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O. Introduction.

(a) Let (/,ds2) be a Riemannian manifold of dimension n. A classical
problem in differential geometry is to study the existence and uniqueness of
isometric embeddings

X "M--)En+r (1)
of M in Euclidean space. In this paper we are primarily concerned with the local
uniqueness question (the sequel [5] deals with local existence). Thus, we work in a
neighborhood of a point p M, we assume given an isometric embedding (1)
with image x(M)= M, and we ask how unique this embedding is. In this paper
we shall prove one main general result, which we now state referring to the text
and to [3] for explanation of the undefined terms.

MAIN THEOREM. We consider local isometric embeddings (1) where the image is
a general* submanifoM M c E + r. Then

(i) If r =< (n- 1)(n- 2)/2 the embedding depends only on constants.
(if) If r (n 1)(n 2)/2 + s the embedding depends formally on functions of

at most s variables.
(iii) If the conditions

r=<n n>=8
or

!=<3 n=4
=<4 n=5,6
=<6 n=7,8

are satisfied, then the embedding (1) is unique up to rigid motion.

We remark that this result was announced in [2], to which we refer for a
general discussion of what was known classically concerning existence and
uniqueness of local isometric embeddings.
We shall also give a detailed study of local isometric embeddings

x"/Q3
_

E (2)
in the first nonclassical case, and concerning these we find the following

THEOREM. The local isometric embeddings x" 3 E5 depend on at most six

functions of one variable. Moreover, if the sectional curvatures of ds2 are negative,
this maximum deformability is achieved only for the four-parameter family of
metrics described as follows: Let L4 be Lorentz four space, let H3 C L4 be any
convex hyperquadric, and let hTl 3 c H3 be the open set ofpoints where the induced
metric ds is positive definite. Then the analytic local isometric embeddings
x" 3713 E depend on six functions of one variable.

*"General" means that the 2nd fundamental form of M atp should lie in a dense Zariski open set
(to be specified below) of all 2nd fundamental forms.
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Remarks. The assumption of negativity on the sectional curvatures of ds2 can
be weakened to a suitable nondegeneracy assumption on the Ricci curvature. In
this case, the class of metrics ds2 must be enlarged to include the hyperquadrics
in ::4 as well as the spacelike regions of (not necessarily convex) hyperquadrics
in I..4
Of course, one does not expect the "generic" ds2 to be locally embeddable into

E5. In this regard, one of our motivations for studying this over-determined
problem was Cartan’s remark in [6] that the generic 3 c !=5 is rigid. Our own
calculations certainly make this seem plausible, but we were not able to prove
this rigidity statement.

Finally, as is well known, the essential ingredient of isometric embeddings (1)
is the Gauss equations, and in 5 we study these in detail using the theory of
group representations. In particular, we find that even though a general M4 c ::6

is rigid, in contrast to previous local rigidity theorems this cannot be accounted
for by the Gauss equations alone.
Our study is based on E. Cartan’s theory of exterior differential systems, and

in particular on their characteristic varieties. A general discussion of characteris-
tic varieties of exterior differential systems is given in [4], and we have followed
the notations and terminology from there (which also agrees with that in [3]).

In addition to the references cited below, there is a further bibliography in [2]
giving sources for related work.

In the remainder of this introduction we shall discuss in more detail the
contents of each of the sections of this paper.

(b) Sections and 2 are preparation for the main part of the paper.
In 1 we review the structure equations of an abstract Riemannian manifold

(ffl, ds2) and of a submanifold M c EN in Euclidean space. In both cases we use
the method ,of moving frames. At first glance this has the disadvantage of
introducing a lot of extra variables; however, this is more than compensated for
by keeping all of our computations intrinsic, thereby isolating the essential
points.

Since the authors were unable to agree on whether or not to use indices, for
important equations we have done both. In fact, each point of view has
computational advantages.
The main ingredient of an isometric embedding

consists of the Gauss equations (cf. (1.37))

y(H,H)=R (3)

expressing the curvature R as a quadratic polynomial in the 2nd fundamental
form H. In l(b) we derive these equations together with their 1st prolongation,
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the Codazzi equations

2,(H, VH) VR, (4)

and in so doing lay the groundwork for discussing the isometric embedding
system.

In 2(a) we set up the basic exterior differential system with independence
condition (I, X) that governs the local isometric embeddings (1). In doing this we
modify Cartan’s approach in several respects. First, we begin by setting up the
naive system (Io, X), which is the first thing one would think of doing in the
problem. We then show that (I0, X) fails to be involutive, and therefore must be
prolonged and the torsion equated to zero in order to obtain (I,x). More
importantly, we retain the spinning in both the tangent and normal variables as
independent variables (i.e., we make no choice of frame), and this makes the
prolongation theory of the isometric embedding go much more smoothly. The
final system (I, X) has the Gauss equations as its symbol and the Codazzi equations
as its torsion.
To illustrate the isometric embedding system as set up in this paper, in 2(b)

we give yet another proof of the classical theorem of Burstin-Cartan-Janet-
Schaefly (BCJS-theorem). It seems to us that the present argument has the
advantage of showing clearly that the proof consists of two parts" (i) the standard
theory of differential systems (specifically, Cartan’s test for involution); and (ii) a
certain algebraic property of the Gauss equations that is forced by simply trying
to verify Cartan’s test.

(c) In section 3 we prove the Main Theorem stated above.
In outline the proof of parts (i) and (ii) is quite simple: According to the

general theory of exterior differential systems, perhaps the fundamental invariant
of such a system is furnished by the (complex) characteristic variety; accordingly,
(i) and (ii) are simply consequences of general results about characteristic
varieties applied to the isometric embedding system.

In more detail, if (I, X) on X is the isometric embedding system as set up in 2,
then there is a vector bundle V- X (whose fibres may be thought of as the
tangent spaces Tx(M)) and the complex characteristic variety is constructed from
the symbol of (I, X) and is given by a family of projective algebraic varieties

CX

For an isometric embedding

X M ---) F_n+r

whose image is a "general" submanifold MnC En+r, we will prove that (cf.
Theorem A below)

dimZc, max(-1,r- (n l)(n 2)/2),
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where, by convention, dim O 1. When coupled with a general result from [4]
concerning characteristic varieties, this gives (i) and (ii) in the Main Theorem.
We remark that the usual real characteristic variety has the following

geometric meaning: A point (x,0 P V* (thus x M and j PT*(M)) is in E
if, and only if, there is a normal vector X N (M) such that the linear projection

into the E"+

M--> Mx C E"+

spanned by Tx(M) and X has the property that

IIxl,- -0 (6)

where IIx is the 2nd fundamental form of Mx at x and +/- is the hyperplane
defined by . Thus the linear section Mx N j _c is flat at x. Such are classically
called the asymptotic hyperplanes of the embedded submanifold. It is :,nteresting
to note that if we consider M as embedded in real projective space
RP"+"=E"+"U {hyperplane at infinity), then is invariant under the
projective transformations of RPn+r. Perhaps because of this, we shall find in [5]
that has an extraordinarily rich algebro-geometric structure.
The proof of the dimension statement (5) involves studying the Gauss

equations of M" c En+r. It is well known that these equations, which are of a
rather complicated quadratic nature, constitute the main feature of isometric
embeddings, expressing as they do the link between the basic extrinsic invariant
(the 2nd fundamental form) and the basic intrinsic invariant (the Riemann
curvature tensor). The proof of (5) is made quite easy by the (to us miraculous)
fact that when localized in the sense of algebra the Gauss equations become
quite simple and are readily analyzed. This will be pursued further in [5] when we
shall determine the degree, real dimension, and singularity structure of --culminating in a rather precise microlocal normal form for the isometric
embedding system.
We would like to further comment on the proof of (5), as the method of

localizing and applying results from commutative algebra may have further
applications to problems in differential geometry in which derivatives of higher
order (i.e., prolongations) are involved.

In 3(a) we give the basic localization of the Gauss equations. Very roughly
speaking, in each complexified and projectivized cotangent space P(T*)M((R)C)

p,-1 we interpret the symbol of the isometric embedding system as giving a

mapping of coherent sheaves

over pn-I where *,/* both correspond to trivial vector bundles. (The
quotient sheaf /= /*(2)/,*(f*) is the characteristic sheaf--cf. [4].) When
localized at the point dx dx- O, dx v 0 the Gauss equations turn
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out to involve only the components R,no,, Ronon of the curvature tensor, and
therefore are expressed by simple equations involving one symmetric matrix. The
dimension result (5) is a straightforward consequence of this fortuitous
occurrence.

In 3(b) we prove that, when r _< (n- 1)(n- 2)/2, the induced metric of a
general Mnc V"n+r uniquely determines its 2nd fundamental form up to a
general linear automorphism of the normal space. When, additionally, the
conditions of (iii) in the Main Theorem are satisfied, the 2nd fundamental form
is uniquely determined up to an orthogonal transformation, and our result
follows easily from this.
We remark that our proof, which is a nonlinear commutative algebra

argument, shows that the 2nd fundamental form is in fact determined by the
sequence (R, VR,..., VqR) of covariant derivatives of the curvature for some
(generally large) integer q0. The example of a general MaC 16 shows that it is
not determined .by R alone.

(d) In 4 we take up a set of examples of nongeneric behavior of the Gauss
equations. These examples are based on Cartan’s notion of exterior orthogonality
of quadratic forms. A quadratic form H on a vector space V with values in an
Euclidean vector space W is said to be exteriorly orthogonal if

"t(H,H) =0. (7)

It turns out that the characteristic variety for an exteriorly orthogonal H is
much larger than the characteristic variety for a general H, at least in the case
where dim W_< dim V. We then give two examples to show how this pointwise
phenomenon relates to geometric phenomena.
Our first example is classical, concerning the nondegenerate flat M c E2n. We

show that the characteristic variety consists of the set of (.) lines in P- through
pairs of n points in general position. We then give a proof of Cartan’s result that
the analytic flat M c ::2n depend on (.) functions of 2 variables. (n _> 2).
Our second example starts with Cartan’s observation about the problem of

finding an isometric embedding of a hyperbolic space form H" into E"+ r. There
are no local solutions unless r _> n 1. We then introduce a more general class of
metrics, the quasi-hyperbolic metrics on M qharacterized.by the condition that
there should exist a nondegenerate quadratic form Q on Mn satisfying

g -7(Q, Q). (8)

(For the space form of sectional curvature -1, we may take Q ds2). Cartan’s
theorem for the space form immediately generalizes to quasi-hyperbolic metrics.
It is important to remark that, when n 3, quasi-hyperbolicity is an open
condition on the metric ds2.

In the case where dim W dim V- (the smallest value of dim W possible)
we calculate the characteristic variety of an H satisfying (H,H)= -’( Q, Q)
and show that it consists of n(n- 1) (real) points. By the general theory of
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differential systems, it follows that the analytic isometric embeddings of an
analytic quasi-hyperbolic metric x" 3"-E2n-l depend on at most n(n- l)
functions of one variable.

In [7], Cartan shows that, for the hyperbolic space form H, this maximum
deformability is actually attained. We then go on to characterize the
quasi-hyperbolic metrics satisfying the conditions that Q be positive definite and
that the maximum deformability be attained. These metrics turn out to have the
simple characterization of being the metrics induced on convex space-like
hyperquadrics in Lorentz (n + 1)-space.

(e) In 5 we study the Gauss equations (3) using representation theory. Let W
be a vector space with inner product, V a vector space (no inner product), and
interpret the Gauss equations as a quadratic map

"y W (R) Sym2V* ---) K (9)

where K c Sym2(A2V*) is the space of curvature-like-tensors. The main
observations are that 3’ is GL(V*) equivariant, and that there is a GL(V*)-
commutative factorization

W(R)Sym2V*
7
)K

Sym2(Sym2V*) K Sym4V*

where for w W and p Sym2V*

.(w (R) (w,

is the obvious quadratic mapping (Veronese mapping), and where is the
obvious projection. This allows us to analyze the Gauss equations using the map, and from this prove Theorem H plus the following curious fact: Consider a
general submanifold

M4 C ::6. (10)

According to our Main Theorem this submanifold is rigid.
We recall that in classical rigidity theorems it is always shown that the

equation "(H,H)--- R has a unique solution H up to the group O(W) normal
rotations. Now the Gauss equations for (10) correspond to (9) when dim W 2,
dim V 4, and dimK 20. Then dim(W (R) S2V*) 20, and initially we thought
that the general fibres of (9) were 1-dimensional corresponding to the invariance
of 3’ under O(W). However, it turns out that for general H

dim),-I(/(H,H)) 2,
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so that rigidity in this case is not accounted for by uniquely (up to O(W)) solving
the Gauss equations. This is one of the first examples to show the prolonged
Gauss equations must also be considered in the study of submanifolds of low
codimension.

1. Basic structure equations.

(a) Structure equations of Riemannian manifolds. In our work, it will be
desirable to have a notation that distinguishes between an abstract Riemannian
manifold and one embedded in Euclidean space. Accordingly, we denote by
(37t, ds2) an abstract Riemannian manifold A with metric ds2. In this section we
shall review the structure equations of (At, ds) (cf. [16]).

(i) We first do this using indices. By a frame (p; g gn) we mean a point
p At together with an orthonormal basis Yi f.or Tp(M). The totality of all
frames forms a manifold --(/Q) fibered over M with fibre isomorphic to the
orthogonal group O(n). If we denote this fibering by

’ -(M ) --> M

7- (p) (all frames lying overp),

then it is well known that there are defined on -(M) unique linear differential
forms i, @.i that satisfy the equations

(1.1)

Note. Recall that in any fibering

w’X--> Y

of manifolds the vertical tangent space

V ker( r," Tx(X ) --> T(x)( Y)}
and horizontal cotangent space

Hx* image{r*" * *(X +/-T(x)(Y)--> Tx )} V

are well defined. At x =(p;gt, gn) -(M.) the i give a basis for
H* T;(M) dual to the basis g,..., gn for Tp(M).
The uniqueness of the ./ satisfying the second and third conditions results

from the following well-known
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(1.2) Standard argument. If ji is the difference of two solutions to the second
and third equations in (1.1), then

,,:--0

q+,/=0.
By the Caftan lemma the first of these equations gives

The second equation then gives

c c c, g. c c G,

The proof that ] satisfying the above pair of equations must be zero is the
"standard argument". It will be used several times during this paper; it is for this
reason that we have put it in a form that is easily referred to.
The matrix I1’11 may be interpreted as defining the Levi-Civita connection

associated to the ds. By the Caftan structure equation the curvature I1.11 is given
by

It satisfies the properties

(1.3)

(i.e., . is horizontal)

Using the first of these we may define the components of the Riemann curvature
tensor R ( Rijkt) by

~kfi} 1/2 RijklO) A (1.4)

The second property above together with (1.4) gives the symmetries

Rjkt Rjikt Rijtk

Exterior differentiation of (1.1) and (1.3) gives the first and second Bianchi
identities

~i jfajA =0

.g- +/)= o.
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To put these in more familiar form we consider any tensor T ( Ti,.. "iq and set

where I is any index set containing q- 3 elements. If we denote by (Rijt,m) the
components of the covariant derivative of R, then (1.5) becomes

R/jg,.j 0

Rijkt, O. (1.6)

(ii) In index-free notation we let V be a fixed Euclidean vector space with
inner product ( ), and we define a frame to be an isometry

Once we have chosen an orthonormal basis for V this is the same as our previous
definition. There are now the following unique forms on -(M)

i V-valued 1-form
V (R) V*-valued 1-form
V (R) V*-valued 2-form

satisfying the following index-free versions of (1.1) and (1.3).

dr3= (1.7)

The Bianchi identities (1.5) are

a o
n=o

where

is the covariant differential of f.
We would like to remark further on the symmetries of the curvature tensor and

its covariant derivative. As previously noted, from the third equation in (1.7) it
follows that

fi + tO 0. (1.9)

Using the isomorphism ("lowering indices")

V > V*
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given by the metric, we let * be the V* (R) V*-valued 2-form corresponding to .
By (1.9) it follows that * has values in A2V* c V* (R) V*. If we define A to
be the unique A2V-valued 2-form satisfying

( A /)(a A ) () A /()

for all ,/ V*, then it follows from the horizontality of f that

* 1/2R A

where the curvature tensor R is a A2V* )A2V*-valued function on --(h).
Definition. We define the space of curvature-like tensors

K C A2V* (R) A2V*

to be the kernel of the natural GL(V*)-equivariant mapping

A2V* ) A2V* > V* @ A3V*

given by

Choosing an orthonormal basis for V, K is the space of tensors T { T/jkZ )
satisfying

Tijkl O.

It follows that the Riemann curvature tensor

(1.I0)

RK.

For later use we remark that the Bianchi identity T0.kt 0 implies that

K c Sym2(AV*) c A:V* (R) A2V*. (1.11)

Moreover, since is clearly surjective we easily compute that (cf. 5(g) below)

n2(n2- 1)
dimK

12 (1.12)

Remark. When n- 3 the inclusion (1.11) is equivalent to the first Bianchi
identity in (1.8). Put differently, the only time that the equation for
T A2V* (R) A2V*

Tij.kl 0
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actually involves a sum of three nonzero terms is when all indices i, j,k,l are
distinct, and this is only possible when n _> 4.

Next, we define the covariant differential DR to be the unique K-valued
1-form that satisfies

OR(Vl,V2,V3,194) d(R(191,v2,v3,v4)) R(l//(191),192,v3,v4)

R(191 ,(v2),v3,v4) R(v 192 ,(193), v4)

R(Vl, v2, v3,1 (v4)) (1.13)

for all v, v2, v3, v4 V. Then the second Bianchi identity asserts that there exists
a unique K (R) V*-valued function VR satisfying

OR VR (1.14)
together with a symmetry that we now explain.

Definition. We define

K() c K (R) V*

to be the kernel of the natural map

K (R) V* C A2V* (R) AZv* (R) V* --) Ag-V* (R) A3V*.

Then VR defined by (1.14) takes values in K().
Using indices, K(1) is given by tensors { Tvktm ) A:V* (R) AV* (R) V* satisfying

{ Tij,klm O

0.

We will discuss the higher derivatives 7kR where needed below.
For easy reference we collect the various structure equations on the frame

bundle -(M) as follows"

(1.15)

(b) Structure equations of submanifolds of Euclidean space.
(i) By IUv we mean the coordinate space {x’x (x,..., xN)} having the
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usual flat metric

N

ds2"-" X (dxa)2"
a=l

Let U be an N-dimensional Euclidean vector space (i.e., we fix an origin). By a

frame for IUv we mean an isometry

F: UEu.
The image

F(O)=x(F)

will be called the position vector of the frame. Using the isomorphism

F, T(o)(U ) )Tx(F_.u),

for each frame we make the identification

U= Tx (EN). (1.16)

The manifold of all frames will be denoted by -, and

x :-- --)Ev (1.17)

will denote the position vector map.
If we choose an orthonormal basis ul,..., us for U and set

x F(O)
e, F,(u,,),

then the frame F may be written as

F=(X;el,... eu). (1.18)

Equivalently, identifying Tx(Eu) with Eu there is a unique linear map (taking
the origin to the origin)

e(F) U-- EN

given by

e(F)(u)-- F,(u), u U.

Then

F(u) x(F)+ e(F)(u) (1.19)
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for all u U. We abbreviate (1.19) as

F x + e, (1.20)

and view e as an Eu (R) U*-valued function on -.
With this notation, on the frame manifold - there are defined both a unique

U-valued 1-form 1 and a unique U (R) U*-valued 1-form that satisfy the
structure equations of a moving frame

de=e.
(/) -- t O.

With F given in coordinates by (1.18), equations (1.21) are (using the index range
<_a,b<_N)

deo=
+ 0.

It is well known that, upon choice of a reference frame, we may identify -with the group of Euclidean motions of Ev (this is clear from (1.20)), and when
this is done the components of r/and are the Maurer-Cartan forms on -. The
exterior derivatives of (1.21) give the Maurer-Cartan equations

d - A / (1.23)

We note that the use of vector-valued forms eliminates ambiguities concerning
transformation rules. This will be even more true in the following discussion.
We suppose given an orthogonal direct sum decomposition (the motivation for

this will appear shortly when we discuss submanifolds of l=n+ r)

and write accordingly

U V W, (1.24)

e(F)=e’+e"

e"where e’, are respectively u (R) V* Eu (R) W*-valued functions on U. In terms
of coordinates we set

N=n+r
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and use the range of indices

<_a,b,c<_N
l<_i,j,k<_n

n+ <_ l,v<_n+ r.

If we choose orthonormal bases t)l,... I) for V and Wn+ Wn+
then by (1.18)

e’ (e ,e.)

for W,

e" (en+, ev).

With this notation there are uniquely defined on - the following: a

V-valued 1-form to

W-valued 1-form 0
V (R) V*-valued 1-form
W (R) V*-valued 1-form A
W (R) W*-valued 1-form

such that the structure equations (1.21) are

In terms of indices, (1.26) is

dx e’to + e O
de’ e’ + e"A
de" e’t/ + e" x.

(1.26)

dx eito + etOt
de ej// + et,Ai

[de ei,,r + epx;
To collect our notation, we write , , and the Maurer-Cartan equations (1.23)

out in matrix blocks as follows"

dO= -A A to- x A O

d + /x

dA + A A C/ + x A A O

dr. + r. A x= A A tA.

(1.27)
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(ii) We now assume given a smooth submanifold

M c E’+"

(we will always use r for our codimension).

Definition. The manifold of Darboux frames (or adapted frames)

c

is given by all frames (1.18) that satisfy

el, e Tx(M).

If we use our index range (1.25) and define the normal spaces to M by

Nx(M ) Tx(M) -L,

then a Darboux frame is given by (x; ei; e#) where x M, the e are a tangent
frame at x, and the e, are a normal frame at x.

Equivalently, a Darboux frame is an isometry (cf. (1.24))

satisfying

F" V W--)En+r

F(O)--xM
F,(V) Tx(M )
F,(W)=Nx(M).

Using the notation (1.26) the position vector mapping

x "-(M)---YEn+r

has differential

dx Tx(M).

This is equivalent to

0 [-(M
We agree to omit the restriction signs (it being understood that we are working
on -(M)), and write this equation as

o o.

By (1.27) this implies that

0 dO ,4 A o. (1.29)
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By the Cartan lemma, (1.29) gives

where H is a W (R) S2V*-valued function defined on -(M).
In terms of indices, (1.28)-(1.30) are respectively

0 =0

Af H +, H I-Ij

(1.30)

(1.31)

Definition. The W(R)S2V*-valued function H on --(M) is the 2nd
fundamental form of M ::n + r.

It is clear that H may be thought of as a section of N(M)(R) S2T*(M) over M,
and for this reason we sometimes write

H e Hom(SgT(M),N(M)).
Given x M we may choose linear coordinates (v,..., vn;w"+,

W n+’) centered at x and with

T(M) span(i}/i}v,..., i}/3v" }.
Then M is given parametrically by

w Hiv iv J + (higher order terms in v i)
where H ----IIH/II is the 2nd fundamental form of M at x. It is well known that
H is the basic extrinsic invariant of M in ::"+.
Again by (1.27), we have on -(M)

d0 b A oa. (1.32)

This equation has the following meaning: given M C E+r there is an obvious
abstract Riemannian manifold (/Q, ds2) together with an isometric embedding

x hTI-E
with x(M)= M. There is also the obvious map

-(M)
r
)-(M)

given by the tangential part of the Darboux frame (thus the fibres of
correspond to spinnin the normal frame). Since x is an isometry, it is clear that

r*o3 w (1.33)
att, 1,3/the "standard argument" (1.2), from the 2nd equation in (1.7) and (1.33)
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we have

r*q q. (1.34)

Using the 4th equation in (1.7), (1.27), and (1.34) we deduce that

,(fi) =’,/ ,. (.35)

This is the main equation in the whole theory. Before putting it in more familiar
form, we write (1.32)-(1.35) in terms of indices and omitting all pullback and
restriction maps as

Definition. We denote by

.(w (R) sv*) (w (R) sv*)- I

the unique symmetric bilinear map that satisfies

T(H, G )(191,192,193’ 194) "" H(v,, 193)" 6(192,194) q" H(v2,194)" G(191,193)

n(v,, 194)" 6(192,193) n(v2, v3) G(vl, v4))

(1.36)
for all vl, v2, v3, v4 V.

It is immediate that 7(H, G) lies in K, the space of curvature-like tensors
defined above (cf. (1.15)).

Definition. With the notation (1.36), (1.35) is equivalent to the Gauss
equations, which by definition are the equations

(H,H) R. (1.37)

These provide the fundamental link between the intrinsic and extrinsic geometry
of M c izn+,; they are ubiquitous in this work.

In terms of indices, (1.36) and (1.37) are

T (H, G )jkt Z -’’’" -HIGjk HjGi ) (1.38)l_IjlGik I

Rijkt E( ’-Hikt-Ijt HffHfk ) (1.39)
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We collect equations (1.28)-(1.30) and (1.32)-(1.35) as

0=0
AAw=O
A= Hw
dw+qAw=O
-w=O
,/,-q o
*-’A=o

(1.40)

where it is understood that all these equations are taking place on --(M).
For later use we extend the map (1.36) to a bilinear map

"y W @ S2V* )< W ( sq+2v* --> K (R) sqv*

defined for H W (R) SV* and G W (R) sq+2v* by the condition

(1.41)

"y(H,G)(wI,W2,W3,W4,D Vq) 1/2 (n(w1,w3) a(w2,w4,1)l,

-].-n(w2,w4). a(wi,w3,vl, Vq)

n(w1, w4) a(w2 w3 ,1)l,

n(w2, w3)" a(w w4, t /)q))

(1.42)

where the w’s and v’s are arbitrary elements of V (recall that K C ()4 V*). In
terms of indices, we view elements in W (R)skv* as W-valued polynomials of
degree k in the variables x 1,..., x and similarly for K (R) StV*, and then

"y (H, G )ijklm, mqx
m’ x mq

{ Ix Ix Xml...xmq+ IX ix ...xmqnik Gflm mq mqx2

Ix IX X x mq HjG IXH;,Gjkm,... mq im,...,,,,X xmq }. (1.43)

It is immediate that

(1.44)

It is this relation that links the various prolongations of the isometric embedding
system.
By analogy with DR and VR we now define DH and VH. Thus DH is the
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unique W (R) S2V*-valued 1-form on --(M) that satisfies

DH(w*; v, v2) d(H(w*; v, v9_)) + H(x(w*); v v:)

H(w*; 1(191) 192) H(w*; 191, (192)) (1.45)

for every w* W* and v, v2 V (and where x, + are as in (1.27)). Using (1.13),
exterior differentiation of the Gauss equations (1.37) gives the Codazzi equations

2v(H, DH) DR. (1.46)

Using

A= H0

and (1.27) (where we write the next to last equation there as DA -0), we obtain
by exterior differentiation that

O= DH/Xw.

By the Cartan lemma this implies that

DH= VH.o

where

VH Hije x ix Jx

is a W (R) S3V*-valued function on --(M) (it is the symmetry of 7H in its lower
indices that is important). Using this equation together with (1.14) we may write
(1.45) as

27(H, 7H) 7R. (1.47)

At this point, we insert a few remarks about the relations among the higher
co-variant derivatives of the tensors R and H. These relationships will become a
key point in our study of the overdetermined isometric imbedding problem.

Just as we can construct new vector spaces from W and V by taking tensor
products, duals and invariant subspa,ces, the associated bundle construction
shows that for each such vector space P we can construct a corresponding vector
bundle P over M (using --(M) as the principal O(W)(R)(V)-bundle). The
connection on -(M) naturally induces a connection 7e: Coo(P)Coo(P (R)

T*). This family of connections commutes with all bundle maps P Q induced
from corresponding invariant vector space maps / . For this reason, we
often omit the subscript on V.

For eachA section of Coo(P), we have an O(W) O(V)-equ,ivariant function-(M) P. Conversely, given an O(W) O(V)-equivariant P-valued function
on -(M), we may construct a section of C(P). For this reason, we need not
make a distinction between the two concepts.
The relation with covariant differentiation is given as follows: If o Coo(P)
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and " --(M)-->/ is the corresponding function, we have

dO (q x). + Vo. (1.48)

The notation x.p 19 for x so(V) so(W) and p fi denotes the natural
Lie algebra action induced by the representation of O(V) O(W) on P. When
there is no danger of confusion, we omit the circumflexes.

Iteration of V then gives rise to a series of differential operators Tq on -(m)
taking equivariant functions -(M) P to equivariant functions --(M) --> P (R)

)q V*. There is also a symmetrized operator V(q) with values in /; (R)SqV*
obtained by using the canonical projections (q V* sqv*. Clearly, both 7q

and 7(q) are linear over the constants.
In particular, the’ Gauss equations yield a K-valued equivariant function

o R- 7(H,H) which is identically zero, hence we have

v(q)(R 7(H,H)) 0. (1.49)

Applying the Leibnitz rule, we see that

V(q)R 2 3" (H, 7(q)H) + ( terms involving 7()H with x < q ).

At this point, it is important to remark on the ranges of these operators. For
example, we have already seen that v(l)H VH takes values in W (R) S3V*, a
proper subspace of (W (R) S2V*)(R) V*. It follows that v(q)H takes values in
(W (R) S3V*) (R) sq-2v* fq (W (R) S2V*) (R) sq(v*), i.e., that v(q)H takes values in
W (R) sq+2(V*).

In addition, VR takes values in the proper subspace K(l) of K (R) V*; hence
(q)R takes values in the subspace

K(q) (K (R) sqv*) A (K(1) () sq-Iv*).

In {}5, it will be shown that K(q) may also be characterized as the image of the
map 3’ defined in (1.41). Equation (1.50) will turn out to be a key point in our
theory.

2. The isometric embedding system.

(a) Setting up the system. In this section we shall use terminology from the
theory of exterior differential systems, and for this we have followed the
notations and definitions used in [3] and [4].

(i) Let (ft, ds) be an abstract Riemannian manifold. We want to set up a
differential system with independence condition whose admissible integral
manifolds are in one-to-one correspondence with the (local) isometric embed-
dings

x M---> [:n+r. (2.1)
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In simplest terms, the PDE system for isometric embeddings is just

(dx, dx) ds2 (2.2)

where the left hand side is the symmetric inner product of the differential of the
map (2.1). This is indeed a 1st order PDE whose solutions correspond to
isometric embeddings (2.1), and we could take as exterior differential system that
given by considering (2.2) as such a system. However, we are certainly going to
have to differentiate (2.2) since neither the curvature nor 2nd fundamental form
appear explicitly in the equation. This will in turn necessitate introducing either
local coordinates or an arbitrary choice of frame field. For our purposes it is
more convenient to keep things entirely intrinsic by working on appropriate
frame bundles.

(ii) Working backwards we first let

M" C E"+

be a submanifold and consider it as the image of an isometric embedding (2.1).

Definition. We define

c x

to be the set of pairs of frames

satisfying the conditions

where

( (_p; i); (X; e et) }

x(e) x
(2.3)

ei.

We thus have a commutative diagram of maps

M )M C E"+

r ((p; i), (x; e eta)) (/7; i)
qr2((_p; ), (x; e ;e.) ) (x; e

"(X; ei;et) (p, ei) where x(p)= x and x,()=ei.

For /a differential form on -(M), we shall denote again by /the form

(2.4)
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and similarly for forms on --. We thus have

0i-- "-0
0=0 (2.6)

j<k

Without indices we abbreviate (2.6) as

o-=0

0 0 (2.7)
x=wAA x=#0.

We may consider (2.7) as a differential system with independence condition
(I0, X) on the manifold

X0 -(M) -, (2.8)
and it is es.sentially clear that its admissible integral manifolds are locally of the
form -(M,x) for an isometric embedding (2.50); this will be made precise
below following our discussion of Cauchy characteristics (of. (2.26)).

Using (1.7) and (1.27) the exterior derivatives of the equations (2.7) are

d(- ) -(- )/ ,
dO=_AA

mod(to o3,0
(2.9)

mod(o ,0

and the symbol relations are

(q- q) + ’(+- q) 0. (2.10)

Using these equations we shall show that (I0, X) fails to be involutive (this reflects
the fact that neither the curvature nor 2nd fundamental form has yet appeared).
For this we remark that even though the independence conditions contain
N n + n(n- 1)/2 + r(r- 1)/2 linear differential forms, only the forms
0 , o" are relevant in checking for involution. This is clear from (2.9) and
the reason for it will be explained below.

In the following, then, we shall simply test for involutivity of a differential
system with structure equation (2.9), (2.10) and independence condition 0 4: 0.
Setting o (q q) the matrix used in Cartan’s test for involution is
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Since the symbol relations (2.10) are just oj + o/= 0 we have for the Cartan
characters

s]= n- + r

s’2=n-2+r.

Thus

s] + 2a + + ns’ (n + 3r- 1)n(n + 1)/6. (2.11)

On the other hand, admissible integral elements are given by linear equations

(2.12)

where

Cj, C, H/ Hj’, and by (2.10) Cj + C 0.

It follows from the standard reasoning (1.2) that

Cj =0 (2.13)

while H (Hie (R) toitoj) is an arbitrary element of W S2V*. Hence the space
of admissible integral elements lying over any point has dimension rn(n + 1)/2,
and by (2.11) the systems fails to be involutive when n => 2.

(iii) According to the general theory we must prolong (I0, X) to obtain a new
Pfaffian system (I0(l), X) on the manifold X0(1) of admissible integral elements of
(I0, X). According to (2.8) and (2.12), (2.13) we see that

/0(1) "(/r) X - X (W () S2V*).

The Pfaffian system (I0(l), X) is generated by the Pfaffian equations

o- 5 =0
0=0

-=o
A- Hto=O

(2.14)

with the same independence condition X to A q A x 4: 0. Using (1.15) and
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(1.27) the exterior derivatives of (2.14) are

(2.15)

where all congruences are modulo the exterior ideal generated by (w- , 0, p
k,A- Hw}. We remark that in the 3rd equation we are using A Hw and the
notation (1.36) (cf. also (1.38)), and in the last equation we are using the notation
(1.45). The 1-form DH is defined on Xo ) -(371) - (W (R) S-V*) and has
values in W (R) S:V* (i.e., (DH) (DH)); aside from this symmetry there are
no other symbol relations in (2.15). Using this observation it is easy to verify that
(2.14) is a Pfaffian system in dual good form whose tableau is always involutive.

However, the system (Io), X) itself is not involutive because, due to the 3rd
equation, the torsion is nonzero. Annihilating the torsion exactly forces the
Gauss-equations (1.37) to hold, and it is at this point that the geometry at last
appears.
Namely, on X0) we consider the locus

7(H,H) R (2.16)

(recall that both sides are K-valued functions on X0 )), and assuming that the C
equations (2.16) contain solutions that are smooth as a submanifold of X0) we
give the

Definitions. (i) We let X c X0) be any locally closed submanifold that is an
open subset of the solutions to (2.16) and on which the independence condition

X w A q A x v 0 is valid;
(ii) The isometric embedding system (I, X) is the restriction to X of the system

(Io(), X).

By (2.14) and (2.15) the isometric embedding system may be written as

w-=O
/9=0

q- q o
A- Hw=O

d(o ) =_ 0

dO O
a( ) o

d(, H,,,) =_ r /

mod{w ,0,p p,A Hw)

(2.17)
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where the relations (2.16) hold and where r DHJx is a W (R) S2V*-valued
1-form. The symbol relations of (2.17) are obtained by exterior differentiation of
(2.16), and by (1.46), (1.47) they are

23,(H,r) VRa mod{w- 3, O, ,A H). (2.18)

In summary:

The isometric embedding system (I, w) is defined on a smooth open subset of the
solutions to the Gauss equations (2.16), and its symbol is given by the Codazzi
equations (2.18).

Since (2.17) is our main object of interest it may be useful to write it out in
indices. Setting I (w- tS, 0, +, A Hw) this is

mod I (2.19)
modI, rr/ rg/
mod I,

where the last equation constitutes the symbol relations (2.18) (cf. (1.43) for the
definition of the left hand side).

(iv) We shall now give some properties of the isometric embedding system.
The terminology we use is taken from [3].

(I, X) is a Pfaffian system in dual goodform. (2.20)

In fact, this is true of the 1st prolongation of any differential system. In our case,
however, more is true. Namely, if using (2.19) we make the correspondence in
notation

~i

(2.21)

then (I, X) is a Pfaffian system of the special form given in {}4 of [4] (this means
that it formally looks like the differential system arising from a 2nd order PDE
system).

(I, X) is embeddable, so that it is locally equivalent to a 1st order
P.D.E. system. However, it is not locally equivalent to a 2nd order
P.D.E. system. (2.22)

The reason for the first assertion is that any 1st prolongation is locally
embeddable and is therefore locally equivalent to a 1st order PDE system.
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However, since the integrability condition doa= 0 mod(0,0) (and not just
doa i= 0 mod(O",O,oai))fails to hold, we may infer the second assertion in
(2.22).

(2.23) The Cauchy characteristic system ([3])

A(I) C T(X)

of (I, oa) is given by

A(I) span( 3,0,q ,A H,r,) +/-.

It follows that A(I) is a sub-bundle of T(X) of fibre dimension n(n- 1)/2 +
r(r- 1)/2 that is coframed by the 1-forms

(intuitively, A (I) is generated by the vector fields

(2.24)

It is well known (loc. cit.) that the sub-bundle A (I) is completely integrable, and
since our independence condition is X AioiAi<d;Av<tx =/= 0 it follows that
the N n + n(n 1)/2 + r(r- 1)/2-dimensional admissible integral manifolds
of (1,X) are foliated by the n(n- 1)/2 + r(r- 1)/2-dimensional leaves of the
Cauchy characteristic system.

In fact, this has a simple geometric interpretation. By (2.24) the leaves of the
Cauchy characteristic foliation are isomorphic to the product O(n) O(r) of
orthogonal groups and correspond to spinning the normal frame { e,} and to
spinning the tangent frames gi), (ei) at the same rate (i.e., by the same element
of O(n)). If N c X is any admissible integral manifold of (I,) then we may
enlarge N by adding on all Cauchy characteristic leaves passing through points
of N (i.e., we spin the tangential and normal frames as above). Assuming this has
been done we have a diagram

N )X C -(h) 5e- (W (R) S2V*)

F )MXEn+r

(2.25)

where r" No F is the fibering by Cauchy characteristics. From the geometric
picture it is clear that there is an induced map F M En+" such that the image
is locally the graph of an isometric embedding x"/ [n + ro Then N -(2Q, x)
for this embedding, and we have shown that

The admissible integral manifolds of (I, X) give
local isometric embeddings (2.1). (2.26)
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Moreover, the converse of (2.26) is valid in the sense that, given an isometric
embedding x" r,-E.+, the adapted frame bundle -()1, x) c -(Ar) - is
an admissible integral manifold of (I, X).

(b) Proof of the Burstin-Cartan-Janet-Schaefly (BCJS) theorem. We will
give a proof of the following classical

BCJS THEOREM. Let (/,ds2) be a real analytic Riemannian manifold. Then
given an), point p 371 there exists a neighborhood (still denoted by M) and real
analytic isometric embedding

X ]--") En(n+ 1)/2.

Moreover, x depends on n functions of n- variables.

Our proof will consist in showing that the isometric embedding system (I, 0) is
involutive (according to the definition using Cartan’s test) and then applying the
Cartan-K/ihler theorem. In principle, our argument is similar to the original one
of Cartan [6] (el. also [16]), and of course is also roughly the same as the recent
proofs [9] and [13]. However, by using the exterior differential system (I,x) the
solution of the Gauss equations and computation of the Cartan characters may
be simpler.
We remark that, for the obvious reason, we shall call n(n + 1)/2 the

embedding dimension and n(n- 1)/2 (n(n + 1)/2)-n n(n- 1)/2 the em-

bedding.codimension. Our proof will show that the isometric embedding system
for x" M--+E"+ is involutive when r >_ n(n 1)/2 but cannot be involutive for
general r when r n(n- 1)/2. (The meaning of "general" will be clarified
below.) Moreover, the argument may be trivially modified to cover the case
where E"+ is replaced by any real analytic Riemannian manifold of the same
dimension.

(i) We recall the definitions of the spaces K C S2(A2V*) of curvature-like
tensors and W (R) S2V* of algebraic 2nd fundamental forms, and of the Gauss
map

W (R) S 2V* K (2.27)

(cf. l(a) and (1.36)-(1.38)). The differential of (2.27) at a point H W (R) S2V*
is the map

dy(H) W (R) S2V* --) K (2.28)

given for G W (R) S2V* by

dv(H)(G) Ev(H, G)

(cf. (1.36) and (1.38)). We recall that the mapping y is submersive at H if (2.28) is
surjective.
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Definitions. (i) H W (R) S2V* is ordinary if there exists a basis v,..., Vn
for V such that the vectors

Hop H(vp vo) W, l<_o<=o<n-1

are linearly independent. (In particular, this requires that dim W= r>_
n(n- 1)/2, which we assume to be the case.)

(ii) We denote by c W (R) S2V* the dense Zariski open set of ordinary
algebraic 2nd fundamental forms.

The main computational step in the proof of the BCJS theorem is the
following

(2.29) PROPOSITION. (i) /" ---) K is everywhere submersive, and (ii) " #ed’---) K
is surjective.

Remark. This result is the main step in the classical proofs of the BCJS
theorem using exterior differential systems; our proof is somewhat different. This
result will be considerably sharpened in 5(h) below.

Proof of (i). Letting dim W r >= n(n 1)/2 we have by (1.12)

dimK= n2(n2- 1)/12

dim W (R) S2V* rn(n + 1)/2.

Using the notation

fH(G) 27(H, G),

by (2.28) it will suffice to show that

dimkeryH < rn(n + 1)/2 n2(n2 1)/12 (2.30)

for H f c W (R) S2V*. Let 1)1, I) V be the basis in the definition of
ordinary for H and consider the mappings

/11 "ker YH --> W @ @ W

, ker 7H --> W...W
n+(n-1)+... +(n-p+l)
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defined for 2 _< p _< n by

Since G is symmetric it is clear that/n is injective; i.e.,

dim ker 3’H dim im

We define/1,/’2 by

t + + tp dimim

By (2.30) and (2.3 l) we must show that

+ + tn <- rn(n + 1)/2- nE(n2- 1)/12.

By (2.36) (or (2.38)) the condition G keryH is

nik" ajl + nj. aik- nil. ajk- njk. ai,-" 0

(2.31)

(2.32)

for all i, j, k, I. Among these relations are the following two sets that express the
components of Get, p <- 1 <-- n, in terms of the GO., _-< i, j _-< p

Hig. Gp, Hi, Gpg + Hpk. Gi,- He,. Gig (2.33)

where l_-<i-<k_-<p-l,l->_p, and

Hig. Gp,- Hi, Gpg -He,. Gig + Hpg. Gi, (2.34)

where <p_-< k < l.
Since there are p(p- 1)/2 pairs (i,k) with _-< _-< k _-<p- and n-p +

choices of with p _-< -< n, and since by the assumption that H be ordinary the
vectors Hig

_
W are independent, there are

(p(p- 1)/2)(n-p + 1)

independent relations (2.33).
Since there are p- choices for < p and (n-p + 1)(n-p)/2 choices for

pairs (k,1) with p =< k < l _-< n, it again follows from the assumption that H be
ordinary that there are

(p 1)((n p + 1)(n p)/2)

independent relations (2.34).
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Having fixed/p_ (G) (i.e., the GO. for _-< i, j _-< p 1), it follows that there are
at most

r(n p + 1) [(p(p 1)/2)(n p + 1) + (p 1)((n p + 1)(n p)/2)]

choices for the component of the vectors Gpl 19 1 <= n. (The "at most" is
because there may be additional equations to (2.33) and (2.34).) Noting that the
two numbers in the brackets in (2.35) add up to

n(n p + 1)(p 1)/2

it follows immediately that (2.35) is equal to (n -p + 1)(r- n(p 1)/2). Thus

tp <= (n p + 1)(r- n(p 1)/2). (2.36)

Summing we find by an elementary calculation that

t + + <- rn(n + 1)/2-- n2(n2- 1)/12,

which is (2.32).

Proof of (ii). To prove that 7()= K it suffices by homogeneity to show
that there is an H with

3’ (H, H ) (0). (2.37)

In fact, by part (i) the image 7() will contain a neighborhood of (0) K, and
then since y()H,)H)= X27(H,H) we must have 7(g(e) K.
We then choose elements H/j Hji W, _-< i, j --< n 1, so that

nii. nii ot

nii njj aij. nij.-’- l, iva j (2.38)
Hij Hkt 0 otherwise,

and we set Hin 0 for -<_ -<_ n. So long as dim W r >- n(n 1)/2 and a > 1,
it is possible to choose vectors so that (2.38) is satisfied. It is clear that H is
ordinary, and by (1.36) we have (2.37). Q.E.D.

(ii) Referring to the notation and discussion in l(a) we set

Y --(A) X - X ,
and in Y we consider the locus (cf. (2.16))

X=(7(H,H)=R).
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A point of X thus consists of a tangent frame (p; ) to A, a frame (x; ei, e,) in
En(,,+ )/2, and an ordinary algebraic 2nd fundamental form H W (R) sEv* such
that the Gauss equations y(H,H)= R(p) are satisfied. It follows from
proposition (2.29) that X is a smooth submanifold of codimension n2(n2- 1)/12
in Y and that the projection

X---->--(M) -is submersive. We therefore may consider the isometric embedding system (I, X)
(cf. (2.17) or, in indices, (2.19)) on X.

(2.39) PROPOSITION. The system (I, X) is involutive.

Proof. We shall apply Cartan’s test as given in [3]. We let v,..., v V be
a basis such that the vectors H/= H(vi,vy), 1--<_ i,j<--n are linearly
independent in W. In computing the reduced Cartan characters S’l,S,...,
only the last equation in (2.17) and symbol relation (2.18) are relevant (in terms
of ind.ices, these are the last two equations in (2.19)). Setting L span(t0- t3, 0,- q,A Hto) we write these as

d(A Hto),---- % A toy mod L (2.40)

,(H, r) 1/2 V Rto mod L (2.41 )

where % rji is a W-valued 1-form. The matrix used to compute the s is

qT"ll q’/’ln

"rl’n ’rl’nn

and s] + + sfi is the number of independent 1-forms in the first p columns. If
we use the symmetry r0. ,7rji and set dim W r, then there are at most

r(n+(n- 1)+ +(n-fl+ 1))

independent 1-forms r/j., _-< _-< n and 1-<_j _-< p. However, we must take into
account the symbol relations (2.41). The rank here is the same as the rank of the
corresponding homogeneous equations

,(H, r) 0 mod L, (2.42)

and referring to proof of (i) in proposition (2.29) it follows that

+4=t, + +9"
Thus s e for all p, and by (2.36) we obtain by an elementary calculation that

[n(n + 1)(n + 2) n2(n2- 1)(n + 2)"’ )- (2.43)s + 2s + + ns, < r
6 24
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On the other hand, by Cartan’s test the space Vx(I, X) of admissible integral
elements lying over x X satisfies

dim Vx(I, X) <= S’l + 2s + + ns,, (2.44)

with equality holding (for all x X) if, and only if, the differential system (I, X)
is involutive. Since the admissible integral elements are given by linear equations

% "’k 0

where Hl) W (R) S3V* satisfies

it is clear that

T(H,H(1)) V R,

dim W (R) S 3V* dimK(1) dim V, (I, X). (2.45)

If we show that

n(n + 1)(n + 2) )dim W(R) S3V* r
6

n2(n2- 1)(n + 2)
dimK(I)

24

(2.46)

then the inequalities (2.43)-(2.45) must all be equalities, from which we conclude
first that Vx(I,x) is nonempty (i.e., the torsion of the system (I,0) is zero) and
that the tableau of (I, X) is involutive. This will complete the proof of (2.39).
Now the first equation in (2.46) is clear. The second follows from the exactness

of the sequence

0--> K --> K (R) V* --> A2V* (R) A3V* --> V* t) A4V* ---> 0 (2.47)

and the formula (1.12).

Remark. The best way to compute the dimension of all the spaces K(q) is by
representation theory; this will be done in 5 below.

3. Localization of the Gauss equations.

(a) Proof of (i) and (ii) in the Main Theorem. In this section we will complete
the proofs of parts (i) and (ii) in our Main Theorem. The idea is to apply
Theorem IV from [4] to the isometric embedding system discussed above. What
makes this feasible is the following remarkable fact:

(3.1) Even though the Gauss equations (cf. (1.36)-(1.39))are of a complicated
quadratic character, their algebraic localizations are quite simple.
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In fact, we may go even further and say that very many of the nonobvious
properties of the Gauss equations and Riemann curvature tensor (e.g., the two
Bianchi identities and the fact that these generate all symmetries on the curvature
and its covariant derivatives) became quite transparent when localized in the
sense of algebra.

In this discussion we will use the following notations: V is an n-dimensional
real vector space (it is important to note that we will not use a metric on V); W
is an r-dimensional Euclidean vector space with inner product w. w’; with the
natural identification

W (R) S2V* Hom(S2V, W) (3.2)

we let H W(R)S2V* be a fixed element; KcS2(A2V*) is the space of
curvature-like tensors (of. (1.11) and the discussion just above this equation, and
recall that the definition of K also does not require a metric on V);

71-1 W S2V* --) K (3.3)

is the mapping defined by (cf. (1.36))

v,,(6) v(/-/, 6)

(this requires a metric on W but not on V); Vc, Wc, and Kc are the
complexified vector spaces, and the Euclidean inner product on W is uniquely
extended to a complex symmetric bilinear form; for a point P V, we denote
by

LC V
the corresponding line and define

by

v,,(w (R)

where w We and / L; and finally Zc c Hom(S2Vc, Wc) will be a proper
subvariety to be defined below. It will turn out that Zc is defined by real

Once we have lowered indices so that the curvature tensor

R KCS2(A2V*)

(cf. (1.10)), the Gauss equations use a metric in the normal space W but do not use one in the
cotangent space V. This turns out to be extremely important when we pass to the study of the
complexified characteristic variety in aV (otherwise the quadric in aV of vectors of length zero
would enter into our considerations).
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homogeneous polynomials on Hom(S2Vc, Wc) Hom(S2V W)c. This implies
that

E Ec f3 Hom(S2V, W)
is a proper subvariety.

Definitions. (i) The (complex) characteristic variety of H is the subvariety
H,c of PV defined by

-n,c ( pV ’n, is not injective).

(ii) We say that H Hom(S2Vc, Wc) is general in case it does not lie in the
proper subvariety Ec.

Remarks. (i) For any differential system in dual good form the symbol
mapping and characteristic variety are defined (cf. [4]). The above is just the
definition of the characteristic variety for the isometric embedding system
restricted to lie over the point H.

(ii) Strictly speaking the definition of general doesn’t make sense since we
have not said what the special subvariety Ec is; but we prefer to define Ec when
it arises naturally during the proof of the following result.

THEOREM A. If H Hom(S2Vc, Wc) is general and r <= n(n 1)/2, then

dimn, max(- 1,r- (n 1)(n 2)/2).

Remarks. In particular,

if r_--< (n 1)(n 2)/2

isolated points"H,C; if r=(n- 1)(n-2)/2+ 1.

It is clear that (i) and (ii) in the Main Theorem follow from Theorem IV in [4]
and the discussion in 2 above (cf. (2.17) and (2.18)).

Proof of Theorem A.2 We shall first define a natural inclusion

j $2(V/La) (R) S2(L) -Kc (3.4)

2Intuitively, the reason that the localized Gauss equations are so simple is the following. If we
choose a basis o o" for V such that [0 O, 1], then the localized Gauss mapping

is given, for

G GffnW (R) (w.)2 WC (R) S2L,
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Definition ofj. There is a natural map

Va/La S’(M-*
given, for a, fl V/L and n L, by

(R) A n) A (3.6)

It is clear that this map is well defined. To give it in coordinates we let
0 l,. an be a basis for V such that [0, 0, 1], i.e., 0 and use the
additional index-range

1-<0, o<-n-1.

We may assume that /= 0 and then, by (3.6), (3.5) is given in coordinates by

2 qooO)pO’( (dn)2"-’) 2 qoodO A d ( 0. A o. (3.7)
/9,0

where qoo q-0 is a symmetric (n 1) (n 1) matrix. To see that the image of
(3.5) lies in the subspace Kc c Sa(AV), we have, using the formula for 3 in 1
(of. also (1.15))

2 ]_a qooon@ p A A o

--0.

(What is going on here is that the Bianchi identity T0.kt 0 involves a 3-term sum
only for components of the curvature having 4 distinct indices.)

Next, for each aV we denote by

+/-cVc

by

"/H,(G) T(H, G)

EHiGnanoiA conk A O) n.

In particular, (i) only the components Rxn, (1 _< X, g _< n 1) are relevant (and, especially, the first
Bianchi identity reduces to the simple symmetry Rxnn R,X,); and (ii) the 4-term sum in the global
Gauss equations (1.36) (cf. also (1.38)) reduces to the single term

HxG, (1 __<X, / _< n- 1). (1)

It is clear that we may view (1) as giving a vector bundle mapping over a V, and that for general H
the fibre rank of this mapping may be determined.
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the hyperplane orthogonal to the line L, c V, so that there is an inclusion

s( +/-) c s

Then, with the identification (3.2) we denote by

H, S2( _L ) _. Wc
the restriction of H Hom(S2Vc, Wc).

Finally, using the natural identifications

(3.8)

( )* v/z,,

$2( +/-)* S2(V/L)
we consider the diagram

"YH,
We (R) S(L), ’ Kc

s:(/) (R) S:(L3

(3.9)

where H is the dual of (3.8) using the isomorphism

given by the Euclidean structure on W. We note that both j and H (R) are
standard simple linear algebra maps whereas 7n, is the "localized Gauss
equations". Accordingly, the main step in the proof of Theorem A is the
following

(3.10) PROPOSITION. The diagram (3.9) is commutative.

Proof. It suffices to verify commutatively in some coordinate system. We
choose a basis w, n for V such that j [0,..., 0, l] with the dual basis
v,..., v (thus - span(v0)), and an orthonormal basis w, w for Wc.
Using summation convention we write

and will evaluate

H nij. wt 6oio) j

using (1.36). Since

Kc C A2V (R) A21/’
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we may assume that < j and k < 1. Then by (1.36)

"H,I(WI ( (o)n)2)(t)i, t)j, t)k, 19,) { 0H/ whenUnless j=l=n (3.11)j=l=n

(in other words, the only potentially nonzero components in the range of ’H, are
Tpnon where _-< 0,o--< n- 1). On the other hand, by the definition of the
mapping (3.8)

(O l) l)(wp, ( (ton)2) O;oo)P(.,o (o)n)2,

and thus by (3.7)

Comparing (3.11) and (3.12) gives the proposition.

(3.13) COROLLARY. The complex characteristic variety is given by

( PV such that H" S( +/-) --) Wc fails to be surjective ).

(3.12)

Proof. Using the commutative diagram (3.9) and the fact that j is an
injection, we see that

ker ,H, coker H (R) 1, (3.14)

which implies the corollary. Q.E.D.

We now complete the proof of Theorem A. For each PV we consider the
restriction map

Hom(S2Vc Wc) Hom(S2( _L), Wc). (3.15)

Set N n(n- 1)/2 dimS( +/-) and note that

N- (n 1) (n 1)(n 2)/2. (3.16)

Choosing bases we may think of Hom(S( _L), We) as the space {N, of
complex N r matrices. It is well known that the subvariety

’N,r,k C_ //N,

of matrices of rank _-< r- k has codimension given by

codimffv,,,k k(N- r + 1). (3.17)

For k this is

codim/u,,,1 N- r + 1. (3.18)
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We let

O C Hom(S2Vc,
be the inverse image of /N,,,1 under the map (3.15). Since this map is surjective

codimO N r + 1. (3.19)

We note that

O ( H Hom(S2Vc We)" H fails to be surjective).
We first prove Theorem B when

r-<_(n- 1)(n-2)/2=N-(n- 1).

Then by (3.19)

(3.20)

codimO -> (n 1) + 1. (3.21)

Since varies over PV pn-, the oon-l subvarieties O cannot fill out
Horn(S:Vc, Wc). More precisely, if

2c ( H e Hom(S2Vc Wc)" H e O for some e P V)
then (3.21) implies that

codim 2c -> 1.

By Corollary (3.13), this means that

for a general H Hom(SgVc, Wc), which is Theorem A in this case.
In the general case we define

U OC PV X Hom(S2Vc, We).
PV

Since it is a family of varieties parametrized by P V, 19 is an algebraic variety3

3We will not prove this more or less obvious fact, but remark that

O c PV Hom(S2Vc, Wc)

is defined as the incidence correspondence

19-- {(,H): dimkerH6 -> 1}.

The fibres 0 are all isomorphic as algebraic varieties.
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and there are tautological maps

Hom(S2Vc Wc)

By construction and corollary (3.13)

(3.22)

By (3.19) and (3.16)

dim 19=r(N+n)+(n- 1)-IN-r+ 1].
This implies that for a general H Hom(S2Vc, Wc)

dim(/- 1(H)) r- (n 1)(n 2)/2. (3.23)

In particular, when r <_- (n 1)(n 2)/2, the mapping /is not surjective (in this
case we put -1 on the right hand side of (3.23)).

(3.24) Definition. We define Zc c Hom(S2Vc, Wc) to be the proper sub-
variety defined by

Zc (H "dim/-’(H) > r- (n l)(n 2)/2}.
For H Ec, (3.22) and (3.23) give

dim H,c max{ r (n 1)(n 2)/2, 1),

and this completes the proof of Theorem A.

(b) Proof of (iii) in the Main Theorem. (i) We begin with some general
remarks. Let (/Q, ds2) be an abstract Riemannian manifold with curvature tensor
R and covariant derivatives VkR (VR R). Given a point p/ we let
V Tp(II) and K c S2V* be the space of curvature-like tensors (cf. 1); we
may consider VkR(p) as an element in K (R) (()k V*).

Definitions. (i) We call

R’(p) (R(p), V,e(p), V)-R(p),... ) (3.25)

the curvature sequence at p M.
(ii) Two sequences

R; (Ri,Ri(l>,Ri(2>, ), i= 1,2,
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where

Ri(k) e K ( ( (kv*)
will be said to be equivalent if there is an element of GL(V) taking R l" to R].
Now suppose that

x M---> M C E’+r (3.26)

is an isometric embedding. We fix a point x M and, following our general
notational conventions, set V Tx(M) and W Nx(M). Our considerations will
be local in a neighborhood of p, and we denote by

H W(R)S2V*

the 2nd fundamental form of M at p. We also denote by jq(R)(p)= {R(p),
VR(p),..., VqR(p)) the q-jet of a curvature tensor of )r at p. From the
discussion at the end of 1 there are equations

7(H,H)=R(p)

(H,H 1)) V R(p)

(H,H(q)) + (terms involving H,..., H(q-l)} VqR(p).

For each H we denote by

q

xItq(H ) C ( K(R) ((V*)
k=l

the range, over all H(l H(q), of the mapping given by the left hand side of
these equations. Then

jq(R )(p) .J q(H). (3.27)
H

It may be shown that, when the codimension r < n(n 1)/2 and q >_- q(r), the
right hand side of (3.27) is a proper algebraic subvariety of the variety of q-jets of
curvature tensors of n-dimensional Riemannian manifolds.4 Thus, as previously
noted, the isometric embedding system fails to be involutive below the
embedding dimension, and (at least in the real analytic case) a necessary
condition that (/, ds2) admit an isometric embedding in :n+r for r < n(n 1)/2
is expressed by algebraic equations on (jqR)(p) for q sufficiently large.

(ii) We now consider (371,ds) for which (3.27) is satisfied. In a little while (of.

4The example of an M4 c [:::6 shows that this result is false for just the curvature tensor R (cf. 6
below).
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the discussion following (3.53)) we will define a proper subvariety

fq C U xq(H )
H

in the space of q-jets of curvature tensors of submanifolds M c En+r.

Definition. We will say that the isometric embedding (3.26) is general in case
H (cf. (3.24)) and jq2(R) f pq2 for an integer q2 to be specified below.

Thus, the general submanifolds MC En+r are open and dense in the
Cq+ 2-topology.

In this section we will prove the following result that provides the main step in
the proof of part (iii) in our Main Theorem.

THEOREM B. Let M C E"+r be a general embedding with r <= (n 1)(n 2)/2.
Then for each p M the curvature sequence (3.25) uniquely determines the 2nd

fundamental form H W (R) S2V* up to GL(W).

The proof breaks into several steps.

Step one. 5 Using (1.41) we define

]/(Hq) W () S q + 2V* ---9 K (R) S qv* (3.28)

by

q ) (/-/,67q)(G)= ,/+2 7 )

where 7(H, G) is given by (1.42) (or, in terms of indices, by (1.43)). The basic
property (1.44) is then

3 (y)(G))= y(l_iq-’)(B__G_G) G W (R) sq+-V* (3.29)

In other words, we scale ,/_/ acting on W (R) Sq+2V* so that we have the
commutative diagram

W ( sq+2v*
d ; W (R) Sq+ V* (R) V*

d
K (R) sqv* K (R) Sq- IV* (R) V*

5This step consists in making explicit the dictionary between modules and sheaves given in [15] in
the case of the prolonged Gauss equations, and in interpreting what Theorem A says about this
dictionary.
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where d is identity (R) (exterior differentiation). The dual of (3.28) is denoted by

"yq * K* (R) s qv--> W ( sq+ 2v,
where we use the metric in W to identify W* with W. Setting

)*

q>=0

we infer from (3.29) that

"/I K* (R) S’V- W (R) S "+ 2V (3.30)
is a homomorphism of graded S S "V-modules. Denoting by P" and Q" the
kernel and cokernel of (3.30), we have an exact sequence of graded S-modules

0--> P" --> K* (R) S’V---> W (R) S" +2V---> Q’--- O. (3.31)
By complexifying we obtain the exact sequence

0--> P --> K (R) S’Vc -> We (R) S "+:Vc --> Q --> 0 (3.32)

of graded Sc S "Vc-modules.
In algebraic geometry there is a well known "dictionary" between the

categories

{ graded Sc-modules } { coherent sheaves }of finite type over PV
The map is obtained by localizing in the sense of algebra. This dictionary is
given in [15], and an explanation intended for use in the theory of exterior
differential systems is presented in [4]. It will now be used in the proof of
Theorem B.

Over the complex projective space P PV we denote by

0 --) ;;U* --) //(2)--) ---)0 (3.33)

the exact sequence of coherent sheaves obtained by localizing (3.32). For large q
the maps on cohomology induced from

O(q)---);U*(q)-3C/(q + 2) (q)-0

give (this is a consequence of the dictionary discussed in loc. cit.)

0---) H(P, (q)) ---) H(P,;U*(q))-H(P,’/C/(q + 2))--) H(P, (q))--) 0

0 e(cq) , K (R) sqvc > Wc (R) Sq+Vc > Q(cq) > O,

where the bottom row is the qth graded piece of (3.32).

(3.34)
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Now assume that r =< (n- 1)(n- 2)/2 and that H is general in the sense of
definition (3.24) (i.e., H c as defined there). Then by Theorem A,

(0)

and (3.33) reduces to

0--) --)*- Y/(2)--)0, (3.35)

while the qth graded piece of (3.31) becomes

0---) e(q) --) K* (R) sqv W (R) sq+2v--’)O (3.36)

for q sufficiently large.

Step two.6 Let now H, G (W (R) S2V*)\E (cf. (3.24)). Denote the respective
sequences (3.35) by

(3.37)

and denote the respective sequences (3.36) by

>p(Gq)

y)*
.K* (R) sqv W ( sq+2v )0

),(q)*
>K* (R) sqv > W ( sq+2v >0.

(3.38)

(3.39) PROPOSITION.

H---A.G

The following conditions are equivalent:

for some A GL(W); (3.40)

e (Hq p (Gq (as subspaces of K* (R) Sqv ) for q >= qo (3.41)

Proof. If (3.40) holds, then it follows immediately from (1.43) that

vq) ( w (R) s+’-v,) v(d) ( w (R) s+:v,)

as subspaces of K (R) sqv*. Since

P(.) (,(w (R) s+v*))
and similarly for P(Gq), (3.41) follows.

6This step consists in expressing in commutative algebra terms what it means that two 2nd
fundamental forms be GL(W) equivalent.
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Conversely, assume (3.41). Then, by complexifying and localizing, it follows
thatn a as subsheaves of* (loc. cit.; we recall that the basic dictionary
is only bijective modulo finite dimensional vector spaces, so that e.g. the sheaves
associated to the two graded modules

B=Bq

q>-O

BIq] D Bq
q--> q0

are the same). It follows that (3.41) implies a commutative diagram

where

is a sheaf isomorphism. Consequently, q induces an isomorphism of the trivial
bundle with fibre Wc over P. Thus q is given by A GL(Wc) and therefore

H=AG.

The conjugate of this equation is

which implies that

H= AG,

(A A )G O.

In terms of indices this is

not 0

for all i,j. Since G is general this implies that A , which proves the
proposition. Q.E.D.

Step three. We now show that if (3.40) fails to hold, then P" and Q" are
"very different".

(3.42) PROPOSITION. Suppose that H v AG for an), A GL(W). Then, given
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N > 0 there is a q > 0 such that for all q >- q

dim(Pq)"/Pq) A Pq) ) >= N

dim(Pq)/Pq)- f’l Pq) ) >= N.

Proof. It will suffice to prove the result over G. By proposition (3.39) and the
dictionary between graded Sc-modules and coherent sheaves over a V, we infer
that

as coherent subsheaves of *. Since H and o both correspond to
sub-bundles of the trivial bundle with fibre g- over P, we infer that for some
point 0 la the fibres (H)0 C -U and (o)0 C% are distinct. It follows
that

for j in a neighborhood of J0. We thus have an exact sequence of coherent
sheaves over a

(3.43)

where the support

supp- P V. (3.44)

Tensoring (3.43) with (q) and taking cohomology gives, for large q,

0---- H(P, (n fq o )(q)) H(P,n(q)) ) H(P,-(q))--- 0

II
> F(q) ) 0

where the right hand vertical equality is a definition. From (3.44) together with
the discussion of Hilbert functions in [15] (loc. cit.) it follows that

dimF(q) Cq"- + (lower order terms in q) (3.45)(n- 1)!

where C is a positive integer. It is clear that (3.45), together with the analogous
statement interchanging the roles of H and G, gives

dim Pq)/(P(Hq)N P(q) )>-- C’qn-1
dim e(oq)/(Pq) P(q) ) >- C’qn-1

q>--qo, C’>O
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Choose direct sum decompositions

where

n )
Then for q >--_ qo,

dim Pq)"/(Pq)" Pq)" ) dim Uq) >- C’q "-1

dim Pq)"/(Pq)" PV)" ) dim Uq) >- C’q n-1 Q.E.D.

Step four. We will now complete the proof of Theorem B. For this we
consider the curvature sequence (3.25) of an M c E"+r, and fixing a point x E M
we write the equations (1.48) at x in the form

VqR 2y(H,n(q)) + d?(q)(n,n(l), n(q- l)). (3.46)

where H(k) W (R) sk/2v*. Assume that r _-< (n 1)(n 2)/2 and that the 2nd
fundamental form of M is general at x. Then by the dual of (3.36) we infer that
yq) is injective for large q. This implies that

(3.47) If the 2nd fundamental form of M is general and r <= (n 1)(n 2)/2,
then for q >-_ q + the equations (3.46) uniquely determine H(q)

Given H we denote by

q

Z(H) C () W(R)Sk+2V*
k=l

the algebraic variety of all (H(,..., H(qP) such that the equations (3.46) are
satisfied for q _-< q (keeping in mind that the point x iV/ is fixed). For
q-> q + we thus have a unique expression

H(q) t(q)(H,H(1),..., H(q’);R, VR,..., VqR).

Now suppose that the general solutions G W (R) sEv*\z (cf. (3.24)) to the
Gauss equations

y(G,G)=R

form a variety Y of dimension N, and that

max dim Z(G) N.
GY
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Then the solutions to the infinite sequence of equations

VqR 2T(G, G (q)) q.- (q)(G, G(),..., G(q-)) (3.48)

where

q 0,1,2,...

G W (R) S2V*\.,

G) W (R) sk+2v*
is general

for k >-

form a variety of dimension at most N + N2 in W (R) S "V*.
Now suppose that we have two possible 2nd fundamental forms H, G W (R)

S2V*\Y. such that (3.46) and (3.48) are satisfied for q 0,..., q2- where
q2 >-- q + 1. Suppose also that (3.40) is not satisfied and choose q2 sufficiently
large that (3.42) holds for q->_ q2 where N 2(N + N). We observe the
following elementary

(3.49) LEMMA. Let FI, F2 be two linear subspaces of a vector space E and
1, t2 C E two algebraic subvarieties. Suppose that

dim(F,/F F2) => 2t

dim(F2/F f) F) >-- 2t

dim < t, dim2 < t.

Then we do not have

F Q F2 -]- (I) (I)27 (3.50)

Proof. By projecting to E/F f) F2 we may reduce to the case

E a2t ( a2t ( R"

F, Rt (0) ) (0)

(0) * * (0).

Let XItl, xIt2 be the projections of (I) and (I)2 for F If (3.50) holds then we have

F C I’- xI’2 (3.51)

7This notation means that for every v F there is v F and Wq , w (I) with

I) 19 + Wq W

Intuitively, the assumptions on F, F say that "they cannot differ by a variety of dimension < 2t".
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But since

dim xI, < t, dim xI]2 <
dimF 2t,

(3.51) cannot hold. Q.E.D.

This lemma applies to our situation by using proposition (3.42) and taking

E K (R) sq2v*

F, ( W (R) S +

& r:) ( W S (q:+ 2)V*) eq:).

We conclude that

(H(1) H(q:-I))Z(H)
vf#)( w (R) sq:+"v*) + dp(qg(H,H(), H(q:-))

=/= .(Gq=) ( W ( sq2+2V*) q-

(G() G(q:-))Z(G)
di)(q:)(G, G(), G(q:-)).

Consequently, there exists H(q:) W ( sq2+2V* such that the equation

2T(H,H(q:)) + dp(q:)(H,H () H(q:-))

2),(G, G (q:)) + (q2)(G, G (), .,. G (q’--))

(3.52)

(3.53)

has no solution (G,G() G (q)) for any G W(R)S2V*\Z where G,
G(),..., G (q:) satisfies (3.48)for 0 < q q2, and (most importantly) where
(3.40) is not satisfied. We then determine M" C ’+" whose curvature sequence is
given by8

VqR 2T(H,H(q)) + (q)(H,H() H(q-)),

For this M the curvature sequence (3.25) then uniquely determines the 2nd
fundamental form up to GL(W).
~Finally, by examining the construction we see that the generality conditions on
M and on the isometric embedding (3.26) are expressed by H (cf. (3.24))

8By considering in E"+" with coordinates (x x", y y") submanifolds given by

jot._ njxix j + njkXiX jX k ..}.... q. ni, iqxil xiq,

we may find an M" c E"+" with arbitrarily prescribed q-jet of 2nd fundamental forms at a point.
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and by the condition that j(q2)(R) lie outside some proper algebraic subvariety
q2) (which we have no idea how to determine explicitly). This completes the
proof of Theorem B.

(b) In this section we will complete the proof of part (iii) of the Main
Theorem. We retain the notations introduced at the beginning of 3(a).

(3.54) PROPOSITION. Suppose that H W (R) S2V* is general, and that for
some A GL(W) we have

Then if either

or

r <=[n-18] (3.56)

it follows that

n=3
n =4,5
n =6,7

(3.57)

Proof. Choosing bases (w,) for W and (6d for V* we write

H Hiw (R) a’toJ

A IIA II
B I- tAA IIBxll.

The equations (3.55) give

(y(H,H) v(AH, AH))ijkt O.

By (1.38) these are

Thus by (1.12)

number of equations (3.58) n2(n- 1)/12
number of unknowns Bx. r (r + 1)/2.

Consequently, we can only hope to conclude that

B=0 (3.59)
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if (approximately)

r < n2/v/-n2/2.45.
We shall first prove (3.59) under the much weaker bound (3.56).

For this we set rn [n/2] and consider an H (H/j) where H,j W has the
particular form

Then for

H=
0 Hoo

<-- a, fl <= rn and rn+l<-o,o<-n. (3.60)

the equations (3.58) are

If

i=a, k=fl
j=o, l=o

HXBx,Hoo 0. (3.61)

r <= m(m + 1)/2 (3.62)
then for a general H of the form (3.60) we may assume first that the vectors H
span W so that (3.61) implies

Hx/Bx, 0, (3.63)
and secondly that the vectors H span W so that (3.63) implies (3.59). Finally, it
is immediate that (3.56) implies (3.62). In sum, under the conditions (3.56) the
equations (3.58) (viewed as equations for the Bat) have maximal rank r(r + 1)/2
for a general H W (R) S2V* (general means in a dense Zariski open subset).
The proof of the proposition under the condition

!=<3 when n=3
=<4 when n=4,5
=<6 when n=6,7

consists in simply being careful with the count in the preceding argument.

Proof ofpart (iii) in the Main Theorem.
By a framed embedding

X M---)[;7"n+r

we shall mean an isometric embedding together with a choice of Darboux frames
(x; e,..., en; en+ en.+,) (x; ei; e,) along M x(). Suppose that the
conditions of (iii) in the Main Theorem are satisfied, and let

X

be two general isometric embeddings. The main step in the proof is to combine
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Theorem B and Proposition (3.54) to draw the following conclusion:

(3.64) We may consider x and x’ as framed embeddings in such a way that (i)
the tangent frames ei,e’ coincide (i.e., x,(ei)--e and x’,(ei)= e for an
orthonormalframing (p; ei) of M, and (ii) the 2ndfundamentalforms coincide; i.e.,

H/ H/. (3.65)

We now set (cf. (2.27))

1,

ti

(3.66)

The conditions for a rigid motion taking the framed embedding x to the framed
embedding x’ are

(3.67)

The first two equations in (3.67) follow from (i) in (3.64) (uniqueness of the
Levi-Civita connection). The third equation in (3.67) is just (3.65). It remains to
show that these imply the last equation in (3.67) (cf. the remark at the end of the
proof).

Exterior differentiation of

gives, using the Maurer-Cartan equation (1.23),

Since r _< n and the embedding is general we may assume that the 1-forms
0/,n + _< _< n + r, are linearly independent for each (this is a very weak
form of "general"). The Cartan lemma then gives

where
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Then the standard argument (cf. (1.2)) implies that

C 0

and we are done. Q.E.D.

Remark. The last equation in (3.67) says that the connections in the normal
bundles should coincide. Classical "easy" (i.e., using only ODE) embedding and
uniqueness theorems say that an embedding is given uniquely up to rigid motion
by giving the 1st and 2nd fundamental forms and the connection in the normal
bundle subject to various equations (Gauss, Gauss-Codazzi, and Ricci). What
we have shown is that, given a Darboux framing for the isometric embedding x,
there is a unique Darboux framing for the isometric embedding x’ such that the
2nd fundamental forms coincide. At this juncture it is essentially a classical result
(cf. [8], [16]) that the normal connections must also coincide.

4. Nongeneric behavior of the Gauss equations.

(a) Exteriorly orthogonal forms. In this section we will begin discussing some
of the nongeneric phenomena exhibited by the Gauss equations in low
codimension. Our examples will be elaborations on Cartan’s theme of exteriorly
orthogonal systems of quadratic forms.
We retain the earlier notation, letting W be an Euclidean real vector space of

dimension r and letting V be a real vector space of dimension n. We define 3’ as
in (1.36). We say that a W-valued quadratic form on V, H W (R) S2V* is
exteriorly orthogonal if

,(H,H) 0 (4.1)
Let X, c W (R) S 2V* denote the sub-variety of exteriorly orthogonal forms. In

his original paper on the subject, [7] Cartan showed how one could, in principle,
completely determine Xr, for every r and n. His method becomes quite
cumbersome for r > n, but, for r _< n Cartan computed the "generic component"
of X, explicitly.
We say that an H W (R) SV* is nondegenerate if H W (R) S-U for any

proper subspace U of V*. More generally, we may say that a submanifold
Mnc En+r is nondegenerate if lie NeM (R) S2(TM)is non-degenerate for
every p M. Geometrically this means that the Gauss map p -> TpM gives an
immersion of M into Gn(En/’).

(4.2) THEOREM (]. Cartan). Let H W (R) S2V* be exteriorly orthogonal and
nondegenerate. Moreover, suppose r <_ n. Then we must have r n. In fact, there
exists an orthonormal basis w,. wn) of W unique up to permutation, and a
basis of (ch 1,..., ch) of V* unique up to sign and the same permutation, so that

n--

_
wi (i)2 (4.3)

i=1

Conversely, every H of the form (5.3) is exteriorly orthogonal.
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The proof can be found in Cartan [7]; but more modern proofs appear in [1]
and [16]. It is interesting to note that this theorem depends heavily on the reality
of W and V. The corresponding assertion over the complexes is false (see [7]).
Cartan actually proves more in the low dimensions n 2, 3. In these cases, he
shows that the theorem remains true (without the genericity assumption) for
arbitrary r, where the (,..., ) are no longer required to be linearly
independent.
The set of H W (R) S2V* of the form (4.3) is obviously the quotient of

O(n, Iq) GL(n, Iq) by a finite subgroup (of order 2nn!) and is therefore a smooth
submanifold of W (R) S2V* of dimension n2 + n(n- 1)/2 n(3n- 1)/2. Its
Zariski closure in W (R) S2V* is an irreducible connected component of Xn,
which is certainly not imbedded in any other component. Let us call this
component Xj,n c_ Xn,n. If we consider 7 as a quadratic map from W (R) S2V* to
K (as in (2.27)) then dimension count alone shows that 3’ must be singular along
X,, for n > 3.

(4.4) If H is of the form (4.3) then ,n c consists of the n(n 1)/2 lines which
pass through two of the points of {[,/,], [’j,..., [,/,n]} p V.

Proof. If V {0}, then (3.13) shows that [] n,c if and only if there
exist V (0) and w W so that

w.H=lo

If we let r w. wi, then this becomes the condition

The left hand side of this equation is not the product of two linear factors unless
all but two of the r vanish, say r 0 unless j, k. But then jJ +k for
some j, 2, so the assertion is proved. Q.E.D.

Note that the characteristic variety has n singular points, namely, the [ i]. This
behavior should be contrasted with the dimension of the characteristic variety for
generic H W(R) S2V* when r= n. By Theorem A, this is max((n-1)-
(n- 1)(n- 2)/2,- 1). Thus, for n > 3 the H of the form (5.3) have a larger
characteristic variety than the generic H W (R) S2V*.

According to Theorem IV in [4], the analytic M"C E2" which satisfy the
condition that the second fundamental form at every point is of the form (4.3)
(these are, in some sense, the generic flat n-manifolds in E2") form a class of
submanifolds depending on at most n(n- 1)/2 functions of 2 variables. The
reason for the "at most" in the above statement is that, if we take
X C -(/) " (W ) S2V*) to be the regular points of -(M) -X then we have no guarantee that (2.17) is involutive.n,n

In [7], Cartan shows that this system is involutive so that the real analytic
integrals of (2.17) depend on exactly n(n- 1)/2 functions of 2 variables.
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For our purposes, we will verify this by setting up a slightly different
differential system (with essentially the "same" integrals) and proving involutiv-
ity. The frame bundle we now introduce will be of use in other problems we shall
consider in this section. Let F denote the bundle of frames f (x; ei, e) of ::n+r

which satisfy the conditions

There are canonical functions gij =ei’e" on F and the submanifold - c F is
defined by the n(n + 1)/2 equations go 8/J" We denote by G (g/j) the n n
symmetric positive definite matrix of functions on F. Just as before, on F, we
have the equations

dx e’to + e O

d(e’ en)=(e’ e’)(/ G

where

+ ’( dO

x+tx=O

for uniquely defined matrix valued 1-forms to, 0, , A, and x. The structure
equations

d()-- -( -G-’t/) A() (4.5,

hold just as before.
Now (4.2) shows that there are no nondegenerate flat M" c En+" for r < n.

Hence, we assume that r= n and suppose that M C E2n is flat and
nondegenerate. By (4.2), it follows that there is a unique (up to obvious
permutations and signs) local generalized Darboux framing M ---) F for which
the identity

n
2

II e+n(R) (to’) (4.7)
i--’l

holds. (The to are not orthonormal in general!) The image (M) has the
property that it is an integral of the system (I, to) where I is generated by the
1-forms (/9, Aj / ./to J ) and the independence condition is to A A to
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v 0. Conversely, it is clear that an admissible integral of (I, to) is (Mn) C_ F for
some M c E2" on which the induced metric is flat.

(4.8) THEOREM (E. Cartan). The system (I, to) on F is involutive, with
characters s’ n 2, s’ n(n 1)/2. Thus, the "generic" flat M C_ .2n de13end on

n(n 1)/2 functions of two variables (for n >_ 2).

Proof. By (4.5-6), we compute

dO t =-- 0 (4.9)

d(4f+n ;toj) (ji "l" 2pj.k_ iKi+n / tok j+n !
k=2

(4.10)

where the congruences are mod I. In order to compute the Cartan characters, let
v, to TfF be vectors annihilating the 1-forms in I and satisfying

(4.11)k.,(w)

The reduced polar equations for these elements are

2ji + ’ tpj//j k= 0 j (4.12a)
k =/=j

!’ xjJ 0 (i =/=j) (4.12b)

2tpjr/J + E tpr/k 0 (4.13a)
k e=j

.irl J xjl j 0 ( =/: j) (4.13b)

If none of the i are zero, equations (4.12) allow us to solve for the q’s in terms
of the x’s; consequently these n2 equations are independent. Thus s’ n2. If, in
addition, we have i,lJ Jrl v 0 for all vj, then equations (4.12b) and (4.13b)
allow us to conclude xj 0 and ji 0 for vj, but equation (4.12a) then forces
us to conclude qi 0 for all as well. Thus the equations (4.12-3) (for generic
j, r/) determine q x 0, i.e., s’ + s n2 -t- n(n 1)/2. We now have

n2

(4.14)
s2=n(n- 1)/2

By Cartan’s Test, to establish involutivity it suffices to exhibit an s’ + 2s
parameter family of integral elements at every point. However, if we let
{(Af)Ii vj) and ((B])} be arbitrary real numbers, one sees that the n-plane
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defined by

(4.15)

is always an integral element. Since s] + 2s 2n2- n, we are done. Q.E.D.

Remark. From our computations, one sees that an integral two-plane is
singular if and only if, for some j, the two form oi/k O j vanishes when
restricted to that two-plane. Since an integral (n 1) plane is characteristic if and
only if every sub-two-plane is singular, we see that the characteristics are exactly
those on which (,O /k 0 j restricts to zero for some j. This recovers the result
(4.4) that the characteristic variety at each point of F is n(n- 1)/2 lines.

It is interesting to note that there are many compact M c ::2n in this category.
If ffi c_ E2 (i 1, n) is a smooth closed curve of length and nonvanishing
curvature, then Mn= -61 )< 2 X X L C [2n is an isometric immersion of
the standard torus T with second fundamental form of type (4.3).

(b) Isometric embedding of space forms and similar metrics. Cartan’s original
motivation for introducing the concept of exterior orthogonality was to study the
problem of finding isometric immersions of the space forms into Euclidean
space. Recall that a space form is a manifold endowed with a metric ds2 of
constant sectional curvature , Since we will work locally on -(M), we may as
well take M to simply connected. The structure equations of such a metric are

di= _i /k J (4.16)

di _1_ / @k t) / 0 j (4.17)

We say ds- is elliptic, parabolic, or hyperbolic depending on whether is
positive, zero, or negative.

If is positive, then it is well known that M can be embedded in ::’+ as the
round hypersphere of radius 1/v/. If is zero, then M can actually be
embedded as an open set in I:’. Henceforth, we shall consider only the
hyperbolic case ( < 0). Cartan’s observation in this case was that, since

Rijk (i__ l’kj

one could write



860 BERGER, BRYANT, AND GRIFFITHS

where we have used (1.36) and simply set W= lq with the obvious inner
product. From this, Cartan deduced

(4.18) The hyperbolic space form cannot be isometrically immersed in E2n-2

(even locally).

Proof. If one has an isometric immersion x" M _.._>[::n+r, let H W (R)

S2(V*) be its second fundamental form at some point of/Q. Let 1 W (R) Iq

(orthogonal direct sum) and set I H (L-- ds2. The Gauss equation

then becomes

y (H, H ) R y ((Zds2, (-Z-- ds2)

r( 9,B) =0.

Since dS2ll, S-U for any proper subspace U of V*, it follows that satisfies
the hypotheses of (4.2), whence we must have

r+l=diml>_n Q.E.D.

We define a metric dg’2 on " to be quasi-hyperbolic if there exists a
nondegenerate symmetric 2-form Q on M satisfying ,( Q, Q)= -R. In terms of
a co-frame 5 on M", we write these equations as

Q= O"]o ooJ

If n 2, this concept is not too interesting since any metric with nonvanishing
curvature is quasi-hyperbolic. When n 3, quasi-hyperbolicity is an open
condition since -7 is a local diffeomorphism of S2V* with an open subset of K
away from the locus of degenerate quadrics in SV* (see 5). When n _> 4 this is
a strong condition on the metric ds.

Cartan’s observation extends to

(4.18’) If ds2 on M is quasi-hyperbolic then (Mn, ds) cannot be locally
isometrically immersed into E+" for r < n- 1.

Let us now investigate the structure equations of a quasi-hyperbolic metric. Let
F(M) denote the GL(n)-bundle of all framesf (p; { ,). We shall write g
for the row of vectors (, Yn)" Let if" F(M)--> M be the obvious proje.ction.
In the usual way, we construct the canonical differential forms on F(M). In
particular,, there exists a unique column of 1-forms (i) satisfying, for all
v TF(M)

d(v)= ii(v) (4.19)
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We write this as d7 &3, the matrix multiplication being understood. Let
( (/j)= (.gi ) be the matrix of dot products, regarded as a (smooth) func-
tion on F(M) with values in positive definite symmetric matrices. We have the
formula

*(ds) ’( (4.20)

(the. right hand side is a symmetric product). The Levi-Civita connection on

F(M) is the unique n n matrix of 1-forms = (i) satisfying

do3 -q A (4.21)

+ t() d6 (4.22)

(Note that the n + n forms {i,@i} form a coframing of F().) Setting

the first Bianchi identity shows that

where R is a K-valued 0-form as before.
We now use the assumption that the metric is quasi-hyperbolic. Setting

*(Q) Qio J =tO, the equation y( 0, 0) R becomes

fi* (4.23)

Note that if A GL(n) is constant and we let r" F()F() denote the
standard right action, then the formulae

r,t ( (, ) ’A

r, ( 0 ) A0A
(4.24)

show that (4.23) has the correct frame equivariance.
Since we will be dealing with the Gauss equations, it will be convenient to

reduce frames so that Q becomes as simple as possible. Since Q is nondegenerate,
(4.24) assures us that, if Q has type (m,n- m), then we may reduce to an
O(m,n- m) sub-bundle of F(hr) on which Q has the form

(1)2-1- -I" (m)2__ (m+l)2 (n)2
To fix ideas, we assume for the remainder of this section that Q is positive

definite. Let -’(hr)c F(M) be the O(n) sub-bundle on which

Q (c3,)2+ + ((,n)2.
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Since G on -’(M) is well defined on M up to conjugation by an orthogonal
matrix, its eigenvalues are metric invariants which are easily seen to be algebraic
functions of the Riemann cul zature tensor in orthonormal frames. Now (4.23)
becomes

fi* -t3 A ’t3. (4.23’)

Moreover, since p satisfies (4.24) (with A O(n)), we see that the splitting of q
into symmetric and skew-symmetric parts is O(n)-equivariant. Write

where t7 + tt7 0 =/- t/. If we now differentiate (4.23’) using (4.21) and (4.22)
we get

A a3 A’ + A’ A-’- 0,

Let ( ((i) (ji A (J), Then (4.25) is simply

(4.25)

(i A (.J (J A i (4.25’)

for all i, j.
When n 3, these three exterior equations imply that the ji are linear

combinations of the . Writing

/jkO (4.26)

and substituting (4.26) into (4.25), we see that the 18 components/. =// satisfy
the three relations

Thus the tensor

/j= j. (4.25")
J J

III ~i ~i o j ( ,kjk.O

has fifteen independent components. (Note that this is also the dimension of K
when n 3, as it should be since (4.25) is the second Bianehi identity and
quasi-hyperbolicity is an open condition when n 3.)
Now suppose n > 3. Then, for all i, j, (4.25’) gives

(]i A i A J --J A i A i 0

so we must have (i A 0 divisible by every t3 k. Since (i A 0 is only a 3-form,
this gives
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It follows that there exist i for which

Equation (4.25’) then implies that i A i A J j A J A i so

qi _[_ j 0 mod i,

for g= j. If we let k be another index distinct from and j, the similar equations
for the pairs (i, k) and (k, j) then allow us to conclude

qi 0 mod i,J,ok

for all i, j, k distinct. This clearly implies

i --0 mod (.i,

SO (i 0 for all i. However, this equation gives

ji A J = O.

By Cartan’s Lemma, there exist ~i ~i
jk /ij for which

~i ~k
]jkO) (4.26’)

Summarizing, we see that for n > 3, the cubic form

III ~i ~i k
5.0 3J 5

contains all of the covariant derivatives of the Riemann curvature tensor. It is
interesting to note that, when n > 3,/ A 5 0 so

d3= - A 3 -tTA .
By construction, -’(/) is the orthonormal frame bundle of/Q with the metric
Q. The skew symmetry of 7 toget.her with the above equation shows that t7 is the
Levi-Civita connection on --’(M).
Now consider the case where (Mn, ds2) can be isometrically immersed into

E-1. Let p M be arbitrary, V TpM, W NpM and let H W (R) S2V* be
the second fundamental form at p. We have already remarked that H (9 Q
(W (9 F1 ) (R) SV* satisfies the hypothesis of (4.2) so we may write

H (9 Q Wi( (bi)2. (4.27)

Let w --W-[" I" where w W and r [11. Since Q ri(qi)2, we see that
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r > 0 for each i. Let

(.oi

b w;/r

to get the equations

a E bi ( ( i)2

O (i)2.
(4.28)

The equations w Wj ij then imply

b bj -1 for :/: j (4.29)

Letting B b b -t- 1, we obtain the relations

1/n (4.30)

E bi/ni 0. (4.31)

Moreover, (4.31) is the only nontrivial linear relation among the bi.

(4.32) PROPOSITION. The characteristic variety of an H W (R) S ZV* of the
form (4.28) (where the b satisfy (4.29)) consists of the n(n-1) points
{ ff +-- j J vj}

Proof. Just as in the proof of (4.4), we see that [] X/,c if and only if there
exist nonzero w and /satisfying w. H o /. Now

W" H= (w" bi)(oi)2.

It follows that w. H is a product of two linear factors if and only if, for some
(i, j) distinct, w. b 0 for k v i, j. Due to the fact that (4.30) is the only
nontrivial linear relation among the b’s, we see that (once i, j are chosen) this is
n- 2 linear equations for w. The unique solution up to scalar multiples is
therefore given by w b bj. We compute

(b bj)" H Bi(i)2- Bj(J)
2

Q.E.D.
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Just as before, Theorem A now implies that the isometric embeddings of a
quasi-hyperbolic ]rn into =2n-I depend on at most n(n- 1) functions of one
variable. In the case that M is actually a hyperbolic space form, Cartan showed
that this upper bound is attained. We would like to determine the conditions on a
quasi-hyperbolic metric which allow us to attain this maximum. The required
differential system may be described as follows"

Let 3 c_ W W (n times) be the submanifold of n-tuples (bl,... bn)
satisfying (4.29). The fact that 3 is a submanifold of dimension n(n 1)/2 is an
exercise left to the reader. We let b --> W be projection on the i’th factor and
we let B b b + denote the associated function. Note that the identities
(4.30) and (4.31) automatically hold. On the manifold ’i -’(M) F 3, the
relevant differential system is given by

|o-=0

IJ0=0
l,/gi bi 0

(we have written A for the column (,4/) of height n and we regard the b as
column vectors). The independence condition is that the n(n + 1)/2 compone.nts
of and ff should all remain independent. (Recall that the symmetric part of q is
zero mode). Because G’F:--> (symmetric positive definite matrices) is a
submersion, we see that the 0-form equation G- G 0 defines a smooth
submanifold xt,’ c xI, and we may as well restrict I to this submanifold so as to
remove the 0-form equations in I.

Because the Gauss equations have already been solved, we easily compute that

d( ) --= 0
dO =_ O

o
mod I

We now compute

d( bio) i)-- -4 /k t/-- K /k ,/z db /k o i-+- bilj /k J

: (ijj- (bi- bj);)A to j mod I

(where we have written .--- dbj + xbj). If we fix i, the fact that (4.31) is the only
linear relation among the bj implies that {b bj Ij =/= i) is a basis for W. Thus we
may write

ii E (hi- bj)qrij (4.33)
J
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for unique 1-forms rr/j 4: j}. The relations (4.29) differentiate to give

d(b .bj)= b . + bj. i "-0

so (4.33) implies

Bj"1Tij
"[- B 71"j 0 j (4.34)

Thus, at most n(n 1)/2 of the % are linearly independent. The fact that 3 has
dimension n(n- 1)/2 shows that at least n(n- 1)/2 of the % are linearly
independent; consequently (4.34) constitutes the full set of linear relations among
the (%1i j). We may now write

d(li hii) E (hi- bj)(’Trij A 60 i- ji A oo j)
J

mod I

= E (bi- bj)(qTij A ta) i- ji A d j i. A O j) mod I.
J

Now the terms (r/j A (i__. 6./ A 0 j) constitute the symbol part of the differential
system while the terms (/: A t i) constitute the torsion since/ --= 0 mod 3. If the
system is to be in involution, there must exist admissable integral elements of I at
every point of ’. If n is such an admissable integral element and we restrict all
the forms to n we see that we must have

r0. A t,0 i- ./ A (,0 j i A J (i 4: j) (4.35)

on n (because for i, fixed, the (b bj Ij v i) form a basis of W). Wedging with
,0 on both sides, we see that

i +/ _--0 mod oa i, d j ( va j)

Since i is skew symmetric in i, j and/ is symmetric in i, j, we see that, on the
integral element n, we have

i =/ 0 mod i, (j V 4 j. (4.36)

In particular, this places strong restrictions on the tensor III i .J () g./" We
have the equation

03111
o a) Jo k

0 i, j, k distinct (4.36’)

which must hold on III in every framing in --’(M). By invariant theory, this set
of equations (for every co-frame in -’(M)) must define an O(n)-invariant
subspace of the tensor bundle in which III takes values.

If n > 3, then III takes values in the symmetric cubic forms. Under O(n),
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S3(T*) decomposes into two irreducible pieces (see Weyl, [20]):

S3(T*) T* H3(T*)
The injection T*c--)S3(T*) is given by symmetric multiplication by Q

S2(T*) while the subspace H3(T*)CS3(T*) consists of the so-called
"harmonic forms," i.e., those who trace with respect to Q is zero. Since (4.36’)
implies that III must lie in one of thse spaces and since H3(T*) contains terms
of the form a3 J k (i, j, k distinct) we see that (4.36’) implies that

III Q. ,
where X (2i3 i).

If n 3, then III takes values in a bundle constructed from a representation
space of 0(3) of dimension (15) which contains the 10 dimensional representa-
tion space S3(T*). In fact, we have

V5 T* H2(T*) H3(T*)

where H2 c S 2 is the harmonic quadratic form space. Again by invariant theory,
one shows that the linear conditions (4.36’) can hold in all frames if and only if
III takes values in the bundle constructed from the T*-piece. Just as before, this
implies that III is cubic (i.e., symmetric in all three indices, a condition which is
not automatic when n 3). Thus (4.36’) implies that

for some ? (:hi i).
Now suppose that this necessary condition is satisfied. Then we must have

J

i=/=j
(4.37)

(to avoid fractions, we have replaced 2 by 3?0.
We may now rewrite the structure equations in the form (all equations mod I)

(4.38)

where, for convenience, we have set

ki j jo5 " +
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The symbol relations, in addition to the relations forced by the form of (4.38),
are

Bj"lrij -- B 71j 0 (4.39)
^i ^j
Pj -I- Pi 0 (4.40)

In other words, the "torsion has been absorbed."
We will now verify Cartan’s test for involution. Let v T’I" be a vector

annihilating the 1-forms of I and satisfying

oi(v) (4.41)

By (4.38), the reduced polar equations are

irij J! O =/= j (4.42)

The equations (4.39), (4.40) and (4.42) will imply the equations

^irij vj 0 (4.43)

so long as, for every 4 j, we have

(i )Bi 4= (j)2Bj" (4.44)

In turn, this is equivalent to, for (i =/= j)

(i i "t-joJ)(v)=O (4.44’)

i.e., that V not be characteristic. This is in accordance with the general theory.
Thus, we have s n(n 1). Since there are no more "free" differentials in the

two-forms of I (remember that q’l’ii and 9/do not appear) we see that s’ 0 for
>1.
To complete Cartan’s test, it is sufficient to exhibit an n(n- 1) parameter

family of integral elements at each point of ,t". However, if {Aj[i 4: j} is any set
of n(n- 1) numbers, then the n-plane defined by the relations

d= O l ff ’i bitO O
^i ~j j "i{Pj Ajgjo) A nio 4 j (4.45)

I
r A B A B6oLij"- ji i=/=j

is clearly an integral element. Thus, by Cartan’s test, the system is involutive. We
record this as

(4.46) Let (hTl",dY) (n >_ 3) be a quasi-hyperbolic Riemannian manifold with Q
positive definite. The isometric embedding system for Mn’-E2n-I (the lowest
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dimension possible) is involutive so that the real analytic local solutions depend on

n(n 1) functions of one variable (the maximum possible) if and only if the form
III is symmetric cubic and satisfies

III- LQ

where L is a linear factor.
Of course, this raises the question of the existence of such (An, dff2). Obviously

the hyperbolic space forms have this property, since they satisfy III 0. By
studying the structure equations derived above for such systems it is possible to
characterize these metrics completely:

(4.47) Let k"+ be n + dimensional Lorentz space, i.e., F1+1 endowed with an
inner product of type (+,..., +, -). A simply-connected quasi-hyperbolic
(37-I", d2) can be isometrically immersed (uniquely up to Lorentz transformations)
as a space-like hypersurface if n > 3 or n 3 and III is symmetric cubic. Moreover
Q is positive definite if and only if the image is convex in kn+ 1. Finally, III Q.L
if and onlv if the image lies in a quadratic hypersurface.

For example, the standard "round" hyperquadric Hn(,)= {x kn+ll(x,x)
--1/A 2) yields the classical embedding of the space forms. The other convex

space-like hyperquadrics are (generally) not complete. Obviously, they define an
(n + 1) parameter family of metrics satisfying the condition III Q.L.
We will omit the proof of (4.47) since it is not of direct concern to us and

would require an excursion into affine geometry too lengthy to include here.
We will conclude this section by making a few remarks about the case n 3.

In this case, quasi-hyperbolicity is an open condition on the metric dY2,
equivalent to the condition that all sectional curvatures of d’2 be negative. One
can show without undue difficulty that the differential system I on ,t,’= {X

’I’](G- G)(X)= 0} is diffeomorphic to the standard system defined in an
earlier section for isometrically embedding 3c E5 where 3r3 is a negatively
sectionally curved Riemannian manifold.
Our discussion has shown

(4.48) The symbol of (4.38) is always involutive when n 3, and that the
characteristic variety of such a symbol is always six distinct points.

This is in spite of the fact that the natural embedding dimension is one higher:
The system for/ c [:::6 is determined.
One does not expect the general dY on/ to embed locally in E, of course,

and the conditions (4.36) show that one could easily specify a metric on a
neighborhood of a point in ) for which the equations for which the equations

13 321 132 0
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have no solution on the fiber in F’(M) over that point. It follows that no integral
elements of I (which are admissible) pass through any point of ’ lying over this
point and hence that there is no local isometric embedding of ds~2 into E5 on a
neighborhood of this point.
Thus one sees the role of the torsion equations (4.36’) in the study of isometric

embeddings MaC_ E5. One could probably pursue this calculation to verify
Cartan’s claim, in [6], that the genetic M3 c_E is rigid, but the relevant
calculations would be quite long and tedious.

In any case, (4.46) and (4.47) clearly identify the four parameter family of
metrics (with negative curvature) on an 3 which have the maximum isometric
deformability in E5.

5. The Gauss equations and the GL(n) representation theory for tensors.

(a) Introduction. In this section we study the Gauss equations (1.37):

y(H,H) R where , W () S2V* ( W ( S2V*,-----K (2 A2V* t) A2V*

and also the prolonged Gauss equations (1.48):

y(H, G) VqR where "y W ( S2V* ( W ( sq+2v*----)K(q) c K (R) sqv*.

The first result, needed in a previous chapter, states that the spaces

K= K() K() K(2)

are all GL(V*)-irreducible and gives that

K(q) (K ( sqv*) (K(l) s(q-l)v*)

q+3 - q+2

where n dim V*.
These results follow from the GL( V*)-representation theory of t) q V*. A

rapid review of the basic results of that theory is the content of sections (b)-(f).
This theory also yields the GL(V*)-decomposition

Sym2(S2V*) S4V* ) K.

This decomposition and the GL(V*)-equivariance of the maps , provide the
basis for analyzing the Gauss equations.
Our main result (Theorem H) includes the following" Let R K, dim W _>

(,, 1) + 2. Then there exists H W (R) S2V* such that 7(H,H) R.
Finally, classical proofs of rigidity theorems employ the following method of

proof: If H,H2 W S2V* are such that 7(H,H)= 3/(H2,H2), then
H A H2 where A 0(W), the orthogonal group for the inner product space
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W. We give an example where a rigidity theorem holds, by the Main Theorem,
but it cannot be proved by the above approach.

(b) (GL)(n) and symmetric group actions. Let V* be an n-dimensional vector
space over the field F, where F O or F some field extension of O. Let

q

( V*= V* (R) V* (R)... (R) V* (q copies).

We shall write the action of GL(V*) as a left action on V*"

A GL(V*), v V*, A.t? V*.

This induces an action of GL(V*) on q V*"

O" GL(V*)----Aut( V*)
A---..)(v (R) (R) o(AAv (v, (R) Vq) (Ave) (R)... (R) (Ave))

where the action is defined on decomposable tensors and is extended by
linearity.
The symmetric group Sq acts on ()q V* by permutation of the factors of a

decomposable tensor in ()q V*. For example, for q 2 and the transposition
(1 2) $2,

(1 2)" (v(R) w) w(R)v.

For general q we define the action of Sq on (q V*"

()
,---\,(v, (R)... (R) v) ->. (v, ... (R) v) v,,-,(, >... v,,-,(q)

CLAIM.

Proof.

The actions of GL(V*)and Sq on @ q V* commute.

Let A GL(V*), vr Sq

7/’" A (t?l 1) ) t?q) 7/"- ((At?, 1.) 1) 1) (At?q))

(At?r-,)) ... @ (At?r-,(q))

A (t?vr-’(l) () ()

A 7/" (t? ) t?q). Q.E.D.
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(c) Representations of algebras.
is an F-linear ring homomorphism

Let 9 be an F-algebra. A representation of 9

9/-----End(W) (5.1)

where W is a vector space over F.
The representation (5.1) is reducible if there exists a nontrivial, proper subspace

W’ c W such that

((a))(W’) c W’ for all a 9.

W’ is said to be a d-invariant subspace and restricts to a representation on W’
which we denote by w’.

If the representation (5.1) is not reducible we say it is irreducible.
is said to be fully reducible if there exist -invariant subspaces l/V,. c W,

1,2,...,p such that each w,. is irreducible and W= W @ W2@... @

We say the representation (5.1) is degenerate [20] if there exists a proper
subspace W’c W such that

((a))(W) c W’ for all a 92,

(i.e., all operators (a) "push" the full space W into W’.)
The algebra homomorphism

-End(92)
a-----(la x---.ax)

sending an element into the operator la (left multiplication by a) is called the
regular representation of 9.

For a finite group , we define the regular representation of , as the regular
representation of the group ring F[,], which is itself an algebra. (Our only
application of this definition will be for Sq.)

Examples. (1) Let 9 c End(()qv*) be the subalgebra generated by the
operators {o(A)[A GL(V*)). 9 is called the enveloping algebra of the
representation (q V* of GL(V*). Clearly a decomposition into irreducibles with
respect to a group representation will also be a decomposition into irreducibles
with respect to the representation of the enveloping algebra (and conversely).

Let 3 c End(()q V*) be the enveloping algebra for the representation of the
symmetric group Sq on ( q V*.

(2) Let c End()q V*) be the subalgebra defined by

6 ( T End(t) q V*)I TS ST for all S

is called the commutator algebra of 9.
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Remarks. The group homomorphism

extends by linearity to an algebra representation of the group ring:

q

19 "I=[ Sq] -End(() V*).
Clearly Image(O)= 3, the enveloping algebra for Sq. 6) is not injective, in
general. As an example consider

q

V*),End( @
Clearly qo --= 0 for q > n. On the other hand,

q= n!O( ] sgn(rr)er).
Sq

We are now in a position to state the sequence of results which lead to the full
decomposition of ()q V* into irreducibles with respect to 9, the enveloping
algebra of ()q V* as a GL(V*) representation. Throughout k, IX, t, will be
subalgebras of End(W), W an F-vector space, dim W n.
We shall need the following construction of a representation ;kin from a given

representation ,, for m Z /" Let km be the subalgebra of End(() W)
consisting of operators of the form

[

\ J J J !

where j .
LEMMA ([20], p. 86). If C End(W) is irreducible, 0, m Z+, then

m C End(]’ W) is irreducible.

Definition ([20], p. 90). Let , be an (abstract) algebra. The inverse algebra ’differs from & in that the multiplication of two elements a and b is now defined
as ba rather than ab.

The following result includes the "double commutator theorem" as well as the
explicit correspondence between the decomposition of an algebra and the
decomposition of its commutator algebra.

THEOREM ([20], p. 95). Suppose c End(W) is a fully reducible F-algebra,
with commutator algebra ix. Then IX is also fully reducible and is the commutator
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of t. Moreover, their decompositions are given by:

k li(pi)mi P-- mi((pi)’)l
i=1 i=1

where vi,(vi) are inverse (abstract) division algebras, and li,miZ+, i=
1,...,r.

Remark ([20], p. 87). The above theorem assumes the regular representation
of the (abstract) division algebra, and this is irreducible.

The significance of the above theorem is that in order to decompose a fully
reducible (matrix) algebra it is (essentially) sufficient to decompose its
commutator algebra (i.e., it is equivalent to know pi or the inverse (vi)’).
What is the cummutator algebra of 9/, the enveloping algebra of ()q V* as a

GL(V*)-representation? The answer is given by the following theorem.

THEOR.M ([20], p. 98, p. 130). The commutator of 91 is where

Image O "F[Sq] End ( V*

Is 23 fully reducible? The answer is yes and follows from the following two
useful theorems.

THEOREM ([20], p. 89). If the regular representation of an algebra h is fully
reducible, with irreducible parts h, 2, then every (nondegenerate) representa-
tion of h is fully reducible, and splits into irreducible parts each of which is

equivalent to one of the Xi.
By definition, O is a nondegenerate representation of F[Sq], and hence the

above theorem can be applied to conclude that is fully reducible, once we have
the following:

THEOREM ([20], p. 101ff). The regular representation of the group ring F[Sq] is

fully reducible.

(This theorem holds more generally for the regular representation of any finite
group.)

In summary, we can essentially determine the decomposition of 9/ by
decomposing its commutator algebra 3. The irreducible parts of 3 must belong
to the irreducible parts of the regular representation of F[Sq]. Thus, we are led to
consider the regular representation of F[Sq].

(d) The regular representation of F[Sq]. Suppose

F[Sq] WItW2...tWt
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is the decomposition of F[Sq] into irreducible subspaces, and

ei "F[ Sq] ") Wi, eiei ei

are the projection operators onto the subspaces Wi, 1,2,..., t. Then

Id Pl + P2 + + Pt, PiPj I O, vJ (5.3)
Pi, i=j

The idea behind the decomposition of the regular representation of F[Sq] is:
Can we solve (5.3) with Pi Image(F[Sq] End(F[Sq]))? Equivalently, are the
projection operators Pi linear combinations of left-multiplication operators? As
we shall see, the answer is yes. The Pi are usually called Young Tableaux (or
Young Symmetrizers).
We illustrate the situation by a simple example.

Example. Decomposition of F[S2] (q 2).
Since the decomposition of F[S2] corresponds to the decomposition of

V* (R) V* we begin with the well-known decomposition:

V* (R) V* S(V*) A:(V*)
with projection operators

v (R) (R) w + w (R) v) s’( v*)
2 w(R)v)  A:(V*)

Note that

(symmetric tensors)
(alternating tensors).

7/" {}(1/2(/d -6 (1 2))), 7/"2 I9(1/2(Id-(1 2))).

Setting

Pl 1/2(Ia + (1 2)), P2 1/2(ia- (1 2))

solves (5.3) for the ease q 2.
A crucial remark must be added. The operators P in (5.3) must be primitive

([20], p. 102); i.e., we cannot further decompose

Pi Q1 -6 Q2, Ql, Q2 nonzero projection operators.

The condition Pi primitive corresponds to W irreducible.

THEOREM ([20], p. 102, p. 110). For each positive integer q there exist primitive
projection operators P in the enveloping algebra of the regular representation of
F[Sq] solving (5.3). Moreover, setting

(
q el)IV,. Image O(Pi)" @ V*--- @ V* (5.4)
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W is an irreducible, invariant subspace of (q V* with respect to GL(V*). An),
GL(V*)-invariant subspace of (q V* is deco__mposable into irreducible subspaces,
each of which is similar to one of the spaces Wi.

We now describe explicitly the Young Symmetrizers (5.3).

Definition. (1) Let q Z +. A partition X of q is a tuple X (X, m),
X Z + such that

m = q, x,> >_Xm > 0.
i=1

(2) If X is a partition of q then t is a partition of q. (Take the transpose of the
-diagram given below.)

(3) If X is a partition of q, a -Symmetrizer is a diagram of the form

lhm+
1 -b k2 q-

where O-’(ili2. /qq) is a permutation of
permutation group on (1,..., q).

Example.

(1,2,...,q), i.e., OAq, the

q=9, =(4,3,1, 1), 0=( 123456789)256431798
s]6 41
l/.7]

We now associate to Tox a projection operator.
Given a X-symmetrizer Tox, we shall define subgroups of the symmetric group

Sq (where q i)ki;k a partition of q). Let r be the set of elements in the ith row
of Tox. Let cj be the set of elements in the jth column of Tox. Thus, if

12...q)o
ili2 iq
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then

and

r= {il,i2,...,ix,),

r2 { ix,+ 1, ix,+x2} etc.

cl {il ,ix ix }i+1 + +(m_l)+l

c2 ( i2, ix,+2, }, etc.

We define the { Ri} to be the subgroups of Sq given by permutations of the
elements in the ith row, all other elements being left fixed

R symmetric group on r C Sq.
We define the row stabilizer R R(,, o) to be the subgroup of Sq generated

by {Ri}.
Similarly we define the Cj to be the subgroups of Sq given by permutation of

the elements of the jth column.

Cj. symmetric g.roup on . c_ Sq
and we define the column stabilizer C C(?,o) to be the subgroup of Sq
generated by { Cj }.

Define

"rR

where p(r)= the sign of the permutation or. We remark that this definition is
equivalent to the following"

where composition is in the sense of F[Sq].
Example.

q 4, X (’1, 2) (2, 2), 1234)1324

3TX= 2 4’

R I, (13), (24), (13)(24)

C I, (12), (34), (12)(34).
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Hence

7ox (I- (12) (34) + (12)(34))(I + (13) + (24) + (13)(24))

I + (13) + (24) (12) (34)

(132) (124) (143) (234)

+ (12)(34) + (13)(24) + (14)(23)

+ (1432) + (1234) (1324) (1423).

It can be shown ([20], p. 124) that

Hence (1/c) 7ox is a projection operator.

c =/: O.

THEOREM ([201, p. 127). P is a Young Symmetrizer (see (5.3)) if and only if cP
is of the form (5.5) for some constant c =/= O.

(e) GL(V*)-irreducible subspaces of (q V*. Using (5.4) we shall write

q q

V,x) V,,,,x am) image(O(7ox) ) V*--- ( V*). (5.6)

We have omitted to mention the permutation o in the left-hand side of (5.6). If o
is not clear from context we shall write Vo*x). Part (iv) of the following theorem
states that up to equivalence, o can be disregarded. Even with this notation two
representations are unambiguously defined, namely

(a) h (h) (q) V*x) Symq(V*) {symmetric tensors)
(b) 5, (X,h2, hq) (1, 1) V*x) Aqv* {alternating ten-

sors)
(Compare the following theorem with (5.4).)

THEOREM ([20], p. 133). Let X be a partition of q.
(i) V*x) is a GL(V*)-irreducible subspace of ( V*, etc.

(ii) Any GL(V*)-irreducible subspace of (q V* is of the form V*) for some

partition X of q.
(iii) If V*) V*o ), then there exists a constant c > 0 such that

is a projection operator onto V*().
(iv) If o,r Sq, then Vo*() and V*(x) are equivalent GL(V )-representations.
(v)

dimI/’*(x)=( I-I (n+j-’))( l’I (dij))
(i,j) Gx (i,j) x
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where x ((i, j)I (i, j) is a position in the diagram ) and dO. i + ( t)j (i +
j)+ 1.

Example of (v):)t (2, 2) )t t, a (1, 1), (1, 2), (2, 1), (2, 2))

dim V*() n(n + 1)(n 1)n/(3- 2.2. 1)

n2(n2 1)/12.

(f) Decomposition of the tensor product" The Littlewood-Richardson Rule. If
pi’G----Aut(Wi), 1,2 are two representations of the group G, we can
construct the tensor product representation

p (R) p2" G---Aut(W (R) W)

(i01 () p2)(a)
a------)(w, (R) w2) - (iol(a)(wl) () p2(a)(w2))

Let W (R) W2 denote this representation.
What is the decomposition into irreducibles of the GL(V*)-representation

V*<x) (R) V*<) where A, are partitions of r,q-r respectively? Using the
isomorphism

r q-r q

it is clear that in principle the answer can be stated in terms of Young
Symmetrizers of @q V*. The Littlewood-Richardson Rule ([14], pp. 60ff) is an
algorithm that computes the decomposition of V*(x (R) V*( . In practice, it is
carried out with the aid of diagrams. To best convey the algorithm an example is
calculated step-by-step, alongside the description of the algorithm steps.
We assume given two partitions

X (k Xk) ] ( 1 ’)

of r, q- r respectively, which for our example we take to be, (3, 2), / (2,2) (Note l= 2. )

Step 1. Draw the diagram of X with x’s in each position. Draw the diagram of
with each position in the j’th row filled by the integer j.

Step 2. Create new diagrams by adjoining the l’s in the diagram for in step
onto the diagram of 2 in step 1, subject to the restrictions
(a) each resulting diagram must correspond to a partition

(i.e., row-lengths are nonincreasing)
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(b) no column can have more than a single "1".

(Note that

xxx l, xxx l, xxx l, xxx, xxx
xx xx xx xx xx

ll

would violate (a) and

would violate (b).)

Step k+ (k

_
l- 1).

xxx
xxll

xxx
xx

For each diagram D created in step k, create new
diagrams by adjoining the (k + 1)’s in the diagram for in step onto the
diagram D subject to the restrictions

(a) each resulting diagram must correspond to a partition
(b) no column can have more than a single "k + 1".

xxx 11---- xxx 1122, xxx 112, xxx 1112, xxx l, xxx 11, xxx 11
xx xx xx2 xx xx22 xx2 xx

2 2 22

xxx xxx 122, xxx 12, xxx 12, xxx 1, xxx
xx xx 12 xx xx 12 xx

2 2 22

xxx xxx 122, xxx 12, xxx 12, xxx 12, xxx 1,
xx xx xx2 xx xx xx22

12
2

xxx .. xxx22, xxx2, xxx2, xxx2, xxx,
xx xx xx 12 xx xx xx

12 122
2

xxx 1,
xx2
12

xxx
xxl
12
2

XXX 1,
XX2

2

xxxl
xx
12
2

xx. - xxx22, xxx2, xxx2, xxx, xxx,
xx xx xx2 xx xx2 xx2
11 11 11 11 112 11

2 2

xxx
xx
11
22
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Step l + 1. For each diagram D created in step l, construct the sequence
d(D) (d,d:,..., dq), consisting of integers and x’s, obtained by reading the
first row of D from right to left, then the second row of D from right to left,...
etc. Since the x’s will be ignored in the consideration of these sequences we will
use a shorthand that omits them. e.g.

xxxl122-----(2,2, 1, 1,x,x,x,x,x)----(2,2, 1, 1)
XX

xxxll -(1, 1,x,x,x,2,2,x,x)---(1, 1,2,2)
xx22

xxx (x,x,x, 1,x,x,2, 1,2)--- (1, 2, 1,2)
xxl
12
2

(We leave out the rest of the sequences. The procedure is clear.) Disqualify D if
there are some integers m, p such that dm(D) =p > and

:#: 4(D ) Ij < m and dj(D ) p 1} _< =g: ( dj(D ) j < m and 4(D ) ?}.

If D is not disqualified, we say D is retained, e.g.

D =xxxl122----(2,2, 1, 1)
XX

xxxll (1, 1,2,2)
xx22

Disqualify D

Retain D

D xxx (1,2, 1,2)
xxl
12

Retain D

We have placed a "/" above the retained diagrams (see step 2 above.)

Step l + 2. For each diagram D in .step 1, let t,D denote the partition
corresponding to the diagram. Each retained D contributes V*(VD) to the
irreducible GL(V*)-decomposition of V*(x) (R) V*().

V*(3,2) () V*(2,2) V,(5,4) V*(5,3,1) ) V*(5,2,2) V*(4,4,1)

() V*(4,3,2) () V*(4,3,1,1) ( V*(4,2,2,1!

t V*(3’3’2’1) t V*(3,2,2,2)

(g) The spaces K K(), K ),
The space of curvature tensors, K, has been defined as

K Ker( A:V*. A2V*----) V* (R) A3V*)

(u A v)@(z A w)----u@(v A z A w)- v@(u A z A w).
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Clearly ) is a GL(V*)-equivariant, linear map; i.e., for any A GL(V*) the
following is a commutative diagram.

A2V* @ A2V* --0-o V* @ A3V*

A [ A
A_V, (R) AV, __O_.+ V* (R) A3V*.

PROPOSITION. The following are irreducible decompositions with respect to

GL(V*):
(a) A2V* (R) A2V* V*(2’2) ) V*(2’1’1) ) V*(1’1’1’1)

(b) V* (R) AV* V*(2’1’) V*(l’l’l’l)

Proof. Note that the partition A- (1, 1) of q corresponds to the
irreducible representation Aq(v*). Now apply the Littlewood-Richardson Rule.

Q.E.D.

COROLLARY. K V*(2’2); hence K & irreducible, dimK n2(n2- 1)/12.

Proof. We can rewrite as. V*(2,2) V*(2,1,1) ) V*(I,I,I,I).---.-)V*(2,1,1) ) V*(1,1,1,1).

Since is equivariant it respects these irreducible decompositions; i.e., )

restricted to an irreducible subspace is either identically zero or is an
isomorphism to an equivalent irreducible space. The formula

u (R) (v/ w/ z) 1/2(0((u/ v) (R) (z/ w) (u/ w), (v/ )

-(v/ W)(R) (u/ z)))

shows that 0 is surjective onto V* (R) A3V* and hence

K Ker ) V*(2’2).

The dimension statement follows from part (v) in the theorem in section e.
Q.E.D.

The space K(1) has been defined as

K() K (R) V* N Ker((I) A2V, ) A2V, @ V,___.A2V, (R) AaV, }
(u / v) (z / w) (R) t----(u / v) (R) (z / w/ t).

By abuse of notation let )(1) also denote )(1) restricted to K (R) V*. Then

K() Ker )() K (R) V*---A2V* @ A3V* }.

(5.7)
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By the Littlewood-Richardson Rule, we rewrite (5.8) as

K(1) Ker(O() V,(3,2) V*(2,2,1) ..)V,(2,2,1) @ V*(2,1,1,1) @ ASV*).

PROPOSITION. K(1) V*(3’2); hence K(1) is irreducible,

n2(n2- 1)(n + 2)
dimK(1)

24

Proof. Following the reasoning of the preceding proposition, it suffices to
show K() 4 (0}. We assume dimV*= n >_3. Let u,v,w V* be linearly
independent. Then (u A v)(R) (u A v) K, and

O(’)((uAv)(R)(uAv)(R)w)=(uAv)(R)(uAvAw)4=0. Q.E.D.

In general, we define g(q) as the image of the GL(V*)-equivariant map

q+4

"y S2V* sq+2v*---K sqv* C ( V* (5.9)

(]t(n () a ))(w, w4,191,... )q) 1/2 n(w,, w3)G(w w4,1)1,

.4- n(w2 w4)a(wl w3 I)l, Igq)

H(w, wa)G(w2 w3 v,, Vq)

The Littlewood-Richardson Rule implies

H(w, w3)G(w w4,191, lgq)

and

S2V* ( sq+2v* sq+4v*’ v,(q+3,1) () v,(q+2,2)

K (R) sqv* sqv* (R) V*(2’2) V*(q+:z’:z) @ V*(q+ 1,2,1) () v,(q,2,2).

Thus, it suffices to show , :/: 0 to conclude that K(q) V*(q+2’2) Consider
H=u*(R)u*, G=v*(R)v*(R)... (R)v*, u,v V such that u*(u)=v*(v)=l,
u*(v) v*(u)= 0. Then

y(n (R) G)(u,v,u,v,v, v) 1/2((u* (R) u*)(u,u)(v* (R)... (R) v*)(v v))

Thus (H (R) G) :/: 0 in (q+4 V*, hence :/: 0. We have thus proved the first part
of the following proposition.
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PROPOSITION.

Moreover,
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K(q) v,(q+ 2,2) hence K(q) & irreducible and

q+3 2 q+2

K(q) (K ( sqv*) (q (K(l) @ sq-lv*)

For the second part we decompose

K(1) () sq-Iv*- V,(3,2) () sq-Iv*

v,(q+2,2 [ v,(q+ 1,3) ( v,(q+ 1,2,1).

Comparing this with the decomposition for K (R) sqv* we find that V*(q+2’2) is
the only common factor. Q.E.D.

(h) The Gauss equations" An equivariant approach. Let (W, (,)) be a vector
space of FI, of dimension r, with inner product (,). Recall equation (1.36)

4, (W S2V*) x (W SV*)---->K c @ V* (5.10)

defined for H, G W S2V* by the condition

(T(H, G))(v, ,v2 ,v3 ,v4) k(H(v, ,v3), G(v2,v4) ) + (n(v2 ,v4), G(v ,v3) )

(n(vl,V4),G(v2,v3)) + (H(D2,D3),G(D

where the vi are arbitrary elements of V.
At the first prolongation of the differential system for the isometric embedding

problem (,ds)---E+, the torsion consists of the Gauss equations

where RM K 4 T*M is the Riemann curvature tensor (all indices lowered).
Part (ii) of Proposition (2.29) shows that (5.11) can always be solved for H

when r (); i.e., (5.10) is su0ective for r (). In this section we shall show that
(5.10) is su0ective when r (")+ 2. The proof uses the equivariance of y by
decomposing the spaces appearing in (5.10) into GL(V*)-irreducibles. These
decompositions also yield a qualitative description of the solution space of (5.11).

Finally, the special case of r 2 is considered. We show that

codim((y(H,H)KIH W@S:V*))= {2’ n=4
1, n5.
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The result for n 4 is somewhat surprising, since a n/iive dimension count would
predict a codimension of 1.
Our discussion proceeds in two parts.

(h. 1) Equivariant factoring of 7. Define

f" W (R) S2V*---Sym2(S2V*)
w (R) h-----(w, w)h (R) h.

(5.12)

Then f is GL(V*)-equivariant, quadratic, and O(W)-invariant. The Littlewood-
Richardson Rule shows that

S2V* ( S2V* V,(4) ) V,(2,2) V*(3,1). (5.13)

Note that

(u (R) u) (R) (u (R) u) Sym2(S2V*) S4V*. (5.14)

Also, if T denotes the Young Symmetrizer (see the example in 5(d), then

T((u (R) u) (R) (v (R) v) + (v (R) v) (R) (u (R) u)) (u A v) (R) (u A v).

Thus

T Sym2(S2V*)---->K is surjective. (5.15)

From (5.13)-(5.15) we conclude

Sym2(S2V*) S4V* K. (5.16)

PROPOSITION. The following diagram is commutative

W (R) S2V* 7
K C S2V* (R) S2V*

Sym(SV*) S4V, V*(,2

(5.17)

for some constant c va 0, where T is linear, GL( V*)-equivariant, T[ s4v =--0, and T
is surjective.

(By abuse of notation we have used 7(H) here to mean 7(H,H)--see (5.10).)

Proof. Without loss of generality we can assume r dim W 1. We shall use
the fact that h S2V* implies there exist pi V*, a [: such that h
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Ziai ) fDi; i.e., h can be "diagonalized". Now we compute

( Tf)(h)(v, v2 V3 ,/)4) Z(h h)(Vl, v2, v3, v4)

Z(Zaiaji.. fD i( fD
j ()qoJ)(vl ,D2,v3,v4)

-8Zaiaj(i A J)(i /k J)(vl,v2,v3,v4)
i,j

CZait(i(191)fDJ(V2)- i(192)qoJ(vl)).
i,j

(q)i(/)3)tgJ(/)4)- i()4)J(v3))

CXaiaj([i(vl)i(v3)][J(v2)gJ(v4)]
t,y

C[ h(Vl v3)h(v2 v4) h(v v4)h(v2 v3)

C. 3’(h,h) (using the notation of (5.10))

C- 3’ (h)
(using the notation of the Q.E.D.
statement of the proposition)

(h.2) THEOREM H. 3". W ( S2V* -.)K is surjective if dim W >_ (n- 1) _[_ 2.
Each fiber contains a point where 3" has maximal rank.

Proof. Without loss of generality we fix r (n l)+ 2. Since 3’ is a quadratic
map, the image of 3’ is a positive cone in K, hence it suffices to show Image(3,)
contains a neighborhood of 0 in K. This will follow from the implicit function
theorem, if we can find a point Ho W (R) S2V* satisfying

(i) 3’(Ho) 0
(ii) rank(d3’(Ho)) dimK= n2(n- 1)/12.
By abuse of notation, we identify the tangent space of a linear space with the

space itself. Differentiating (5.17) thus leads to the commutative diagram

d3"(Uo)
W (R) SV*- K

df(Ho) /T (5.17’)

Sym2(S2V*) -- S4V* (9 V*(2’2)

The idea of the proof is to show d3"(Ho) surjective by showing

(df(Ho)(W (R) S:V*)) + S4V* Sym:(S2V*).

Let W have orthonormal basis t ), -</z -< r. Given H0, G W (R) S:V* we
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can then write

no Y t,. v ,, t,. z ,

(df(Ho))(G) 2v’ z . (5.18)

where we have identified W (R) S2V* and Tno(W (R) S2V*). Let {ei}, =< =< n,
be a basis for V*. Let

Then

ij,kl (e’ e j) (R) (ek e’) + (e k e’) (R) (e ioe J).

Sym2(S2V*) span{ fl,j,kl

[ ij’,kl [ji,kl [ ij,lk ji,lk kl,ij

lk,ij kl,ji lk,ji

(5.19a)

(5.19b)

ij’,kl _1_ ik,jl _1_ il,jk S4V,. (5.19c)

Relabel the indices/ 1,2,..., r by the r labels

{(/j)ll_<i<j_<n- 1) U {n- 1,n).

Define the following vectors v ’ S2V*

Set

l(iJ) e e j, <_ < j <_ n

l)n--1 e ( e + e2 e2 + + e"- (R) e n-

i=2 j=2

(i)

/-/o

(because of the
orthonormality of the ( t, })

E "y(e io e J) + "y(,l) n-l) Id, + Id, 0
l<i<j<_n

(5.20)
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where/d, A2V* (R) A2V*,

and

for l_<i<j_<n-1
otherwise

l<_i<j<_n
l<k<l<n

/, j)(R)(e k e( d,)(/j,ko(e A e A )

(ii) As remarked above, it remains to show

(df(Ho)(W ( S2V*)) -1- S4V Sym2(S2V*)

and by (5.19), it suffices to show

ij,k, (df(Oo)( W ( S2V*) -- S4V*,

(5.21)

i:/:j, k :/: l. (5.22)

1st Case. (5.22)0., when n i, j} or n { k,l}.
Say n i, j}. Then fl/j,t (e e J) (R) (e e t) v(iJ) (R) (e el), i.e., fl/j,kt

(df(Ho))(G), if G 1/2 t(/j) (R) e e (no summation).

2nd Case. (5.22)0., when/j, kl in, kn, n (i, k }, :/: k.
In this case in,kn : 1/2 [ik,nn (modSaV,) by (5.19), and the 1st case applies.

3rd Case. (5.22)in,in when :/: n.

in,in = 1/2 [nn,ii (mod S4V*)

: V ( (-- 1/2e e i) (mod(S4V* + span of 1st and 2nd cases)).
This completes the proof of the theorem H. Q.E.D.

(h.3) The differentiated version of (5.17), namely (5.17)’, has an interesting
application in the local description of the fiber of 7, 7-l(7(H)), for H a general
element in W (R) S2V*. (Recall that the O(W)-invariance of 7 has the geometric
interpretation that the Gauss equations have built in the O(W)-choice of
orthonormal frame in the normal bundle, the so-called "spinning in the normal
bundle"). Explicitly, let (t,} be an orthonormal basis for W,

(n)H W (R) S2V*, H= at(R) v, 1<_ l < r <_ 2

and assume the {v t’ are linearly independent in S2V*. Choose {v c S-V*,
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(.) + _< s _< (nl), such that (v",v form a basis for S2V*. Let

G W (R) Sg-V*, G t,(R) z, z av"+ avs. (5.23)
s

Then, straightforward calculation shows

a + a, 0,
(df(H))(G) 0,/a 0,

_<

r+l_<s<(n+_2 1)
i.e., ker(df(H )) Lie algebra of 0 (W).

(5.24)

Thus, (5.24) shows that ker(df(H)) accounts for the "spinning in the normal
bundle". However, we clearly have

More precisely,

ker(d3,(H)) D ker(df(H )).

ker(dy(H))-- { GI(df(H))(G) e S4V*}.

(5.25)

(5.26)

We show that the distinction between the right and left hand sides of (5.25) is
meaningful by considering the case r 2.

Let H W (R) S2V*, H tl (R) v + t2 (R) v, l, t2) orthonormal in W. Since
we are interested in comparing dimensions of the linear spaces in (5.25), we can
complexify and compute dimensions over C. Now 7 is GL(V*, C)-equivariant,
and in particular since H is general we can "simultaneously diagonalize" v , v;
i.e., there exists a basis q0 of V* (R) C, such that

vk E aiq9 i+ i, V2 E bjqj+ qJ"
j

Note. It is not always the case that a pair of quadratic forms v , V2 on C can
be simultaneously diagonalized (e.g., Xl

2 and xx2 where (x,..., Xn) Cn). If,
however, v is nonsingular (or, more generally, if detlltlvl- t2v211 0) then this
is possible. Since we are interested only in generic H (because the fibre
dimension of 7 at most increases under specialization) we may assume v , v2

simultaneously diagonalizable.
We want to compute

dimker(dy(H) W (R) sZv*---+K)

dim{G W(R) sZv*I(df(H))(G) S4V*}.
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Let G ( k -I- 2 () k2, k k q0 s, k k 2. Then

where

(df(n))(a) V o kid I)20 k2

Opqrsq)p fpq )r )s (summation convention)

Opqrs pq(apklrs -[" b1/2k2rs) + rs(arkq + brkq).

LEMMA.
(a) %qrs Oqprs %qsr %sr %q--" Osrpq-- Orsq_p Osrqp
(b) (%qrs) S4V*= Opqrs Oprqs Opsqr (*)pqrs
(c) If H is generic, n >_ 4, and (Opqr) S4V*, then k l, k2 are both diagonal.

Proof. Only (c) is not obvious.
Suppose <_ r, s <_ n, r 4 s. Since n >_ 4, there exist p, p’ such that p, p’, r, s are

all distinct. Now suppose

This implies

We rewrite this as

(Opqrs) S4V*.

0 % r---- ak’r + bkr
Op,rp, Op,p,rs ap,k)s .- bp,k2rs

Since H is generic, we conclude that

k) k2 0. Q.E.D.

COROLLARY. (Oij.kl) -. S4V*c:)(Oijkl) satisfies (*)pqr where (pqrs) ranges over
the following five possibilities"

(i) (pqrs) (iiii)
(ii) (pqrs) (iiij)

(iii) (pqrs) (iijj)

(iv) (pqrs) ( iijk)
(v) (pqrs) ( ijkl )

(5.27)



THE GAUSS EQUATIONS AND RIGIDITY 891

By the lemma Ker(def(H)) consists only of elements k (kl, k2), k diagonal.
We interpret the system (5.27) as conditions on (kj). It is clear that equations of
types (i), (ii), (iv) and (v) are automatically satisfied. It suffices to consider
equations of type (iii)

(iii) (*)pqrs ( *) iijj
<’-) Oiijj Oijij 0

i.e., a kj + b kj + aj kili + bjki2i 0

Thus we get () equations {(*)0.l <j}} in the 2n variables {kii,kj.}.
It can be shown (e.g., using a symbolic manipulation computer language such

as MIT’s MACSYMA) that the rank of the system (5.27) for n 5, is g; i.e., the
system has corank one. This also shows that for n >_ 5 the system has corank one,
since we can work with five variables at a time. (To make this last statement
more precise consider n 3> 5. Then the n 5 system is embedded in the larger
system by identifying the first five variables. This fixes, up to scalar, ten
components of a solution to the larger system. By exchanging the roles of the
variables this determines the remaining components.)

For the case n 4, the type (iii) equations yield a system which is clearly of
maximal rank in general. Since the system has six equations in eight variables, the
solution space is two-dimensional.
We emphasize that this result for n 4 is somewhat unexpected for the

following reason. The Gauss map

.g W @ S2V*---) K

is a quadratic map with

dim(domain()) r. (n + 1) <r < n

dim(range(,)) dim(K) (n(n- 1))
If /were a generic quadratic map, one would expect its generic fiber to have a

dimension dictated by the dimensions of (5.28) plus the "spinning in the normal
bundle" dimension. When r 2 and n > 5, we see

dim(W (R) SV*) n n4 n2
2 + n < dim K.

12

Hence one would expect the Gauss map to have one-dimensional fibers arising
from the O(2)-action, and we have seen this is what happens.
For n 4,

dim(W (R) S2V*) 20 dimK

and the same conclusion would not be unexpected. However, in this case the
image of the Gauss map has codimension two. We stress that the tangent vectors
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G ker(d3,(H)) that are not infinitesimal generators of the O(2)-action are
characterized by

v(I-I, s"v* (o).
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