be asked whether they can really,
under sufficiently unfavorable circumstances, arise or whether it was simply not within the
author’s power to eliminate them from consideration. Unfortunately they do arise, and they
cannot be ignored unless a procedure radically different form that of the text be found.

I cannot comment on all the complexities, for a good deal of time has elapsed since the
text was written, and I myself now have difficulty finding my way through it. But some of
them were sufficiently vexing to imprint themselves indelibly on my memory, and these I
shall try to explain.

Some of the notational elaborateness is of course purely formal, a result of the generality,
and this part it is best to remove at once by fixing our attention on some special cases, in
which the essential mathematics is none the less retained.

We take G to be the set of real points in a simply-connected Chevalley group and Γ to be
the set of integral points. Fix a percuspidal subgroup P ; then all other percuspidal subgroups
are conjugate to it with respect to Γ. We take V and W to be the space of constant functions
so that E(V,W ) too consists of constant functions. The corresponding Eisenstein series we
parametrize by λ in the dual of the Lie algebra a, rather than by an element in a itself, as
in the text. When writing it I was too strongly influenced by the then prevalent fashion of
identifying a with its dual.

We take Φ to be identically 1 and write E(g, λ) instead of E(g,Φ, H). The constant term
of E(g, λ), that is ∫

Γ∩N\N
E(ng, λ) dn

is then ∑
s∈Ω

M(s, λ)esλ(H(g))+ρ(H(g))

where M(s, λ) is now a scalar which if G is SL(2) can be easily computed. Lemma 6.1 then
shows that it is in general equal to ∏

α>0
sα<0

ξ
(
λ(Hα)

)
ξ
(
1 + λ(Hα)

) .
Here

ξ(z) = π−z/2Γ

(
z

2

)
ξ(z)

187
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and Hα is the coroot defined by

λ(Hα) = 2
(λ, α)

(α, α)
.

The space L
(
{P}, {V },W

)
is isomorphic to the space obtained by completing the space

of complex-valued functions of λ holomorphic in the tube over a large ball and decaying
sufficiently rapidly at infinity. The inner product is

(1)
1

(2π)q

∫
Reλ=λ0

∑
s∈Ω

M(s, λ)Φ(λ)Ψ(−sλ) |dλ|.

Here λ0 must satisfy
⟨λ0, α⟩ > ⟨ρ, α⟩

for all positive roots α. The integer q is the rank of G.
On the space L of functions on the set Reλ = 0 square-integrable with respect to the

measure

|Ω| · dλ

(2π)q

we introduce the operator

Q : Φ(λ) → 1

|Ω|
∑
s

M(s−1, sλ)Φ(sλ).

Since
M(s, tλ)M(t, λ) =M(st, λ)

the operator Q is a projection. Its range consists of the functions satisfying

Φ(sλ) =M(s, λ)Φ(λ)

for all s and λ. Since
M(s, λ) =M(s−1,−sλ)

we infer also that Q is self-adjoint. The inner product of QΦ and Ψ is given by (1).
If λ0 were 0 we would infer that L

(
{P}, {V },W

)
was isomorphic to the quotient of L by

the kernel of Q or to the range of Q. This is the kind of concrete realization of the space
L
(
{P}, {V },W

)
which the theory of Eisenstein series seeks to give. If the functions M(s, λ)

had no poles in the region defined by

(2) Re⟨λ, α⟩ ⩾ 0

for all positive α we could, because of the Cauchy integral theorem, replace λ0 by 0. However,
they do have poles. But we can deform the contour of integration in (1) to Reλ = 0 if the
zeros of Φ(λ) compensate for the poles of the functions M(s, λ). Therefore, the subspace of
L
(
{P}, {V },W

)
generated by such functions is isomorphic to the quotient of L by the kernel

of Q and the inner product of the projection of the elements of L
(
{P}, {V },W

)
represented

by Φ(λ) and Ψ(λ) on this subspace is given by (1) with λ0 replaced by 0.
The inner product of the projections on the orthogonal complement of the subspace will

be given by the residues which enter when we deform Reλ = λ0 to Reλ = 0. This will be a
sum of integrals of roughly the same type as (1), but over hyperplanes of dimension q − 1.
The procedure of §7 is to treat them in the same way, and then to proceed by induction until
there is nothing left. The procedure is carried out fully for two simple examples in [1].
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A number of difficulties can enter at the later stages which do not appear at first. The
functions M(s, λ) remain bounded as Imλ → ∞ in the region defined by (2) so that the
application of the residue theorem is clearly justified. However, at least in the general
case when the functions M(s, λ) are not explicitly known, it was necessary to deform the
contour into regions in which, so far as I could see, the behaviour of the relevant functions as
Imλ→ ∞ was no longer easy to understand. Some substitute for estimates was necessary.
It is provided by unpleasant lemmas, such as Lemma 7.1, and the spectral theory of the
operator A introduced in §6. The idea is, if I may use a one-dimensional diagram to illustrate
it, to deform the contour as indicated and then to show

a

b

that at least on the range of an idempotent in the spectral decomposition of A associated to
a finite interval only the interval [a, b] of the deformed contour matters. Of course for a given
idempotent the interval [a, b] has to be taken sufficiently large. For function fields, this sort
of problem would not arise.

At the first stage the functions M(s, λ) have simple poles so that the residues which
appear do not involve the derivatives of Φ(λ) or Ψ(λ). At later stages this may not be so,
and the elaborate discussion of notation with which §7 is prefaced is not to be avoided. The
first—and only—example of such behaviour that I know is provided by the exceptional group
of type G2.

The root diagram for G2 is:

β6

β3

β5β4β2β1
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We take as coordinates of λ the numbers z1 = λ(Hβ1), z2 = λ(Hβ6) and the measure |dλ| is
then dy1 dy2. Since the poles of the functions M(s, λ) all lie on hyperplanes defined by real
equations we can represent the process of deforming the contour and the singular hyperplanes
met thereby by a diagram in the real plane. The singularities that are met all lie on the
hyperplanes si defined by

λ(Hβi
) = 1, 1 ⩽ i ⩽ 6.

As can be seen in the diagram, if we move the contour along the dotted line indicated we
may pick up residues at the points λ1, . . . , λ6.

s1 s5

s6

s3

s2

s4

λ0

λ1

λ6

λ5

In order to write out the resulting residual integrals explicitly as in §7 we have to list the
elements of Ω(si, sj), and then tabulate the residues of M(s, λ) on si for each s in Ω(si, sj).
We first list the elements of the Weyl group, together with the positive roots that they send
to negative roots. Let ρi be the reflection defined by βi and σ(θ) the rotation through the
angle θ.
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{ β > 0 | σβ < 0 }
1
ρ1 β1
ρ2 β1, β2, β3
ρ3 β1, β2, β3, β4, β5
ρ4 β2, β3, β4, β5, β6
ρ5 β4, β5, β6
ρ6 β6
σ
(
π
3

)
β1, β2

σ
(
2π
3

)
β1, β2, β3, β4

σ(π) β1, β2, β3, β4, β5, β6

σ
(
4π
3

)
β3, β4, β5, β6

σ
(
5π
3

)
β5, β6

Table 3

si

sj s1 s3 s5

ρ1 = ρ+ ρ2 = σ+ ρ3 = τ+
s1

σ(π) = ρ− σ
(
2π
3

)
= σ− σ

(
π
3

)
= τ−

ρ2 = ρ+ρ+σ
−1
+ = ρ−ρ+σ

−1
− ρ3 = σ+ρ+σ

−1
+ = σ−ρ+σ

−1
− ρ4 = τ+ρ+σ

−1
+ = τ−ρ+σ

−1
−

s3
σ
(
4π
3

)
= ρ−ρ+σ

−1
+ = ρ+ρ+σ

−1
− σ(π) = σ−ρ+σ

−1
+ = σ+ρ+σ

−1
− σ

(
2π
3

)
= τ−ρ+σ

−1
+ = τ+ρ+σ

−1
−

ρ3 = ρ+ρ+τ
−1
+ = ρ−ρ+τ

−1
− ρ4 = σ+ρ+τ

−1
+ = σ−ρ+τ

−1
− ρ5 = τ+ρ+τ

−1
+ = τ−ρ+τ

−1
−

s5
σ
(
5π
3

)
= ρ+ρ+τ

−1
− = ρ−ρ+τ

−1
+ σ

(
4π
3

)
= σ−ρ+τ

−1
+ = σ+ρ+τ

−1
− σ(π) = τ−ρ+τ

−1
+ = τ+ρ+τ

−1
−

Table 4

Since an element of the Weyl group takes long roots to long roots and short roots to
short roots, the set Ω(si, sj) is empty unless i and j are both even or both odd. This allows
us to consider the two sets {s1, s3, s5} and {s2, s4, s6} separately. We tabulate below the
sets Ω(si, sj), together with another more convenient labelling of the elements in them. The
second labelling refers only to their action on si. Of course then ρ+, ρ−, etc., which appear
in the two tables are distinct, but there is no point in encumbering the notation with primes
or superscripts.

We have next to choose a coordinate on each of the si and calculate the residues of
M(s, λ), s ∈ Ω(si, sj), with respect to it. The coordinate will be denoted z and will be the
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si

sj s2 s4 s6

ρ2 = ρ+τ+ρ
−1
+ = ρ−τ+ρ

−1
− ρ3 = σ+τ+ρ

−1
+ = σ−τ+ρ

−1
− ρ4 = τ+τ+ρ

−1
+ = τ−τ+ρ

−1
−

s2
σ(π) = ρ−τ+ρ

−1
+ = ρ+τ+ρ

−1
− σ

(
2π
3

)
= σ−τ+ρ

−1
+ = σ+τ+ρ

−1
− σ

(
π
3

)
= τ−τ+ρ

−1
+ = τ+τ+ρ

−1
−

ρ3 = ρ+τ+σ
−1
+ = ρ−τ+σ

−1
− ρ4 = σ+τ+σ

−1
+ = σ−τ+σ

−1
− ρ5 = τ+τ+σ

−1
+ = τ−τ+σ

−1
−

s4
σ
(
4π
3

)
= ρ+τ+σ

−1
− = ρ−τ+σ

−1
+ σ(π) = σ−τ+σ

−1
+ = σ+τ+σ

−1
− σ

(
2π
3

)
= τ−τ+σ

−1
+ = τ+τ+σ

−1
−

ρ4 = ρ+ ρ5 = σ+ ρ6 = τ+
s6

σ
(
5π
3

)
= ρ− σ

(
4π
3

)
= σ− σ(π) = τ−

Table 5

restriction of the coordinate on the total λ-space indicated in the table below.

s1 s2 s3 s4 s5 s6

3
2
+ z2

1
2
− z1

3
2
− λ(Hβ2)

1
2
− λ(Hβ5)

3
2
− z2

1
2
+ z1

To calculate the residue we have to choose near si as coordinates λ(Hβi
) and ±λ(Hβj

) where
z = ai ± λ(Hβj

) and express the other coordinates λ(Hβk
) in terms of them.

Principal coordinates Other coordinates
1) λ(Hβ1), λ(Hβ6) Hβ2 = 3Hβ1 +Hβ6 Hβ3 = 2Hβ1 +Hβ6

Hβ4 = 3Hβ1 + 2Hβ6 Hβ5 = Hβ1 +Hβ6

2) λ(Hβ2), −λ(Hβ1) Hβ3 = Hβ2 −Hβ1 Hβ4 = 2Hβ2 − 3Hβ1

Hβ5 = Hβ2 − 2Hβ1 Hβ6 = Hβ2 − 3Hβ1

3) λ(Hβ3), −λ(Hβ2) Hβ1 = Hβ2 −Hβ3 Hβ4 = 3Hβ3 −Hβ2

Hβ5 = 2Hβ3 −Hβ2 Hβ6 = 3Hβ3 − 2Hβ2

4) λ(Hβ4), −λ(Hβ5) Hβ1 = Hβ4 − 2Hβ5 Hβ2 = 2Hβ4 − 3Hβ5

Hβ3 = Hβ4 −Hβ5 Hβ6 = 3Hβ5 −Hβ4

5) λ(Hβ5), −λ(Hβ6) Hβ1 = Hβ5 −Hβ6 Hβ2 = 3Hβ5 − 2Hβ6

Hβ3 = 2Hβ5 −Hβ6 Hβ4 = 3Hβ5 −Hβ6

6) λ(Hβ6), λ(Hβ1) Hβ2 = 3Hβ1 +Hβ6 Hβ3 = 2Hβ1 +Hβ6

Hβ4 = 3Hβ1 + 2Hβ6 Hβ5 = Hβ1 +Hβ6

In table (6) the residues n(σ, z) or n(σ, λ), λ = λ(z), for the elements of table (4) are
given and in table (7) those for the elements of table (5). To obtain them one uses the formula
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1 (z+1/2)
(z+5/2)

(z−1/2)
(z+5/2)

(2z)
(2z+1)

(z−3/2)
(z+5/2)

(2z)
(1+2z)

(z+1/2)
(z+5/2)

(2z)
(2z+1)

(z+3/2)
(z+5/2)

(1/2−z)
(5/2−z)

(1/2−z)
(5/2−z)

(z+1/2)
(z+5/2)

(3/2−z)
(5/2−z)

(z+1/2)
(z+5/2)

(2z)
(2z+1)

(z+1/2)
(z+5/2)

(2z)
(2z+1)

(1/2−z)
(5/2−z)

(z+1/2)
(z+5/2)

(2z)
(2z+1)

(1/2−z)
(5/2−z)

(z+3/2)
(z+5/2)

(z−1/2)
(z+5/2)

(2z)
(2z+1)

(z+1/2)
(z+5/2)

(3/2−z)
(5/2−z)

(2z)
(2z+1)

(z+3/2)
(z+5/2)

(3/2−z)
(5/2−z)

(3/2−z)
(5/2−z)

(z+1/2)
(z+5/2)

(3/2−z)
(5/2−z)

(z−1/2)
(z+5/2)

(3/2−z)
(5/2−z)

(2z)
(2z+1)

Table 6

for M(s, λ), the table (3), and the relations (5). To make sure that there is no ambiguity I
observe that, for example, the entry in the third row and third column of (6) is n(τ+ρ+σ

−1
+ , z)

and corresponds to the third row and third column of (4). The residue of ξ(z)
ξ(1+z)

at z = 1 is
1

ξ(2)
. Thus, for example, the residue of M

(
σ(π), λ

)
on s1 is

1

ξ(2)

ξ
(
z − 3

2

)
ξ
(
z − 1

2

) ξ(z − 1
2

)
ξ
(
z + 1

2

) ξ(z + 1
2

)
ξ
(
z + 3

2

) ξ(z + 3
2

)
ξ
(
z + 5

2

) ξ(2z)

ξ(1 + 2z)
=

1

ξ(2)

ξ
(
z − 3

2

)
ξ(2z)

ξ
(
z + 5

2

)
ξ(1 + 2z)

.

To save space the factor 1
ξ(2)

, which should appear before all entries, is omitted and ξ(az + b)

is written as (az + b)
The difference between (1) and the analogous integral with λ0 = 0 is the sum of

(8)
3∑

i=1

3∑
j=1

∑
σ∈Ω(s2i,s2j)

1

2πi

∫
Reλ=λ2i

n(σ, λ)Φ(λ)Ψ(−σλ) dz

and

(9)
3∑

i=1

3∑
i=1

∑
σ∈Ω(s2i−1,s2j−1)

1

2πi

∫
Reλ=λ2i−1

n(σ, λ)Φ(λ)Ψ(−σλ) dz.

Here λ = λ(z). If we follow the procedure of §7, we deform the contours to Reλ = λ(0).
The resulting expressions give the inner product of the projections on the one-dimensional
spectrum. The residues which arise during the deformation when added together give the
inner product of the projections on the spectrum of dimension 0. We shall see that the
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(1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

(1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

(1/2+3z)
(3/2+3z)

(2z)
(2z+1)

(1/2+z)
(3/2+z)

(−1/2+3z)
(3/2+3z)

(2z)
(2z+1)

(1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

(−1/2+3z)
(3/2+3z)

(2z)
(2z+1)

(1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

(1/2+3z)
(3/2+3z)

(1/2−z)
(3/2−z)

(2z)
(2z+1)

(3z+1/2)
(3z+3/2)

(z+1/2)
(z+3/2)

(1/2−z)
(3/2−z)

(3z+1/2)
(3z+3/2)

(z+1/2)
(z+3/2)

(1/2−z)
(3/2−z)

(1/2−3z)
(3/2−3z)

(1/2−z)
(3/2−z)

(1/2−3z)
(3/2−3z)

(z+1/2)
(z+3/2)

(1/2−z)
(3/2−z)

(1/2−3z)
(3/2−3z)

(2z)
(2z+1)

(3z+1/2)
(3z+3/2)

(z+1/2)
(z+3/2)

(1/2−z)
(3/2−z)

(1/2−3z)
(3/2−3z)

(2z)
(2z+1)

(3z+1/2)
(3z+3/2)

(z+1/2)
(z+3/2)

(3z−1/2)
(3z+3/2)

(2z)
(2z+1)

(z+1/2)
(z+3/2)

(3z+1/2)
(3z+3/2)

(z+1/2)
(z+3/2)

1

(z+1/2)
(z+3/2)

(2z)
(2z+1)

(3z+1/2)
(3z+3/2)

(z+1/2)
(z+3/2)

(z−1/2)
(z+3/2)

(3z−1/2)
(3z+3/2)

(2z)
(2z+1)

Table 7

subspace corresponding to the discrete spectrum, that is, the spectrum of dimension 0, is of
dimension two, consisting of the constant functions and another eigenspace of dimension one.

Before carrying out the deformation and computing the residues explicitly, we write
out for the collections {s1, s3, s5} and {s2, s4, s6} the matrix M(H) figuring in Lemma 7.4,
observing as a check upon tables (6) and (7) that they satisfy the conclusion of Lemma 7.4,
that is, they are both of rank one. H is now λ = λ(z) and the matrix elements are functions
of z. The matrices are given in tables (10) and (11). Once again, to save space the factor
1

ξ(2)
has been omitted from all entries and ξ(az + b) is written simply (az + b). In (10) the

element s0 of the text is ρ+; in (11) it is τ+. Thus if λ = λ(z) the entry in the box of (10)
with row labelled σ+ and column ρ− is ξ(2)n(σ+ρ+ρ

−1
− , ρ−ρ+λ). It should perhaps be stressed

that if λ = λ(z) then for all σ the coordinate of −σλ is ±z.
Since none of the functions n(σ, λ) has a singularity on Reλ = λ(0) we may deform each

of the terms in (8) and (9) separately. Since there are eighteen terms in each of the two
expressions, and since some of the residues arising are complicated, the computation will be
lengthy. None the less it is best to write it out completely, for one appreciates better the
difficulties faced in §7 if one sees the procedure which was there described in an abstract form
carried out in a specific case, which is after all relatively simple. Suppose that, near z = 1,

ξ(z) =
1

z − 1
+ a+ b(z − 1) +O

(
(z − 1)2

)
.
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ρ+ ρ− σ+ σ− τ+ τ−

ρ+ 1 (−z−3/2)
(5/2−z)

(−2z)
(1−2z)

(1/2−z)
(5/2−z)

(1/2−z)
(5/2−z)

(−2z)
(1−2z)

(−z−1/2)
(−z+5/2)

(−2z)
(1−2z)

(3/2−z)
(5/2−z)

ρ−
(z−3/2)
(z+5/2)

(2z)
(2z+1)

1 (z+1/2)
(z+5/2)

(2z)
(2z+1)

(1/2+z)
(5/2+z)

(3/2+z)
(5/2+z)

(z−1/2)
(z+5/2)

(2z)
(1+2z)

σ+
(z+1/2)
(z+5/2)

(1/2−z)
(5/2−z)

(−2z)
(1−2z)

(1/2−z)
(5/2−z)

(1/2+z)
(5/2+z)

(1/2+z)
(5/2+z)

(1/2−z)
(5/2−z)

· (−2z)
(1−2z)

(3/2+z)
(5/2+z)

(1/2−z)
(5/2−z)

· (−2z)
(1−2z)

(1/2+z)
(5/2+z)

(3/2−z)
(5/2−z)

σ−
(z+1/2)
(z+5/2)

(2z)
(2z+1)

(1/2−z)
(5/2−z)

(1/2−z)
(5/2−z)

(1/2+z)
(5/2+z)

· (2z)
(1+2z)

(1/2+z)
(5/2+z)

(1/2−z)
(5/2−z)

(1/2−z)
(5/2−z)

(3/2+z)
(5/2+z)

(3/2−z)
(5/2−z)

(1/2+z)
(5/2+z)

· (2z)
(1+2z)

τ+
(z−1/2)
(z+5/2)

(2z)
(2z+1)

(3/2−z)
(5/2−z)

(3/2−z)
(5/2−z)

(z+1/2)
(z+5/2)

· (2z)
(2z+1)

(1/2+z)
(5/2+z)

(3/2−z)
(5/2−z)

(3/2−z)
(5/2−z)

(3/2+z)
(5/2+z)

(3/2−z)
(5/2−z)

(z−1/2)
(5/2+z)

· (2z)
(1+2z)

τ−
(z+3/2)
(z+5/2)

(−z−1/2)
(5/2−z)

(−2z)
(1−2z)

(1/2−z)
(5/2−z)

(3/2+z)
(5/2+z)

(3/2+z)
(5/2+z)

(1/2−z)
(5/2−z)

· (−2z)
(1−2z)

(3/2+z)
(5/2+z)

(−z−1/2)
(5/2−z)

· (−2z)
(1−2z)

(3/2+z)
(5/2+z)

(3/2−z)
(5/2−z)

Table 10. {s1, s3, s5}
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ρ+ ρ− σ+ σ− τ+ τ−

ρ+
(1/2+z)
(3/2+z)

(1/2−z)
(3/2−z)

(1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

· (3z−1/2)
(3z+3/2)

(2z)
(1+2z)

(2z)
(1+2z)

(1/2+3z)
(3/2+3z)

· (1/2+z)
(3/2+z)

(1/2−z)
(3/2−z)

(1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

· (1/2+3z)
(3/2+3z)

(z+1/2)
(z+3/2)

(2z)
(2z+1)

· (3z−1/2)
(3z+3/2)

(1/2−z)
(3/2−z)

ρ−
(1/2+z)
(3/2+z)

(1/2−z)
(3/2−z)

· (−1/2−3z)
(3/2−3z)

(−2z)
(1−2z)

(1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

(1/2+z)
(3/2+z)

(1/2−z)
(3/2−z)

· (1/2−3z)
(3/2−3z)

(−2z)
(1−2z)

(1/2−3z)
(3/2−3z)

· (1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

(z+1/2)
(z+3/2)

(1/2−z)
(3/2−z)

(−2z)
(1−2z)

· (−1/2−3z)
(3/2−3z)

σ+
(1/2+z)
(3/2+z)

(1/2−z)
(3/2−z)

· (−2z)
(1−2z)

(1/2−3z)
(3/2−3z)

(1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

· (3z+1/2)
(3z+3/2)

(1/2+3z)
(3/2+3z)

(1/2+z)
(3/2+z)

· (1/2−z)
(3/2−z)

(1/2−3z)
(3/2−3z)

(1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

· (−2z)
(1−2z)

(1/2−3z)
(3/2−3z)

(1/2+3z)
(3/2+3z)

(3z+1/2)
(3z+3/2)

(z+1/2)
(z+3/2)

(1/2−z)
(3/2−z)

(−2z)
(1−2z)

· (1/2−3z)
(3/2−3z)

σ−
(1/2+z)
(3/2+z)

(1/2−z)
(3/2−z)

· (1/2−3z)
(3/2−3z)

(1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

· (2z)
(1+2z)

(3z+1/2)
(3z+3/2)

(1/2+z)
(3/2+z)

(1/2−z)
(3/2−z)

· (2z)
(1+2z)

(1/2+3z)
(3/2+3z)

(1/2−3z)
(3/2−3z)

(1/2−z)
(3/2−z)

(1/2+z)
(3/2+z)

· (1/2−3z)
(3/2−3z)

(1/2+3z)
(3/2+3z)

(3z+1/2)
(3z+3/2)

(2z)
(2z+1)

(z+1/2)
(z+3/2)

(1/2−z)
(3/2−z)

(1/2−3z)
(3/2−3z)

τ+
(1/2−z)
(3/2−z)

(−2z)
(1−2z)

· (−1/2−3z)
(3/2−3z)

(1/2−z)
(3/2−z)

(1/2−z)
(3/2−z)

(1/2−3z)
(3/2−3z)

(1/2−z)
(3/2−z)

(−2z)
(1−2z)

· (1/2−3z)
(3/2−3z)

1
(−1/2−z)
(3/2+z)

(−2z)
(1−2z)

· (−1/2−3z)
(3/2−3z)

τ−
(1/2+z)
(3/2+z)

(1/2+z)
(3/2+z)

(2z)
(2z+1)

· (3z−1/2)
(3z+3/2)

(1/2+z)
(3/2+z)

(3z)
(1+2z)

· (1/2+3z)
(3/2+3z)

(1/2+z)
(3/2+z)

(1/2+3z)
(3/2+3z)

(z−1/2)
(z+3/2)

(2z)
(1+2z)

· (3z−1/2)
(3z+3/2)

1

Table 11. {s2, s4, s6}
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1) We begin by finding the residues for s1. At λ1
3

2
< z <

5

2
Let R(ρ+), R(ρ−), and so on, denote the residues arising from the corresponding terms of
(8). Making use of (4) and (6) we obtain the following results. Observe that the relevant
singularities occur at the intersections of s1 with some other sj.

R(ρ+) = 0,

R(ρ−) = − ξ(3)

ξ(2)ξ2(4)
Φ(β3)Ψ(β3) +

1

2ξ(2)ξ(3)
Φ(β2)Ψ(β2),

R(σ+) =
1

ξ(2)ξ(3)
Φ(β2)Ψ(β2).

The term R(σ−) is more complicated because the poles of n(σ−, λ) are not simple. We
let Di be the differential operator

DiΦ(λ) =
d

dt
Φ(λ+ tβi)

∣∣∣∣
t=0

.

Then, as the conscientious reader will readily verify, R(σ−) is the sum of

1

2ξ2(2)ξ(2)

{
Φ(β2)D6Ψ(β4) +D4Φ(β2)Ψ(β4)

}
and {

3a

2ξ2(2)ξ(3)
− ξ′(2)

ξ(3)ξ3(2)
− ξ′(3)

2ξ2(2)ξ2(3)

}
Φ(β2)Ψ(β4).

Moreover R(τ+) is the sum of

−1

2ξ2(2)ξ(3)

{
Φ(β2)D2Ψ(β4) +D4Φ(β2)Ψ(β4)

}
and

ξ(3)

ξ(2)ξ2(4)
Φ(β3)Ψ(β3) +

{
−a

2ξ2(2)ξ(3)
+

ξ′(3)

2ξ2(2)ξ2(3)
+

ξ′(2)

ξ3(2)ξ(3)

}
Φ(β2)Ψ(β4),

while
R(τ−) = 0.

Adding these six terms together we see that the total residue from s1 is

3

2ξ(2)ξ(3)
Φ(β2)Ψ(β2) +

a

ξ2(2)ξ(3)
Φ(β2)Ψ(β4)−

1

2ξ2(2)ξ(3)
Φ(β2)D1Ψ(β4).

Since there is considerable cancellation involved in these calculations which cannot be
predicted from general principles, the interested reader is advised to verify each step for
himself.
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2) The residues for s2 are easier to find. The coordinate of the point λ2 satisfies 1
6
< z < 1

2
.

R(ρ+τ+ρ
−1
+ ) = 0,

R(ρ−τ+ρ
−1
+ ) =

−ξ2
(
1
3

)
ξ
(
2
3

)
3ξ2(2)ξ2

(
4
3

)
ξ
(
5
3

)Φ(β3
3

)
Ψ

(
β3
3

)
,

R(σ+τ+ρ
−1
+ ) =

ξ2
(
1
3

)
ξ
(
2
3

)
3ξ2(2)ξ2

(
4
3

)
ξ
(
5
3

)Φ(β3
3

)
Ψ

(
β3
3

)
,

R(σ−τ+ρ
−1
+ ) =

ξ
(
1
3

)
ξ
(
2
3

)
3ξ2(2)ξ

(
4
3

)
ξ
(
5
3

)Φ(β3
3

)
Ψ

(
β5
3

)
,

R(τ+τ+ρ
−1
+ ) =

−ξ
(
1
3

)
ξ
(
2
3

)
3ξ2(2)ξ

(
4
3

)
ξ
(
5
3

)Φ(β3
3

)
Ψ

(
β5
3

)
,

R(τ−τ+ρ
−1
+ ) = 0.

The sum of these six terms is 0. It is clear from the diagram of the spaces si that there are
no residues for s3 or s4. The residues from s5 and s6 are however extremely complicated.

5) The coordinate of λ5 satisfies 1
2
< z < 3

2
. Putting our head down and bashing on we

obtain the following results for the residues. R(ρ+ρ+τ
−1
+ ) is the sum of

−1

2ξ2(2)ξ(3)

{
Φ(β4)D4Ψ(β2) +D2Φ(β4)Ψ(β2)

}
and {

−a
2ξ2(2)ξ(3)

+
ξ′(3)

2ξ2(2)ξ2(3)
+

ξ′(2)

ξ3(2)ξ(3)

}
Φ(β4)Ψ(β2).

The expression R(ρ−ρ+τ
−1
+ ) is easier to determine; it equals

−1

ξ2(2)
Φ(β4)Ψ(−β6).

Since −β6 does not lie in the dual of the positive chamber, we infer from Lemma 7.5 that
this term will be cancelled by another, for it cannot remain when all the residues are added
together.
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The other terms grow more complicated. R(σ+ρ+τ
−1
+ ) is the sum of the following

expressions.

−1

2ξ3(2)ξ(3)

{
D2Φ(β4)D6Ψ(β4) +

1

2
Φ(β4)D

2
6Ψ(β4) +

1

2
D2

2Φ(β4)Ψ(β4)

}
;

1

ξ(2)

{
1

2

(
ξ′(2)

ξ3(2)ξ(3)
+

ξ′(3)

ξ2(2)ξ2(3)

)
− a

ξ2(2)ξ(3)

}{
D2Φ(β4)Ψ(β4) + Φ(β4)D6Ψ(β4)

}
;

1

ξ(2)

a
(

ξ′(2)

ξ3(2)ξ(3)
+

ξ′(3)

ξ2(2)ξ2(3)

)
+

1

ξ2(2)ξ(3)

(
a2

2
− 3b

)Φ(β4)Ψ(β4);

1

ξ(2)

 5

4ξ(2)ξ(3)

ξ′′(2)
ξ2(2)

−
2
(
ξ′(2)

)2
ξ3(2)

+
1

4ξ2(2)

ξ′′(3)
ξ2(3)

−
2
(
ξ′(3)

)2
ξ3(3)

Φ(β4)Ψ(β4);

−1

ξ(2)

 ξ′(2)ξ′(3)

ξ3(2)ξ2(3)
−

2
(
ξ′(2)

)2
ξ4(2)ξ(3)

Φ(β4)Ψ(β4).

The expression R(σ−ρ+τ
−1
+ ) is not so difficult to determine; it is the sum of

1

ξ2(2)ξ(3)

{
Φ(β4)D6Ψ(β2)−D2Φ(β4)Ψ(β2)

}
and {

ξ′(3)

ξ2(2)ξ2(3)
− ξ′(2)

ξ3(2)ξ(3)

}
Φ(β4)Ψ(β2).

However, R(τ+ρ+τ
−1
+ ) is simply

−1

ξ(2)ξ(3)
Φ(β4)Ψ(β6)

With R(τ−ρ+τ
−1
+ ) complications appear once again. It is the sum of the following terms.

1

2ξ3(2)ξ(3)

{
D2Φ(β4)D2Ψ(β4) +

1

2
D2

2Φ(β4)Ψ(β4) +
1

2
Φ(β4)D

2
2Ψ(β4)

}
;

− 1

2ξ(2)

{
ξ′(2)

ξ3(2)ξ(3)
+

ξ′(3)

ξ2(2)ξ2(3)

}{
D2Φ(β4)Ψ(β4) + Φ(β4)D2Ψ(β4)

}
;

1

ξ(2)

1

2

 ξ′(2)ξ′(3)

ξ3(2)ξ2(3)
−

2
(
ξ′(2)

)2
ξ4(2)ξ(3)

+
1

ξ2(2)ξ(3)

(
3b− 3a2

2

)Φ(β4)Ψ(β4);

1

2ξ(2)

 −5

2ξ(2)ξ(3)

ξ′′(2)
ξ2(2)

−
2
(
ξ′(2)

)2
ξ3(2)

− 1

2ξ2(2)

ξ′′(3)
ξ2(3)

−
2
(
ξ′(3)

)2
ξ3(3)

Φ(β4)Ψ(β4).
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We add up all the terms above and find that the total contribution from s5 is the sum of
the following six expressions.{

a

ξ(2)

(
ξ′(2)

ξ3(2)ξ(3)
+

ξ′(3)

ξ2(2)ξ2(3)

)
− a2

ξ3(2)ξ(3)

}
Φ(β4)Ψ(β4);

− a

ξ3(2)ξ(3)
D2Φ(β4)Ψ(β4)−

a

ξ3(2)ξ(3)
Φ(β4)D6Ψ(β4);

− 1

ξ2(2)
Φ(β4)Ψ(−β6)−

1

ξ(2)ξ(3)
Φ(β4)Ψ(β6);

− 1

2ξ2(2)ξ(3)
Φ(β4)D1Ψ(β2)−

3

2ξ2(2)ξ(3)
D2Φ(β4)Ψ(β2);

1

ξ2(2)ξ(3)

(
−a
2

+
3ξ′(3)

2ξ(3)

)
Φ(β4)Ψ(β2) +

1

4ξ3(2)ξ(3)
Φ(β4)(D

2
2 −D2

6)Ψ(β4);

1

2ξ3(2)ξ(3)
D2Φ(β4)D1Ψ(β4)−

1

2ξ(2)

(
ξ′(2)

ξ3(2)ξ(3)
+

ξ′(3)

ξ2(2)ξ2(3)

)
Φ(β4)D1Ψ(β4).

The term involving Ψ(−β6) has not yet disappeared.
The reader will be losing heart, for we still have s6 to work through. He is urged to

persist, for the final result is very simple. I do not know the reason.

6) The coordinate of λ6 is greater then 3
2
. It will be seen from the diagram of the spaces si

that we may pick up residues at three points, at the intersection of s6 and s1, at the common
intersection of s6, s5, s3, and s2, and at the intersection of s6 with s4. The corresponding
values of z are 3

2
, 1

2
, and 1

6
. The contribution R(ρ+) is the sum of the following terms.

1

6ξ3(2)ξ(3)

{
D3Φ(β4)D5Ψ(β4) +

1

2
D2

3Φ(β4)Ψ(β4) +
1

2
Φ(β4)D

2
5Ψ(β4)

}
;

1

ξ(2)

{
a

ξ2(2)ξ(3)
− 1

2

(
ξ′(3)

ξ2(2)ξ2(3)
+

ξ′(2)

ξ3(2)ξ(3)

)}{
D3Φ(β4)Ψ(β4) + Φ(β4)D5Ψ(β4)

}
;

1

ξ3(2)ξ(3)

{(
11

6
a2 +

7

3
b

)
− a

(
3ξ′(3)

ξ(3)
+

3ξ′(2)

ξ(2)

)}
Φ(β4)Ψ(β4);

1

6ξ(2)

9ξ′(2)ξ′(3)

ξ3(2)ξ2(3)
+

2
(
ξ′(2)

)2
ξ4(2)ξ(3)

Φ(β4)Ψ(β4);

−1

12ξ2(2)

 9

ξ(2)

ξ′′(3)
ξ2(3)

−
2
(
ξ′(3)

)2
ξ3(3)

+
5

ξ(3)

ξ′′(2)
ξ2(2)

−
2
(
ξ′(2)

)2
ξ3(2)

Φ(β4)Ψ(β4);

−
ξ
(
1
3

)
ξ
(
2
3

)
3ξ2(2)ξ

(
5
3

)
ξ
(
4
3

)Φ(β5
3

)
Ψ

(
β3
3

)
.

The value of R(ρ−) is simply

1

ξ2(2)
Φ(β4)Ψ(−β6).

It cancels the term for s5 which had troubled us.



III. EXAMPLES FOR §7 201

The value of R(σ+) is

1

ξ(2)ξ(3)
Φ(β4)Ψ(β6) +

ξ
(
2
3

)
3ξ2(2)ξ

(
5
3

)Φ(β5
3

)
Ψ

(
β5
3

)
.

For R(σ−) we obtain the sum of three terms.

1

2ξ2(2)ξ(3)

{
D3Φ(β4)Ψ(β2) + Φ(β4)D1Ψ(β2)

}
;{

3a

2ξ2(2)ξ(3)
− 3ξ′(3)

2ξ2(2)ξ2(3)

}
Φ(β4)Ψ(β2);

ξ
(
1
3

)
ξ
(
2
3

)
3ξ
(
4
3

)
ξ
(
5
3

)
ξ2(2)

Φ

(
β5
3

)
Ψ

(
β3
3

)
.

Although R(τ+) is zero, but R(τ−) is the sum of the following nine terms. δ is now
one-half the sum of the positive roots.

1

ξ(2)ξ(6)
Φ(δ)Ψ(δ);

−1

6ξ3(2)ξ(3)

{
D3Φ(β4)D3Ψ(β4) +

1

2
D2

3Φ(β4)Ψ(β4) +
1

2
Φ(β4)D

2
3Ψ(β4)

}
;

1

2ξ(2)

{
ξ′(3)

ξ2(2)ξ2(3)
+

ξ′(2)

ξ3(2)ξ(3)

}{
Φ(β4)D3Ψ(β4) +D3Φ(β4)Ψ(β4)

}
;

−2a

3ξ3(2)ξ(3)

{
Φ(β4)D3Ψ(β4) +D3Φ(β4)Ψ(β4)

}
;

2a

ξ(2)

{
ξ′(3)

ξ2(2)ξ2(3)
+

ξ′(2)

ξ3(2)ξ(3)

}
Φ(β4)Ψ(β4);

−1

6ξ(2)

9ξ′(2)ξ′(3)

ξ3(2)ξ2(3)
+

2
(
ξ′(2)

)2
ξ4(2)ξ(3)

Φ(β4)Ψ(β4);

−1

6ξ3(2)ξ(3)
(a2 − 14b)Φ(β4)Ψ(β4);

1

6ξ(2)

 5

2ξ(2)ξ(3)

ξ′′(2)
ξ2(2)

−
2
(
ξ′(2)

)2
ξ3(2)

+
9

2ξ2(2)

ξ′′(3)
ξ2(3)

−
2
(
ξ′(3)

)2
ξ3(3)

Φ(β4)Ψ(β4);

−ξ
(
1
3

)
3ξ
(
5
3

)
ξ2(2)

Φ

(
β5
3

)
Ψ

(
β5
3

)
.
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Adding the six contributions together we see that the total residue from s6 is the sum of
the following terms.

1

ξ2(2)
Φ(β4)Ψ(−β6) +

1

ξ(2)ξ(3)
Φ(β4)Ψ(β6) +

1

ξ(2)ξ(6)
Φ(ρ)Ψ(ρ);

1

2ξ2(2)ξ(3)

{
Φ(β4)D1Ψ(β2) +D3Φ(β4)Ψ(β2)

}
;

3

2ξ2(2)ξ(3)

(
a− ξ′(3)

ξ(3)

)
Φ(β4)Ψ(β2) +

1

12ξ3(2)ξ(2)
Φ(β4)(D

2
5 −D2

3)Ψ(β4);

−1

6ξ3(2)ξ(3)
D3Φ(β4)D1Ψ(β4) +

1

2ξ(2)

(
ξ′(3)

ξ2(2)ξ2(3)
+

ξ′(2)

ξ3(2)ξ(3)

)
Φ(β4)D1Ψ(β4);

a

3ξ3(2)ξ(3)
D3Φ(β4)Ψ(β4) +

a

ξ3(2)ξ(3)
Φ(β4)

(
D5 −

2

3
D3

)
Ψ(β4);

5a2

3ξ3(2)ξ(3)
Φ(β4)Ψ(β4)−

a

ξ(2)

(
ξ′(2)

ξ3(2)ξ(3)
+

ξ′(3)

ξ2(2)ξ2(3)

)
Φ(β4)Ψ(β4).

Now all we have to do is add together the contributions from s1, . . . , s6. The result may
be expressed simply in matrix notation as:

Ψ(ρ)

Ψ(β2)

Ψ(β4)

D1Ψ(β4)



∗


1
ξ(2)ξ(6)

0 0 0

0 3
2ξ(2)ξ(3)

a
ξ2(2)ξ(3)

−1
2ξ2(2)ξ(3)

0 a
ξ2(2)ξ(3)

2a2

3ξ3(2)ξ(3)
−a

3ξ3(2)ξ(3)

0 −1
2ξ2(2)ξ(3)

−a
3ξ3(2)ξ(3)

1
6ξ3(2)ξ(3)





Φ(ρ)

Φ(β2)

Φ(β4)

D1Φ(β4)


That the matrix turns out to be symmetric and positive-definite is a check on our calculations.
Since it is of rank two, the discrete spectrum contains two points. One of the associated
subspaces is the space of constant functions. The constant term of the functions in the other
space is not a sum of pure exponentials. The appearance of a second point in the discrete
spectrum is a surprise. One wonders what its significance is.

In the example just discussed the functions n(σ, λ) were analytic on the line Reλ = λ(0),
and the corresponding residues of the Eisenstein series must be as well. This may not always
be so, and one must be content with a weaker assertion, that of Lemma 7.6. This is seen
already with the one-dimensional spectrum for the group of type A3.

This is the group SL(4). We may take as coordinates of λ, parameters z1, z2, z3, z4 with∑
zi = 0. The elements of the Weyl group are permutations and

M(s, λ) =
∏
i<j

s(i)>s(j)

ξ(zi − zj)

ξ(1 + zi − zj)
.

At the first stage the integration will be taken over the set Re zi = z0i with z0i − z0j > 1 if
i < j. Then it is moved to Re zi = 0. Residues are obtained on the hyperplanes sij defined by
zi− zj = 1. These give the two-dimensional spectrum. In order to obtain the one-dimensional
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spectrum the integration has then to be moved to

Re zk =
δki
2

− δkj
2
,

where δki is Kronecker’s delta. If M(s, λ) has a singularity on sij then s(i) > s(j). If k < ℓ
and s(k) > s(ℓ) with (ij) ̸= (kℓ) then

ξ(zk − zℓ)

ξ(1 + zk − zℓ)

is a factor of the residue. If k ≠ j then 1 + zk − zℓ ⩾ 1 during the deformation and the zeros
of the denominator play no role. If k = j then s(i) > s(ℓ) and the residue contains the factor

ξ(zi − zℓ)

ξ(1 + zi − zℓ)

ξ(zj − zℓ)

ξ(1 + zj − zℓ)

Since zi = 1 + zj on sij the denominator is again harmless. The relevant singularities lie on
the intersection of sij with some si′j′ .

Because we are interested in the one-dimensional spectrum and want to proceed as
expeditiously as possible, we shall only write down those two-dimensional residues which in
turn yield one-dimensional residues. We take z0i − z0i+1 > z0i+1 − z04 , i = 1, 2.

1) i = 1, j = 4. When we deform the two-dimensional integral on s14 we pick up no residues.
So this hyperplane may be ignored.

2) i = 1, j = 3. Because of our choice of z0i , the only singular hyperplane that we meet during
the deformation is s14. The intersection is s =

(
2
3
, 0, −1

3
, −1

3

)
+ (u, v, u, u) with 3u + v = 0.

We obtain contributions from those s for which s(4) < s(1) and s(3) < s(1). For these we
obtain the following results:

s R(s)

(1234) → (3412)
(
2
3 , 0,

−1
3 , −1

3

)
+ (u, v, u, u) →

(
−1
3 , −1

3 , 23 , 0
)
+ (u, u, u, v) (23)(24)

→ (4312) →
(
−1
3 , −1

3 , 23 , 0
)
+ (u, u, u, v) −(23)(24)

→ (3421) →
(
−1
3 , −1

3 , 0, 23

)
+ (u, u, v, u) (12)(23)(34)

→ (4321) →
(
−1
3 , −1

3 , 0, 23

)
+ (u, u, v, u) −(12)(23)(34)

→ (3241) →
(
−1
3 , 0, −1

3 , 23

)
+ (u, v, u, u) (12)(23)

→ (4231) →
(
−1
3 , 0, −1

3 , 23

)
+ (u, v, u, u) −(12)(24)

→ (2341) →
(
0, −1

3 , −1
3 , 23

)
+ (v, u, u, u) (12)

→ (2431) →
(
0, −1

3 , −1
3 , 23

)
+ (v, u, u, u) −(12)

The symbol (kℓ) is an abbreviation for

ξ(zk − zℓ)

ξ(1 + zk − zℓ)
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and we have omitted from all the R(s) a common constant. But this is unimportant, for we
see that the residues cancel in pairs and that s13 contributes nothing to the one-dimensional
spectrum.

3) i = 1, j = 2. There will be singularities at the intersections of s12 with s13 and s14.
Because of our choice of z0i , they are the only ones which affect our calculations.

s12 ∩ s13 =

(
2

3
,
−1

3
,
−1

3
, 0

)
+ (u, u, u, v),

s12 ∩ s14 =

(
2

3
,
−1

3
, 0,

−1

3

)
+ (u, u, v, u).

If s contributes to the residue on the first intersection then s(2) < s(1) and s(3) < s(1). If
s0 is the interchange of (2) and (3) then ss0 has the same effect on s12 ∩ s13, but the residues
of R(s) and R(ss0) are of opposite sign because

ξ(z2 − z3)

ξ(1 + z2 − z3)

is −1 when z2 = z3. Thus the contribution of the first intersection to the one-dimensional
spectrum is 0.

If s contributes to the residue on the second intersection then s(2) < s(1) and s(4) < s(1).
The possibilities are given below.

s R(s)
(1234) → (2413) (43)

→ (4213) −(43)

→ (2431) (13)(34)

→ (4231) −(13)(34)

→ (2341) (13)

→ (4321) −(13)(23)(34)

→ (3241) (13)(23)

→ (3421) −(13)(23)

Since
z1 − z3 = −(z3 − z4)

on the intersection,
ξ(z2 − z3)

ξ(1 + z2 − z3)

ξ(z3 − z4)

ξ(1 + z3 − z4)
= 1.

Once again the cancellation is complete.
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4) i = 2, j = 4. The poles occur at the intersection of s24 with s12, s13, and s14. These
intersections are:

s24 ∩ s12 = (1, 0, 0,−1) + (u, u, v, u),

s24 ∩ s13 =

(
1

2
,
1

2
,
−1

2
,
−1

2

)
+ (u, v, u, v),

s24 ∩ s14 =

(
1

3
,
1

3
, 0,

−2

3

)
+ (u, u, v, u).
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We list in the three cases the relevant s and the corresponding residues.
a)

s R(s)
(1234) → (4213) (1, 0, 0,−1) + (u, u, v, u) → (−1, 0, 1, 0) + (u, u, u, v) (34)

→ (4231) → (−1, 0, 0, 1) + (u, u, v, u) (13)(34)

→ (4321) → (−1, 0, 0, 1) + (u, v, u, u) (13)(23)(34)

→ (3421) → (0, 1, 0,−1) + (v, u, u, u) (13)(23)

We have omitted the common factor 1
ξ(2)ξ(3)

.

b)
s R(s)

(1234) → (3142)
(
1
2
, 1
2
, −1

2
, −1

2

)
+ (u, v, u, v) →

(−1
2
, 1
2
, −1

2
, 1
2

)
+ (u, u, v, v) (23)

→ (3412) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (u, v, u, v) (14)(23)

→ (3421) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (u, v, v, u) (12)(14)(23)

→ (4312) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (v, u, u, v) (14)(23)(34)

→ (4321) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (v, u, v, u) (12)(14)(23)(34)

→ (4231) →
(−1

2
, 1
2
, −1

2
, 1
2

)
+ (v, v, u, u) (12)(14)(34)

We have omitted a common factor 1
ξ2(2)

.
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c) If s contributes to the residue for the third intersection then s(4) < s(1) and s(4) < s(2).
If s0 interchanges 1 and 2 and leaves 3 and 4 fixed, then ss0 contributes as well. Since

R(s) = −R(ss0)
the total contribution will be 0.

5) i = 2, j = 3. The relevant poles occur at the intersection of s23 with s12, s13, s14, and s24.
These intersections are as follows:

s23 ∩ s12 = (1, 0,−1, 0) + (u, u, u, v),

s23 ∩ s13 =

(
1

3
,
1

3
,
−2

3
, 0

)
+ (u, u, u, v),

s23 ∩ s14 =

(
1

2
,
1

2
,
−1

2
,
−1

2

)
+ (u, v, v, u),

s23 ∩ s24 =

(
0,

2

3
,
−1

3
,
−1

3

)
+ (u, v, v, v).

Again we list the pertinent s and the corresponding R(s):
a)

s R(s)
(1234) → (3214) (1, 0,−1, 0) + (u, u, u, v) → (−1, 0, 1, 0) + (u, u, u, v) 1

→ (3241) → (−1, 0, 0, 1) + (u, u, v, u) (14)

→ (3421) → (−1, 0, 0, 1) + (u, v, u, u) (14)(24)

→ (4321) → (0,−1, 0, 1) + (v, u, u, u) (14)(24)(34)

Again a common factor 1
ξ(2)ξ(3)

has been omitted.

b) The same argument as above establishes that the total contribution from this intersection
is 0.
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c)
s R(s)

(1234) → (4132)
(
1
2
, 1
2
, −1

2
, −1

2

)
+ (u, v, v, u) →

(−1
2
.1
2
, −1

2
, 1
2

)
+ (u, u, v, v) (24)(34)

→ (4312) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (u, v, u, v) (13)(24)(34)

→ (4321) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (u, v, v, u) (12)(13)(24)(34)

→ (3412) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (v, u, u, v) (13)(24)

→ (3421) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (v, u, v, u) (12)(13)(24)

→ (3241) →
(−1

2
, 1
2
, −1

2
, 1
2

)
+ (v, v, u, u) (12)(13)
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d) Here again the total contribution is 0.

6) i = 3, j = 4. The intersections with any of the other si′j′ are now relevant. These
intersections are as follows:

s34 ∩ s12 =

(
1

2
,
−1

2
,
1

2
,
−1

2

)
+ (u, u, v, v),

s34 ∩ s13 = (1, 0, 0,−1) + (u, v, u, u),

s34 ∩ s14 =

(
1

3
, 0,

1

3
,
−2

3

)
+ (u, v, u, u),

s34 ∩ s23 = (0, 1, 0,−1) + (u, v, v, v),

s34 ∩ s24 =

(
0,

1

3
,
1

3
,
−2

3

)
+ (u, v, v, v).

Again we take each possibility in order and list the pertinent s and the corresponding R(s).
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a)
s R(s)

(1234) → (2143)
(
1
2
, −1

2
, 1
2
, −1

2

)
+ (u, u, v, v) →

(−1
2
, 1
2
, −1

2
, 1
2

)
+ (u, u, v, v) 1

→ (2413) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (u, v, u, v) (14)

→ (2431) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (u, v, v, u) (13)(14)

→ (4213) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (v, u, u, v) (14)(24)

→ (4231) →
(−1

2
, −1

2
, 1
2
, 1
2

)
+ (v, u, v, u) (13)(14)(24)

→ (4321) →
(−1

2
, 1
2
, −1

2
, 1
2

)
+ (v, v, u, u) (13)(14)(23)(24)

A common factor 1
ξ2(2)

has been omitted.
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b)

s R(s)
(1234) → (4312) (1, 0, 0,−1) + (u, v, u, u) → (−1, 0, 1, 0) + (u, u, u, v) (23)(24)

→ (4321) → (−1, 0, 0, 1) + (u, u, v, u) (12)(23)(24)

→ (4231) → (−1, 0, 0, 1) + (u, v, u, u) (12)(24)

→ (2431) → (0,−1, 0, 1) + (v, u, u, u) (12)

The common factor 1
ξ(2)ξ(3)

has been omitted.

c) The total contribution is again 0.
d)

s R(s)
(1234) → (1432) (0, 1, 0,−1) + (u, v, v, v) → (0,−1, 0, 1) + (u, v, v, v, ) 1

→ (4132) → (−1, 0, 0, 1) + (v, u, v, v) (14)

→ (4312) → (−1, 0, 0, 1) + (v, v, u, v) (13)(14)

→ (4321) → (−1, 0, 1, 0) + (v, v, v, u) (12)(13)(14)

Again the common factor 1
ξ(2)ξ(3)

has been omitted.

e) The total contribution is 0.
The one-dimensional spectrum is therefore determined by two collections of subspaces.

The first collection is formed by:

(0, 1, 0,−1) + (u, v, v, v),

(1, 0, 0,−1) + (v, u, v, v),

(1, 0, 0,−1) + (v, v, u, v),

(1, 0,−1, 0) + (v, v, v, u).

For any two, s and t, of these subspaces, the set Ω(s, t) consists of a single element. The
matrix M(H) figuring in Lemma 7.4 is given, apart from the factor 1

ξ(2)ξ(3)
, in Table (12). It

is, as it must be of rank one. However, it does have singularities at u = v = 0, that is, on the
line over which we must finally integrate.

This is disconcerting at first, but, as shown in the text, presents no insurmountable
problem. The constant term of the Eisenstein series, or system, associated to the line
(1, 0,−1, 0) + (u, v, v, v) is, apart from the factor

1

ξ(2)ξ(3)
e

3
2
z1+

1
2
z2− 1

2
z3− 3

2
z4 ,

given by the sum of

e−z2+z4euz1+vz2+vz3+vz4 +
ξ(u− v − 1)

ξ(u− v + 2)
e−z1+z3evz1+vz2+vz3+uz4

which has no poles on the line Re(u− v) = 0 and

ξ(1 + u− v)

ξ(2 + u− v)
e−z1+z4

{
evz1+uz2+vz3+vz4 +

ξ(u− v)

ξ(1 + u− v)
evz1+vz2+uz3+vz4

}
.
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(0,1,0,−1)
+(u,v,v,v)

(1,0,0,−1)
+(v,u,v,v)

(1,0,0,−1)
+(v,v,u,v)

(1,0,−1,0)
+(v,v,v,u)

(0,1,0,−1)
+(u,v,v,v)

1 ξ(1+v−u)
ξ(2+v−u)

ξ(v−u)
ξ(2+v−u)

ξ(v−u−1)
ξ(v−u+2)

(1,0,0,−1)
+(v,u,v,v)

ξ(1+u−v)
ξ(2+u−v)

ξ(1+v−u)
ξ(2+v−u)

ξ(1+u−v)
ξ(2+u−v)

ξ(v−u)
ξ(2+v−u)

ξ(1+u−v)
ξ(2+u−v)

ξ(v−u)
ξ(2+v−u)

(1,0,0,−1)
+(v,v,u,v)

ξ(u−v)
ξ(2+u−v)

ξ(1+v−u)
ξ(2+v−u)

ξ(u−v)
ξ(2+u−v)

ξ(1+v−u)
ξ(2+v−u)

ξ(1+u−v)
ξ(2+u−v)

ξ(1+v−u)
ξ(2+v−u)

(1,0,−1,0)
+(v,v,v,u)

ξ(u−v−1)
ξ(2+u−v)

ξ(u−v)
ξ(2+u−v)

ξ(1+u−v)
ξ(2+u−v)

1

Table 12. The entries are M(ts0s−1, ss0H). The rows are indexed by t, and
the columns by s. The entry at the top of a given column is the result of
applying ss0 to the entry at the top of the first column. The rows are labelled
in a similar fashion.

Since the factor ξ(u−v)
ξ(1+u−v)

equals −1 at u = v, this term too has no poles on the lines Re(u−v).
Thus the constant term, and hence the Eisenstein series itself is analytic on that line. This is
a simple illustration of the corollary to Lemma 7.6.

The second collection is formed by(
1

2
,
−1

2
,
1

2
,
−1

2

)
+ (u, u, v, v)(

1

2
,
1

2
,
−1

2
,
−1

2

)
+ (u, v, u, v)(

1

2
.
1

2
,
−1

2
,
−1

2

)
+ (u, v, v, u)

The sets Ω(s, t) now consist of two elements. The matrix of Lemma 7.4 is given in Table (13).
It may be readily verified that it is of rank one.
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2
1
3

( 1
2
,−1

2
, 1
2
,−1

2 )
+(u,u,v,v)

( 1
2
,−1

2
, 1
2
,−1

2 )
+(v,v,u,u)

( 1
2
, 1
2
,−1

2
,−1

2 )
+(u,v,v,u)

( 1
2
, 1
2
,−1

2
,−1

2 )
+(v,u,u,v)

( 1
2
, 1
2
,−1

2
,−1

2 )
+(u,v,u,v)

( 1
2
, 1
2
,−1

2
,−1

2 )
+(v,u,v,u)

( 1
2
,−1

2
, 1
2
, 1
2)

+(u,u,v,v)
1

ξ(v−u)
ξ(2+v−u)

· ξ(v−u−1)
ξ(v−u+1)

ξ(v−u)
ξ(2+v−u)

ξ(v−u)
ξ(2+v−u)

ξ(1+v−u)
ξ(2+v−u)

ξ(v−u)
ξ(2+v−u)

· ξ(v−u)
ξ(1+v−u)

( 1
2
,−1

2
, 1
2
,−1

2 )
+(v,v,u,u)

ξ(u−v)
ξ(2+u−v)

· ξ(u−v−1)
ξ(u−v+1)

1 ξ(u−v)
ξ(2+u−v)

ξ(u−v)
ξ(2+u−v)

ξ(u−v)
ξ(2+u−v)

· ξ(u−v)
ξ(1+u−v)

ξ(1+u−v)
ξ(2+u−v)

( 1
2
, 1
2
,−1

2
,−1

2 )
+(u,v,v,u)

ξ(u−v)
ξ(2+u−v)

ξ(v−u)
ξ(2+v−u)

ξ(v−u)
ξ(2+v−u)

· ξ(u−v)
ξ(2+u−v)

ξ(1+v−u)
ξ(2+v−u)

· ξ(1+u−v)
ξ(2+u−v)

ξ(u−v)
ξ(2+u−v)

· ξ(1+v−u)
ξ(2+v−u)

ξ(v−u)
ξ(2+v−u)

· ξ(1+u−v)
ξ(2+u−v)

( 1
2
, 1
2
,−1

2
,−1

2 )
+(v,u,u,v)

ξ(u−v)
ξ(2+u−v)

ξ(v−u)
ξ(2+v−u)

ξ(1+u−v)
ξ(2+u−v)

· ξ(1+v−u)
ξ(2+v−u)

ξ(1+v−u)
ξ(2+v−u)

· ξ(u−v)
ξ(2+u−v)

ξ(u−v)
ξ(2+u−v)

· ξ(1+v−u)
ξ(2+v−u)

ξ(u−v)
ξ(1+u−v)

ξ(1+v−u)
ξ(2+v−u)

· ξ(1+u−v)
ξ(2+u−v)

( 1
2
, 1
2
,−1

2
,−1

2 )
+(u,v,u,v)

ξ(1+u−v)
ξ(2+u−v)

ξ(v−u)
ξ(1+v−u)

· ξ(v−u)
ξ(2+v−u)

ξ(1+u−v)
ξ(2+u−v)

· ξ(v−u)
ξ(2+v−u)

ξ(v−u)
ξ(2+v−u)

· ξ(1+u−v)
ξ(2+u−v)

ξ(1+u−v)
ξ(2+u−v)

· ξ(1+v−u)
ξ(2+v−u)

ξ(v−u)
ξ(2+v−u)

· ξ(1+u−v)
ξ(2+u−v)

ξ(v−u)
ξ(1+v−u)

( 1
2
, 1
2
,−1

2
,−1

2 )
+(v,u,v,u)

ξ(u−v)
ξ(1+u−v)

· ξ(u−v)
ξ(2+u−v)

ξ(1+v−u)
ξ(2+v−u)

ξ(u−v)
ξ(2+u−v)

· ξ(1+v−u)
ξ(2+v−u)

ξ(1+v−u)
ξ(2+v−u)

· ξ(u−v)
ξ(2+u−v)

ξ(u−v)
ξ(2+u−v)

· ξ(1+v−u)
ξ(2+v−u)

ξ(u−v)
ξ(1+u−v)

ξ(1+v−u)
ξ(2+v−u)

· ξ(1+u−v)
ξ(2+u−v)

Table 13. The principle according to which the entries are indexed is the same as in the preceding table.
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APPENDIX IV

The simplest case

I have been requested to append an independent exposition of the methods employed in
the text in the simplest case, that of a Fuchsian subgroup Γ of G = PSL(2,R) with a single
cusp, the Eisenstein series being taken to be invariant under right multiplication by elements
of K = PSO(2,R). The methods of the text when applied to SL(2,R) are basically those of
Selberg, with the inner product formula of §4 taking the place of what Harish-Chandra has
called the Maass-Selberg relation. But this and a few other minor modifications do not affect
the essence of the proof.

In order to be as brief as possible, I shall tailor the exposition to the needs of a competent
analyst familiar with the first part of Lang’s book and the geometry of fundamental domains.
Moreover I shall use the Maass-Selberg relation as well as the inner product formula.

If

g =

(
α 0
0 α−1

)(
1 x
0 1

)
k, α = α(g) > 0,

with k in K and λ a complex number, set

F (g, λ) = αλ+1.

If P is the group of upper triangular matrices and the cusp is supposed to lie at infinity then
the Eisenstein series

E(g, λ) =
∑

Γ∩P\Γ

F (γg, λ)

converges for Reλ > 1. It is continuous as a function of g and λ and analytic as a function
of λ in this region. It needs to be analytically continued.

If N is the group of matrices in P with eigenvalues 1 then

(1)

∫
Γ∩N\N

E(ng, λ) dn

is easily evaluated. We take the measure of Γ∩N\N to be 1 and write Γ as a union of double
cosets

(Γ ∩N)γ(Γ ∩ P ).
The integral then becomes the sum over these double cosets of∫

(Γ∩N)∩γ−1(Γ∩P )γ\N
F (γng, λ) dn

If γ lies in the trivial double coset this integral is equal to F (g, λ). Otherwise it is∫
N

F (γng, λ) dn.
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Writing

γ =

(
1 x
0 1

)(
α 0
0 α−1

)(
0 1

−1 0

)(
1 y
0 1

)
, α > 0,

we see that this integral equals

αλ+1


∫
N

F

((
0 1

−1 0

)
n, λ

)
dn

F (g,−λ)
and conclude that the integral (1) is equal to

F (g, λ) +M(λ)F (g,−λ)
where M(λ) is analytic for Reλ > 1. The analytic continuation of E(g, λ) is bound up with
that of M(λ).

If ϕ is a smooth, compactly supported function on N\G/K we may write

ϕ(g) =
1

2π

∫
Reλ=λ0

Φ(λ)F (g, λ) |dλ|,

where Φ(λ) is an entire function. The function

ϕ̂(g) =
∑

Γ∩P\Γ

ϕ(γg)

is smooth and compactly supported on Γ\G and in particular lies in L2(Γ\G). It is given by

(2) ϕ̂(g) =
1

2π

∫
Reλ=λ0

Φ(γ)E(g, λ) |dλ|, λ0 > 1.

If we have chosen the Haar measures properly we may calculate the inner product

(ϕ̂, ψ̂) =

∫
Γ\G

ϕ̂(g)ψ̂(g) dg

as follows. Substitute the formula (2) for ϕ̂(g) and write out ψ̂(g) according to its definition.
We obtain

1

2π

∫
Reλ=λ0

Φ(λ)


∫
Γ\G

E(g, λ)
∑

γ∩P\Γ

ψ(γg) dg

 |dλ|.

The inner integral is equal to∫
Γ∩P\G

E(g, λ)ψ(g) dg =

∫ ∞

0

{
αλ+1 +M(λ)α−λ+1

}
α−2ψ

((
α 0
0 α−1

))
dα

α
.

By the Fourier inversion formula this integral is equal to

Ψ(−λ) +M(λ)Ψ(λ).

We see that the product is given by

(3)
1

2π

∫
Reλ=λ0

{
Φ(λ)Ψ(−λ) +M(λ)Φ(λ)Ψ(λ)

}
dλ.

We can already deduce a great deal from the fact that (3) defines an inner product which
is positive semi-definite. By approximation, we may extend the inner product to the space
of functions analytic and bounded in some strip |Reλ| < 1 + ϵ, ϵ > 0, and decreasing to
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0 at infinity faster than any polynomial. We denote it by
(
Φ(·),Ψ(·)

)
. We may form the

completion with respect to this inner product and obtain a Hilbert space H.
If f is bounded and analytic in some strip |Reλ| < 1 + ϵ, ϵ > 0, and

f(−λ) = f(λ),

then (
f(·)Φ(·),Ψ(·)

)
=
(
Φ(·), f ∗(·)Ψ(·)

)
Here

f ∗(λ) = f(−λ)
Suppose

sup
|Reλ|<1+ϵ

∣∣f(λ)∣∣ < k.

Then
g(λ) =

√
k2 − f ∗(λ)f(λ)

is analytic and bounded for |Reλ| < 1 + ϵ. Moreover

g(λ) = g(−λ)
and

g∗(λ) = g(λ).

Thus ((
k2 − f ∗(·)

)
Φ(·),Φ(·)

)
=
(
g(·)Φ(·), g(·)Φ(·)

)
.

We conclude that multiplication by f extends to a bounded linear operator on H with adjoint
given by multiplication by f ∗.

If µ > 1 we may in particular take

f(λ) =
1

µ− λ2
.

The associated operator is bounded and self-adjoint. Its range is clearly dense. We deduce
that multiplication by λ2 defines an unbounded self-adjoint operator A on H with

R(µ,A) =
1

µ− A

being the operator defined by the given f .
If Reµ > λ0 > 1 then(

R(µ2, A)Φ(·),Ψ(·)
)
=

1

2π

∫
Reλ=λ0

1

µ2 − λ2

{
Φ(λ)Ψ(−λ) +M(λ)Φ(λ)Ψ(λ)

}
|dλ|.

This integral may be evaluated by moving the lines of integration off to the right. We obtain
the sum of

(4)
1

2µ

{
Φ(µ)Ψ(−µ) +M(µ)Φ(µ)Ψ(µ)

}
and, if λ1 is very large,

1

2π

∫
Reλ=λ1

1

µ2 − λ2

{
Φ(λ)Ψ(−λ) +M(λ)Φ(λ)Ψ(λ)

}
|dλ|.
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The resolvent R(µ2, A) is certainly analytic in the domain Reµ > 0, µ /∈ (0, 1]. We infer that
the expression (4) is too. Taking

Φ(µ) = Ψ(µ) = eµ
2

we can deduce that M(µ) is analytic in the same region.
We next continue the function E(g, λ) into this region. Observe that if f is a continuous

function on G with compact support and invariant under multiplication by elements of K
from the left or the right then

r(f)F (g, λ) =

∫
G

F (gh, λ)f(h) dh

is equal to
αf (λ)F (g, λ).

Here α1(λ) is an entire function of λ and for any given λ we may choose f so that αf (λ) ̸= 0.
We conclude immediately from the definition of E(g, λ) that

r(f)E(g, λ) = αf (λ)E(g, λ), Reλ > 1.

If λ→ E(·, λ) can be analytically continued when regarded as a function with values in the
space of locally integrable functions on Γ\G this relation will persist and we may infer that
the continuation yields in fact a continuous function of g and λ.

We now introduce two auxiliary functions. If

g =

(
α 0
0 α−1

)(
1 x
0 1

)
k, α > 0,

let

F ′(g, λ) =

{
F (g, λ), α ⩽ 1,

0, α > 1,

and let

F ′′(g, λ) =

{
F (g, λ), α ⩽ 1,

−M(λ)F (g,−λ), α > 1.

If Reλ > 1, Reµ > 1 we may invoke an approximation argument and apply our inner
product formula to the pairs

ϕ(g) = F ′(g, λ), ψ(g) = F ′(g, µ),(i)

ϕ(g) = F ′′(g, λ), ψ(g) = F ′′(g, µ).(ii)

For the first pair the Fourier transform of ϕ is

Φ(z) =
1

λ− z
.

Thus if
E ′(g, λ) =

∑
Γ∩P\Γ

F ′(g, λ)

then (
E ′(·, λ), E ′(·, µ)

)
is equal to

1

2πi

∫
Re z=λ0

1

(λ− z)(µ+ z)
+

M(z)

(λ− z)(µ− z)
dz.
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We evaluate the integral by moving the vertical line of integration off to the right. The result
is

1

λ+ µ
+
M(λ)

µ− λ
+
M(µ)

λ− µ
= ω(λ, µ).

In general

(5)

(
∂n

∂λn
E ′(·, λ), ∂

n

∂µn
E ′(·, µ)

)
=

∂2n

∂λn ∂µnω(λ, µ).

Thus if λ1 is any point with Reλ1 > 1,
∞∑
n=0

1

n!
|λ− λ1|n

∥∥∥∥ ∂n∂λnE ′(·, λ)
∥∥∥∥

converges in the largest circle about λ1 which does not meet the real or imaginary axis. Since
the formula (5) persists in any region in Reλ > 0, Reµ > 0, λ, µ /∈ (0, 1] to which the
functions in it can be analytically continued we deduce by iteration that

λ→ E ′(·, λ)
may be analytically continued as a function with values in L2(Γ\G) to the region Reλ > 0,
λ /∈ (0, 1]. Since ∑

Γ∩P\Γ

(
F (γg, λ)− F ′(γg, λ)

)
is clearly an analytic function of λ, E(g, λ) can itself be continued to this region.

For the second pair the Fourier transform of ϕ is

Φ(z) =
1

λ− z
− M(λ)

λ+ z
.

The integrand occurring in the formula for(
E ′′(·, λ), E ′′(·, µ)

)
,

where
E ′′(g, λ) =

∑
Γ∩P\Γ

F ′′(g, λ),

will now be the sum of eight terms. They can each be easily evaluated by moving the line of
integration to the left or right. Carrying out the evaluation and summing one obtains

(6)
1

λ+ µ

{
1−M(λ)M(µ)

}
=

1

λ− µ

{
M(λ)−M(µ)

}
.

The formula just obtained remains valid for Reλ > 0, Reµ > 0, λ, µ /∈ (0, 1]. Since (6)
is positive when λ = µ we infer that M(λ) is bounded in the neighbourhood of any point
different from 0 on the imaginary axis. By this we mean that it is bounded in the intersection
of a small disc about that point with the region in which M(λ) has so far been defined. We
shall deduce that

∥∥E ′′(·, λ)
∥∥ is also bounded in such a neighbourhood.

Assuming this for the moment we return to (6) once agin and conclude that∣∣M(λ)
∣∣→ 1

as λ→ iτ , a point on the imaginary axis different from 0. Of course we are constrained to
approach it from the right-hand side. Since

M(λ) =M(λ)
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we also have
lim
σ↓0

M−1(σ − iτ)−M(σ + iτ) = 0.

We define

(7) M(λ) =M−1(−λ)
for Reλ < 0, λ ∈ [−1, 0) and infer from the reflection principle that M(λ) can then be
extended across the imaginary axis as well. It is defined and meromorphic outside the interval
[−1, 1] and satisfies the functional equation (7).

To complete the proof of the analytic continuation and the functional equation we need a
lemma. Suppose λ1, λ2, . . . is a sequence of points and λk → λ. Suppose in addition that for
each λk we are given a continuous function Ek(g) on Γ\G with the following properties.

(i) There is a constant a and constants ck > 0 such that∣∣Ek(g)
∣∣ ⩽ ckα(g)

a

for α(g) ⩾ ϵ > 0. Here ϵ is fixed.
(ii) Ek(g) is orthogonal to all rapidly decreasing cusp forms.
(iii) If f is a continuous, compactly supported function in G bi-invariant under K then

r(f)Ek(g) = αf (λk)Ek(g).

(iv) ∫
Γ∩N\N

Ek(ng) dn = AkF (g, λk) +BkF (g,−λk)

with Ak, Bk in C.

Then if the sequences {Ak}, {Bk} are bounded, the inequalities of (i) are valid with a
bounded sequence ck. Moreover, if the sequences {Ak}, {Bk} converge then the sequence{
Ek(g)

}
converges uniformly on compact sets.

In order to prove the lemma we have to look at

r(f)φ(g) =

∫
G

φ(h)f(g−1h) dh

more carefully. Let

φ2(g) =

∫
Γ∩N\N

φ(ng) dn

and define φ1(g) by
φ(g) = φ1(g) + φ2(g).

The expression for r(f)φ(g) breaks up then into the sum of two similar expressions, and
we want to consider the first ∫

G

φ1(h)f(g
−1h) dh.

We write it as ∫
Γ∩N\G

φ1(h)
∑

δ∈Γ∩N

f(g−1δh) dh.

The qualitative behaviour of the kernel

(8)
∑

δ∈Γ∩N

f(g−1δh)
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for

g =

(
1 x
0 1

)(
α 0
0 α−1

)
k, |x| ⩽ b, α > ϵ > 0,

is easy enough to discover. Let

h =

(
1 y
0 1

)(
β 0
0 β−1

)
k.

We assume, for it is simply a matter of the proper choice of coordinates in the space defining
SL(2,R), that

Γ ∩N =

{(
1 k
0 1

) ∣∣∣∣∣ k ∈ Z

}
.

We may take b = 1 and assume that |y| ⩽ b. It is clear that there is a δ > 0 such that each
term of the sum (8) is 0 unless

(9) δ ⩽
α

β
⩽

1

δ
.

However when this is so the sum becomes, at least if f is bi-invariant under K,∑
f

(α−1β 0
0 αβ−1

)(
1 β−2(k + y − x)
0 1

).
Replacing the sum by an integral, we see that (8) is equal to∫

N

f(g−1nh) dn+R(g, h)

where R(g, h) is 0 unless (9) is satisfied, and then it goes to zero faster than any power of α
is α → ∞.

The integral ∫
G

φ1(h)f(g
−1h) dh

is equal to ∫
Γ∩N\G

φ1(h)R(g, h) dh.

If ∣∣φ(h)∣∣ ⩽ cα(h)a

for β(h) ⩾ ϵ′ > 0, with ϵ′ sufficiently small, this integral is smaller in absolute value than

cd(r)α(g)a−r

for any real r. Here d(r) and ϵ′ depend on f , but there is an obvious uniformity.
We return to the proof of the lemma. Choose an f with αf(λ) ̸= 0. We may as well

suppose that αf (λk) ̸= 0 for all k. If

fk =
1

αf (λk)
f

then

(10) fkr(fk)Ek(g) = fEk(g).
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The inequality (i) implies a similar inequality∣∣Ek(g)
∣∣ ⩽ c′ckα(g)

a

for α(g) ⩾ ϵ′. Here c′ is a constant depending on Γ, ϵ, ϵ′, and a. Applying the discussion of
the previous paragraph to fk and φ(g) = Ek(g), we see that

(11) Ek(g) = AkF (g, λk) +BkF (g,−λk) +Rk(g)

with

(12)
∣∣Rk(g)

∣∣ ⩽ dckα(g)
a′ .

Here a′ is a real number with

(13) a′ < − inf|Reλk|, a′ < a,

and d depends on a′.
We choose ck to be as small as possible and yet still satisfy (i). If the sequence is not

bounded we pass to a subsequence and suppose ck ↑ ∞. Then for some g with α(g) ⩾ ϵ

(14)
∣∣Ek(g)

∣∣ ⩾ ck
2
α(g)a.

It follows from (11), (12), and (13) that there is an R such that for all k any g satisfying (14)
also satisfies

(15) α(g) ⩽ R.

From (10) and Ascoli’s lemma we can pass to a subsequence and suppose that
{

1
ck
Ek(g)

}
converges uniformly on compact sets to a function E(g). By (15) this function will not be
identically zero. On the other hand∫

Γ∩N\N
E(ng) dn ≡ 0

and E(g) is orthogonal to all rapidly decreasing cusp forms. This is a contradiction.
Once we know that the ck can be taken to be bounded, we can apply (10) and Ascoli’s

lemma to find convergent subsequences of
{
Ek(g)

}
. If two subsequences converged to different

limits then the difference of the limits would again be cusp forms and yet orthogonal to cusp
forms. This contradiction yields the second assertion of the lemma.

It also follows from the above proof that

Ek(g)− AkF (g, λk)−BkF (g,−λk)
is uniformly rapidly decreasing as α(g) → ∞ and in particular is uniformly square integrable.
If Ek(g) = E(g, λk) is an Eisenstein series then for α(g) sufficiently large this difference is
just E ′(g, λk). The boundedness of

∥∥E ′(·, λ)
∥∥ in a neighbourhood of a point on the imaginary

axis which we asserted above is therefore clear.
We define E(g, λ) in the domain Reλ < 0, λ /∈ [−1, 0) by

E(g, λ) =M(λ)E(g,−λ).
Then ∫

Γ∩N\N
E(ng, λ) = F (g, λ) +M(λ)F (g,−λ)

and the discussion above allows us to extend by the reflection principle across the imaginary
axis.
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It remains to treat the interval [−1, 1]. Here it is simplest to depart from the methods
of the text and to employ instead the Maass-Selberg relations. To verify these it is best to
regard a function on G\K as a function of

z = x+ iy

in the upper half-plane. Here
gi = z

and if

g =

(
1 x
0 1

)(
α 0
0 α−1

)
k

then
gi = x+ iα2.

If E(g) is a function on Γ\G let

F (g) =

∫
Γ∩N\N

E(ng) dn.

If
r(f)E = αf (λ)E

for compactly supported, bi-invariant f then

r(f)F = αf (λ)F

for all such f . Moreover if ∆ is the operator

y2

{
∂2

∂x2
+

∂2

∂y2

}
then

∆E =
λ2 − 1

4
E

and

∆F =
λ2 − 1

4
F

Thus if λ ̸= 0

F (g) = AF (g, λ) +BF (g,−λ) = Ay
λ+1
2 +By

−λ+1
2

while if λ = 0
F (g) = Ay1/2 +By1/2 ln y

The proof of the lemma shows that if E(g) does not grow too rapidly as α(g) → ∞ then

E(g) ∼ F (g).

Suppose we have two such function E and E ′ corresponding to the same λ. Remove from
the upper half-plane the region y > R, for a sufficiently large R, as well as the transforms
under Γ of all such points. Division by Γ then yields a manifold M which may be thought of
as a closed manifold with a cylindrical tube protruding from it. The boundary is a circle, the
image of y = R. If we integrate with respect to the invariant area,

0 =

∫
M

∆E · E ′ − E ·∆E ′.
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Integrating by parts we see easily that the right side is asymptotic as y → ∞ to

λ(AB′ −BA′) λ ̸= 0

BA′ − AB′ λ = 0.

These are the Maass-Selberg relations. We conclude in particular that if E and E ′ are both
orthogonal to cusp forms then they are proportional.

Now choose any point λ0 ̸= 0 in the interval [−1, 1]. Choose a nonsingular matrix(
a b
c d

)
so that if E0(g) is a function as above corresponding to λ0 and orthogonal to cusp forms then

(16) aA0 + bB0 = 0.

If E(g) corresponds to λ and is also orthogonal to cusp forms then for λ close to λ0

cA+ dB

must dominate
aA+ dB.

Otherwise we could choose a sequence λk → λ0 and a sequence Ek(g) with

cAk + dBk → 0, aAk + bBk → 1.

Our lemma would then show that Ek → E0, for some E0, contradicting (16).
To show that M(λ) is meromorphic near λ0 we have only to show that

a+ bM(λ)

c+ dM(λ)

is continuous. We have just observed that it is bounded. If it were not continuous at λ, or
rather, since it is only defined in a dense set, if it cannot be extended to be continuous, we
could choose two sequences {λ′k}, {λ′′k} both approaching λ but with

lim
a+ bM(λ′k)

c+ dM(λ′k)
̸= lim

a+ bM(λ′′k)

c+ dM(λ′′k)
.

The lemma would give two functions E ′(g) and E ′′(g) whose difference E(g) would have

F (g) = AF (g, λ) +BF (g,−λ)
with

aA+ bB ̸= 0

cA+ dB = 0

This is a contradiction.
To show that M(λ) is meromorphic at λ0 = 0 we use for λ near 0 the representation

F (g) = Aα(g) coshλα(g) +Bα(g)
sinhλα(g)

λ
and a simple variant of the basic lemma. Otherwise the argument is the same.



Compiled on February 14, 2025.
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