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Still another title—the unhappy and troubling experience of an elderly mathematician in the wilds of
differential geometry! It has been made more unhappy, more troubling by the necessity to provide a translation
two years after the Russian version was completed, just as my memory, not only of the paper but in general,
begins to fail me! I did not think that would be necessary.
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2 ROBERT LANGLANDS

I. Introduction

The geometric theory of automorphic forms was introduced by Russian mathematicians,
for example, Vladimir Drinfeld, and developed by the Russian-American school,1 but I am
dissatisfied with this theory. The contemporary arithmetical theory arose in the sixties of
the twentieth century from four sources: from the revival by Siegel of the investigations of
the nineteenth century; from the Hecke theory; from class-field theory; from the theory of
group representations, in which the names of Frobenius, Herman Weyl, and Harish-Chandra
are important. In this arithmetic theory the Hecke eigenvalues are an irreplaceable element.
Using these the extremely important L-functions are determined. These numbers are the
eigenvalues of the Hecke operators. These operators are defined in the arithmetic theory but
not in the geometric theory introduced by Gaitsgory or Frenkel.2 The difficulty is that in the
theory of the Russian-American school the eigenvectors are replaced by eigensheaves, the
existence of which is difficult to establish, until now even impossible. Moreover the description
of the classifying space in this theory presupposes concepts from the theory of sheaves and
stacks and presupposes as well topological questions introduced in order to create a theory of
classifying spaces that satisfies in large part the functorial demands of Grothendieck.

Their theory is important, but in my view it is not the theory that is necessary for
expressing and proving the geometrical form of that which I call in the arithmetical theory
functoriality and reciprocity. For a reason that I explain later it may be better to use the
term duality, but functoriality is a consequence of duality. One of the aims of the arithmetic
theory is to establish functoriality and, using this functoriality, to construct the automorphic
galoisian group,3 but in the geometric theory this group is already at hand. None the less it is
necessary to show that a given group possesses the desired properties. What it is necessary to
understand for the foundations of the geometric theory, introduced in this essay, is a general
understanding from the sphere of sets, spaces and measures.

The purpose of this essay is to describe what seems to me a suitable analogue of the
arithmetical theory and to establish this for an interesting, even striking although easily
accessible case: the group GL(2) over an elliptic curve. However, there are two geometric
theories, one over a finite field4 and another, as in this essay, over the field of complex numbers.
I examined neither [G] nor [L] with care, but it seems(!) to me that [L] supposes that for
a field of functions over a finite field a theory that is compatible with the Rosetta Stone of
André Weil5. In addition to that and, in my view very interesting, according to [L, Th. 0.1]
for such a field the automorphic Galois group is isomorphic to Gal(F/F ). On the other
hand, just as the theory of Paley-Wiener or the theory of Fourier transforms for the general
Schwartz functions do not replace the L2 theory of the Fourier transform on R or on Rn,
n = 2, 3, . . . , the theory proposed in [G] does not replace an L2 theory of Hecke operators. I
believe that such a theory exists for each reductive group over an arbitrary Riemann surface

1[G] The report, Progrès récents dans la théorie de Langlands géométrique, Sém. Bourbaki, Janvier, 2016,
written by Dennis Gaitsgory is an appropriate reference.

2[F] Lectures on the Langlands program and conformal field theory, Frontiers in number theory, physics,
and geometry.

3This was a fundamental misconception on my part. I was not aware of the importance of Tannakian
categories as I wrote it.

4[L] V. Lafforgue, Chtoucas et programme de Langlands pour les corps de fonctions (https://arxiv.org/
abs/1404.3998)

5[W] De la métaphysique aux mathématiques, Oeuvres scientifiques, vol. II pp. 408–412.

https://arxiv.org/abs/1404.3998
https://arxiv.org/abs/1404.3998
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(compact). Occasionally I refer to the general case but I have not thought seriously about
it. The goal of this essay is the description of a theory for the group GL(2) over an elliptic
curve, a theory that is already accessible. Although I can imagine a general spectral form of
the geometric theory, I cannot imagine a theory that unites it with the theory described in
[G]. As a final observation, the geometric theory is related in part to complex differential
geometry, but this essay is written for specialists of the theory of automorphic forms, for
whom this geometric theory may be unfamiliar. Because of such personal weaknesses I include
some elementary explanations of the concepts in [AB]. These explanations often become
lengthy digressions. Moreover, I also allow myself other digressions, some rather elementary,
arising from the assumption that, like me, the majority of readers have little experience with
differential geometry.

The conclusions are certainly limited but the appearance of the decisive sign where I least
of all expected it confirmed my confidence in the correctness of my conviction. No more was
necessary to persuade me.

The exposition is insufficiently detailed, but the topic is new and our understanding is
incomplete, so that an elaborate explanation would be inappropriate.

Automorphic galoisian group. Since the principal purpose of this article, an introduc-
tion to a geometrical theory and a preliminary—perhaps temporary, perhaps definitive—
construction of the relevant mathematical objects, I preferred to define this immediately. It
presupposes the introduction of a group that is defined with a prescription for the transfor-
mation of a homomorphism from it to the group LG to an eigen conjugacy section. These
sections are described below. These prescriptions may be complicated. For example, they may
involve the Atiyah-Bott theorem. In any case we confirm a law of reciprocity for GL(2) and
elliptic curves, at first listing eigenvalues of Hecke operators and then Yang-Mills connections.
Not supposing that the present undertaking is in any form whatsoever comparable to that
of Dedekind, I propose another title for this paper, Was ist und was soll die geometrische
Theorie der automorphen Formen? ■6

Remarks about the nature and content of this essay. It is written for mathematicians
familiar with the theory of automorphic forms over number fields, but who like me, with a
meagre knowledge of differential geometry, in particular of vector bundles and connections.
Thus substantial space is taken by simple or familiar concepts. A slight familiarity with them
is inadequate, as I discovered on studying [A] and [AB]. The explanations of these authors
are brief and smooth but rarely precise and rarely detailed, evidently because they suppose
that the reader has some knowledge of the basic concepts. I thought that I possessed it, but
initially it was insufficient for a precise understanding of their conclusions and even of their
basic assertions. Thus I include in this essay all supplementary reflections that I felt were
necessary or useful, but only in so far as they seemed necessary.

I add a simple but useful remark. In the development of this article there are three stages:
a clear notion of eigenfunctions and eigenvalues of Hecke operators; a clear notion of a
Yang-Mills connection; their comparison.

I arrived at an understanding of the necessary foundations of the theory only as I read
the references and as I wrote the article, so that it began with an assertion whose proof
was assured only slowly, when I arrived at an understanding of the relevant theory. My
initial concept of the theorem established included neither a precise assertion nor much

6This square indicates the end of a digression.
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understanding of the differential geometric foundations. Thus there was much that I could
not foresee and I was not prepared. This led to redundancy and digressions, some elementary,
that would be superfluous for a geometer but, perhaps, useful for specialists in areas related
to the basic problem of this essay, namely reciprocity and functoriality in the theory of
automorphic forms, and not only in one of its three aspects but in all, although this article is
devoted exclusively to the geometric theory.

In the end I did not announce a theorem, although the reader could infer the relevant
assertion. What is striking is the precise fit of the enumeration of the eigen classes of Hecke
sections and the structure of the Yang-Mills theory. Although initially I did not have a precise
memory of the counting in the classical theory (neither of the counting in Gauss nor of the
later in, say, Hasse and I began to fear that I had not studied them adequately), it seemed to
me that there was an unrecognized similarity between them and those in this essay. In both
cases two, apparently, different objects were related by a third unrecognized clockwork. In
this article this appears to be a consequence of the similarity between two rather complex,
although concrete, countings, and in the very end the comparison could be completed only
thanks to an astonishing detail that appears in both, although for different reasons. To hide
this in the assertion of a theorem that in the end would only be a special case seemed clumsy.

The structure of this essay is simple. At the end of §III, the goals of functoriality in the
geometric context are explained. In §IV I recall the classical theory of elliptic curves, on
which we draw, in order to render the discussion as solid as possible. The following three
sections are devoted to the introduction of Hecke operators and the enumeration of their
eigenfunctions and eigenvalues but in the context of Hilbert spaces. After this in §VIII and
§IX the necessary differential geometry is recalled, sometimes at a basic level. In §X and
§XI a further discussion of the Yang-Mills theory leads to earlier enumerations in the Hecke
theory and then easily to the desired comparison. The last section is brief. I allow myself
many digressions, some rather elementary, on the assumption that the majority of my readers
will, like me, have minimal experience with differential geometry.

Finally a word about the language. It is pertinent only to the original Russian version.
When I inscribed myself in the university in Vancouver at the age of sixteen years, coming
from the countryside I was initiated to a new world, not only that of mathematics. I also
learned that there existed in the world a large collection of languages, some of which at
that time were necessary for a successful career as a mathematician. Although slowly, I
recognized that they offered more than just mathematics. Unfortunately for reasons that it
is not necessary to describe in detail here the mathematical profession no longer offers this
window to the world. Nevertheless the desire to write a paper in Russian remained. This
paper was the last chance to do so. It turned out to be too late.

Reflecting on this article after it was completed and on its style I was troubled by the many
digressions and wondered about their relation, but the reason became clear. It is related to
the circumstance that the basic part of the labour was devoted to my efforts to understand
concepts taken from [A] and some parts of [AB]. After the structure of BunG and the nature
of Yang-Mills connections was understood, my unique idea was the introduction of Hecke
operators as operators on a Hilbert space. This was simple although new and even somewhat
revolutionary, for the attachment of mathematicians to sheaves was universal. There are no
sheaves in this paper.

In a final conclusion I emphasize my dissatisfaction with the present exposition, but an
adequate exposition demands a brief but complete general account of the Yang-Mills theory,
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as well as an understanding of the last paragraph of this article, in which the direct image of
bundles and induced representations appear, but an understanding under general conditions.
At present this may be just possible. I leave it as a problem to the reader. ■

II. The fundamental concepts of a general theory

We need first of all a reductive algebraic group G over a compact nonsingular complex
curve M and its classifying space BunG. I shall explain the general hypothesis, that I shall
explain principally for the group G = GL(2) over an elliptic curve M . This case is already
striking. I shall use the conclusions of the paper of Atiyah.7 It is possible that they are
available also for the group GL(n).

Let F be the field of meromorphic functions on M . Let AF be the algebra of adeles of
the field F and Fx the local field at the point x ∈ M . The ring Ox is the ring of integral
elements in Fx and O =

∏
xOx. The relation

BunG = G(F )\G(AF )/G(O)
is familiar. It is established in ([F, §3]). I shall explain this below. We explain briefly later in
what fashion BunG becomes a topological space although not a Hausdorff space and that it
carries a local metric structure with metric µ. For G = GL(2) over an elliptic curve M both
the structure and the metric are simple.

The Hecke operators are linear transformations of the space L2(µ). The principal theme of
this article is the collection of Hecke operators and their proper values. For each point x ∈M
there exists a commutative Hecke algebra Hx. These algebras are commutative and commute
with each other. Suppose Θ ∈ Hx. Then the Hermitian conjugate operator Θ̃ is also a Hecke
operator. Consequently there exists a corresponding spectral decomposition of the space
L2(µ) and the purpose of this essay—description of the eigenvalues and eigenfunctions of this
decomposition. Although elliptic curves are the principal objects in this paper, I cannot resist
some general remarks. If God wills I shall return to general curves later. In the following
section I formulate general assumptions that I establish, at least in part, for elliptic curves.
Each Hecke operator Θ determines a correspondence Θ. This correspondence is a subset
of the set BunG×BunG. This correspondence also carries a measure that is best described
later.

III. Hypothesis

Although we establish this hypothesis only for curves of genus one and not for higher genus,
and only for GL(2), it seems to me that it is also correct for GL(n), thanks to the article [A].
In general there are two levels: (i) GL(2) is replaced by another group; (ii) M is replaced
by an arbitrary compact Riemann surface. I have not yet thought about this seriously. I
am proposing however a convincing conjecture, but in order to confirm it for g > 1 it will
be necessary to understand the complexity of BunG. There is of course one other level, the
ramified theory, but I have not reflected on this.

It is known that the Hecke algebra of the group GL(2) or of an arbitrary reductive group—in
this section we are speaking in this generality—is isomorphic to the ring of representations of
the dual group G and that each homomorphism of this algebra into C is given by a semi-simple
class θ in LG. Consequently the eigenfunctions of all Hecke operators or better eigen sections
correspond to functions whose values at the point x ∈M represent a semi-simple class

{
θ(x)

}
.

7[A] Vector bundles over an elliptic curve, Proc. London Math. Soc. vol. 7, 1957
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We call this the eigen conjugacy section. The structure of this set of sections is not clear. It
is known that there is such a theory for all M and all G and we consider in this paragraph
the general case.

In the theory of automorphic forms the concept of functoriality expresses the following:
the set of sections or the set of those sections that belong to the L2-theory are given by
homomorphisms, or unitary homomorphisms, of the conjectural automorphic Galois group
into LG. It is supposed that the difference between the arithmetic and geometric theories
is that the geometric theory can be described simply with the use of familiar concepts. In
the arithmetic theory this is not so. In this section I describe a general hypothesis that I
establish later, but for a particular case, and after some preparations.

A concept related to the automorphic Galois group is introduced in the paper of Atiyah-
Bott.8 This paper, together with the paper of Atiyah already mentioned, had a great influence
on the present paper. The pertinent concept is the group ΓR ([AB, Th. 6.7]). For curves of
genus g this group is an extension of the central extension

(1.a) 1 Z Γ π1(M) 1 , ΓR = R×Z Γ.

The group Γ is generated by elements A1, . . . , Ag, B1, . . . , Bg and J = 1 ∈ Z with one relation

(1.b) A1B1A
−1
1 B−1

1 A2B2A
−1
2 B−1

2 · · ·AgBgA
−1
g B−1

g = J, J = 1 ∈ Z.

In the following sections, where g = 1, it is understood that A1, B1 represent the loops
(0, 2ω1), (0, 2ω2) in the elliptic curve M .

We are concerned only with representations ϕ of the group Γ for which the order of the
elements ϕ(Ai), ϕ(Bi) and ϕ(J) are all finite. They are called admissible. We need groups
for which Γ̃ = Z× Γ. It is possible that the order of the elements ϕ(z × 1) ∈ U× 1, z ∈ Z,
U =

{
w ∈ C

∣∣ |w| = 1
}
, 1 ∈ Γ is infinite. The term Z does not appear in [AB] because in

that article the Chern class of the bundle is so given that BunG is connected, namely it is
the connected component of the correct BunG. The imbedding of this Z in Γ̃ is somewhat
arbitrary. It is related to the choice of the section A = A0 in [A, Th. 6], and §IV of the
present article. Now9

(1.c) A1B1A
−1
1 B−1

1 A2B2A
−1
2 B−1

2 · · ·AgBgA
−1
g B−1

g = 0× J.
I refer to this new group as the automorphic Galois group. More precisely the automorphic
Galois group Γaut is the product of Z with the inverse limit of all finite quotients of the
group Γ̃. In this group (on the level of each finite quotient of this group—it is this that is
important) the order of the images ϕ(Ai), ϕ(Bi) and ϕ(J) is finite. For example, we first
construct the intersection Γ2 of all kernels of homomorphisms of the group Γ to groups with

8[AB] The Yang-Mills equations over Riemann surfaces, Phil. Trans. Royal Soc. Lond., vol. 308, 1983
9It is useful to observe that

α


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

0 0 0 1 0




1 0 0 0
0 α 0 0

0 0 α2 0

0 0 0 αn−1

 =


1 0 0 0
0 α 0 0

0 0 α2 0

0 0 0 αn−1




0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

0 0 0 1 0

,

where α = exp(2πi/n).
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an order dividing 2, then Γ36, Γ27000 and so on. Then
(1.d) Γaut = lim←−Z/n(k)Z× lim←−Γ/Γn(k),

where n(k) = (k!)k.
This annoying scrupulousness is necessary because the connections and the eigen conjugacy

sections are mutually related but different. In particular the supplementary Z is necessary
because BunG is not connected. As will be clear later, it is not in vain that ΓR and Γaut are
determined as modifications of the group Γ. Eigen conjugacy sections and the connections
of Yang-Mills are closely related. I remark also that in Γaut the equation J = 1, 1 ∈ Z is
replaced by

J = 1, 1 ∈ lim−→
n

Z/nZ,

where z 7→ nz/m, m|n in an increasing sequence to the right.
Let LGunit be a compact form of the group LG. I suppose the following, because this

supposition makes it possible to avoid the difficulties of endoscopy, namely that there
exists a bijective correspondence of the set of eigen conjugate connections with the set of
homomorphisms of the group Γaut to LGunit. The purpose of the present paper is to show
that for the group GL(2), although it seems to me that the paper [A] allows one to prove
this for GL(n). There is a difficulty here. I still do not know how to recognize the irreducible
representations of the group Γaut in GL(n) if the dimension is greater than two, even for
elliptic curves. It will be clear to the reader that I began to understand the papers [AB] and
[A] only as I wrote this article. Initially my efforts were more modest, but it seems to me that
the principal assertions of the geometric theory over C are amazingly simple, although not
obvious. I do not know if it is necessary or even useful for readers of [G] or [L] to understand
them.

The case of genus zero. If the genus is zero the equation (1.b) is senseless because it is
necessary to determine Γaut differently. It seems to me that there is no choice but to suppose
that it is equal to Z. This is compatible with the assertion that for genus zero all sections
are direct sums of linear sections, each of which is itself a power of a unique linear bundle of
degree zero. This case is clearly excluded from the discussion in [AB]. It will be clear to the
reader everywhere in this paper that it would be better written, both with respect to clarity
as with respect to precision if I were more familiar with the Yang-Mills theory in particular
and with differential geometry in general. ■

There are two important remarks. First of all, I consider only the unramified theory.
Secondly, in the arithmetic theory the existence of an automorphic galoisian group is equivalent
to functoriality.10 The close relation between the theory of algebraic numbers and the theory
of algebraic curves over C was described by Dedekind and Weber in the book [DW]11. The
theory of algebraic curves over a Galois field was added by André Weil [W].

The theories of the two papers [A] and [AB] are not well known, neither to me nor to the
majority of my readers.

10This statement may or may not be correct. It is almost certainly incorrect as it stands. What in the
arithmetic theory is a Tannakian category may be, and likely is, a group in the geometric theory, but this is
no question to be discussed in general here. I am not up to it now, and perhaps never.

11[DW] R. Dedekind and H. Weber, Theorie der algebraischen Funktionen einer Veränderlichen, 1880
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IV. Reduction theory for an elliptic curve

This important theory reached a final form over fields of algebraic numbers in the report
of Borel and Harish-Chandra12 but for Riemann surfaces it is not yet available. In the
article [A] Lemma 4 is the beginning of this theory for arbitrary genus, but for g = 1 there is
a complete theory for GL(2) and even for GL(n) in the same paper, which I explain primarily
for GL(2) but without proofs. This theory is a final description of BunG, thus a description
of all two-dimensional vector bundles. In order to establish it, it is necessary to establish
a contemporary theory of connections, but I prefer to apply the theory of Weierstrass as it
is presented in the book of Whittaker and Watson.13 This is of course not necessary. It is
rather a test of my understanding of the theory of Atiyah and Atiyah-Bott and a sign of my
mathematical addictions. The conceptions in [AB] that reflect of course the contemporary
view of complex differential geometry—and therefore of topology and complex analysis—are
exceptionally elegant. But they are abstract and it is easy for a novice to overlook their
complexity and delicacy, as often happened to me as I read their papers. I reached the
conclusion that their concrete expression avoids misunderstanding. Thus if L = 2Zω1⊕ 2Zω2,
ω1, ω2 ∈ C, ω1/ω2 /∈ R, then the curve M = C/L. In this essay a GL(n)-section is a
matrix-valued meromorphic function14 M(z), z ∈ C, such that M(z + λ) =M(z)Kλ(z) for
all λ ∈ L, where the matrix Kλ is holomorphic.

In the theory of Weierstrass the sigma-function σ(z), z ∈ C, plays a basic role. These are
its properties: (i) it is holomorphic; (ii) its expansion in a power series is σ(z) = z + · · · ;
(iii) σ(z + 2ω1) = −e2η1(z+ω1)σ(z), σ(z + 2ω2) = −e2η2(z+ω2)σ(z); (iv) η1ω2 − η2ω1 = πi/2; (v)
if σ(z) = 0 then z ∈ L.

Let a1, . . . , am, b1, . . . , bn be points in C. Then

(2) ϕ(z) =
σ(z − a1)σ(z − a2) · · ·σ(z − am)
σ(z − b1)σ(z − b2) · · · σ(z − bn)

is a meromorphic function of z ∈ C. In addition,

ϕ(z + 2ω1) = ϕ(z)(−1)m−ne2η1(m−n)(z+ω1)e−2η1{∑m
i=1 ai−

∑n
j=1 bj}

= ϕ(z)(−1)m−ne2η1(m−n)(z+ω1)e−2η1θ,(2.a)

ϕ(z + 2ω2) = ϕ(z)(−1)m−ne2η2(m−n)(z+ω2)e−2η2{∑m
i=1 ai−

∑n
j=1 bj}

= ϕ(z)(−1)m−ne2η2(m−n)(z+ω2)e−2η2θ,(2.b)

where θ =
∑m

i=1 ai −
∑n

j=1 bj. The function ϕ is periodic only if m = n. In this case it is an
ordinary function on C which covers the curve M . If m = n and θ = 0 then ϕ is a function
on M . If σ is replaced by a function σ′(z) = σ(z) exp(λz), λ ∈ C, then the equation (iii) is
replaced by the equations

(2.c) σ′(z + 2ωi) = −e2ηi+2λωiσ′(z) = −e2η′iσ′(z), η′i = ηi + λωi.

That is these equations appear only as normalisations of the function σ or, if you like, σ
and σ′ determine different but equivalent linear sections. The equation (iv) does not change

12[BH] Borel, Armand and Harish-Chandra, Arithmetic subgroups of algebraic groups, Bull. Amer. Math.,
1961, v. 67, 579–583 and Borel, Armand and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann.
of Math., 1962, v. 75, 485–535.

13[WW] A Course of Modern Analysis, Camb. Univ. Press, 1958
14z = x+ iy serves as the coordinate in C and sometimes other purposes.
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by this. The equations (iii) determine the pasting and do not change the bundle. In the
domain 2xω1 +2yω2, 0 ⩽ x, y < 1 the function σ has only one zero. This is the reason for the
equation (iv).15 In general ϕ determines a linear section Λ = Λ(a1, . . . , am, b1, . . . , bn) for which
it itself appears as a multi-valued section. Two sections Λ and Λ′ = Λ(a′1, . . . , a

′
m′ , b′1, . . . , b

′
n′)

are isomorphic if and only if m− n = m′ − n′, and
a1 + · · ·+ am − b1 − · · · − bn = a′1 + · · ·+ a′m′ − b′1 − · · · − bn′ mod 2πω1Z+ 2πω2Z.

Then the degree of the section is n − m. In my view this description of a linear (one-
dimensional) bundle is the clearest, but for bundles of larger dimension, like those in the
paper of Atiyah, it is frequently necessary to use cohomological methods. The theorems and
the lemmas of Atiyah are fastidious, perhaps because the sets with which one is concerned
are also stacks, although they appear neither in the paper of Atiyah nor here. For him they
are spaces and for us papers with local metrics and with a metric. Here I would like first to
describe the space BunGL(2) following Atiyah.

On an elliptic curve there are two forms of two-dimensional bundles, decomposable bundles,
Φ = Λ1 ⊕ Λ2, and bundles of Atiyah type, thus the others. Let D(m,n) be the set of
Φ = Λ1 ⊕ Λ2 for which the degree deg Λ1 = m of Λ1 and the degree deg Λ2 = n. The set of
bundles of Atiyah type is a union⋃

m∈Z

A(m,m)

 ∪
⋃

m∈Z

A(m+ 1,m)

.
For general curves there are both decomposable bundles and indecomposable bundles. In
the paper of Atiyah the sets of the latter are denoted E(r, d) where r is the rank and d the
degree. Before I describe the bundles I remark that Λ1 ⊕ Λ2 is equivalent to Λ′

1 ⊕ Λ′
2 if and

only if {Λ1,Λ2} = {Λ′
1,Λ

′
2}. Consequently D(m,n) is a two-dimensional complex manifold.

If m = n there is singular curve for which Λ1 = Λ2

In contrast to the arithmetic theory, reduction in the geometric theory is precise. That is
the fundamental domain is described precisely. In the article of Atiyah (Lemma 3), as a first
step and as a consequence of the Riemann-Roch theorem for bundles of larger dimension, it
is shown that for a two-dimensional bundle over an elliptic curve there is a representative

(3) Θ =

(
Λ1 ∗
0 Λ2

)
, deg Λ2 ⩽ 2 + deg Λ1.

Although this is not necessary Atiyah prefers to assume the sufficiency of the sections of a
given bundle, that is that for each point x ∈ M the map Γ(Θ) 7→ Θx is surjective, where
Γ(Θ) consists of the section Θ. For this it is sufficient to replace the bundle Θ by the
bundle Θ′ = Λ ⊗ Θ, where Λ is the appropriate linear bundle. Each conclusion for Θ′ is
also a conclusion for Θ. In general, if a bundle of arbitrary dimension possesses sufficiently
many sections, then it has an upper triangular representative. As a second Λ Atiyah asserts

15The correct condition for the divisor (a1, . . . , an) to be equivalent to (b1, . . . , bn) is described by the
equations

θ = a1 + · · ·+ an − b1 − · · · − bn ∈ 2Zω1 + 2Zω2.

That is, if this equation is valid, thus if there is a λ ∈ C such that the function exp(−λz)ϕ(z) is periodic
with respect to 2Zω1 + 2Zω2. For this it is necessary that −2λωk − 2ηkθ ∈ 2πiZ for k = 1, 2. Let θ = 2ω1.
There are two numbers: for k = 1, −2λω1 − 4η1ω1, and for k = 2, −2λω2 − 4η2ω1. If λ = −2η1 the first
number is 0 and the second 4η1ω2 − 4η1ω2 = 2πi. If θ = 2ω2 the conclusion is similar. Such considerations
are superfluous but comforting.



10 ROBERT LANGLANDS

(Lemma 6′) that if the bundle Θ is indecomposable and if Γ(Θ) ̸= 0, then there it has a
maximal decomposition

(4) Θ ≃


Λ1 ∗ ∗ ∗
0 Λ2 ∗ ∗

0 0 0 Λn

,
such that Λi ⩾ Λ1 ⩾ 1, ΓHom(Λ1,Λi) ̸= 0, i = 2, . . . , n and Γ(Λ1) ̸= 0. At present n = 2
but it is useful to discuss the general case. This is again a consequence of the theorem of
Riemann-Roch.

But the argument of Atiyah that follows is difficult and I want to discuss only those
consequences that are important for us, sometimes postponing explanations, leaving out
those that are not important for us. I use some outmoded concepts. There is in the theory of
Weierstrass a second important function, this function is

(2.d) ζ(z) =
d

dz
lnσ(z) =

σ′(z)

σ(z)
.

It satisfies an additive condition,
(2.e) ζ(z + 2ω1) = ζ(z) + 2η1, ζ(z + 2ω2) = ζ(z) + 2η2.

In the fundamental domain for the group L ⊂ C it has only one pole and this lies at the
point 0. The matrix

(5) M(z) =

(
1 ζ(z)
0 1

)
= exp

(
0 ζ(z)
0 0

)
satisfies a multiplicative condition,

M(z + 2ωi) =M(z)

(
1 2ηi
0 1

)
, i = 1, 2.

Consequently it determines a GL(2)-bundle Π. If Λ is a linear bundle then Λ⊗Π is also a
GL(2) bundle Λ⊗Π and Λ′ ⊗Π are equivalent only if Λ and Λ′ are equivalent ([A], Th. 5).
The degree deg(Λ⊗Π) is equal to 2 deg Λ. The set of such bundles with degree 2m is the set
A(m,m). A more general form of the definition (4) is presented in [A, Th. 5],

(6) Fr = exp




0 ζ(z) 0 0
0 0 ζ(z) 0

0 0 0 ζ(z)
0 0 0 0



,
a matrix of order r. It will be necessary to show that Fr is indecomposable, but we consider
only the group GL(2). It is possible to change the disposition of the poles; multiply on the
left by (

1 h(·)
0 1

)
,

where h(·) is a meromorphic function with poles at 0 and at another arbitrary point, for
which, of course, the sum of the residues is zero.
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To determine the set A(m+1,m) is in one sense more difficult because there is no canonical
choice but in another sense easier. It consists of

(7) F (d) =

(
1 ϕ(z)
0 σ−1(z − d)

)
, ϕ(z) =

σ(z − a1)σ(z − a2)
σ(z − b1)σ(z − b2)

,

where a1, a2, b1, b2 are fixed, a1+ a2 = b1+ b2, a1− a2 ̸= b1− b2 but d is variable. This means
that as a set A(m,m) ≃ A(m,m+ 1) ≃M . It is possible that this description is somewhat
arbitrary, but it is necessary to consider [A] in order to understand that it is unavoidable. I
admit by the way that I found [A] difficult to understand.16

To describe the general conclusions of Atiyah ([A, Th. 6]) is useful and for the present
essay necessary. He describes all indecomposable bundles M of dimension or rank r and
degree d. It is useful to choose first a given line bundle Λ0 = ΛA0 of degree one. This bundle
is given by a chosen point A0. Then a bundle of any degree d is determined: if d = 0 the
bundle is trivial; if d > 0 then there is a section with a unique pole of degree d in the point
A0 but no zero; if d < 0 the zero is replaced by a pole. With these choices, for a given r the
sets E(r, d), which we introduce, are all determined.

Suppose now that d = ar + d′, where 0 ⩽ d′ < r. If a = 0 then we pass directly to the
second stage. If a > 0 then

N = Aa ⊗N ′,

where N ′ is an indecomposable bundle of dimension r′ = r and degree d′. Consequently we
may pass to the second stage and suppose that d′ = d− ar < r′ = r. If d′ = 0 this is the last
stage but if d′ > 0,

N ′ =

(
I ∗
0 N ′′

)
,

where I is the identity matrix of rank s < r′. Let r′′ the rank of N ′′. Then r′′ is less than r′
and the degree d′′ = d′. The precise form of the matrix ∗ is irrelevant. What is important is
just that M ′ is indecomposable. Then the rank r′′ = r − s < r. The initial multiplicity is
novel. Continuing we arrive at the pair (r̃, d̃ = 0), Ñ = Fr̃. For a bundle of higher degree it
is possible to replace (7) by a matrix

(7′)


1 0 0 ϕ(z)
0 1 0 ϕ(z)

0 0 1 ϕ(z)
0 0 0 σ−1(z − d)


The set BunGL(r) is a structure in which there are r steps.

The description by Atiyah of this transformation is different but very instructive. It is useful
to describe it but with some supplementary details. Let E(r, d) be the set of indecomposable
bundles of dimension r and degree d, and let h be the largest common divisor of r and
d. Atiyah describes the map αr,d : E(h, 0) → E(r, d) that is inverse to our transformation.

16These words were written as I began to write the Russian version of this article. They remained correct
even when I finished it two years later and remain so even now after another two years have passed, but I am
growing old.
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Thus he constructs elements of E(r, d), and like us classifies them. The basic elements of his
construction are: (i) αr,0 : Fr → Fr; (ii) αr,d+r(E) : E → A⊗ αr,d(E); (iii) if 0 < d < r, then

αr,d(E) =



1 0 0 ∗ ∗
0 1 0 ∗ ∗

∗ ∗
0 0 1 ∗ ∗
0 0 0

αr−d,d(E)
0 0 0


, E ∈ E(h, 0).(8)

This continues so long as r′ = r − nd < d = d′ + r′. Then we apply (ii) and continue.
In this way for a given r and each d the set E(r, d) is identified with the elliptic curve M
and all steps of the infinite ladder, −∞ < d < ∞, are almost the same. So far we have
introduced insufficient structure in the set BunG = G(F )\GL(n,AF )/G(O). There is a
topological structure but it is useless. A set in BunG is open if and only if its inverse image
in GL(n,AF )/G(O) is open. None the less there exists a decomposition of BunG whose
relation to its topology is largely not important. Namely every bundle is a direct sum of
indecomposable bundles of dimension r1, . . . , rk, r1 + · · ·+ rk = r. It appears that for Hecke
operators the set BunG consists of separate sets D(r1, . . . , rk) according to the unordered
set {r1, . . . , rk}, which is determined by the conjugacy class of the Levi subgroup. So far
the structure that we introduced in the set BunG = G(F )\GL(n,AF )/G(O) is insufficient.
There is a topology but it is useless. A set in BunG is open if and only if its inverse image
in GL(n,AF )/G(O) is open. None the less there exists a decomposition of BunG whose
relation to its topology is in large part not important. Namely each bundle is a direct sum of
indecomposable bundles of dimension r1, . . . , rk, r1 + · · ·+ rk = r. It appears that for Hecke
operators, the set BunG consists of separate sets D(r1, . . . , rk) according to the unordered set
{r1, . . . , rk}, that is determined by the conjugacy class of a Levi subgroup. Let E(r) be the
set of indecomposable bundles of dimension r and Ẽk(r) the symmetrized k-fold product of
E(r) with itself. Then

D(r1, . . . , rk) = Ẽk1(s1)× · · · × Ẽkl(sl),
where {r1, . . . , rk} formed from s1 repeated k1 times and so on. In essence D(r1, . . . , rk) is
the product of the sets

(9)
∞⋃

d=−∞

E(r, d),

where r is given and E(r, d) is the set of indecomposable bundles of dimension r and degree d.
As a topological space this is approximately Z×M = Z×U×U, where U =

{
z ∈ C

∣∣ |z| = 1
}
.

This is also a topological group and its group of characters is U× Z× Z. It is possible to
suppose that it also parametrizes (approximately) the eigenvalues of the Hecke operators.
Keeping this in mind we turn to the hypothesis but first an encouraging remark. According
to Theorem 7 in [A], if χ is a character of the group E(1, 0) then χ determines a function with
values in U on each E(r, d) in the set (9). If z ∈ U, then the second function is ηz : N → zd.
It is therefore possible that there is a simple, rather uncomplicated, description of the full set
of eigenfunctions of the Hecke operators. We shall give this for r = 2.
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For an elliptic curve, g = 1 and the group Γ is generated by elements A, B, ABA−1B−1 =
1 ̸= 0 ∈ Z. According to the conjecture, the eigenfunctions of the Hecke operators for GL(n)
correspond to the representations of Γaut of dimension n. The parabolic eigenfunctions
correspond to irreducible representations. Let ρ be such a representation. Then ρ(1) = ζ ∈ U
and

ρ(A)ρ(B)ρ(A)−1ρ(B)−1 = ζI.

Since det(ζI) = 1, ζ is a root of unity. Let k be its order. In addition ρ(B) and ζρ(B) are
similar matrices. Let k|n be the order of ρ(B). The simplest example is

A = λ


0 1 0 0 0
0 0 1 0 0

1 0 0 0 0

, B = µ


1 0 0 0
0 η 0 0
0 0 η2 0

0 0 0 ηk−1

.
However in this article I consider only GL(2).

In the following three sections I consider the Hecke operators for the group GL(2). The
last section is the most important, the most remarkable but the first and the second sections
contain necessary preparation.

V. The Hecke correspondence

For each point x ∈M there is a commutative algebra Hx, determined by correspondences
and a measure. We begin with the group GL(2) and an elliptic curve and for this group and
this curve the measure will be evident. Thus I postpone its general definition, hoping to find
a future occasion to explain this. Similar concepts are introduced in [AB, §9]. The algebra Hx

is generated by two dual modules. One of these is easy. There is, of course, an obvious local
coordinate z on M = C/L, but in order to introduce Hecke it is necessary to specify a point
x ∈M and to use an arbitrary coordinate zx, zx(x) = 0 because x is an essential parameter
of the operator. For a given point there are two basic operators, two basic double cosets
modulo G(Ox):

∆1 = G(Ox)

(
z−1
x 0
0 1

)
G(Ox); ∆2 =

(
z−1
x 0
0 z−1

x

)
G(Ox).

In order to determine the two corresponding operators it is necessary to introduce a
metric µ on BunG or G(AF )/G(OF ). A general definition of the measure is difficult, but for
the group GL(2) there will be an obvious choice, which we use as temporary definition. The
second operator is simple

Θ2 = Θ2,x : f → f ′, f ′(g) = f

g(z−1
x 0
0 z−1

x

),
but the first operator is

(10) Θ1 = Θ1,x : f → f ′, f ′(g) =

∫
h∈g∆1/G(Ox)

f(h) dh.

The first integral is over a point and the measure is such that the measure of a point is equal
to 1. We describe the domain of integration for the second operator Θ∗

2. This operator is not
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hermitian but if we add a correction Θ∗
2 the algebra generated is commutative and hermitian

closed.
We consider various cases: (a) g ∈ D(m,n), m− n ⩾ 2; (b) g ∈ D(m,n), m− n = 1; (c)

g ∈ D(m,n), m − n = 0; (d) g ∈ A(m,n), m − n = 1; (e) g ∈ A(m,n), m − n = 0. It is
important to remark that the complex dimension is dimD(m,n) = 2 and that dimA(m,n) =
1. Then corresponding to these five possibilities the element h in (10) is to be found in

(a) D(m+ 1, n) ∪D(m,n+ 1);
(b) D(m+ 1, n) ∪D(m,n+ 1) ∪ A(m,n+ 1), where m = n+ 1;
(c) D(m+ 1, n) ∪ A(m+ 1, n), where m = n;
(d) D(m,n+ 1) ∪ A(m,n+ 1) where m = n+ 1;
(e) D(m+ 1, n) ∪ A(m+ 1, n) where m = n.

The case m = n, m = n ± 1 is underlined because it corresponds to a bundle of Atiyah
type. There is another way to express this conclusion. If the support of the function f
is in (a) D(m,n), m − n ⩾ 2; (b) D(m,n), m − n = 1; (c) D(m,n), m − n = 0; (d)
A(m,n), m− n = 1; (e) A(m,n), m− n = 0 then the support of the function f ′ in (10) lies
correpondingly in (a) D(m+1, n)∪D(m,n+1); (b) D(m+1, n)∪D(m,n+1)∪A(m,m); (c)
D(m+1,m)∪D(m,m)∪A(m+1,m); (d) D(m,m)∪A(m,m); (e) D(m+1,m)∪A(m+1,m).
This is somewhat finicky but I am not completely certain.

I begin with the description of the representatives of the left-contiguous classes in

(11) G(Ox)gG(Ox), g =

(
z−1
x 0
0 1

)
.

They are given by multiplying g on the left by the matrices

(12)
(
1 0
0 1

)
,

(
a 1
1 0

)
, a ∈ C.

This gives

(13)
(
z−1
x 0
0 1

)
,

(
z−1
x a 1
z−1
x 0

)
, a ∈ C.

It is necessary to recall that in these two equations C ⊂ Ox. If λ is a scalar, that is λ ∈ IF =
A×

F , and f1(g) = f(λg), then f ′
1(g) = Θ1f1 = f ′(λg). This allows some simplifications in the

calculations.
It is easy to describe the elements of G(Fx) and even the elements of G(Fx)/G(Ox) because

in principle it is necessary to offer an infinite set of coordinates, but it is possible to take the
identity matrix almost anywhere. These coordinates I do not write explicitly.

If we begin with g ∈ D(m,n) then we can take:

g =

(
z−m
u 0
0 1

)
, m ̸= n = 0;

=

(
zu/zv 0
0 1

)
, m = n = 0.
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because the Hecke operator commutes with multiplication on a linear bundle. We multiply g
on the right by the matrix (13). If m ̸= 0 this yields17

(14)
(
z−m
u z−1

x 0
0 1

)
,

which belongs to D(m+ 1, 0), and

(14′)

(
z−m
u z−1

x a z−m
u

z−1
x 0

)
.

All choices of a ̸= 0 yield equivalent bundles. If a ̸= 0, the bundle belongs to D(m, 1). We
take a = 1 and rearrange the columns. Then (14′) is equal to

(14′′) z−1
x

(
z−m
u zx 0
0 1

)(
1 z−1

x

0 1

)
.

If f ∈ F we can multiply on the left by (
1 f
0 1

)
in order to obtain

(15) z−1
x

(
z−m
u zx 0
0 1

)(
1 z−1

x + fzmu z
−1
x

0 1

)
.

There are three cases: m ⩾ 2, m = 1, m = 0. We described in the theory of Weierstrass all
meromorphic functions on M . If m ⩾ 2, we can choose a function f such that z−1

x +fzmu z
−1
x ∈∏

xOx even if u = x. Consequently the bundle (15) is the decomposable bundle

(15′)

(
z−m
u 0
0 z−1

x

)
in D(m, 1). The case m = 1,

(16)

(
z−1
u z−1

x z−1
u

z−1
x 0

)
∼

(
z−1
u z−1

u z−1
x

0 z−1
x

)
,

and the case m = 0 are different. If g1, g2 ∈ G(AF ), then g1 ∼ g2 expresses equality in BunG.
If m = 1, let u+ x and 2v be linearly equivalent. We consider

(16′) zv

(
z−1
u z−1

u z−1
x

0 z−1
x

)
.

17The description of an element in BunG or even in G(A)/G(OF ) is difficult because a large number of
coordinates are redundant. Moreover the representative of an element in BunG in G(A)/G(OF ) is not unique.
Good will and the attention of the reader are necessary. For example, if u ̸= x then rather than (14) it is
better to write (

z−m
u 0
0 1

)(
z−1
x 0
0 1

) ∏
y ̸=x,u

(
1 0
0 1

)
=

(
z−m
u 0
0 1

)(
z−1
x 0
0 1

)
,

and instead of (14′) (
z−m
u 0
0 1

)(
z−1
x a 1

z−1
x 0

)
.
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It is necessary to know when the bundle (16′) is isomorphic to (5). If u = x = v then this is
clear. Let u ̸= x and let Λ1 = (zv/zu), Λ2 = (zv/zx). Then Hom(Λ1,Λ2) = 0. According to
[A, Lemma 5] this implies that the bundle (16′) is decomposable. It is possible to verify this
directly because the matrix in (16′) is equal to(

1/2 0
0 1

)(
z−1
u z−1

u

0 1

)(
1 z−1

x

0 z−1
x

)(
2 0
0 1

)
∼
(
1 −1
0 1

)
(
z−1
u z−1

u

0 1

)(
1 z−1

x

0 z−1
x

)
where the first matrix on the right lies in GL(2, F ). This matrix lies in GL(2,AF ) but outside
the point {u, x} it lies in G(Ow) We consider the factors in u and x separately:(

1 −1
0 1

)(
z−1
u z−1

u

0 1

)
=

(
z−1
u z−1

u − 1
0 1

)
=

(
z−1
u 0
0 1

)(
1 1− zu
0 1

)
∼
(
z−1
u 0
0 1

)
;(16.a) (

1 −1
0 1

)(
1 z−1

x

0 z−1
x

)
=

(
1 0
0 z−1

x

)
.(16.b)

If m = 0 we obtain

(17)
(
zuz

−1
v z−1

x 0
0 1

)
,

(
zuz

−1
v z−1

x a zuz
−1
v

z−1
x 0

)
.

The first bundle lies in D(1, 0). If a = 0, the second bundle is also in D(1, 0) = D(0, 1).
The other cases, for which a ̸= 0, yield a single bundle, given by

(17′)

(
zuz

−1
v z−1

x zuz
−1
v

z−1
x 0

)
∼

(
zuz

−1
v zuz

−1
v z−1

x

0 z−1
x

)
,

because (
αa β
γ 0

)
=

(
a 0
0 1

)(
α β
γ 0

)(
1 0
0 a−1

)
, a ∈ C×.

If u = v, (
z−1
x 1
z−1
x 0

)
∼

(
1 z−1

x

0 z−1
x

)
∼
(
1 0
0 z−1

x

)
.

If u ̸= v, let v−u ∼ x−y. There exists a function f with zeros in y, v and poles in x, u. This
means that Hom(Λ1,Λ2) ̸= 0 if Λ1 = (zu/zv), Λ2 = (1/zx) and that (17′) is indecomposable.
Λ2 = (1/zx) and it is possible to conclude that (17′) is indecomposable.18

(17′′)

(
zuz

−1
v zuz

−1
v z−1

x

0 z−1
x

)
∼ zuz

−1
v

(
1 z−1

x

0 z−1
y

)
.

If 1 ̸= y there is a function f ∈ F such that at x1 it behaves like f ∼ 1/zx1 but that at x
its behaviour is given by f ∼ −1/zx, where f is holomorphic in the remaining points and
f(y) = 0. We multiply on the left by the matrix(

1 f
0 1

)
18Warning (April, 2020): this statement is unclear and has to be examined at some other time.
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in order to obtain

(18) zuz
−1
v

(
1 z−1

x1

0 z−1
y

)
= zuz

−1
v Θy, x1 ̸= y.

The matrix Θ appears in (4). Another representative is the bundle

(18′) Θ ∼

(
1 z−2

w

0 z−1
w

)
, w ∼ v + y − u ∼ x.

This equivalence is explained in [A]. I admit that my confidence in these calculations is
limited. I am not comfortable with the set G(F )\G(AF )/G(OF ).

In the case (d) we choose the representative (18′) of the sets A(1, 0) but with a change of
notation, w becomes u. Multiplying by the matrix (13) we obtain

(19)

(
z−1
x z−2

u

0 z−1
u

)
,

(
z−1
x a+ z−1

x z−2
u 1

z−1
u z−1

x 0

)
∼

(
1 z−1

x a+ z−1
x z−2

u

0 z−1
u z−1

x

)
.

If u = x the first bundle is equal to

(19′) z−1
x

(
1 z−1

x

0 1

)
,

which is of type A(1, 1). If u ̸= x we consider

(19′′)
(
1 f
0 1

)(
z−1
x z−2

u

0 z−1
u

)(
1 c
0 1

)
=

(
z−1
x fz−1

u + z−2
u + cz−1

x

0 z−1
u

)
,

where c ∈ C and f ∈ F . We choose f , with poles only in x and u, such that the pole in u is
removed. Then it is also possible to remove the terms of lower order in the upper right entry
in order to obtain

(19′′′)

(
z−1
x 0
0 z−1

u

)
of type D(1, 1).

For the matrices of second type in (19) there are several possibilities. Before we examine
them it is necessary to explain the theory of Atiyah. This does not propose a clear recipe for
deciding when a given bundle is decomposable or not. Consider for example the bundle

Θ =

(
1 b
0 d

)
, d ∈ IF , b ∈ AF .

Let
Θ1 =

(
1
0

)
, Θ2 =

(
d
)
.

We suppose that deg(Θ2) > 0 and that Θ ≃ Λ1 ⊕ Λ2 is decomposable. If Λi ̸= (1, 0)tr, i = 1,
2, then Λi → Θ2 is surjective and deg Λi ⩾ degΘ2. Consequently

degΘ2 = deg Λ1 + deg Λ2 ⩾ 2 degΘ2

and this is impossible. In other words, either Λ1 or Λ2 is equal to, rather equivalent to (1, 0)tr.
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Let Λ1 = (1, 0)tr. Then

(20)
(
Λ1 Λ2

)
= Θg, g =

∏
v∈M

gv ∈ G(OF ), gv =

(
1 βv
0 δv

)
, βv ∈ Ov, δv ∈ O×

v ,

and

(21) Λ2 = Λ⊗
(
ϕ1

ϕ2

)
, ϕi ∈ F, i = 1, 2,

where Λ is a linear bundle and (b+ βxd)/δxd = (ϕ1/ϕ2)x a meromorphic function of x in M .
We shall use this conclusion in order to establish the indecomposability of various bundles. It
appears to me somewhat clumsy and above all inappropriate if the genus g > 1, but there is
presently no alternative.19

Consider the matrix

(22) Θ =

(
1 z−1

x a+ z−1
x z−2

u

0 z−1
u z−1

x

)
in (19). If a = 0 then this bundle is equivalent to

(23.a)

(
1 z−3

x

0 z−2
x

)
, b = z−3

x , d = z−2
x , u = x;

or

(23.b)

(
1 z−1

x z−2
u

0 z−1
u z−1

x

)
, b = z−1

x z−2
u , d = z−1

x z−1
u , u ̸= x.

where (b+βvd)/δvd, v ∈M , has a single pole at the point u. But there is no such meromorphic
function. Consequently (21) is indecomposable.

If a ̸= 0 it is better, perhaps necessary to write (19) precisely as

(24)

(
1 z−1

x a+ z−1
x

0 z−1
x

)(
1 z−2

u

0 z−1
u

)
.

But there is again for (b + βvd)/δvd a single pole at the point u. Consequently (24) is
indecomposable. According to [A] there are four indecomposable bundles with a given
determinant of even degree. Thus if x is given, four u’s yield a given bundle.

The case (e) is the easiest. Since Hecke operators commute with respect to tensor products
with line bundles, it is sufficient for a given x to consider

(25)
(
1 z−1

x

0 1

)
∈ A(0, 0).

The transform of this point is given by two types of points:(
z−1
x z−1

x

0 1

)
=

(
z−1
x 0
0 1

)(
1 1
0 1

)
∼
(
z−1
x 0
0 1

)
∈ D(1, 0);

19I comment here, when trying to compose an English version of the original Russian text, that my
command of the mathematics was much greater two years ago than it is now! I thank Anthony Pulido for
drawing my attention to some of the consequent confusion.
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and (
z−1
x a+ z−2

x 1
z−1
x 0

)
.

But (
1 −a
0 1

)(
z−1
x a+ z−2

x 1
z−1
x 0

)
∼

(
z−2
x 1
z−1
x 0

)
∼

(
1 z−2

x

0 z−1
x

)
∈ A(1, 0).

Although the proofs look unsatisfactory, these conclusions appear convincing. We explain.
We first present the results of our reflections. In particular, we recognize that the dimension

dim
(
g∆1/G(Ox)

)
, although this is a subset of the set G(AF )/G(OF ) or of its image in BunG,

may contain more than one element. Consequently the domain of integration in (9) is a
finite set. In general, although I do not explain this here, the measure for this integral is
determined by a Pfaffian form, but for a finite set it is so determined that the measure of
each point is 1. Thus, we may postpone the introduction of the general theory of this form
until later.

We consider five cases (a),. . . ,(e). For each case we use the relation,
Θifz(g) = f ′

z(g), fz(g) = f(zg), f ′
z(g) = f ′(zg), f ′(g) = Θif(g), i = 1, 2, z ∈ A×

F .

That is the maps Θi and f → fz commute.
(a) If m− n ⩾ 2 then the image of the matrix(

z−m
u 0
0 z−n

v

)
consists of two points

(26)

(
z−m
u z−1

x 0
0 z−n

v

)
,

(
z−m
u 0
0 z−n

v z−1
x

)
.

(b) If m− n = 1 it consists of (26) and, according to (16′),

z−m
u

(
1 z−1

x

0 1

)
∈ A(m,m),

if the divisor m · u− n · v is linearly equivalent to the divisor x.
(c) If m− n = 0 then the image consists again of (26) but now, according to (18),

zuz
−1
v

(
1 z−1

x1

0 z−1
y

)
, v − u ∼ x− y,

if u ̸= v and

g = z−k
v

(
zu/zv 0
0 1

)
Θ.

The notation is somewhat modified with respect to (18). I remark that u = v does
not give more than (26).

(d) In (19) u runs over M and the appropriate domain is determined by Θ1,(
1 z−2

u

0 z−1
u

)
,
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and the domains, that is the domain of definition of the operator Θ1 together with
the domain of definition of A(1, 0) are given by (19). From the first elements of the
set (19) we obtain first, from u = x, the point (19′) in A(1, 1). From the other u we
obtain the points (19′′) in D(1, 1). At the first glance at (19′) it seems that there is
only one missing point, u = x, but D(1, 1) is two-dimensional! The second elements
of the set (19) are indecomposable, with determinant z−1

u z−1
x . According to the paper

[A] there are precisely four points in A(1, 1) with a given determinant. In A(1, 0)
there is only one. That is the correspondence A(1, 0)→ A(1, 1) is a correspondence
of type 4→ 1.

(e) For a given x a general element of the set the definitions are given by matrices

(27) zuz
−1
v

(
1 z−1

x

0 1

)
∈ A(0, 0),

thus as a bundle (27) that is independent of x. The image is either

(27′) zuz
−1
v

(
z−1
x 0
0 1

)
∈ D(1, 0),

or

(27′′) zuz
−1
v

(
1 z−2

x

0 z−1
x

)
∈ A(1, 0).

For A(m,m), m ̸= 0, zuz−1
v is replaced by z−m

u . The correspondence A(0, 0)→ A(1, 0)
is bijective.

VI. Hecke operators

Although BunG is difficult to define as a topological space even for the case G = GL(2)
over an elliptic curve, it is simple as a differential geometric space, at least for this pair. We
consider this case now. For it the Picard variety is given as a product of two circles with Z.
According to the paper [A] the set BunG is given as the union

D =

⋃
m>n

D(m,n)

 ∪
{⋃

m

D(m,m)

}
,

therefore as the symmetric product of Pic(M) with itself, and
A = · · · ∪ A(−1,−1) ∪ A(−1, 0) ∪ A(0, 0) ∪ A(1, 0) ∪ A(1, 1) ∪ A(2, 1) · · ·

The terminology here is somewhat arbitrary. We shall introduce a metric on this space later;
it will be essentially a product of Haar measures, thus a Lebesgue measure µ. The Hecke
operators form an algebra of bounded commuting operators on L2(µ) closed with respect to
Hermitian conjugacy.

I stress that dimA = 1, although dimD = 2, that L2(µ) = L2(µ,D)⊕ L2(µ,A) and that
continuous functions with compact support are dense in L2(µ). It is amazing and initially
a cause of anxiety that these two spaces are invariant with respect to Hecke operators. I
explain. This is evident for Θ2,x. The operator Θ1,x may be defined as(

DD DA
AD AA

)
.



ON THE ANALYTIC FORM OF THE GEOMETRIC THEORY OF AUTOMORPHIC FORMS 21

It is necessary to establish that DA = 0, AD = 0, that is that they are zero as operators from
L2(A) to L2(D) and, in the same way, from L2(D) to L2(A). These two equations express
what I call the dominance of the diagonal blocks. It is possible that the principle of which
they are examples is generally valid. If so, that is the principal conclusion of this paper.

According to (10), with Θ1,x it is necessary to consider first;
(i) for a given g ∈ D(m,n) the set g∆1/G(Ox) ∩ A;

and then
(ii) for a given g ∈ A(m,n) the set g∆1/G(Ox) ∩D.

These connections determine or limit the carrier f ′ in (10). Thus they define the support,
perhaps not small, of the function (10) in this or that set. The kernel of the operator ∆1,x—a
form of line or column matrix that parametrizes the set D ∪ A. Consequently this kernel is
formed by four blocks, diagonal blocks (D,D), (A,A) and off-diagonal blocks (D,A), (A,D).
Our present concern is the off-diagonal blocks.

In the first case, for which the correspondence D→ A carries D to A and transfers functions
from A to D, the set of appropriate elements in the block is empty if m − n ≠ 0, ±1. If
m = 1, n = 0 this is essentially (16′) if u = x. More precisely, the set consists of

Λ

(
1 z−1

x

0 1

)
,

where Λ is an arbitrary linear bundle. Thus if f is continuous with support in A(n, n), the
function f ′ in (10) as a function on D is carried by{

Λ

(
z−1
x 0
0 1

) ∣∣∣∣∣ Λ linear bundle

}
.

That is, its carrier is a subset of this set. But such a function as a function in L2(BunG)
is the null function, because this set as a complex manifold is one-dimensional while D is
two-dimensional. The general case m = n+ 1 is exactly the same. However this argument is
unsatisfactory. The block AD is equal to 0 for two reasons: (i) there is no natural way of
restricting an L2-function to a space of lower dimension; the Hecke operators are hermitian.
Consequently it is decreed: this block is zero. But this yields the correct conclusions and a
convincing theory. It represents also the essential conclusion of the following remarks.

If m = n we suppose that m = n = 0; then the class of the bundle (17′′) is determined by
the point y, because v − u ∼ x− y and x is given. That is the image of the set A(0, 0) and
generally the image of A(m,m) in D is one-dimensional. Consequently DA = 0.

In the second case it is obligatory that m− n = 0, ±1. If m = 1, n = 0 the intersection
g∆1/G(Ox) ∩D is given by (19′′′) with an arbitrary u ∈ X. That is, the dimension of the
intersection is 1. Consequently, it cannot carry a non-trivial L2 function. If m = n = 0 the
very same conclusion is a consequence of the equation (27′).

It is possible that this independence of L2(µ,D) and L2(µ,A) is what distinguishes the
L2 theory from the sheaf theory in [G].

VII. Eigenvalues and eigenfunctions of Hecke operators

Before we consider the spectrum of the Hecke operators, we turn to the ladder E(r, d),
d = −∞, . . . ,∞ for r = 2. We do not consider the case of general r. Both the specific case
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and the general case are considered in [A]. For r = 2, the ladder is
(28) . . . ,A(−1,−1),A(0,−1),A(0, 0),A(1, 0),A(1, 1),A(2, 1), . . .
If Λ is a linear bundle of degree 1 then Θ 7→ Λ⊗Θ is a homomorphism such that

A(j, j) 7→ A(j + 1, j + 1)

and
A(j, j − 1) 7→ A(j + 1, j),

but the Hecke operator Θ1 is such that
A(j, j) 7→ A(j + 1, j), A(j, j − 1) 7→ A(j, j).

I begin with a correction or better with a more precise form of the theorem [A, Th. 6] and
of the following theorems with a correction or, rather, a more precise form of the theorem
[A, Th. 6] and the following theorems, that is degA = 1, where A is the linear bundle of
this theorem. Let Picn(M) be the set of linear bundles of degree n. I prefer to formulate
[A, Lemma 16, Th. 5,6,7], above all Th. 6, in the following form. There is a bijective map
A↔ Pic(M) such that:

(i) if Λ1 is a linear bundle and Θ↔ Λ then Λ1 ·Θ↔ Λ1 · Λ;
(ii) the bundle F2 in Th. 5, or in the definition (6), corresponds to the trivial bundle;
(iii) if Θ is given by (4) and Λ = (σ−1) then Θ↔ Λ.

Consequently, we can identify A with Pic(M), but this identification is artificial, and D with
the symmetric power of Pic(M) with itself. In addition to that each unordered pair (χ1, χ2)
of unitary characters defines a function

(29)
(
α 0
0 β

)
→ χ1(α)χ2(β) + χ2(α)χ1(β) α, β ∈ Pic(M)

on D. We show that these functions yield all eigenfunctions of the Hecke operators, in the
sense of this theory, with support D and that the eigen class of the function (29) at the
point x is

(30)

(
χ−1
1 (x) 0

0 χ−1
2 (x)

)
for all x in M . It is sufficient to show that all these functions are eigenfunctions, because it
is clear that they yield the spectral decomposition. I recall that the eigenfunction determines
for each point x a semi-simple, even unitary, eigen class in GL(2,C), namely the determinant
with Θ2, but this is obvious, and the trace with Θ1.

We confirm this first for D, postponing consideration of the set A. There are again two
essential cases:

g =

(
z−m
u 0
0 1

)
, m ̸= n = 0; g =

(
zu/zv 0
0 1

)
, m = n = 0.

I remark that z−m
u and zu/zv represent the divisors m · u and v − u. From (14) and (14′′) we

conclude that if m ̸= 0, ±1 the function multiplied by χ1(z
−1
x ) + χ2(z

−1
x ) in the point g, thus

(30.a) χ1(α)χ2(β) + χ2(α)χ1(β),



ON THE ANALYTIC FORM OF THE GEOMETRIC THEORY OF AUTOMORPHIC FORMS 23

is replaced by the sum20

χ1(α)χ1(z
−1
x )χ2(β) + χ2(α)χ2(z

−1
x )χ1(β) + χ1(α)χ2(β)χ2(z

−1
x ) + χ2(α)χ1(β)χ2(z

−1
x ),

which is equal to the product{
χ1(α)χ2(β) + χ2(α)χ1(β)

}{
χ1(z

−1
x ) + χ2(z

−1
x )
}
.

If m = 1 such a conclusion follows from the equations (14) and (16.a) with (16.b), rather
from (25). For m = 0 the argument is the same. It is evident that the function (30.a) yields
a full set of eigenfunctions on D.

We now consider A. The combinatorial analysis of this case is somewhat complicated.
The eigenfunction is determined by the eigen conjugacy class, thus for each point in M it is
necessary to introduce two eigen numbers. For D we use two independent characters, but for
A two independent characters are not available.

Let L be the set of linear bundles and Lm those whose degree is equal to m. Then,
according to [A], A(m,m) = {Λ⊗F2} and A(m+1,m) is the set

{
Λ⊗ F (d)

}
, where Λ ∈ Lm,

and where F (d) is one of the matrices (7), given but none the less arbitrary. In addition
Λ1 ⊗ F (d) ∼ Λ2 ⊗ F (d) if and only if Λ2

1 ∼ Λ2
2. It will be better to explain the consequences

of this immediately.

Lemma 1. The correspondence ∆1 : A(j, j)→ A(j + 1, j) is four-to-one, but the correspon-
dence ∆1 : A(j, j − 1)→ A(j, j) is one-to-four.

This is a consequence of three circumstances: (i) ∆1 commutes with multiplication by a
linear bundle; (ii) on A(j, j) the determinant is four-to-one; (iii) on A(j, j+1) the determinant
is mutually single-valued. The first assertion is obvious and the other is established in [A,
Th. 7]. For example, even if in the matrix(

z−1
x z−2

u

0 z−1
u

)
=

(
z−1
x 0
0 1

)(
1 z−2

u

0 z−1
u

)
the class of the second factor is not changed by the replacement

Λ

(
1 z−2

u

0 z−1
u

)
, Λ2 ∼ 1,

the class of the second factor in (19′) does change if Λ is not trivial. The best way of
parametrizing the elements in A is the following:
(i) first, one parameter is the degree of the determinant; (ii) If the degree is odd then this
determinant itself represents the second parameter; (iii) if the degree is even, then this element
is equal to ΛF2, where F2 is given by (6), and this second parameter is Λ. Consequently the
parameter is given by the degree and a linear bundle, and the first element is superfluous.

The first operator of Hecke Θ1 increases the degree by one. The determinant is multiplied
by Λ = (z−1

x ). According to the lemma, on A(m,m+ 1) whose image is given by the Hecke
correspondence in the ratio 1 : 4, and on A(m,m) where the ratio is 4 : 1.

20Unfortunately the notation, χ(z−1
x ) = χ−1(x) is bad. I hope that this is acceptable! The choice was

made in (30).
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A given character χ of the group Pic(M) is determined by a function f ′
χ on the set

(31) Aeven =
∞⋃

m=−∞

A(m,m) =
{
Λ⊗ F2

∣∣ Λ ∈ Pic(M)
}
,

namely, f ′
χ : Λ⊗ F2 7→ χ(Λ). If χ is trivial on

{
Λ ∈ Aeven

∣∣ Λ2 = 1
}

then there is a χ̃ such
that χ(Λ) = χ̃(Λ2). Let the function f ′

χ be an extension of fχ to A such that f ′
χ(Λ) = χ̃(det Λ).

If χ is not such, then f ′
χ is equal to zero on Aodd, the supplementary set to Aeven in A,

(31.a) Aodd =
∞⋃

m=−∞

A(m,m+ 1).

These functions form a full set of eigenfunctions of the Hecke operators with support
in A. More precisely, S0 the space of functions on A is formed from four subspaces. The
first S0 consists of those functions f such that f(Λ ⊗ Θ) = f(Θ) if degΘ is even and
Λ2 = 1, but if degΘ is odd there is no such condition. The function is arbitrary on Aodd,
but continuous or square-integrable according to the circumstances. There are three more
subspaces, Si, i = 1, 2, 3. Let χi, i = 1, 2, 3 be the non-trivial characters of the group
Pic2(M) =

{
Λ ∈ Pic(M)

}
, where Λ2 = 1. I observe that the order of this group is four and

that the square of each Λ ∈ Pic2(M) is trivial. Let Si be the set of those functions f for
which f(ΛΘ) = χi(Λ)f(Θ), Λ ∈ Pic2(M) and f(Θ) = 0 if degΘ is odd. For the theorem of
completeness, it is necessary to demand that the square, rather the absolute value, of these
functions be integrable, but sometimes other conditions are appropriate, for example, for the
description of the eigenfunctions and eigen conjugacy classes of the Hecke operators. The
following lemma is an immediate consequence of the first lemma. The third statement is a
consequence of the equation (32.a)

Lemma 2. (a) On each space Si, i = 1, 2, 3 the operator Θ1 is null. (b) Each space Si,
i = 0, 1, 2, 3 is invariant under Θ2. (c) All the eigenfunctions appear in A with multiplicity
one.

Consequently for i = 1, 2, 3 and all x ∈M the form of the eigen class is

(32)
(
αx 0
0 −αx

)
, α ∈ C, |α| = 1,

thus its trace is zero. Indeed, the eigenfunction f for Si, i = 1, 2, 3 is such a function
that f = 0 on Aodd and that f(ΛΘ) = χi(Λ)f(Θ) if Λ ∈ Pic2(M). The full set of these
eigenfunctions is formed by the restrictions to the set Aeven of those functions ΛF2 → χ(Λ)
for which the restriction of the character χ to Pic2(M) is equal to χi. Consequently21

(32.a) αx = ±
√
−f(z−1

x ).

21When I first encountered this question, I was not aware of the complications, insignificant but important,
arising from this description. The function f is single valued, but the function αx does not appear to be
so always. What we can and must do is to choose it to be such that it is single-valued on one of the three
double coverings M ′ of the curve M . Then it is clear the eigenfunctions form a complete orthogonal basis. I
hope that this brief explanation is adequate.



ON THE ANALYTIC FORM OF THE GEOMETRIC THEORY OF AUTOMORPHIC FORMS 25

The sign does not affect the conjugacy class (32). We may choose the square root in a
continuous fashion and then determine it globally up to a sign.22 We shall return to a proof
of the third assertion in §XI.

The remaining space is formed from functions of the determinant, Θ→ f(detΘ). Which
of these functions is an eigenfunction of the Hecke operators? Let ρ(Λ), Λ ∈ Pic(M), be
equal to 1/2 if deg Λ is even and 1 if deg Λ is odd. Then the eigenvalues Θ1,x and Θ2,x are
given as ρχ, where χ is a character of Pic(M). The eigenvalues Θ1,x and Θ2,x are equal to
2χ(x), χ2(x), and the eigen conjugacy class by the matrix

(33)
(
χ(x) 0
0 χ(x)

)
.

The combinatorics here are somewhat unusual. I underline that it appears that the multiplicity
of each conjugacy class in L2(A) is one. But these supplementary conjugacy classes appear
also in L2(D). This appears to me as somewhat astonishing.

There is one point that is necessary, but there are others to underline as useful to remember.
The set of characters of the group Pic(M) is a union of sets of pairs {χ, ηχ}, where η(Λ) =
(−1)deg Λ. Each pair is associated to an eigen class.

I remark also, that it is extremely difficult to distinguish eigenfunctions, eigen points and
eigenvalues. There is an arbitrary choice, unclear in the first, but not in the others. It is
important to distinguish their properties, but not easy.

Lemma 3. This construction is injective.

The trace of the matrix (32) is 0 for all x. For the trace of classes lying in the principle series,
thus attached to a pair of characters of Pic(M), this is impossible. Thus it is sufficient to
consider the classes attached to Si, i = 1, 2, 3. Then the trace is uniformly zero. Consequently
only the determinant is relevant here. But according to the equation (32.a) the determinant
is equal to f 2(zx). But the admissible functions are such that, if f1, f2 is admissible and
f1 = ±f2 everywhere, then f1 = ϵf2 everywhere with a constant ϵ.

The final theory will be a theory for reductive groups. Thus it is possible that the
group GL(2) leads to confusion. We therefore consider briefly the group SL(2), for which
the parabolic spectrum is finite. It is probable that this is correct for all reductive groups.
We did not consider this group and its Hecke operators, but BunSL(2) ⊂ BunGL(2) and their
eigenfunctions are obtained by restriction. I have still not verified that the appearance
of dominant diagonal blocks23 is justified for multiplication, for all Hecke operators, and
for SL(2), in particular for operators determined by the matrix(

z−1
x 0
0 zx

)
.

Nevertheless I use them. The restriction of each space Si, i = 0, 1, 2, 3, to SL(2) is
one-dimensional. Thus the parabolic spectrum—rather the parameters for the parabolic
spectrum—of the group SL(2) consists of four pieces, each parametrized by Z2 (or classes).24

One of these pieces (or classes) is also parabolic. I am inclined to think that for all semi-simple
22It is extremely difficult to distinguish eigenfunctions, eigen classes and eigenvalues. There is an arbitrary

choice, unclear for the first but not for the second.
23Thus the equality AD = DA = 0.
24In the original Russian text a linguistic confusion was introduced. I wrote четырехразмерен rather than

объединение четырёх одномерных классов, то есть.
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groups the parabolic spectrum is finite, but I still do not know how to count it, at least not
in general.

Before we turn to the fundamental question there are some simple remarks. If two characters
χ1, χ2 are such that the coupled functions f1 = f2, fi : ΛF2 → χi(Λ) yield the same eigen
conjugacy class (31.a), thus χ1(z

−
x ) = ±χ2(x

−1) everywhere, then f1 = f2. In addition
Λ → detΛF2 yields a natural covering of degree four. It is perhaps unimportant, but for
i = 1, 2, 3 the periods of the conjugacy class (32) are ω1 and ω2.

Periods and functions. Before we conclude this section, I would like to make some evident
small observations, because what confuses me is in the final analysis related to important
parts of the theory that are usually overlooked by the perceptive authors of the paper [AB].
The curve M is given by the lattice L = 2ω1Z+ 2ω2Z, thus its points are given by C/L. But
the functions, connections, and so on are given as C/L̃, where L̃ = 2η1Z + 2η2Z. But we
meet above not only these parameters but also those that are given by C/2L̃ because there
is a two-dimensional determinant that appears in §IX for other reasons. This last possibility
was not mentioned in [AB].

VIII. Connectivity and curvature

The theorem of Atiyah-Bott is described in the following section, but in order to establish
this theorem they need some fundamental results taken from global differential geometry that
were unknown to me. It is possible that readers will be aware of them, but more frequently
they will know no more than I. I prefer therefore to explain them here, but only those that are
necessary. The matter is such that we need to be familiar not only with the basic definitions
of differential geometry but need also some experience with their use.

In [AB], before describing the theorem, the authors introduce the bundle Q that I want
to describe now for the curve M . In the words of [AB] “let Q→M be a U(1)-bundle with
Chern class 1 endowed with a fixed harmonic or Yang-Mills connection. If we normalize the
metric on M so that it has total volume 1 the curvature25 of this harmonic connection on Q
is −2πiω, where ω is the volume form on M . The universal covering M̃ → M is of course
a flat π1(M)-bundle, so that the fibre product Q×M M̃ is a U(1)× π1(M)-bundle over M
with connection still having curvature −2πiω. In particular this connection A is a Yang-Mills
connection. . . ” The assertion that the Chern class is equal to 1 means that the section has
only one zero, rather than a pole. Although these assumptions and these assertions are clear
and familiar to a geometer, this is not so for me. For me and for some other readers it will be
simple to misunderstand. I thus describe the concepts in detail, in particular the bundle Q

25Here there is an implicit supposition or condition about which I shall later make an observation. The
introduction of the factor π1(M) in [AB, 6.5] affects the group of the bundle but not its Lie algebra.
Consequently the concept of curvature is a little modified. Nevertheless the presence of the group will be
important. This will be explained in more detail later. I needed some time in order to understand this
important construction. For the moment I confine myself to a single remark. If G = U, ρ|Z is necessarily
equal to unity. If, however, g = 1, and also if g > 1, but here we consider particular cases, we may then
modify the value of ρ(A) and ρ(B) as we please. A need for this will appear in section X.

It appears, to my great astonishment, that in the present article only bundles U(1) = U(1)n of degree 0,
thus n = 0, are important, thus the trivial bundle with a constant metric. I understood this only after serious
reflection on the questions of the article and on the conclusions of [AB].
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and the connection A.26 But where can we find this connection. At first it was difficult to
understand.

It is an explanatory difficulty. It is not a question of one or two definitions. In [AB] it is
supposed that the reader has some knowledge of differential geometry. It seems to me that
in the present article it is ill-advised to do so. For me and for the reader it is necessary to
explain some concepts in more detail in order to arrive at a genuine familiarity with them
and their possibilities. The concept of a Yang-Mills connection, whose consequences are
complicated, is in itself not easy to understand. I begin with some material from the article
[AB], but only for elliptic curves.

Although it is not necessary, I prefer a description in the context of a theory better known
to me, the Weierstrass theory. In essence a connection is given locally by the function σ
of (2.b), but a complete description is complicated. It is also necessary to derive from it
the Yang-Mills connection. But the Yang-Mills condition, which I shall describe later, is
determined in addition to that not only by the metric on the bundle but also by the metric
on M . This is already a secondary question.

It is possible that the reader is also unfamiliar with complex differential geometry, as I
am. I therefore propose, for him(her) some fundamental definitions, that appear in [AB] and
with which geometers are familiar. As far as I know, curvature, which is so important for the
present article, is absent in the Russian-American theory, although it is possible that in it the
Yang-Mills equation, as a physical theory, makes its appearance in the background. This is
essential for our goals, because the theorem of Atiyah-Bott is necessary, although secondary.
It seems to me as well that it is useful and even necessary not to confuse the geometrical
theory of automorphic forms with conformal field theory or the theory of gauge fields. I first
explain briefly the relation of the theory in [AB] to the eigenvalues of Hecke operators. Some
concepts, related to curvature and connections, will be explained by the following example.

The core of the matter is that the eigenvalues of the Hecke operators are given by functions
on M whose value at a point x ∈ M lie in the hermitian component of the Lie algebra of
the group LG. If G = GL(2), whose compact form is the unitary group U(2), LG = G,
the Lie algebra g of the group G is the direct sum U ⊕ h, where h = iU is the space of
two-dimensional hermitian matrices. On the other hand there are connections whose values
lie in Lg = g, but27 we are largely concerned with those whose values lie in LU. We show that
the eigenvalues28 of Hecke operators are given by the integral of a Yang-Mills connection with
appropriate initial conditions and multiplication by i =

√
−1. I suppose of course that such

an assertion is generally valid, but even for GL(2) and an elliptic curve there is still much to
understand and much to explain. This correspondence is a consequence of the relation of the
fine points of these two sets.

The concept of a Yang-Mills connection is determined only for unitary connections. In
any case I consider only such connections. The following explanations are taken from [AB,
§3,4,5,6], although the notation is slightly modified. Let P be a bundle for the group

26[T] For the basic definitions, the book Differential Geometry of Clifford Taubes is a useful supplementary
reference.

27I admit that the circumstance, that the tangent space of an n-dimensional complex bundle on a
one-dimensional complex curve is 4n-dimensional, always confuses me.

28It is best to recall that the local Hecke algebra is isomorphic to the ring of representations of LG and
that the character of this ring corresponding to γ ∈ LG is given by the trace of π 7→ trπ(γ). Normally γ is
unitary, but the trace of such a γ has no distinguishing properties.
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U = U(2), that is for its Lie algebra U(2). The connection A is a splitting of the sequence

(34) 0 TFP TP π−1TM 0 ,

where T denotes a tangent space and FP a fibre of the bundle. Moreover, it is necessary that
the splitting be invariant relative to U! Thus the connection is determined by ωA : TP→ TFP
together with the simple necessary properties, which are evident. Thus it is possible to lift a
vector field X from TM to TP. Let X → X̃. Then FA(X, Y ) = ωA[X̃, Ỹ ] is a measure of the
curvature of the connection. As a function of the pair {X, Y }, FA is a differential form whose
values are in the Lie algebra U. Generally a vector bundle is attached to a bundle P and
each representation of g or U—the first of the latter derived from the second. It is obvious
that FA is a section of the bundle determined by the tensor product of a two-dimensional
form with this attached form. Fortunately ∗FA is simpler. It is a section of the bundle P
and this section is invariant.

This remark is important for the proof of a theorem in [AB, §6, Th. 6.7]. Thus it is necessary
to understand it. Since F (A) ∈ Ω2

(
M ; ad(P )

)
, ∗FA ∈ Ω0

(
M, ad(P )

)
, thus ∗FA is a function,

whose values in the fibre lie in ad(P ) = U. Since A is invariant ∗F (pg) = Ad g−1 ∗ F (p).
Thus its conjugacy class is constant within the fibre. Its global constancy is a consequence of
the Yang-Mills condition, which we explain below. I remark that the condition of Yang-Mills,
although important for the theorem of Atiyah-Bott, is not at first relevant.

There is here a possibility for confusion. The construction of the bundle Q as a Yang-Mills
bundle is necessary, but its precise construction with constant curvature is not necessary.
Nevertheless, it is useful for comparison with the theory of Hecke operators.

We are considering connections on a Riemann surface and they possess particular prop-
erties.29 It is difficult to remember that M in [AB] is above all a real manifold. Thus the
Hodge star30

∗ : Ω1
M(C) = Ω1

M ⊗C = Ω1,0(M)⊕ Ω0,1(M)→ Ω1
M(C)

is such that ∗ = −i on Ω1,0 and ∗ = i on Ω0,1. We chose a metric, a constant metric, such that
the corresponding complex structure is given by the customary d′ = ∂/∂z = d/dx+ id/dy,
d′′ = d/dx− id/dy. With this construction we transform a real space to a complex space. We
can repeat this with the usual decomposition, creating d′A and d′′A from U-connection dA. Since
this paper is not addressed to differential geometers, I explain. Attached to the connection A
and all associated decompositions there is a covariant derivative and its conjugate differential
operator.

I recall that the foregoing is correct also for bundles
(35) Ω1

C

(
M, ad(P )

)
= Ω1,0

(
M, ad(P )

)
⊕ Ω0,1

(
M, ad(P )

)
.

29[AB, §4,5] or [GH] Principles of Algebraic Geometry, p. 72, P. Griffiths, J. Harris.
30As I remarked several times, I learned differential geometry as I was writing this paper. Thus definitions

were sometimes given prematurely, incorrectly or incompletely. For example, for the construction of [GH] the
metric on M is irrelevant. I shall return to this question later.
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These spaces are eigenspaces of the operator ⋆. Let dA be the covariant derivative attached
to A.

(35.a)

Ω1,0
(
M, ad(P )

)
Ω2

C

(
M ; ad(P )

)
Ω0

C

(
M, ad(P )

)
Ω0,1

(
M ; ad(P )

)
d′′A

d′′A

d′A d′A

There is a construction inverse to this diagram that is given in [GH]. It is useful to underline
the different relation of the constructions in [AB] and [GH] to this diagram—in [AB] of the
metric together with the unitary connection to the holomorphic structure; but in [GH] of the
metric together with the holomorphic structure to the unitary connection.

I no doubt am explaining in too much detail but it is important to understand the basic
definitions. These I did not adequately explain because I did not understand them well enough
initially. In [AB] it is shown that the lower arrow in (35.a) determines a complex-analytic
structure on the bundle. On the other hand, in [GH, p. 72] it is explained how a vector
bundle with a complex-analytic structure and a hermitian metric determines a connection. In
the present discussion, this means that the diagram (35.a), in which the connection is only
implicit, it is given by two different sets. I arrived at an understanding of this equivalence
only slowly. I repeat that for me the present article is an occasion to learn some complex
differential geometry. This theory yields [AB, Th. 6.7], which suggests the definition of the
automorphic galoisian group. We explain later the construction of this metric in a particular
case.

I would first like to explain briefly the relation of [AB] and [GH] to the diagram (35.a).
In [AB] the metric is given and limits the connection, which gives the arrows; in [GH] the
metric is also given but with the arrow d′′A = ∂, and together they determine the connection.
Therefore if the dimension of the bundle is equal to one and if there is a holomorphic section,
and if, of course, the section is local, then it and its variable length determine, at least locally,
a connection that, together with the metric or if we so prefer with a modified metric, is
compatible with the connection. I stress that there are two metrics, one on M and another
on the bundle. At the moment we are concerned with the metric on the connection. This
connection is independent of the holomorphic section and is therefore determined globally.

My construction of the bundle is related to the theory of Weierstrass. This is unnecessary
and even clumsy, at least in the beginning, but for me it puts it in a more familiar and
more convincing context. At first everything was unfamiliar to me: the construction of a
connection when the metric on the bundle is given [GH, p. 73]; curvature; the close relation
of a Yang-Mills connection with constancy.

We obtain an appropriate bundle Q for [AB, Th. 6.7] from the trivial bundle, if we allow
poles and zeros. I wrote these words several months ago (now two years) but I did not
understand them correctly, causing myself considerable confusion.31 They imply that there is
no canonical expression for the section in a neighbourhood of zero. The function ϕ is chosen
with a pole of order one, for example σ−1 or ζ and the actual section ψ, the one with a pole,
is written as ψ(·) = f(·)ϕ(·). The section f is not canonical because ϕ is not canonical. The
function σ−1 is better because it can be used everywhere in C.

31It was unexpectedly difficult for me to understand the construction of the sheaf Q.
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In order to use the lemma in [GH]32 that yields the dimension, we need a hermitian metric
on Q. Since the dimension of Q is equal to 1, it is sufficient to introduce a positive function
s(z) > 0 such that33

(36.a) s(z)
∣∣σ(z)∣∣−2

= s(z+2ωi)
∣∣σ(z + 2ωi)

∣∣−2
= s(z+2ωi) exp

(
−4Re

(
ηi(z + ωi)

))∣∣σ(z)∣∣−2
.

Before we show what such a function is, I remark the following. Let g(·) be a possibly
non-holomorphic section of a bundle.34 Then f(z) = g(z)σ(z) is everywhere finite and the
metric is defined at Q:

(36.b)
(
g(z), g(z)

)
=
∣∣f(z)∣∣2s−1(z).

I have no other basis for its introduction, only that it serves the purpose.
The equation (36.a) is equivalent to

(36.c) s(z + 2ωi) = s(z) exp
(
4Re

(
ηi(z + ωi)

))
.

Consequently,

s(z + 2ω1 + 2ω2) = s(z + 2ω1) exp
(
4Re

(
η2(z + ω1 + ω2)

))
= s(z) exp

(
4Re

(
η1(z + ω1)

))
exp
(
4Re

(
η2(z + ω1 + ω2)

))
;

s(z + 2ω2 + 2ω1) = s(z + ω2) exp
(
4Re

(
η1(z + ω2 + ω1)

))
= s(z) exp

(
4Re

(
η2(z + ω2)

))
exp
(
4Re

(
η1(z + ω2 + ω1)

))
.

This is possible only if
(36.d) exp

(
4Re(η2ω1)

)
= exp

(
4Re(η1ω2)

)
,

which is a consequence of the equation 2η1ω2 − 2η2ω1 = πi [WW, p. 446].
32This lemma is not necessary for the determination of the connection because it yields a known function,

but this outline is also an occasion to learn some differential geometry. Besides that I began with this lemma
and only after much thought recognized that it was not completely appropriate for the needs of the article. In
particular, I did not recognize the advantages, perhaps the necessity, of the introduction of the function s(·).

33The reader will have to pardon me, but for questions of differential geometry there are two metrics that
it is necessary to consider, one on the base and one on the fibre. The curvature reflects both one and the
other. Thus the curvature is determined by the difference of rapidity of rotation in the fibre generated by the
movement in the base. On the base, because of its metric, there is at each point a standard area, so that a
variable real number is equivalent to a changing square and conversely. Yang-Mills connections, at least if the
dimension is equal to one, are such that their curvature is constant, thus that it satisfies the equation ⋆F = 0.
It was difficult for me to understand how this could be possible for the connection Q. One purpose, an initial
purpose, of this section is to understand this, but I quickly recognized that there were many more things that
I did not understand.

The construction that is explained in [GH] is independent of the metric on M , but the curvature depends
on it. On the other hand, the Yang-Mills connection is such that the curvature is constant. It is not clear to
me how the metric on the fibre affects the curvature. I proposed two examples, one more attractive than the
other. I remark that the final goal, the comparison of two unearthly things, Hecke conjugacy classes, which
vary from point to point, and integrals of Yang-Mills connections, the nature of which is explained to some
extent in [AB]. For elliptic curves the difficulties are relatively simple.

It turns out that the construction in [GH] is not exactly what we need, but it offers an initial understanding
of the methods of constructing connections with prescribed properties.

34Thus if λ ∈ L and g is defined at the point λ, then the function (z − λ)g(z) is finite at the point λ.
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We first determine s and after that recall the argument in [GH]. Let z = 2aω1 + 2bω2, a,
b ∈ R. For the present goal a, b are appropriate real variables.35 Let
(36.e) s(z) = s(a, b) = exp(αa2 + βab+ γb2 + δa+ ϵb).

Then according to (36.c) the relevant equations are

s(a+ 1, b) = s(a, b) exp
(
8Re(η1ω1a) + 8Re(η1ω2b) + 4Re(η1ω1)

)
,

s(a, b+ 1) = s(a, b) exp
(
8Re(η2ω2b) + 8Re(η2ω1a) + 4Re(η2ω2)

)
;(36.f)

but according to (36.e) the real (rather than complex) equations are
s(a+ 1, b) = s(a, b) exp(2αa+ α + βb+ δ),

s(a, b+ 1) = s(a, b) exp(βa+ 2γb+ γ + ϵ).(36.g)

A comparison of these equations yields α, γ, δ, ϵ without difficulty, but for β there are
two determinations, which yield the same value because of (36.d). The values of these five
numbers are:
(36.h) α = 4Re(η1ω1), β = 4Re(η1ω2) = 4Re(η2ω1), γ = 4Re(η2ω2), δ = ϵ = 0.

At this stage we have already chosen a metric on the fibre, as in [GH]. Later we shall
choose as a supplementary experiment a different one. However we depart now from the
method in [GH], in which the holomorphic structure guarantees a supplementary condition
(thus D′′ = ∂ [GH, p. 73]) and introduce a right-angular movement of the connection. I
return later to this argument in the context of an attempt to understand adequately the
concept of curvature, in so far as it appears in the Yang-Mills theory.

The curve M , as a real manifold, is two-dimensional and the connection moves in C,
which is also two-dimensional. Consequently this connection is determined infinitesimally
by four real parameters. The condition of unitarity reduces this by two, which are purely
imaginary. We shall return to these two parameters later, because they yield the curvature.
Globally we have now a complex line-bundle with metric. I repeat. If z1 − z2 ∈ L, then(
z1, σ(z1)

−1
)
,
(
z2, σ(z2)

−1
)

represent the same point in the bundle only if σ(z1) = σ(z2) and
this is improbable. If f ∈ C, z ∈ C, and λ ∈ L, then (z, f) and (z + λ, f) represent the
same point in the bundle. To repeat, the principal object is the function σ(·) but it is not
single-valued. None the less it determines the metric on the fibres and the complex structure
of the bundle. This metric is f(·)→ s−1/2(·)

∣∣σ(·)∣∣∣∣f(·)∣∣.
As I wrote this article I recognized that there were several basic mathematical concepts of

which my understanding was insufficient or even mistaken. I explain this in the following
35For the following calculations I remark that

zω2 − zω2 = 2a(ω1ω2 − ω1ω2); zω1 − zω1 = 2b(ω2ω1 − ω2ω1).

Consequently the linear relations of the linear variables a, b to the variables z, z are given by

(37) a =
1

2

zω2 − zω2

ω1ω2 − ω1ω2
, b =

1

2

zω1 − zω1

ω2ω1 − ω2ω1
,

and
∂a

∂z
=

1

2

ω2

ω1ω2 − ω1ω2
,
∂b

∂z
=

1

2

ω1

ω2ω1 − ω2ω1
,

∂a

∂z
=

1

2

−ω2

ω1ω2 − ω1ω2
,
∂b

∂z
=

1

2

−ω1

ω2ω1 − ω2ω1
.

For clarity we remove from these expressions the common denominator η = ω1ω2 − ω1ω2, in order to obtain

(37.a)
∂a

∂z
=

ω2

2η
,
∂b

∂z
= −ω1

2η
,

∂a

∂z
= −ω2

2η
,
∂b

∂z
=

ω1

2η
.

I add that, up to a factor ±1, the number η is twice the area of the parallelogram with sides ω1, ω2.
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lines, but without drawing particular attention to my misunderstandings, for example of
Poincaré’s lemma. Indeed, that a non-trivial differential equation ∂f = 0 is such that
the set of its solutions is closed with respect to multiplication is, when one reflects, an
extraordinarily unusual property, whose oddness and unexpectedness I had for years never
recognized, although its importance is evident. Thus the construction of Q, the existence of
which was evident for Atiyah and Bott, filled some gaps in my imagination.

Although I explain the construction in [GH], returning to this treatment in the context of
an attempt to understand adequately the concept of curvature, in so far as it appears in the
Yang-Mills theory, I prefer to begin with a simple description and construction of appropriate
one-dimensional connections. Usually and preferably the movement is given in logarithmic
form η1 = exp(ρ1 + iθ1), where ρ1 and θ1 are real functions. The function ρ is completely
determined by the metric. The connection is given by the expression

η′1
η1

= ρ′1(·) + iθ′1(·).

It is possible to determine η1 in relation to the given section, which may be σ−1, thus to
determine

(37.b) η1(·) = η(·)− dσ

σ
, η = ρ+ iθ.

The notation here is such that the second member, although with a minus sign, is the
connection! I observe that it is a connection whose curvature is equal to zero, thus its integral
σ−1 is uniquely determined locally.

In so far as the connection is unitary,

s−1(·)
∣∣σ(·)∣∣2 exp(2ρ) = constant.

Consequently, dρ(·) is uniquely determined. It is given by the equation

2
dρ

ρ
=
ds

s
− dσ

σ
− dσ

σ
.

However this is not the ρ in which we are interested; this is θ. Although I did not recognize
this for a long time, there is an obvious choice, the imaginary analogue of the equations (36.g)
and (36.h),

ds

s
= (2αa+ βb) da+ (βa+ 2γb) db,

thus36

(36.i) (2α̃a+ β̃1b) da+ (β̃2a+ 2γ̃b) db,

where α̃ = 4 Im(η1ω1), β̃1 = 4 Im(η1ω2), β̃2 = 4 Im(η2ω1), γ̃ = 4 Im(η2ω2). The location of
the two numbers is to a significant degree arbitrary. They may be exchanged. The result is
only a change of sign. Those who are familiar with curvature will immediately recognize that
the curvature so obtained is β̃1 − β̃2 = 2π. It is necessary, however, to recognize that this
is the curvature relative to the coordinates (a, b) and that relative to these coordinates the
area of the fundamental domain is equal to 1. Thus these calculations are compatible with
the assertions in [AB]. I underline first that this conclusion presupposes a particular choice

36The notation leads to confusion. The notation a and b appears ambiguous, but da and db appear to be
the differentials at the initial point, a point for which there is no notation.
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of metric on M , namely a metric that is linearly invariant and, secondly, that the choice θ,
although natural, is also arbitrary.

We introduced a modification of the connection rather accidentally, but this was a very
important change that gave us a choice of the bundle Q, that introduced on p. 560 of [AB].
Since the curvature of the connection is constant and the metric on M invariant relative to
transport, this modified connection is of Yang-Mills type. I admit that I am at this point
somewhat undecided, because the affirmation demands an explanation of the equation [AB,
6.1], namely for the given connection and for the metric considered the curvature ⋆F is
constant—it seems that a constant curvature is a property of pairs, a connection and a metric.
In addition, as I shall remark again, rather timidly, in another place in this essay, the action
of dA is for ordinary functions a transfer, so that ⋆F does not change in relation to it. This
is equation [AB, 6.1]. I admit that this explanation is a little forced, but it is confirmed by
the assertion (6.1) in [AB].

In order to convince oneself that our argument is correct, we have to repeat the calculations
in (36.a)–(36.h), but in logarithmic form and only for the imaginary part. It is therefore
evident. Nevertheless in order to reassure myself and the reader I make the calculation.
As I proceed, as I continue to attempt to understand [AB] adequately, in order to apply it
to the geometric theory of automorphic forms, I grow less constrained in the treatment of
fundamental differential geometric concepts. None the less, I continue to feel insufficient
confidence during the seemingly arbitrary placing of poles or zeros by pasting around a circle.
I cannot say that I understand this completely.

For example, a change of the real part of a connection, multiplicatively as in (36.a) or
logarithmically, does not change the curvature in so far as it is determined by the logarithmic
derivative of a function defined on the covering C of the curve M . We may do the same for
the imaginary part, for which the curvature is more important. For a GL(1)-bundle over a
curve, the relation of two local parameters z1 and z2 is given by an exponential function

(36.j)
z1
z2

= exp(c+ di), c, d ∈ R,

where c and d are real and d is locally single-valued up to a constant in 2πZ. The number c
is uniquely determined. Simply expressed, in the exponent there is an additive imprecision
and it lies in 2πZ.

A pause for reflection. The introduction of zeros and poles appears to be particular to the
theory of linear bundles on curves and it is best to ask oneself what is actually happening. I
acknowledge that on the whole, and in particular for GL(1), it is difficult for me to remember
that a connection is given by a logarithmic derivative. It is that the discussion in the preceding
section is valid also for two divisors with zeros and poles under the condition that the order
of the zeros and poles is everywhere the same, rather for the quotient of two functions
representing one and the same divisor. The previous discussion (36.j) was for one pole or one
zero. I understand that it is fastidious. It is however one thing for an experienced geometer
to consider the details, another for an elderly interloper. A reader may ask himself what is
troubling me. The question is this, “why is the introduction of zeros and poles in a unitary
bundle related to a complex bundle a well-defined operation?” The answer lies in the relation
(36.j)! ■
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What I propose in (36.i) amounts to this, to reproduce the sequence (36.a)–(36.j) for the
purely imaginary part of a connection, rather than the purely real part. In this way the
formulas for α̃, β̃1, β̃2, γ̃ are sufficiently clear.

Unnecessary or premature explanations. None the less they are appropriate. This is
rather a brief digression whose significance for this paper will not be clear until we come to
the equation (53). It anticipates and partially coincides with the following explanations. As I
already observed in another place in this text or as I observe below, the principal conclusion
is a mutually single-valued mapping between two sets, and the elements of these sets are
themselves sets, so that it is important to choose the simplest representatives. More than
anything else, one of these sets is determined only after we have chosen some other defining
parameters. This is particularly important for the Yang-Mills connections, for which it is
necessary to choose the connection Q with Chern class 1 as well as a metric on M and
on Q. I did this and came unwillingly—rather as a piece of good fortune than by good
management—to a constant connection as above and then, as shown below, to the exponential
functions (53), which we can compare with the conclusions in VII. The case G = GL(1) is
of course special because the conjugacy classes have a single representative, but for GL(2),
which is different, this is no longer the case. As we shall see in XI, a comparison is none the
less possible.

In §IX we refer to the comments of [AB] about linear bundles, especially those of degree 0.
For elliptic curves they are particularly simple. They are given by Λ0Λ

−1
1 , where Λ0 is a

given linear bundle of degree one, and Λ1 a translation of it. We may also suppose, simply
to be definite, that A0 and Λ0 are associated to 0 in L. We may also simply transfer the
point 0 to z ∈ C in order to obtain Λ1. The curvature is a product—this is the difference of
the curvature of linear bundles, one of which is the transfer of the other. The connection
associated with the product Λ0Λ

−1
1 is the difference of two connections of the form (36.i),

thus

(36.k)
(
2α̃(a0 − a1) + β̃1(b0 − b1)

)
da+

(
β̃2(a0 − a1) + 2γ̃(b0 − b1)

)
db.

The coefficients are now all constant, so that the curvature is equal to zero. The two-
dimensional vector

(36.l)
(
a0 − a1
b0 − b1

)
∈ R2

is arbitrary but

(36.m)

(
2α̃ β̃1

β̃2 2γ̃

)
is given. There is a formula for α̃, β̃1, β̃2, γ̃ as functions ω1, ω2 because there exist formulas
for ηi, i = 1, 2, [WW, pp. 445–446]. Nevertheless, I do not know how the determinant of this
matrix behaves, for example, where it vanishes, but this does not seem to be an appropriate
goal for the present paper. We return to this question later, but without a fully established
answer to it. It is possible that it is not obvious to the reader that, choosing the metric on
the fibre determined by s(·) and the connection determined by the equation (36.i), I for some
time did not recognize that I had chosen the metric and the connection introduced in [AB,
p. 560]. The search for a connection with constant curvature occupied my thoughts. At first I
did not understand that constant curvature with the standard metric on M = C/L assumes,
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by definition, that the connection is a connection of Yang-Mills. The goal was simplicity. This
simplicity renders the final comparison with the conclusion §VIII much simpler. I draw the
attention of the reader to the circumstance that the constancy of the Yang-Mills connection
in (36.k) is not that which appears later in (53).37

This last appears as a trivial linear bundle on M , the first on a bundle in which a zero and a
pole have been introduced. It seems that the first is not related to our purposes. I mention it
only in order to place our discussion in an appropriate light. There is a confusion of concepts,
as seems an inevitable side of complex differential geometry, that it is perhaps useful to show,
that a transition from complex connections to unitary connections on a unitary bundle or,
more correctly, to an attached real line bundle signifies that otherwise embarrassing poles
disappear.

On the other hand, I am not certain that my understanding of unitary connections is
adequate. I would like to bring that here to the consideration of the reader. We are speaking
of the transformation of locally meromorphic sections of a complex bundle into continuous
sections of a real, that is a unitary, bundle that is related with it, that is determined by
the imaginary part of its logarithm, thus its polar part. Locally we write a meromorphic
function as azk exp

(
φ(z)

)
, k ∈ Z, where a = |a| exp(iη) ̸= 0 where η ∈ R is a real constant,

φ(0) = 0, z = r exp(iθ), r ⩾ 0. The unitary connection is defined by this function and given
as ikη + i Imφ(z).

This is sufficiently clear but the nature of a unitary connection that is so defined is difficult
to discover. It is determined by a gluing as is the initial meromorphic bundle, but it is
torn in the centre. The patches have a small central disc with outer patchings, whose local
determination in the region immediately surrounding the patch is not difficult to picture. This,
however, affects the displacement along the purely real numbers, in so far as the introduction
of the (imaginary) logarithm demands substitution of the circle of an exponential function by
the line of its logarithm. This occurs on the boundary of the small circle, but only on the
boundary. In the centre of the circle some secret remains, where everything is torn apart.

There is still one peripheral remark related to bundles like Λ = Λ0Λ
−1
1 . We imagine that M

is a sea and that the connection describes a flow. For example, the flow Λ is a combination
of Λ0 and Λ−1

1 . The first has a special property, it is a whirlpool; the second also has a
special property, for it is also a whirlpool, but in the opposite sense. It is even possible that
they have different strengths. If they have the same strength, then they will be mutually
compensated as they move together. I have difficulty imagining this, both geometrically and
physically, but the physical analogue makes it easier. I propose it to those mathematicians
who like me have trouble understanding the complexity of bundles and connections. ■

But that which is important for us is that the curvature is constant and not equal to zero.
The section determined by the function σ−1 has, apparently, no curvature, but this is not
so. The curvature is hidden in the pole at the point 0. The comparison of eigen conjugacy

37On the contrary they are constant with curvature equal to zero and a linear integral, as in (53). Thus
they turn out to be Yang-Mills connections, that is they satisfy the equation of [AB, 6.1]. I offer this proposal,
in order to make clear how much the theory presented or proposed in this article depends on details and how
slowly I understood it. In passing I remark one more circumstance, whose significance I did not understand
immediately. The bundle Q in [AB] coincides with the bundle A in [A], which in the present article became
A0. The degree of An

0 , which is encountered in the description of connections of Yang-Mills type, corresponds
to the coefficient u 7→ un, u ∈ U(1) in the corresponding homomorphism from ΓR to GL(1), [AB, (6.6)]. As
a supplementary remark to the formalism, the linear bundle Q turns out to be a bundle of type Yang-Mills
because the equation [AB, (6.1)] is additive with respect to tensor products.
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classes with the integrals of Yang-Mills connections seems more important. These objects
are determined by their representations, which are taken to some degree arbitrarily. It is
difficult to explain the purpose of this article, the comparison of eigen conjugacy classes with
Yang-Mills connections and with representations of the automorphic galoisian group. At
least, the difficulty appears to be a consequence of two, even three, factors. The conjugacy
class is described with the choice of a representative, which appears somewhat arbitrary.
Moreover, the class changes from point to point; in addition the concept of a Yang-Mills
connection depends on the choice of a metric on M . It is preferable to choose those that
render the nature of the conclusions most clearly. I prefer to present now the consequences of
an unsuccessful choice of the metric and the connection. There are, of course, two metrics on
M and on the fibre.38

An extended digression. This digression is somewhat lengthy. This is because it is
impossible to understand the nature of a connection without a clear understanding of the
relation between connections and functions. They may be real-valued, purely imaginary or
complex-valued. The theory for them is the same, although in the third case we are dealing
with contour integrals for which the curvature is zero. It is easiest to think of real-valued
functions.

The initial calculations39 for the connections determined by (37.b) appear in (2.e). The
domain—the fundamental domain is given by { aω1 + bω1 | −1 ⩽ a, b ⩽ 1 }. Since the set L
does not overlap its boundary, we can calculate the integral of this connection along the
boundary without supplementary information. For reasons demanding a lengthy explanation,
which we postpone, only the imaginary part of the expression (37.a) is significant. According
to (2.d) this is the imaginary part of ζ(z) ∂z. The integral along the boundary is the sum of∫ ω1,−ω2

(−ω1,−ω2)

ζ(z) dz +

∫ −ω1,ω2

(ω1,ω2)

ζ(z) dz =

∫ ω1,−ω2

(−ω1,−ω2)

(
ζ(z)− ζ(z + 2ω2)

)
dz

= −
∫ ω1,−ω2

(−ω1,−ω2)

2η2 dz = 4ω1η2(38.a)

38The reader will notice my anxiety as I attempt to acquire an unknown differential geometry. I once
again draw his—or her—attention to one equation, whose particular form is important for this article. This
is the Yang-Mills equation [AB, 6.1], thus dA ⋆ F (A) = 0, but for a linear bundle on a curve such that
the bundle is U(1). Recall [AB, p. 548] that F (A) ∈ Ω2

(
M, ad(P )

)
. Since the representation ad(U) is

trivial Ω2
(
M, ad(P )

)
= Ω2(M) and ⋆F (A) lies in a trivial bundle where the connection is trivial. Thus the

connection that we just now constructed is a Yang-Mills connection. Although I still do not understand the
many consequences of this concept, I assert that this remark is fundamental for this essay! We are dealing
with a linear bundle, thus with an abelian group G. This is an anticipation of a general argument in [AB,
p. 560] that is so important for this paper. Repeating myself, I underline that in our circumstances, together
with a linear bundle and a uniform metric, a sign of a Yang-Mills equation is constant curvature. The value
of the curvature determines the Yang-Mills class of the bundle.

39Returning to the paper some two years after having written the Russian version, I have made some small
corrections to the labelling and the exposition, about both of which I begin to be uncertain. I have not tried
to correct, in this sense, the Russian version, which has not attracted many readers.
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and ∫ ω1,ω2

(ω1,−ω2)

ζ(z) dz +

∫ −ω1,−ω2

(−ω1,ω2)

ζ(z) dz =

∫ −ω1,−ω2

(−ω1,ω2)

(
ζ(z)− ζ(z + 2ω1)

)
dz

= −
∫ −ω1,−ω2

(−ω1,ω2)

2η1 dz = −4ω2η1.(38.b)

Consequently this sum is equal to 4ω1η2 − 4ω2η1 = −2πi, as is explained in [WW], where
this equation is justified by arguments from the theory of holomorphic functions of one
variable. This calculation is clearly related with those, that lead to the expression (36.i) but
their relation, at the first glance is both incomprehensible and unclear. First of all, I remark
that according to (2.d) the function ζ(·) is the logarithmic derivative of the function σ(·),
so that the integral of the function ζ(·) is given by the expression lnσ(·), which is not
single-valued.

However, we created a difficulty, mixing two different operations or two different concepts:
the integral of a complex function of a complex variable and the curvature, that affects the
integral of a real function of two real variables.

I recognize that, although I am elderly I have never sufficiently understood the concept of
curvature. This article was necessarily an occasion to do so. Since it was written principally
as a contribution to the theory of automorphic forms, I without hesitation added some
fundamental concepts to my purview. The change of context was formal. I replaced the
Lie algebra of U(1) by the Lie algebra R and the domain C by the domain R +R. This
revealed to me what appeared to be the essence of the notion of curvature. A connection is a
differential form α(x, y) dx+ β(x, y) dy. The question is how can

(39)
∫ (u2,v2)

(u1,v1)

{
α(x, y) dx+ β(x, y) dy

}
not be independent of the path of integration. In other words, how can an integral over a
closed curve C not be equal to zero.

Let, in this brief digression, ϵ be a small, even infinitesimal, number. We cover the
plane with a lattice {mϵ, nϵ}, m, n ∈ Z and take the union X of those cells B that find
themselves in the interior of the domain defined by a (simple) closed curve Y . This interior
is (approximately) a union

(39.a)
∫
Y

f(x, y) dx dy =
∑
B⊂X

∫
B

f(x, y) dx dy +O(ϵ).

Let f(x, y) = dα/dy−dβ/dx. This will be the curvature. The boundary of each B is given by
four ordered edges in counter-clockwise order e1(B), f2(B), e2(B), f1(B), where for example
e1 is given as

{
(a, b), (a+ ϵ, b)

}
. Leaving errors aside, we obtain from the sum in (39.a) the

sum ∑
B⊂X

{∫
e1(B)

α dx+

∫
e2(B)

α dx+

∫
f2(B)

β dy +

∫
f1(B)

β dy

}
.
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This is equal to

(39.b)

∑
B⊂X

{∫
ẽ1(B)

{
α(x, y)− α(x, y + ϵ)

}
dx+

∫
f̃1(B)

{
−β(x, y) + β(x+ ϵ, y)

}
dy

}

=
∑
B⊂X

{
−ϵ
∫
ẽ1(B)

dα

dy
dy + ϵ

∫
f̃1

dβ

dx
dx

}
=
∑
B⊂X

∫
B

{
dβ

dx
− dα

dy

}
dx dy

=

∫
Y

{
dβ

dx
− dα

dy

}
dx dy +O(ϵ)

where, in order to be clear, I introduced two axial ribs ẽ1 = e1, f̃1 = −f1. This means that
(39) does not depend on the curvature if the curvature is

(39.c)
dβ

dx
− dα

dy
= 0.

Expressing the left side simply, the difference of movement on opposite horizontal sides is
of order O(ϵ2). If the curvature is equal to zero, this difference is O(ϵ3). This examination
raises two questions. To what degree does the curvature depend on the metric and on the
coordinates. I am not certain that these questions are important. At the moment they are
not relevant. What is important is that the integral of the curvature over the interior of
a simple closed curve is equal to the integral of the connection along the same curve. In
any case the remark following the expression (36.i) is justified to some degree simply as an
assertion taken from the article [AB].

We have still not introduced a metric on M . Consequently we are not able to speak of a
Yang-Mills connection. Nevertheless we have already introduced an example of a metric with
constant curvature. This is a favourable sign. I wanted to establish this with the help of a
geometric argument and in such a way that it appeared as an assertion about curvature. But
I was convinced that the point 0 ∈ L did not contribute anything, and thus, neglecting this, I
was confused more than once. I searched during several weeks for my mistake, which turned
out to be rather evident. In the following pages, as help to the reader, I try to explain to
myself the source of my mistakes, in themselves instructive.

I have referred many times to a lemma in [GH], which proposes the construction of a
connection with this or that property, but missed the possibilities of an obvious fact, that
the logarithmic derivative of a function that is nowhere zero and that may be positive, or
with absolute value equal to one, or complex leads to a connection, even a connection related
to the present discussion. This was not intended. It was the action of an innocent, stunned
by the complexity of the subject. I recognized the possibilities that were offered, but only
vaguely. I did not have the good sense to explain them clearly. This means that it is useful
to understand the lemma in [GH] but not obligatory for our purposes. It is difficult to
understand that I did not fully understand the assertion that zero curvature, apart from
some subtleties, turns out to be both a necessary and a sufficient condition for a connection
to determine a function.

At the same time I consider the inverse construction given in [GH, p. 72]. On the complex or
on a Riemann surface, there are three forms of one-dimensional connections: one-dimensional
real connection, purely imaginary one-dimensional connection, complex connection, that
is for example, f(·) dz or f(·) dz. Each of these appears as a function on a variable one-
dimensional complex space, thus on a tangent space. The domain of definition of the first
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two is one-dimensional but for the third it is two-dimensional. The construction in [GH]
yields a connection of the third type and it is useful to reflect on it. Locally the connection
prescribes a direction in a two-dimensional fibre. Thus locally or at a point it is given by
four numbers, because it assigns to each of two vectors another vector, but the condition
D′′ = ∂ ([GH], p. 73) reduces this number to two. A clever argument that uses their second
condition, that is the condition of compatibility with the metric, but then determines the
connection completely.

There is, however, a function that corresponds to our conditions and it is σ−1 = ϵ exp(iθ),
where ϵ > 0, although it is not single-valued. Its logarithmic derivative determines the
connection. For this argument choice of metric on the fibres is important and I chose
f(·)→ s−1/2(·)

∣∣f(·)∣∣, which is not the one that we just now used, although it is similar. It
has an essential inadequacy because it yields a metric that is not determined in points of the
set L. This is not important presently, but it is the source of phenomena with which we shall
have to deal. During the preceding explanation it was possible not to consider the points in
L. They were not in essence particular. This is no longer so. I want to explain that with this
connection the points in L evoke difficulties. The connection and the metric on the fibres
remain to be defined. Thus the metric on the fibres must be changed. As a consequence the
connection ceases to be a Yang-Mills connection, a concept that remains to be defined. But
this is easy. That which is unpleasant is that in order to create a Yang-Mills connection it
is necessary to introduce an artificial and unpleasant metric on the base M or an artificial
connection. This is instructive for those who want to consider the general theory.

We recall the present circumstances. We consider functions f(·) on the complex plane
periodic in relation to the lattice L that allow a first-order pole in points of this lattice. At
first the metric on the fibre was f(·)→

∣∣f(·)∣∣ but this is unsatisfactory in L because of the
possible poles. It is necessary to modify40 it in a neighbourhood of L.

For this41 we multiply s(z) with a smooth periodic function m(z) = m
(
|z − λ|

)
, λ ∈ L,

such that m(z) = |z − λ|2 if |z − λ|, λ ∈ L, is very small, for example |z − λ| < δ/2, that
m(z) > 0 if z /∈ L and δ/2 < |z − λ| < δ for some λ ∈ L, and that m(z) = 1 if |z − λ| ⩾ δ
for all λ ∈ L. If λ ∈ L it is better to suppose that λ = 0. This is a change of metric
that yields a section with a pole whose order is equal to one and with bounded length in a
neighborhood of zero. With this construction σ−1 is a local section of the bundle with finite
length. Another interpretation is that this is a local section after multiplication by σ(·), but
this is not necessary for us. It is first necessary to introduce in the construction of the section,

40It is necessary to insert here a supplementary remark. The function σ−1 determines a connection on a
holomorphic bundle and, as we explain, there is a metric on this bundle. According to a lemma in [GH] the
holomorphic structure together with the metric determine a connection. This connection is a Yang-Mills
connection but only with respect to an artificial metric on M . This example is instructive.

41I attempt to use now not only the method but also the notation from [GH], which is customary but
clever. For example, I distinguish ∂ and d = ∂ + ∂. None the less dσ = ∂σ! I observe also that dσ is a
complex differential that we can integrate along curves in C, thus dz is paired with 1/dt and the curve is
given by z = z(t) ∈ C, t ∈ R. Contemporary differential geometric language is smooth and comprehensive,
but it often does not reveal the key question. I remark also that the operator ∂/∂z transforms a real function
to a complex function. I repeat, ‘complex differential geometry is foreign to me.’ With the notation in [GH],
which we otherwise do not use,

(40) θ =
1

s(z)

∂s(z)

∂z
dz − dσ(z)

σ(z)
=

∂s

s(z)
− σ′(z)

σ(z)
dz,

σ′(z)

σ(z)
dz =

∂σ

σ(z)
,

because σ is holomorphic.
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in its infinitely small form, a supplementary additive term [GH, p. 73]

(41)
1

m(z)

∂m

∂z
∂z =

1

m(z)
∂m =

∂m

m(z)
.

It is possible to calculate it independently. The given calculation remains correct in the
domain in which the coefficient m(·) is equal to one, but outside this domain there is a
supplementary additive term. What I did not initially understand was that the contribution of
the expression (40) was zero and that the contribution (41) was the essential one. The purpose
of the large digression of this section was to acquire some understanding of the concepts and
calculations implicit in the concept of curvature and necessary for an understanding of the
connection A. The principal theme is the relation between the integral of a connection along
the boundary of a given domain and the integral of its curvature over the domain.

I want to show this with the help of geometric arguments in such a way that it is clearly
an assertion about curvature. I was, however, convinced that the point 0 ∈ L contributed
nothing and thus, ignoring it, I obtained the value 0 more than once. For weeks I searched
for the mistake because such a mistake can easily be the result of an incorrect sign, namely
the Cauchy-Riemann equations can contribute to the confusion.

Let42 σ = ϵeiθ, ϵ ⩾ 0, θ ∈ R. Then lnσ = ln ϵ+ iθ is holomorphic. Consequently
1

ϵ

∂ϵ

∂x
=
∂ ln ϵ

∂x
=
∂θ

∂y
;

1

ϵ

∂ϵ

∂y
=
∂ ln ϵ

∂y
= −∂θ

∂x
.

In addition
∂2 ln ϵ

∂x2
=

∂

∂x

{
∂θ

∂y

}
=

∂

∂y

{
∂θ

∂x

}
= − ∂

∂y

{
∂ ln ϵ

∂y

}
= −∂

2 ln ϵ

∂y2
;

∂2 ln ϵ

∂x2
+
∂2 ln ϵ

∂y2
= 0.

Thus ln ϵ—and also θ—are harmonic functions. I re-examine this fundamental relation partly
because a long time has passed since I read the book of Weyl, but also because the sign
is so important for the calculation of the curvature. It seems to me possible that I may
have mistakenly arrived at ∂2ϵ/∂x2 + ∂2ϵ/∂y2 and not at ∂2ϵ/∂x2 − ∂2ϵ/∂y2. With this in
mind, I searched for a long time for such a mistake but in vain. Finally, recognizing that
the curvature lay in the behaviour at the singular point 0, I quickly understood the correct
determination feeling finally that I was rather stupid.

Indeed, this article gave me an occasion to reflect on the concept of curvature, something
that I had never done earlier. But before we pass to curvature, I would like to confess that
there is a fundamental, even elementary, assertion whose significance I did not understand.
This is the equation

(42)
d

dy

{
df

dx

}
=

d

dx

{
df

dy

}
for functions of two variables. Indeed, it is possible that as a result of the capriciousness of my
education I accepted it without a proof. In any case, a one-dimensional unitary connection is
given locally by the determination of the angular change φ, which changes the velocity with
a linear movement and which is itself linear. Thus the change φ in the case of a movement
(dx, dy) is given by α dx+ β dy. It is, however, that this movement does not yield a function

42The sign of θ is modified.
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on integrating it because for such a function it would be necessary that
dα

dy
=

d

dy

{
df

dx

}
=

d

dx

{
df

dy

}
=
dβ

dy

but ordinarily for a given connection

(42.a)
dα

dy
− dβ

dx
̸= 0.

The left side of this inequality yields the definition of curvature. This simple inequality
implies that the curvature is frequently not zero. But we needed a long sequence of reflections
before arriving at (42.a).

Since the expression (42.a) is linear, we can calculate the contributions of the expressions
(40) and (41) separately. Before we begin there is a necessary remark. As determined by us,
each fibre of the bundle is identified with C. Thus, at an infinitesimal level, the movement of
the connection is given by a single-valued determination of a sum of a real movement and
an imaginary movement. The real movement is determined in a single-valued way by the
metrical invariance. Its purpose is to maintain a constant length. Thus only the imaginary
movement is pertinent.

It is possibly useful for us to continue the discussion of curvature with some brief explana-
tions, before we begin the calculations necessary for the true purposes. My understanding
will be more certain if it is reflected in simple calculations.

We begin with the imaginary part of the expression (40), that is with the imaginary part
of the expression ∂σ/∂z, which is equal to ∂ lnσ = ζ(z) dz. Only the imaginary part of this
expression is relevant:43

∂ lnσ =
1

2

{
∂ ln ϵ

∂x
− i∂ ln ϵ

∂y

}
dz +

i

2

{
∂θ

∂x
− i

2

∂θ

∂y

}
dz,

where θ is an angular variable. The imaginary part of this expression is i =
√
−1 times twice

1

2

∂ ln ϵ

∂x
dy − 1

2

∂ ln ϵ

∂y
dx+

1

2

∂θ

∂x
dx− 1

2

∂θ

∂y
dy =

1

2

{(
∂θ

∂x
− ∂ ln ϵ

∂y

)
dx+

(
∂ ln ϵ

∂x
− ∂θ

∂y

)
dy

}
.

Consequently the curvature is equal to half of the expression

(43) − ∂2θ

∂y ∂x
+

∂2θ

∂x ∂y
+
∂2 ln ϵ

∂x2
+
∂2 ln ϵ

∂y2
.

It is clear that the sum of the first two terms is equal to zero; the sum of the second two
terms is also equal to zero because of the Cauchy-Riemann equations. Although I am still
uneasy about my calculations, they at least yield a conclusion that is compatible with the
accepted theory.

43In order to be confident that I understand the notation of the book [GH], I calculate

dz · ∂
∂z

+ dz · ∂
∂z

=
1

2
dz ·

(
∂

∂x
− i

∂

∂y

)
+

1

2
dz ·

(
∂

∂x
+ i

∂

∂y

)
=

1

2
(dx+ i dy) ·

(
∂

∂x
− i

∂

∂y

)
+

1

2
(dx− i dy) ·

(
∂

∂x
+ i

∂

∂y

)
= dx · ∂

∂x
+ dy · ∂

∂y
.
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The last and the decisive calculation of curvature is the contribution of the variable r,
which is given by (41). I want first, simply to improve my understanding, to describe the
rotationally symmetric connection. It is given by the infinitesimal rotation and smooth even
at r = 0

g−1 dg = α(x, y) dx+ β(x, y) dy.

I want this connection to be rotationally symmetric, thus invariant with respect to
(x, y)→ (cosφx− sinφy, sinφx+ cosφy)

or
α(x, y)→ α(x, y) cosφx+ β(x, y) sinφx, β(x, y)→ −α sinφx+ β cosφx,

which is equal to (
α(x, y) β(x, y)

)
→
(
α(x, y) β(x, y)

)( cosφ sinφ
− sinφ cosφ

)
.

Consequently

(44)
(
α(x, y) β(x, y)

)
=
(
a b

)( cosψ sinψ
− sinψ cosψ

)
,

where a and b are functions of r and (x, y) = r(cosψ, sinψ). We calculate the curvature.
dβ

dx
=
da

dr

dr

dx
sinψ + a cosψ

dψ

dx
+
db

dr

dr

dx
cosψ − b sinψdψ

dx

=
da

dr
cosψ sinψ − a cosψ sinψ/r +

db

dr
cos2 ψ + b sin2 ψ/r.

dα

dy
=
da

dr

dr

dy
cosψ − a sinψdψ

dy
− db

dr

dr

dy
sinψ − b cosψdψ

dy

=
da

dr
sinψ cosψ − a sinψ cosψ/r − db

dr
sin2 y − b cos2 ψ/r

The difference is equal to

(45) 0 + 0 +
db

dr
+ b/r =

db

dr
+ b/r =

1

r

d(br)

dr
.

Thus the curvature does not depend on the coefficient a.
According to the equations in [GH, p. 72], the supplementary factor m(·) introduces an

additive term (41). The curvature is calculated as in (43), but the first two terms are absent
and ln ϵ is replaced by the function lnm(·). But in contrast to the term ln ϵ, the term lnm(·) is
not a harmonic function. Disregarding for the moment the 1/2, implicit in (41), we calculate

∂ lnm

∂x
=

1

m(x, y)

dm

dr

∂r

∂x
=

1

m(x, y)

x

r

dm

dr
,

∂ lnm

∂y
=

1

m(x, y)

dm

dr

∂r

∂y
=

1

m(x, y)

y

r

dm

dr

Continuing and differentiating another time, we find

∂2 lnm

∂x2
= − 1

m2(x, y)

(
x

r

dm

dr

)2

+
1

m(x, y)

x2

r2
d2m

dr2
+

1

m(x, y)

{
1

r
− x2

r3

}
dm

dr

∂2 lnm

∂y2
= − 1

m2(x, y)

(
y

r

dm

dr

)2

+
1

m(x, y)

y2

r2
d2m

dr2
+

1

m(x, y)

{
1

r
− y2

r3

}
dm

dr
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The sum is equal to

(46) − 1

m2(x, y)

(
dm

dr

)2

+
1

m(x, y)

d2m

dr2
+

1

m(x, y)

1

r

dm

dr

and the product of this expression with the function r and with the forgotten factor 1/2 is
equal to the derivative df/dr if

(46.a) f =
r

2m

dm

dr
.

The function m(x, y) = m(r), r =
√
x2 + y2. The value f(0) is uniquely determined and

equal to 2. If z > δ the value f(z) = 1. Consequently the integral of the curvature is

(47)
1

2

∫ ∞

−∞

∫ ∞

−∞

{
∂2 lnm

∂x2
+
∂2 lnm

∂y2

}
dx dy = π

∫ ∞

0

df

dr
= −2π.

With this calculation we confirm that as far as the curvature is concerned our connection is
the same as the connection in [AB, p. 560]. It is possible that there is a change of sign but
that is not important.

There are still two secondary objects that it is necessary to explain, the first in order to
compare the definition of curvature described above with the second definition, which is
given in [AB], and the second, in order to explain in these simple contexts the concept of
a Yang-Mills connection. Although this might be important in other cases, in particular
if the dimension is greater than one, the concept of a Yang-Mills connection scarcely has
an essential significance in the given case. Indeed, the purpose of our brief explanation is
to make this clear. Nevertheless it is better to accustom oneself to the conditions of [AB,
p. 560]. Indeed it is necessary to choose a metric on M relative to which the given connection
is a Yang-Mills connection. It is this that I initially thought and that I explain now. It is
instructive to explain the different aspects of this concept singly, as they appear.

We may now use the definition of this connection given in [AB]. The result is two definitions,
that derived from (39.c) and the one found in [AB], but the two definitions are hardly different.
We consider the one found in [AB] because the construction in [AB, §7] is so important for us.
It is necessary to explain carefully concepts that we use. Indeed, to read [AB] was a pleasure
but it was difficult to understand. The deductions were too easy, too casual yet difficult,
not for the two authors but for me, who was unfamiliar with the theory of connections.
Perhaps this is also true for the reader. If I do not add some calculations, I do not understand
correctly. Perhaps this is also true of the reader. I, indeed, misunderstood several times. Thus
I introduced the formula for F (A) [AB, §3] for the simple case in which we are interested.
The determination of F (A) is important for the assertion [AB, Th. 6.7]. Thus it is important
for us. Besides that it is related to the Yang-Mills theory.

It is possible that my explanation is not clear, but we pass from a metric to a unitary
connection. We can now use the definition of the curvature of this connection given in [AB].
The result of the two definitions, that derived from (39.c) and that in [AB], are the same.
However we consider that in [AB] because the construction in [AB, §7] is so important for us.
It is necessary to explain carefully the concepts we use.

The calculations are local, the fibre one-dimensional, thus U(1) or R and the base an open
set in C with coordinates x, y. The appropriate definitions are in [AB, §3]. It is sufficient to
consider two tangent vector fields X = d

dx
, Y = d

dy
. The connection assigns to each vector
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field or direction on the basis a horizontal vector field in such a way that

(48)
X 7→ X̃ =

{
d

dx
, a(x, y)

d

dθ1

}
, a(x, y) =

∂θ

∂x
,

Y 7→ Ỹ =

{
d

dy
, b(x, y)

d

dθ1

}
, b(x, y) =

∂θ

∂y
,

where θ1, which is not connected with θ, is the coordinate on the fibre and d/dθ1 is only
a constant tangent vector on the fibre. Moreover a(x, y), b(x, y) are essentially parameters
that are determined by the function θ = Im log σ. I repeat that X̃, Ỹ are displacements
determined by the connection.

We begin the calculation now, but it is useful to explain the guiding principle because there
is a sequence of particular circumstances that yield the conclusion. First the conditions of
Cauchy-Riemann and then the various relations in the theory of Weierstrass. The consistency
of mathematics is striking.

The second member in brackets yields the representation ωA [AB, §3] and determines the
curvature, which is given by

(48.a) X̃Ỹ − Ỹ X̃.
We may replace the pair {X, Y } by the pair {fX, gY } but as observed in [AB] it is easy to
verify that [fX1, gY1] = fg[X1, Y1] for all {X1, Y1}. Consequently it is sufficient to consider
the chosen pair. A connection is determined by functions a(·, ·) and b(·, ·). In contrast to the
authors of [AB] I use the customary coordinates for U(1) and U(1).

Although this is a fastidiousness that the authors of [AB] did not need, I calculate first
FA(X, Y ) and then

∫
M
F (A). We begin with the equation

X̃Ỹ =
d2

dx dy
+
db

dx

d

dθ1
+ a(x, y)b(x, y)

d2

dθ21
;

Ỹ X̃ =
d2

dy dx
+
da

dy

d

dθ1
+ b(x, y)a(x, y)

d2

dθ21
.

in which the terms
a(x, y)

d2

dy dθ1
, b(x, y)

d2

dx dθ1
are absent because d/dθ1 is independent of x and y. Indeed, regardless of the notation d/dθ1
is a vector in U(1)—at least I hope so. Consequently

X̃Ỹ − Ỹ X̃ =

{
db

dx
− da

dy

}
d

dθ1

and the curvature is given by

(48.b) FA(X, Y ) =

{
db

dx
− da

dy

}
dx ∧ dy =

db

dx
dx ∧ dy + da

dy
dy ∧ dx.

This is the notation of [AB], where the two-form (X, Y )→ FA(X, Y ) is written as F (A).
Allow me to add a word about the Yang-Mills theory. In order to determine a Yang-Mills

connection or the Hodge star it is necessary to choose a metric on M . This metric (met)
given, the Hodge star is determined as in [T] by the equation
(49) v ∧ ⋆v′ = (v, v′) volM ,
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where (v, v′) is given by a metric and volM is a differential form. Our construction is such
that it does to refer to a metric. Consequently it is free. It is, however, necessary to choose it
correctly. The condition for this is given as the equation (6.1) in [AB, p. 559],
(49.a) dA ⋆ F (A) = 0.

Thus the application of the Hodge star to the curvature F (A) yields a section constant
relative to dA. In [AB] there are the notations A or dA for a connection but the notation in
[GH] is D. This curvature is given. Until now the metric was not significant but now it has
to be determined such that this condition is satisfied. The Hodge star is given by the metric
on M .44

The curve M is given as a factor space C/L. We begin with the customary coordinates (x, y)
on C and C/L and with the customary metric

√
x2 + y2. In the domain where |z − λ| ⩾ δ

for all λ ∈ L we do not change this. In this domain the curvature is equal to zero, ⋆dx = dy,
⋆dy = −dx, and (49.a) is valid. Where |z − λ| < δ/2 the curvature is given by (43), which is
equal to

− 1

r4
· 4r2 + 1

r2
· 2 + 1

r2
· 1
r
· 2r = 0.

Consequently we do not change on C or on C/L in this region. In the ring δ/2 ⩽ |λ| ⩽ δ,
we modify the metric by the factor g(·) which is rotational symmetric, thus g = g(r) and is
constant inside and outside the ring and is smooth. I observe that we ignore the terms of the
connection that are given by (40) because they contribute nothing to the curvature. I was a
little careless earlier. More precisely the curvature F (A) is not real, it is purely imaginary.
But this is not important. The significance of (49.a) is that the sum of the movements dA and
F (A) cancel each other with the multiplication ⋆, that is with the infinitesimal movement.
This determines the volume, thus the area, in the ring δ/2 ⩽ |z| ⩽ δ. Outside the ring we
multiply the area by a constant if necessary.

I observe that the Hodge star is defined in [T] only for particular bundles but the definition
is more generally valid. A particular feature of (49) is that v, v′ lie in the fibre but volM is
related to the tangent space. Although I described at some length this example of a Yang-Mills
connection I am not certain this conception is important for a theory of automorphic forms in
which the basic space is of complex dimension one. The previous section in which the initial
assertion concerning the existence of a Yang-Mills connection is confirmed is preparation for
the following one.

A difficulty arises but it is better to postpone its resolution until the point at which it
becomes clear. Nevertheless we can describe it immediately. Below in the theorem I use
the concept of a Yang-Mills connection, thus a metric has been chosen. Then I compare
the consequences with the consequences of section VII, that is with the description of the
eigen conjugacy classes. But such a class is given by one of its representatives. At random
we choose an appropriate representative. On the other hand the choice of metric, thus the

44The following relations have of course a basic significance for the understanding of the Yang-Mills
equations and, as they are presented, are related to some difficult concepts, but for the present we are dealing
only with algebraic curves. Thus, ⋆F is simply a real-valued function, so that a section is not an arbitrarily
chosen bundle that is to be determined but a trivial line bundle. Consequently the equation implies that
⋆F is constant, but we chose on an elliptic curve a constant metric with constant curvature, so that this is
equivalent to the demand that F be constant. The metric is relevant for forms of degree one or even two, but
not for the trivial bundle, where ⋆F is defined. It is possible that in regard to this question I repeat myself or
have repeated myself. But this was initially a fine distinction that was not clear to me.
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choice of connection, does not seem pertinent. Although we are saved by the general theory
and the mastery by both authors of this theory, we can fortunately work in the context of a
particular metric. It is better to say that our choice of a metric on the bundle is not good
and that it was necessary to introduce some arbitrary corrections. This was clumsy, as we
explain below.■

Supplementary explanation and correction. This section is devoted to an explanation of
the construction of the indispensable bundle Q. In order to simplify my efforts, I introduced
a suitable metric in a digression. But for us the principal assertion in [AB] is Th. 6.7, the
theme of which is Yang-Mills connections. Their definition is such that the metric on M has
a decisive influence on their properties. This is particularly so for elliptic curves, for which
there exists a constant metric. This constancy is destroyed by the introduction of the point
Q. The function σ−1 is a multiple-valued section of the bundle Q.

I already explained this, but for me differential geometry is a labyrinth, that I entered
because the similarity of the two theories, arithmetic and geometric, is so striking. Incidentally
a question arises that I did not attempt to answer. Namely, in the present article complex
differential geometry, complex curves, and the Yang-Mills theory related to them are discussed.
I do not know whether the Yang-Mills theory for manifolds of higher dimension is relevant to
the theory of automorphic forms. It seems unlikely, but I am not yet familiar with either
the first or the second of these two theories, nor with another theory, namely differential
geometry, nor with the Yang-Mills theory in higher dimensions. As an aside, it seems to me
that in [AB] the principal particularity of the theory is its linearity.45

This linearity does not appear in our calculations, for which we introduce a somewhat
arbitrary factor m(·) but without a change of the given connection. It manifested itself with
a change of the connection. We shall make a better choice below.■

IX. The Theorem of Atiyah-Bott
46 The proof will be more important than the theorem, but we begin with the theorem. In

order to state the theorem it will be necessary to introduce an appropriate ΓR-connection.
Then for each homomorphism47 ρ : ΓR → G there is an induced G-connection Aρ. The
statement of the theorem is simple ([AB, Th. 6.7])

Theorem. The transformation ρ→ Aρ determines a mutually single-valued mapping between
classes of conjugate homomorphisms ρ : ΓR → G and classes of equivalent Yang-Mills
connections on M .

45This appears only with the accidental coincidence of the metrics on the fibre and on the curve M . One
affects the construction taken in part from [GH], the other one’s understanding of a Yang-Mills connection.
The corresponding choice was made in this essay.

46It is possible that the reader has noticed that there is an essential improved understanding between this
section and the following. This section is in need of a reworking, but I prefer leaving it as it stands for two
reasons. The first is laziness and, perhaps more convincing, the second is that the possible reader may share
my initial ignorance. There is also my conviction that, once provided with the following information, it will
be easier to wait until the theory is, as a whole, better understood.

47Indeed in this expression it is necessary to replace the group G by the group LG, but if G = GL(n)
then G = LG. The authors of the paper [AB] are not, of course, familiar with the notion of L-group, but if
G = GL(n) then G = LG. There is an exact sequence

1 Z ΓR U(1)× π1(M) 1 .

Since the groups ΓR and U(1)× π1 are not compact, the following construction is not completely evident.
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Apart from the explanatory digressions in the preceding chapter this is the first appearance
of a connection and as a result—of differential geometry, in the argument of this article
and the reason for the preceding explanations. I do not want to give a complete proof
of this theorem, but complex differential geometry is a highly developed domain, whose
understanding demands experience and understanding. It is easy to misunderstand the
reflections of experienced geometers—and the authors of [AB] are certainly experienced—
because of an inadequate understanding of essential ideas such as curvature. For me it was
so, but many errors were corrected with the help of the classical theory of elliptic curves48

There are so many sides to the theory that I initially misunderstood, that I repeatedly
examined what I had written. For example, neither the group G in the theorem nor ΓR

are necessarily closed. Nevertheless for the proof in [AB] it is assumed that the group G
is connected. It seems to me that it might be useful to add some words about the general
case. Indeed it seems to me that their proof entails a transfer to a group of lower dimension
that may be disconnected. I explain the difficulty although for us it is not weighty. In [AB,
p. 561] the authors suppose that GX = G, but it is possible that GX is disconnected even if
G is connected. Consequently the move to the group H × S was hasty. However, as I explain
below, this is not so, although there is a subtlety.

The bulk of the difficulty was a result of my inadequate understanding of the argument.
The beginning phrase ‘M̃ →M is of course a flat π1(M)-bundle’ seemed to me to be empty
words and the significance and truth of the phrase ‘A is a Yang-Mills connection’ seemed clear.
The phrase ‘of course’ is a temptation for an inexperienced reader, who has not carefully
thought about the words he is reading. As a consequence he has not fully understood them.
These words are not empty. The fundamental group is defined by loops emerging from a
point. Consequently they are well-defined locally but not globally. They are determined
globally up to an isomorphism defined by the route from one point to another. Thus the
definition of the fundamental group is delicate. Is it rather a bundle or also a bundle? In any
case, as I slowly appreciated, this is a relation of a ΓR connection to a G connection. This
was a question of inexperience. The change is so smooth. In addition I did not adequately
understand the simplest examples, for example the logarithmic function on C× ⊂ C with the
trivial bundle in which a pole is introduced at the point 0. It is important to understand
that neither ΓR nor G are necessarily connected.

In any case as soon as we understand the connection between M , M̃ , ΓR and the bundle
associated with them we understand how to pass from the homomorphism ΓR → G to the
Yang-Mills G-bundle. It is necessary to confirm that in this way we obtain each G-bundle. It
is clear from the definition that this construction gives a connection.

The following lines are meant for readers who like me are inexperienced geometers, but
in order to understand the argument of [AB, p. 560/561] it is necessary to understand
the constructions in their simplest form. For example, rather than inserting a pole or
zero, we choose a constant point n ∈ Z and place, in the vicinity of the given point a
simple function f(reiθ) with values in U(1), but glued to a function g given by the equation
f(reiθ) exp(inθ) = g(reiθ). If n ̸= 0, the equation is valid only in a wedge. It is not possible
that the ‘function’ or ‘section’ is defined in a complete neighbourhood of the point. This
determination is suitable for the construction of the U(1)-bundle on [AB, p. 560]. The

48This paragraph and the first few of the following paragraphs were written as I was attempting to confirm
a suspicion or a hope that the theorem of Atiyah-Bott was one of the keys to reciprocity in the geometric
theory. I decided to keep them. They reflect my difficulties with [AB] from which the notation is taken.
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construction of a π1(M)-bundle from a representation of the group π1(M) is known. These
remarks allow us to follow the construction on pp. 560–561.

The argument in the direction from homomorphism to connection is almost formal. From
connection to homomorphism the first step is to use a definition, principally the constancy
of the function ⋆F , that is the Yang-Mills condition, in order to determine X ∈ g, the Lie
algebra.49 Thanks to the conditions described in the footnote50 the group GX = G, introduced
at the beginning of the page [AB, p. 562], is connected. This clearly is understood indistinctly
in the discussion on that page. The existence of the point X and the group GX is necessary
for the description of the connection on this page. On that page there is also a resolution
of the difficulty that troubled me at the time of my reflections on these questions. That
is the Hecke eigenvalue in a given point is a class of conjugate elements that is given by
determining one element of the class. Which one? There is still something that it is necessary
to understand. But I would at first like consider the classification51 [AB, (6.12)] for the group
GL(2).

It seems to me that it is useful to describe now the possible forms of the group ΓR, at least
for the irreducible unitary representations of GL(2). The group ΓR = R×Z Γ is determined
by A, B, 1 ∈ R and ABA−1B−1 = J = 1 ∈ R, in which 1 is not the unit element. If
G = GL(1), LG = GL(1) and the representations ρ : ΓR → GL(1) are easy to describe. They
are given by the relations: A → α ∈ U(1), B → β ∈ U(1), x ∈ R/Z, x → χ(x) ∈ U(1),
where χ is a character of the group R. If G = GL(2), LG = GL(2), det ρ(J) = 1, J central
and there are two possibilities:

(50.a) ρ(A) =

(
χ1(A) 0

0 χ2(A)

)
, ρ(B) =

(
χ1(B) 0

0 χ2(B)

)
, ρ(J) =

(
1 0
0 1

)
,

where χ1(·), χ2(·) are two continuous unitary characters of the group Z× Γ, determined by
the group of linear equivalent divisors:

(50.b) ρ(A) =

(
a 0
0 −a

)
, ρ(B) =

(
0 b
b 0

)
, ρ(J) =

(
−1 0
0 −1

)
,

a, b ∈ C×, |a| = |b| = 1. In addition it is necessary that the connection determines ρ on R
and α = det ρ is derived from ρ.

It is now necessary to recognize the basic confusion in my reflections on eigenfunctions and
Hecke connections. The connection between the first and the second is indirectly determined by
two groups; ΓR and Γaut. It is not necessary to introduce intermediate connections. Distracted
by my initial ignorance of connections, I lost all my time in attempts to understand them.
But this was not a complete loss. We do understand arithmetic reciprocity in the broad sense
and the close connection between the Yang-Mills theory and geometric reciprocity cannot be

49On the one hand we introduce the L-group, on the other we do not attempt to use or describe its
formal properties, tied to the twisting and the broadening of poles. The groups GL(1) or GL(2) are in no
sense twisted. The argument on [AB, pp. 561–562] is sometimes unclear so that I want my assumptions and
intentions to be clear. (Added to this version: unfortunately, two years later they are not!)

50According to [K] A. Knapp, Lie groups Beyond an Introduction, Second Edition, Birkhauser, Boston,
2002, Corollary 4.51, thus “In a compact connected Lie group, the centralizer of a torus is connected.”

51Caution. Topologists are not like the rest of us. What is clear to them is difficult for us. I would like
to insert two propositions from [AB, p. 561] in order to be certain that I understand them properly. ‘Any
G-bundle P with connection induces a G-bundle P with connection. Conversely if P lifts to P then P is
unique and inherits a connection from that of P . Thus, the group G is a group of quotients of the group G
by a finite subgroup. Thus, if g ∈ G let Gg = { g ∈ G | g → g }.



ON THE ANALYTIC FORM OF THE GEOMETRIC THEORY OF AUTOMORPHIC FORMS 49

completely accidental, so the time was not lost. In addition to that, although I frequently
forget the nature of the relation between these two sets, they are direct! The eigen conjugacy
sections are determined as integrals of connections.

As I explained, I understand that the existence of Q is known to those familiar with the
theory of bundles, but it was not so for me and I preferred, at least in part, a description in
the context of the familiar Weierstrass theory. At the beginning I had difficulty understanding
how a fibre space and a connection were given locally by a zeta-function as in (2.e). I also
did not understand the necessary modifications of the metric on M and on the bundle.
I did everything possible in order to present the necessary explanations in the preceding
chapter, although, as the reader possibly noticed, I sometimes had difficulty absorbing the
first paragraphs of the section [AB, §4]. So in this section we can consider the proof of the
theorem of Atiyah-Bott. It would also be prudent for the reader to examine the paper [AB,
p. 560], where the equation dA ⋆ F = 0 is important.

The mysterious statement or transition on page 561—this is an unclear and incautious
supposition during the passage from line 5 to line 6 that GX = G is connected. This is only
a careless mistake, but it will be necessary to examine a particular case and to describe the
necessary changes.

At this point it is necessary to explain carefully the difference between the present conditions,
that is the conditions of the following section IX and the conditions of [AB]. We want to
describe the eigen conjugacy classes and eigenfunctions of the Hecke operators. This is a
function on BunG, which has a finite number of connected components. Consequently it is
necessary to calculate on a connected conjugacy class. This is reflected in the factor Z in
the equation (1.d). On the other hand, from the connected family given by the theorem of
Atiyah-Bott only those connections for which the integral is single-valued are relevant. This
will be discussed in the following section. We consider now the argument of the paper [AB].

There is, however, still one difficulty. It will be necessary for us to compare the description
of Atiyah-Bott, which presupposes a given class of Yang-Mills connections, that is a given
metric on M , with our description of Hecke eigenfunctions. Rather, we have to convince
ourselves that the description of Atiyah-Bott does not depend on the metric, thus on the
unclear dependence on it of the concept of a Yang-Mills connection. It is also necessary
to understand how it depends on the choice of Q. In the preceding paragraph I tried to
explain this with examples. It seems to me that this suffices. Such fastidiousness is necessary
because geometers have both experience and an ability to assimilate various realizations of
the same concept but I lack this experience. But it is better that I first explain the proof
of the Atiyah-Bott theorem and then consider the various realizations. For the reader it is
undoubtedly better to leave them aside for the moment. As I explained, for now preliminary
explanations suffice.

Before I continue the discussion of the Atiyah-Bott proof, I would like to confess that I did
not understand correctly, at least not adequately, what I was trying to prove. I continue the
introduction of two sets of parameters whose relation to each other is rather complicated.
Both are given by representations of the group LG, which in this article is usually GL(2),
but GL(2), PGL(2) and SL(2) are similar. For the theorem of Atiyah-Bott this group is ΓR;
for the Hecke theory this group is Γaut. Thus they are closely related. Their representations
are parametrized by similar objects: for the Atiyah-Bott theorem this is the Yang-Mills
connection, for the Hecke theory this is the group Γaut. They are therefore closely related.
Their representations are parametrized by similar objects: for the theorem of Atiyah-Bott
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these are the Yang-Mills connections, for the Hecke theory these are the eigen conjugacy
sections. It is necessary to suppose that this entails a connection between sets of parameters.
The obvious construction is the integral of a connection, but this requires an initial value, thus
a supplementary parameter. More precisely, an initial value is necessary on one connected
component. This is also, as we shall see, not entirely correct.

My original goal was to create the beginning of a theory of the automorphic galoisian
group in the context of the geometric theory. It seemed to me that it was to be found in
[AB, Th. 6.7], but it turned out that not only was an understanding of curvature necessary
but also of variational calculus, although in a modest form. It was also necessary to amend
the theory in so far as this was appropriate in our context.

Our description of the Hecke eigenfunctions and eigen classes for an elliptic curve showed
that on each component of the set BunG they are given by matrices of coefficients that are
given by exponential functions whose exponents are linear, that is each each component is
given as C/L and the lifted exponent is linear. Thus they are given as the integral of a flat
connection. That is, by a happy coincidence by a Yang-Mills connection. Linearity appears
because in M a group structure is implicit.52 Thus in general we expect a Jacobian or a
discrete accumulation of products of such sets. But I have neither the time nor the courage
to speculate on the general case.

It is extremely difficult to separate eigenfunctions, eigen points and eigenvalues. There is
an arbitrary choice, unclear for the first, but not in the others.53

I acknowledge also that the question of parameters was somewhat troubling. From the
point of view of Hecke operators, additive or linear parameters on M are similar, especially
for Θ2. From the point of view of the harmonic theory there are two possibilities: first metric,
then the connection as in [AB]; first connection, then the metric as in this article, at least
sometimes. They can lead to different conceptions of a harmonic connection. I chose the
second but in [AB] the first is used. Thus the question of equivalence arises. I leave it aside.
This question and other similar questions are implicit in [AB] where they are not discussed.
It is necessary to suppose that the necessary proofs are not difficult. Indeed the question
for them is so easy that I overlooked its explanation of, for example, the equation (6.10)
F (A) = X ⊗ω, X ∈ g. Here I allow myself a supposition. In the Hecke theory this constancy
is an expression of the influence of the Jacobian and in the Atiyah-Bott theory it reflects the
Yang-Mills condition.

A recollection of the structure of the set BunG. At first, some secondary questions
arise, first of all, the eigenfunctions of the Hecke operators, which are functions on BunG

and this space is not connected. Consequently they are not given everywhere by an integral.
We chose, however, in §IV a linear bundle Λ0 = ΛA0 , which allows us to identify the set of
irreducible bundles whose rank, that is dimension, is equal to r and which are of degree d+rn
with the set of bundles of rank r and degree M ↔M ⊗ An

0 [A, Th. 6]. For d = 2, the case
we are considering, this is related to Aeven, Aodd in §5. When we consider the consequences of
this, we understand that for the group GL(2) it is necessary first of all to distinguish two
types of eigenfunctions, the carriers of which, strange as it is, have no comment elements.
The first kind correspond to the direct sum of two linear bundles. The second kind are

52It is not necessary to take this assertion seriously.
53Added in translation—this statement is unclear, but the idea is not for we are dealing with points in

conjugacy classes. The first are somewhat arbitrary and the second variable.
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described in §VII. Our intention in this section is to explain the theorem of Atiyah-Bott.54

However we can pass to a covering of the curve M . The combinatorics of [AB] demand,
I suspect considerable attention. For example for G = GL(1) and M an elliptic curve, a
one-dimensional representation is arbitrary on A and B, but necessarily equal to 1 on J
in (6.6) and, consequently, on Z, but this is not so for representations of larger dimensions.
It seems to me that the authors explain this in (6.12) on p. 561, but it is possible that this is
not immediately clear.

This entails not only a change of the assertion but also a distinction between ΓR or Γ
and Γaut. The second set is related to BunG for which there is a parameter, that is degree,
which is related to multiplication by Λ0 = ΛA0 . This allows, for each eigenfunction f and
each number α ∈ U(1), the introduction of another function N 7→ f(N)αdegN . This is the
factor Z in (1.d) which monitors α. This factor is absent in (1.a).

Leaving this consideration aside, there is a second difference between connections and eigen
conjugacy classes, beside those that are obvious. First of all, the values of the first lie in the
Lie algebra (of the group LG!), but the values of the second lie in the Lie group of LG, but
if G = GL(2), G = LG. Therefore for the comparison not only the integration but also the
value.55

We return to this question in the following section, but it is first necessary to understand
the argument in [AB, §6], thus the proof of Theorem 6.7 and the necessary changes. We
begin with the equation (49.a) and its significance, not forgetting that we are not concerned
with linear bundles alone, that is only with bundles whose dimension is one. It expresses
the relation of the connection to the metric, on M and on the bundle. We already saw how
to pass from the connection to the metric. The authors remark that this connection, whose
group is ΓR [AB, p. 596, (6.5)], is not compact.

We already56 considered the equation dA⋆F = 0 as an equation from which F is determined
but with a different purpose. I find the argument in [AB] marvelous. However, the more
one thinks about this the more the concept in its simplicity becomes clear, at least for some
hours. I suppose that for manifolds of higher dimension it is really complicated.

There is an important detail of the definition in [AB, p. 560/561]. In the beginning, [AB,
p. 526], the group G is compact but not necessarily connected. This is important because
GX = G [AB, p. 561], so that the first group is also not necessarily connected. However it is
unexpectedly and inappropriately taken to be connected in the following section. It seems to
me that in the case (50.b) GX is necessarily connected. Thus in [AB] there is a small mistake.
I believe that it is an essential mistake that it is possible to correct by passing to a finite
covering of M that for (50.b) is also an elliptic curve. We shall return to this.

First of all F → ⋆F turns the curvature F ∈ Ω2(M, ad g) into the function ⋆F that is
equivariant in relation to the action of G (more precisely of LG). The authors come first
[AB, p. 560] to the conclusion that ⋆F = ⋆F (A) and that A = Aρ is constant on a horizontal
curve. This allows them to transfer the group structure from G to GX , the stabilizer of the

54Insignificant oversight. In their proof there are two insignificant omissions, as is clear already from
the example GL(2). But it is possible that I misunderstood the fourth line in [AB, p. 561].

55This is given by the values at A0 of a character, determined on the supplementary factor Z in (1.d).
Moreover, it is necessary that the integral, rather its conjugacy class, be single-valued. This is the reason
that I introduce the groups Γ/Γn in (1.d).

56From a geometric point of view our examples are very simple! It is useful to recall that the notation
Hodge star is a transposition of a function and a two-form. Moreover it is possible to broaden its definition
to all vector bundles.
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point X in ⋆F = ⋆F (A). The point X is an element chosen arbitrarily from the orbit of
the points ⋆F . Let PX = ⋆F−1{X}. Then PX/GX =M . Consequently F = F (A) = X ⊗ ω
where ω is a volume. Since X ∈ g, it is possible that its exponential integral, whose value lies
in G and which is determined by initial conditions, yields the eigen (conjugate) connection of
the Hecke operator. We explain this in the following section but only for elliptic curves. It is
probable the theory is in general similar. But I want to explain the proof on [AB, p. 561] for
elliptic curves and the group GL(2).

At first we continue with the discussion of their proof, taking G = GX . This is an
important simplification, but it is necessary to understand first the statement, ‘The Yang-
Mills connection Aρ defined by a homomorphism ρ : ΓR → G has curvature Xρ⊗ω where Xρ

is the element of the Lie algebra g of G defined by dρ : R→ g.’ I remark that in the preceding
section the dimension of the bundle was equal to one. It is now arbitrary. Consequently the
expression (48.b) is now a skew-symmetric form whose values lie in g. Therefore [AB, p. 561]
ρ(ΓR) commutes with X = Xρ and ρ : ΓR → GX = G.

We are concerned with the theory in [AB] only in connection with automorphic forms, but
it is useful to first describe the conclusions for the group GL(2) [AB, p. 561]. Let H = GL(1),
S = SL(2), G = GL(2). There is a homomorphism H × S → G with kernel D = {±1}. Let
G = G/D, H = H/D, S = S/D. Thus G = H × S. Hidden in the discussion [AB, p. 611]
is something similar to the relation of the discrete series to a compact Cartan subgroup. It
appears in the form of a lifting of a connection and its integrals that reminds one of the
general relation between Cartan subgroups and the classification of representations or of
automorphic forms. However, from the point of view, taken in the article [AB], unclearly
or unconsciously, this means a transfer to a double covering, that takes the group G to the
group GX . In other words, either G = GX or it is necessary to pass to a uniquely determined
double covering by an elliptic curve before introducing the description that appears in [AB,
p. 561]. This is the doubling that appears in [50.a/50.b]. In this way the possibility of three
parameters for one and the same connection appears. This has to be verified.57

The relation of the description (50.a) with direct sums of one-dimensional connections is
clear. In the contrary case there is a uniquely determined quadratic covering of the curve
M on which G is replaced by its connected component. After this step we can return to
the description [AB, (6.12)]. The image β in (6.12) is the projective image of the map ρ in
(50.b). However at this stage it is necessary to return to the assumption appearing a few
pages earlier, ‘Conversely if P lifts to P , . . . .’ I remark that I correct their slips only for the
particular cases considered and not in general. That I leave to others. I add also that there
are three possible quadratic coverings of M and all three are admissible.

The case (50.a) is of less interest. It is related to the continuous spectrum. It seems to
me that it is now necessary to stop and think about what we want to show. Above all, we
consider only the group G = GL(2) or groups closely related with it, SL(2) or PGL(2). My
first rough suggestion was a correspondence between eigenvalues or eigen conjugacy sections
of Hecke operators and Yang-Mills connections. However, the correspondence is not quite
that, The first obvious reason is that connections are determined on connected sets, but
eigen conjugate sections are determined on disconnected sets. The second reason is that their
parameters are different. The correct assertion is as follows, that the first is obtained from

57Indeed there are three. I was very confused for a very long time by the eigen sections of the form D and
their relations.



ON THE ANALYTIC FORM OF THE GEOMETRIC THEORY OF AUTOMORPHIC FORMS 53

the second in two steps, an integration from which we retain only some results and simple
multiplicative relations of different sets. We explain this in the following two sections.

Before we begin the necessary explanations in the following limits, it is best to form a
clear, although also approximate notion of the form of the parameters for the two sets, BunG

and the sets of eigenfunctions of the Hecke operators. The component parts of the sets BunG

are the sets Z, R, U = U(1) = R/Z. If G = GL(1), BunG is topologically Z×U×U. If
G = GL(2), BunG then approximately—the first component consists of pairs, in which the
order is irrelevant, but I am not concerned with the transition to the particular: this is not
relevant to a coarse description—the union of two sets—

Z×U×U× Z×U×U

and
Z×U×U.

Dually, for GL(2) the set of Hecke eigenfunctions, which we considered in §VII, is also the
union of two sets, but their coarse description is

U× Z× Z×U× Z× Z

and
U× Z× Z.

These rough remarks will trouble the reader, but this is not the choice of the connections,
as we studied them in the preceding sections, but the choice of integrals taken from them,
which we introduce in the following section and which correspond to the Hecke functions.
There is also a supplementary parameter, dual by the degree of a sheaf not directly related
to the connection. It is the source of the factor Z in (1.d).58

The following suggestion is all that remains of a series of inappropriate pages. This is the
imprint of the desperation that sometimes overcame me as I wrote this article. I confess that
for me differential geometry is difficult because there are so many equivalences under changes
of coordinates or metrics.

Reading these rough identifications, we begin to understand the connection between the
two factors in (1.d). However, beginning the following chapter, I remarked that, absorbed by
the particular case of an elliptic curve, I did not observe the particularities appearing for the
projective line. They are worthy of a brief explanation. If the genus is zero, the definition on
[AB, p. 559] is possible only if the empty product is equal to 1. Consequently

g∏
1

[Ai, Bi] = 1,

but this 1 lies in the multiplicative group and for cohomological reasons it is glued to 0 ∈ R.
Thus ΓR = R. According to the equation [AB, 6.12], for each n ∈ Z there exists a single
Yang-Mills connection of degree n and dimension one. Before we pass to the following chapter,
it is perhaps worthwhile to describe them, if only to become more familiar with the concept
of a connection. The projective line, thus C together with ∞ or

{
(z, 1)

∣∣ z ∈ C
}
∪ {1, 0}, is

a factor space of the group U(2). Better, it is C×C− (0, 0) modulo (z1, z2)→ (z1z, z2z),
58Added by the translator, thus by the author, two and more years after writing the paper. As I discovered

during the translation, it is impossible to appreciate the sense of these words or even of the next few paragraphs
without having read the paper to the end. Even then, it will not be easy!
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z ∈ C× or
{
(z, 1)

∣∣ z ∈ C
}
∪ {1, 0}, thus C together with ∞. An invariant metric, thus

invariant in relation to U(2), is given by the expression

(51)
dx2 + dy2

(1 + x2 + y2)2
,

z = x+ iy, or its square root. The notation is not clear. The expression (dx, dy) is a tangent
vector. We use this metric for the determination of the concept of a Yang-Mills metric. This
choice of metric yields also the Hodge star. The customary volume is given in particular by

dx ∧ dy
(1 + x2 + y2)2

and with this choice

(51.a) ⋆dx = − dy

(1 + x2 + y2)2
, ⋆dy =

dx

(1 + x2 + y2)2
.

We use this metric in order to determine the metric Q on the Riemann sphere. The following
calculations show that it is invariant under the action of the unitary group

z → az + b

cz + d
.

Thus in this case the fundamental group is trivial and M̃ =M . This case is of little interest.
Let

(51.b) z1 =
az + b

cz + d
, dz1 =

{
a

cz + d
− (az + b)c

(cz + d)2

}
dz =

ad− bc
(cz + d)2

dz,

where (
a b
c d

)
.

is unitary. We verify that the transformation (1.b) preserves the metric and the volume, thus

(51.c)
dx2 + dy2

(1 + x2 + y2)2
=

dx21 + dy21
(1 + x21 + y21)

2

and
dz dz

(1 + x2 + y2)2
=

dz1 dz1
(1 + x21 + y21)

2
,

but these two equations are not one and the same.

(51.d)
dz1 dz1 =

|ad− bc|2

|cz + d|4
dz dz =

dz dz

|cz + d|4
,

1 + x21 + y21 = 1 +
|az + b|2

|cz + d|2
=
|cz + d|2 + |az + b|2

|cz + d|2
=

1 + |z|2

|cz + d|2

because the matrix (
a b
c d

)
is unitary. Consequently the equation (51.c) is valid.

After this careful and possibly superfluous calculation, I would like to entertain some brief
general reflections, because there are simple features of the theory of bundles, that perplex
me. The authors of the article do not not introduce the bundle Q when the genus is zero
because for the projective line there is only one Yang-Mills connection, the trivial Yang-Mills
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connection. None the less, there is a bundle with a pole at ∞, even more than one. We
consider them, but in relation to the coordinates r, θ, supposing that at infinity they have a
simple pole, that is with flat coordinates they are given around infinity by the expression
f(1/z)z−1, f(0) ̸= 0. The basic particularity of its behaviour is given by the imaginary part
of the logarithm log 1/z, that is by −θ, which is not defined at r = 0.

In other words, my earlier description from the point of view of vortices was unsatisfactory.
Nothing particular, like a whirlpool, appears. We introduced a completely new subject into
the theory, the behaviour of which close to, but not at, a given point is given by a whole
number m which measures the change 2πm of θ as we move around the central point. It
can be considered only as a new and different peculiarity, not literally but graphically or
conceptually. This influences the neighbourhood of the point because this leads to a change
of level as in a circular ladder. We do not return there where we started.

In the present case we may attempt to use the coordinates r, θ in the whole plane and
consider the connection, moving in a circumference of unchanging radius relative to the point
r = 0. We meet difficulties and this is the heart of the matter, thus the reason that there are
no interesting connections on the projective line. When we pass to r = 0, we cannot close the
connection. We clash at r = 0 with the impossible choice of an angular movement because of
the discontinuity. This is a topological limit. A complete angular movement around a closed
curve cannot be modified without an abrupt change in the nature of the connection. For
example, its curvature cannot remain zero. Rather, in order to compensate for some vague
or impossible introduction of the curvature of the singularity, it is necessary to introduce
yet something else, and this might be a full passage to a covering, in which the closed curve
ceases to be closed and the limitations imposed by the curvature disappear. I needed some
time not only in order to compose the present paper but also to evaluate it. This decision
was not possible (not relevant?) for the projective line.

Thus, for it at infinity it would have the form aθ + br, where a is a non-zero constant,
say 1. As a novice, I thought it was very important not to depart far from the connections
determined by holomorphic connections, that is that the concept of a connection depended
on the theory of holomorphic or meromorphic functions. This was thoughtless. Holomorphic
connections are important, especially the imaginary or angular part of the logarithm has a
large independent geometric interest and, on passage to the logarithm and the imaginary
part it becomes simply a real connection. The curvature is determined by it. The initial
reference to [GH] is, to some degree, a reflection of my earlier belief in the priority of the
holomorphic theory.

What is the difference between the complex sphere and an elliptic curve. Why can we
introduce a non-trivial connection on the second and not on the first. At present, perhaps,
the question does not evoke much concern, but it is worthwhile to consider it briefly. On
an elliptic curve we could take a simple pole in one point and extend it to a meromorphic
function on the whole curve without any supplementary pole or zero. The function σ−1 is
such a function. Then the imaginary part of the logarithm yields us a connection with one
pole, a connection that we can then modify in such a fashion that the curvature is constant,
but this last step was only for the sake of elegance. There were also earlier steps that were
significant.

We paid a price for this extension, whose value was perhaps unclear with the function σ,
namely it occurred to us to pass to a covering, to the complex plane, in order to be in a
condition in which we could integrate obtaining a single-valued function. This is possible
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because an elliptic curve, unlike the sphere, is not simply-connected. It is easy to imagine
the function obtained. An elliptic curve is covered by the plane and in such a way that it is a
union of parallelograms and the integral of a connection is uniform, uniformly increasing and
decreasing from parallelogram to parallelogram, but at the same time remaining continuous.
For the Riemann sphere, which is simply connected there is no covering to which one can
pass. The proximity of any point, for example, the point at infinity, slowly closes up. There
is no escape. This structure is immediately visible on the plane that covers an elliptic curve.
For curves of higher genus my intuition is inadequate.

But why do we not allow ourselves two poles? This is a good question. All that I can
reply is that I was strongly influenced by [AB] and its introduction of Q. The readers have
to answer this question for themselves. This may be significant for the development of the
Hecke theory.

In the present article we, even hypothetically, do not consider ramified eigenfunctions
of the Hecke operators. They have to appear as unramified eigenfunctions on a ramified
covering. This is the principle of functoriality. Thus, if a general unramified theory exists
and if functoriality is valid in the context of geometric automorphic forms the ramified theory
may be investigated by means of ramified covers resulting from a multiplicity in the base. In
contrast to the arithmetic case, coverings of curves are relatively accessible, or so I would
believe! ■

Each Yang-Mills connection can choose an eigen section and an eigen metric.59 Thus, it is
possible to propose a connection only if the bundle is considered but the following choice
of metric on the bundle may be accommodated to various goals, for example, so that in
relation to it the given connection is a Yang-Mills connection. We have already met this
earlier. I also remark that for us Yang-Mills connections are only intermediate concepts. The
final correspondence is a correspondence of conjugate sections and representations of the
group Γaut.

I add a few more words about the Riemann sphere. Now for each k ∈ Z we take a trivial
bundle with a pole of arbitrary degree k at infinity. If k < 0 this is not a pole but a zero.
For the present example G = GL(1). If n = 0 the appropriate Yang-Mills connection is
trivial. Consequently, it is flat with respect to any metric. As earlier, I choose a rotationally
invariant metric, dθ2 +m(r) dr2. However we now consider planes, implicitly adding ∞ and
not C/L. A connection is given as in (41) and there is no supplementary term. Thus the
calculation leading from (41) to (47) may be repeated, although there is a change of direction
and, consequently, it is difficult to take into account the change of sign and orientation. The
result is 2πk if m(z) = |z|2k in a neighbourhood of the point ∞ and m(eiθz) = m(z) > 0,
z ∈ C. If we want to obtain a Yang-Mills connection the last step is to modify the metric on
the projective line. As in the earlier example it remains free.

So much arbitrariness is frightening. However, I want to underline that in the end the
connection appears to be only intermediate. The comparison will be between eigen conjugacy
classes and homomorphisms Γaut → LG. Allow me to attempt to understand the heart
of the matter. Above all, a determination of a Yang-Mills connection presupposes that
a metric is given both on M and on the bundle. Then it is possible to assign to each
homomorphism ρ of the group Γaut to LG a homomorphism of lim←−Γ/Γn(k) to LG and therefore

59We suppose that in this assertion there is a study of equivalence classes of connections together with
metrics that I have not undertaken!
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also a homomorphism of Γ to LG. This last homomorphism yields according to [AB, Th. 6.7]
a Yang-Mills connection. Choosing a suitable initial value, we can integrate this connection.
The result is a function whose values lie in LG. Undoubtedly this function depends on the
choice of metric, that on M and that on the bundle. However the function itself is not
significant. What is important is only the conjugacy class, which varies from point to point.
I did not verify that the class, at a given point, provided by the possibilities of this paper,
does not depend on the two metrics used in its determination. I had neither the strength nor
the time.

Before I return to the application of the theory in [AB], I want to discuss briefly the case
that M is given by a projective line, which was not considered by us because it was too
simple, thanks to the theorem of Grothendieck. It is better, however, to consider first and
briefly the assertions in [AB, Th. 6.7], from which curves of genus zero are excluded, but
only to assure ourselves that we understand them. In the proof both U(1) and M(1) appear
and both influence the connections that yield the theory. For our goals the influence of the
first is not important. This means that we are dealing with one-dimensional representations,
arbitrary on A and B and very simple on the inverse image of the group U(1).

On the preceding pages there was only a brief attempt to familiarize ourselves with the
theorem [AB, Th. 6.7] and its consequences. There is still, however, one question that it is
easy to consider. It is possible that the restriction of ρ : ΓR → G to R is such that ρ(J) ̸= 1.
It is frequently a root of unity.

X. Automorphic galoisian group and integrable connections

It is not the Yang-Mills connections themselves and their defining integrals that correspond
to the homomorphisms of the automorphic galoisian group to LG. Initial conditions for the
integrals lie in the unitary form of the group LG, which for us is usually the group GL(2)
and only incidentally GL(1) or a modification of the group GL(2) such as SL(2) and PGL(2).
Both the connections and the integrals are restricted to connected sets. These may be bundles
whose degree is zero.60 Consequently it is necessary to begin with them but it is appropriate
to explain first the next step. The bundle Λ0 was introduced but §IV and a tensor product
N → Λ0 ⊗N yields isomorphisms D(m,n)→ D(m+ 1, n+ 1), A(m,m)→ A(m+ 1,m+ 1),
A(m+1,m)→ A(m+2,m+1). The group Γaut is given in (1.d) as a product. Consequently
an arbitrary irreducible representation of this group is given as a product of representations
of the group Z: 1 ∈ Z → ϵ ∈ C, |ϵ| = 1 and of the group lim−→Γ/Γn(k). There is no sense
in considering the same eigenfunctions with support in D. They correspond to unordered
direct sums of two one-dimensional representations. For one-dimensional representations
it is possible to replace lim−→n

Γ/Γn(k) by the group lim−→Z/nZ × lim−→Z/nZ. This yields what
is necessary. Apart from the parameter ϵ and the function n ∈ Z → ϵn, this yields an
exponential function exp(ak + bl), k, l ∈ Z on M with parameters a, b given in (36.e), which
yield a full orthonormal system on BunG if G = GL(1). Recall that BunG ≃ Z×M , although

60We have not yet revealed our principal goal, the description of eigen conjugacy classes. These are
functions on M , the values of which are conjugacy classes. They are given by functions of points in M ,
which in principle are indistinguishable. These functions are determined by integrals with initial conditions.
Since the function, at least, the conjugacy class determined by an integration and initial conditions, must
be single-valued, the choice of admissible initial conditions may be extremely small. For a bundle whose
dimension is larger than one, the concept of an initial condition is subtle. The continuous parameter appears
as a parameter, dual to z ∈ Z, which is the parameter of the connected components. One point Λ0

0 is the
trivial bundle, independent of Λ0.
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this identification is somewhat arbitrary. I remark that a general identification of such a
sort for all groups entails a structure on a full set of eigenvalues, considered for all groups
simultaneously. This does not appear to lack interest. I remark also that the purpose of the
groups G (LG!) in [AB, Th. 6.7] differs somewhat from that which is appropriate here. The
exponential function exp(ak + bl) is a definite integral of the connection (a, b)→ ak + bl. It
is easy to forget, although it is not appropriate to forget, that in §III and §IV there is an
arbitrary but inevitable choice of the fixed point A0 ∈M and on the trivial linear bundle.

Exponential functions with linear exponents appear naturally in our discussion of Hecke
eigenvalues, whose definition presupposes a metric neither on M nor on the fibres of an
arbitrary bundle. On the other hand, both appear in the determination of a Yang-Mills
connection, for which the metric on M is particularly important. It appears in the deter-
mination of Q in the definition on p. 560 of [AB] and in the construction, in the previous
section, of the connection ω on Q of a particularly simple form, that for which the curvature
is constant. It is now proposed to the reader to study [AB, p. 560] taking as we do, thanks
to the calculations of the preceding paragraph, the metric on M that is derived from the
metric on C, itself invariant with respect to translations, in such a manner that ⋆, F = F (A)
and ω are all constant.61 Consequently the connection mentioned above is also constant and,
as above, the exponent of its integral is an exponential function with linear exponent. It is
namely this that allows a comparison of the results of the two sections VII and IX.

A Guess. This is the suggestion “. . . we can restrict ourselves . . . to the case GX = G.” on
[AB, p. 561]. This is the guess that can be assessed easily.

The difficulty for the curve M , the case with which we are dealing is that the presence of
A and B in the Poincaré group are forgotten. This case must be typical. We may pass to a
finite covering for which the description in [AB] is correct. I add that this case is for us the
most interesting. It is better to consider GL(1) before GL(2). Then (50.a) is replaced by

(52) ρ(A) =
(
χ(A)

)
, ρ(B) =

(
χ(B)

)
, ρ(J) =

(
1
)
,

and (50.b) does not appear. The supplementary parameters χ(x), x ∈ R/Z, χ(x) ∈ U(1)
replace X ∈ R, x ∈ R, because the first is an exponential integral of the function iX, thus
exp(ixX). There are still many functions of the second order. Only those parameters of the
second kind, the integrals of which give single-valued functions on M are relevant.

For the group GL(1) the eigenfunctions (thus variable conjugacy classes) are given by the
characters χ of the Picard group, which give, above all, their values χ(A0) at the distinguished
point A0, thus by a character of the group Z in (1.d). Besides that, a character of the subgroup
given by the divisors of degree zero, thus points of the group M = C/L itself. Such characters
are given by the logarithmic integral of linear functions.

For eigen classes of the form D, the relation between eigen conjugacy classes and eigenfunc-
tions is explained by the formulas (30) and (30.a) together with the intervening explanations.

61I underline that in the previous section it was not simple to construct on the bundle Q a connection
with constant curvature. We use it now. Neither in the particular case of an elliptic curve, nor in general, do
I try to understand how the curvature changes with the connection. On the whole, it is still difficult for me
to provide myself with a concept of connection, although I have convinced myself of its importance for the
geometrical theory. I add here, because it is necessary to add it somewhere, that with the metric that we
chose a Yang-Mills connection on a bundle of degree 0 is constant. The relevant exposition demands much
more experience than I have and many supplementary pages.
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Confession and uneasiness. We begin to apply the conclusions of [AB, Th. 6.7] I learned
about the Yang-Mills equations as I wrote this paper, because this is important for the
understanding of its ideas, but my experience of working with it and with differential
geometry is limited. Now we attempt to understand its simplest properties. For G = GL(1)
homomorphisms from the group ΓR, [AB, 6.6], to U(1) decompose as a product U(1)→ U(1)
and π1(M)→ U(1). As a simple but important instance we consider the argument on p. 560
in [AB] with the group G = LieU(1), LieG = g = R. Then X ∈ R is constant. None the
less, there is an important question that, because it was clear for them, the authors did
not explain clearly, but it is somewhat difficult for me to explain. I am accustomed to deal
with reductive algebraic groups and their compact forms, for example U(1), but there is
no such limit on the group G in the formula ρ : ΓR → G on [AB, p. 560]. It is possible to
allow G = R. The two groups have one and the same Lie algebra. It is only that the second
choice proposes more choices. More precisely, together with the theorem [AB, Th. 6.7] this
guarantees that the integrand in the exponents of the equation (53) represents a Yang-Mills
connection, but not without further discussion. The possibility of taking G = R is already
mentioned in the footnote ‘Insignificant oversight.’

The following equation (53) is the first step in our comparison of Yang-Mills connections,
on one hand, and Hecke eigenfunctions, on the other, but this is a delicate comparison. The
eigenvalues are given as functions of a parameter in BunG with values in LG, which for
us is either GL(1) or GL(2), but this parameter is only a conjugacy class of semi-simple
elements in the group. Thus there is a great deal of ambiguity in the choice of representatives.
On the other hand, The concept of a Yang-Mills connection requires a metric both on M
and on the fibres. Fortunately, for an elliptic curve there is a very small class of natural
metric on M ⊂ Pic(M) and they are invariant with respect to translations. Our choice is
somewhat arbitrary. Moreover, this concept demands a choice of a linear bundle Q and a
connection on it. Moreover in order to establish a bijection between Yang-Mills connections
and homomorphisms ρ : ΓR → G [AB, p. 560] it is necessary to choose a metric on a given
linear bundle Q, as well as ρ : ΓR → G. Then the correspondence depends on all these
parameters, perhaps weakly, perhaps strongly but it is necessary that in the end we arrive
at a clearly determined bijection between eigen conjugacy sections for a given group and
homomorphisms of the automorphic galoisian group to LG. I observe in particular that we
must understand the dependence on Q. The given choice, leading to a constant curvature
was made before I recognized its importance, at least for this paper. It is easy to forget the
large part of arbitrariness in the constructions of the correspondences of this paper. ■

Rather than to begin directly with the case GL(2), with which we are occupied, we study
the group GL(1), for which the conclusions are simpler and the fastidiousness less necessary.
First of all, the eigenvalue, thus the conjugacy class, is pointwise a single number. In addition,
the section is unambiguous, thus a function and these functions are easily calculated. They
are characters of the Picard group. This group is the product of the group {Λn

0 | n ∈ Z } ≃ Z,
which is the first factor in (1.d) with the group of divisors A − A0, A ∈ M , thus with the
group M = C/L itself. The group of continuous characters of this group is given by pairs of
whole numbers k, l ∈ Z, as in (53) below. For our purposes it is necessary to transform these
characters into pairs of complex numbers of absolute value one, in order that we can attach62

62This transformation has a strange form, a part of the numerator becomes the denominator, which puzzles
me and may puzzle the reader. Thus, although this is a simple question, I prefer to describe it in detail in
order to convince myself, if not the reader. There are two incompatible notations, that in [A] and that in
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to each homomorphism from C/L to U a character of the group lim←−Γ/Γn(k). If k = l = 0,
this homomorphism is equal to the trivial homomorphism A→ 1, B → 1. The vector (k, l)
is, of course, subject to a unimodular transformation because the basis of the lattice L is not
uniquely determined. Thus if the parameter is not equal to 0, we may suppose that after
a unimodular transformation it has the form (k′, 0), k′ ̸= 0. Although we are dealing with
something very simple,63 the best of all is that it presents itself in full clarity. Otherwise
there would be confusion, at least in my brain. The linear function k′a′ determined by the
new coordinates (a′, b′), thus by those which are determined by the new basis as (a, b) in
(36.e) by the initial basis (2ω1, 2ω2), is clearly defined and does not depend on the choice of
the modified coordinates. It remains for us to explain the possible choices.(

a b
)
=
(
a′ b′

)(α β
γ δ

)
, α, β, γ, δ ∈ Z,

where αδ − βγ = 1, a′ = k′, b′ = 0. The matrix is determined up to the factor(
1 0
x 1

)
, x ∈ Z.

A change of basis entails a change of generators,
A→ A′ = AαBβ, B → B′ = AγBδ.

In so far as we are trying to determine a one-dimensional representation of the second factor
of the group Γaut, we in essence are dealing with the generators A′ and B′ of an abelian group
and a representation A′ → exp(2πi/k), B′ → 1. Speaking frankly, this action troubles me.

However we can return and express it as a linear function of the initial coordinates. It
also determines a one-dimensional representation of the group lim←−Γ/Γn(k) in (1.d), A′ →
exp(2πi/k′), B′ → 1. In so far as we are dealing with a one-dimensional representation, we
may also determine this representation as A→ exp(2πia/k′) and B → exp(2πib/k′) simply by
an expression of A′ and B′ modulo the group generated by the commutators. This possibility
has the strange peculiarity that a part of the numerator becomes the denominator, which
troubles me and may trouble the reader.64

I hope that it is now obvious that what remains to explain for the group GL(1) appears
to be the parametrisation of the restrictions of conjugate eigen connections to the set
{A− A0 | A ∈M }, whose connected component is BunGL(1). For myself, just as for the
reader, I observe that for linear bundles most questions, perhaps even all, can lead to questions
for bundles of degree 0, by taking the tensor product with Λ0. This is not so for bundles of a
larger dimension.

In the following equation (53) the exponent is an integral of a connection on a curve from
z0 to z,

(53) {z0, z} 7→ exp

{
4πi

∫ 1

0

(ka+ lb) dθ

}
= exp

{
4πi(ka+ lb)

}
,

[AB]. The meaning of the symbol [A] changes. Here we suddenly change the notation from the first to the
second.

63but very important!
64On translating these statements, whose validity I do not doubt, from the Russian to the English, their

obviousness is difficult to recapture.
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where a, b are coordinates as in (36.e) of the point z − z0 ∼ A− A0 = AA−1
0 , k, l ∈ Z and

0 ⩽ θ ⩽ 1. It is easy, at least was easy for me, to overlook the determination of π1(M) in the
definition ΓR or the difference between G = U and G = R× in the relation ρ : ΓR → G on
[AB, p. 560]. If G = R, then the whole numbers k and l are determined by the restriction
of ρ to πM , thus on its inverse image. It is not appropriate to forget that for the complete
determination of the Hecke eigenvalues we must show in full the eigenfunction and, therefore
determine its value at A0. This is given by the image of 1 ∈ Z, an element of the first factor
in (1.d).

The whole numbers k, l are freely chosen. The purpose of this condition, thus that k, l ∈ Z,
is that the integrand in (53) be a single-valued function of the variable z ∈ C/L. The simple
form of the integrated function is a consequence of the circumstance that the connection
that appears in the integrand is a Yang-Mills connection. These connections themselves are
consequences of the carefully chosen metric on the base and on the bundle Q. I explain!
The choice of metric on M was not complicated but the choice of metric on the fibres was
inspired without a clear goal. The subsequent choice of a connection was a reasoned guess. I
was already convinced or understood that Yang-Mills connections are frequently constant.65

Recall that the integral (53) is definite. For us, what is important is that (53) determines a
character, that is a representation of the second group in the product (1.d). At any time it is
possible to replace the second factor in Z× lim←−Γ/Γn(k) by the group lim←−n

Z/nZ× lim←−n
Z/nZ

because GL(1) is abelian. For this reason k and l must be integral.66

In the discussion on the pages [AB, pp. 559/560] some fundamental understanding of
differential geometry is understood. We may consider it to be self-evident, but I would
like nevertheless that the reader be aware of it. It is simply a repetition of the connection
between zero curvature and well-defined integrals of a connection but in multiply-connected
domains. Its first consequence is the equation (6.10) and in particular the assertion [AB,
p. 561, ll. 7–9] ‘Now line-bundles with harmonic connection . . . can be uniquely expressed
as Qk ⊗ L0 . . . where L0 is flat.’ The word harmonic has many meanings and the best way
to understand what the authors meant is to study the assertion of their Th. 6.7 and its
applications. First, in so far as I understand, there is for them no difference between the
words ‘harmonic’ and ‘Yang-Mills.’

The preceding assertion taken from [AB] evokes in me some confusion because my knowledge
of elliptic curves appears superficial. Without preparation I cannot show that multiplication
by a linear bundle of degree zero is equivalent to the imposition of a divisor of degree zero,
or if a point is fixed, as for our Q, so that the curve67 becomes a group and multiplication
(or addition) simply the composition of points. This answers the question after (36.m) that
remained open earlier.

We may, in particular, use the assertion from [AB], in order to amplify our discussion of
the equation (36.1). These remarks, of course, are not entirely satisfactory, because they
presuppose a complete understanding of the assertion and its proof, but it is clear that this
would take us too far afield. Besides, it is clear that we are dealing with questions that are

65More precisely, the importance of our choice was aesthetic. The final comparison of the homomorphisms
Γaut → LG with eigen conjugate sections expresses this simply.

66We chose the factor 2 from [WW], but it is sometimes a hindrance. There is another circumstance, which
appears with the study of bundles. Linear bundles of degree one, which we considered with such care in the
preceding section, do not appear in the Hecke theory for the group GL(1).

67supposed to be a curve of genus one
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known to specialists. In any case in the above statement it is supposed that the identification
that it describes entails a relation to the tensor product of linear bundles.

The transition from Γaut to ΓR. We apply [AB, Th. 6.7] to GL(1) bundles and connections,
studying the homomorphism ΓR → GL(1). It is clear that ABA−1B−1 7→ 1 ∈ GL(1). Thus
z ∈ Z 7→ exp(2πinz), n ∈ Z. The images of A, B are equal to exp(2πiα), exp(2πiβ), where
α, β are at the present moment not defined. We now interrupt ourselves in order to think.
We are searching for representations of Γaut related to eigen conjugacy classes, at the moment
in GL(1). A one-dimensional representation of Γaut is given by a representation of Z in GL(1),
z ∈ Z→ exp(2πinz), and two numbers α, β in Q/Z. These two numbers appeared as α/n
and β/n in the discussion preceding formula (53). Unfortunately, I could not maintain a
consistent notation. Thus two sets of parameters are the same. It remains to describe the
connections, determined, according to [AB, Th. 6.7], by these parameters, that is by these
representations of ΓR in GL(1). They are given as products of representations of U(1) with
a representation of the group π1(M). A representation of the group U(1) is given by an
integer. This appears as the degree of the basic linear bundle Q as a factor of the bundle
that is associated with the given representation. The second factor is a flat linear bundle,
determined by the representation π1(M), in a direct way by the fundamental group without
the bundle Q, by two parameters α, β. However we do not need all pairs, only those that
yield a periodic function. For the two groups this is a question of periodic conjugacy classes.
■

The reader will observe that the group U(1) in [AB, 6.6] is not yet an important part of
our discussion. This is because those one-dimensional representations of the group ΓR that
are appropriate in the given context have a trivial inverse image in this group. I stress that
the Yang-Mills theory appears to be the principal factor in our discussion but we need only a
minor part of this theory. Moreover and above all, we are dealing with the theory for curves.
Secondly, the restriction of the homomorphism ρ : ΓR 7→ G to U(1) or its inverse in ΓR have
a particular form. It is such, that Z→ 1. Other possibilities arise for GL(2), which is for us
the principal case.

However the theory for this group will be deduced from the theory for GL(1), using, above
all, this theory together with induced representations in the context of the group Γaut on one
hand and the group ΓR on the other.

For G = GL(1), we choose a particular class of representations ρ, and then a subset of
Yang-Mills connections related to these representations. For G = GL(2) the argument is
similar. If the representation is reducible, we consider the two components separately, leading
to a pair of connections and to a pair of functions as in (53) with similar conditions. They
will correspond to eigenfunctions of type D. Thus let ρ be irreducible. This supposes that
ρ : ABA−1B−1 → −1 ∈ GL(2) and that, with appropriate coordinates,

(54) A→
(
α 0
0 −α

)
, B →

(
0 β
β 0

)
, α, β ∈ U(1),

and thus that

(54.a) J = 1 ∈ Z ⊂ R→
(
−1 0
0 −1

)
.

In order to understand a connection that is determined by this representation it is best to
pass to an unramified double covering M ′ of the curve M . There are three of them. Which
we choose is only a question of convenience or notation. They yield similar results but the
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implicit multiplicity, as we shall see, is real.68 Suppose, for example, that it is determined by
the subgroup generated by {A,B2}.

Yet another digression. Although we need only particular cases of the following calcu-
lations, it is better to understand that which is generally true and generally important for
other groups. We also began to study the formal relations between Γaut on the one hand
and ΓR on the other, as well as between Γaut and conjugacy classes on one hand and ΓR

and its relation with Yang-Mills on the other. In particular, for m = 1 we fully understand
the relation. Although it is not our intention to consider an arbitrary group other than
GL(1) and GL(2), it is best to include some general observations about the eigenvalues of
ρ(A) and ρ(B) for irreducible representations of dimension n of the group ΓR. Each such
representation is given by a representation of the group Γ ([AB, p. 559]) combined with a
compatible representation of the group Z ([AB, (6.5)]). The basic obstacle to the theory
for GL(n) does not lie in the theory of Yang-Mills connections but in the theory of Hecke
operators, which is still inaccessible for GL(n). Let m > 0, and the greatest common divisor
(m,n) = 1.

(55)

A = α


1 0 0 0 0
0 exp(2πim/n) 0 0 0

exp
(
2πim(n− 2)/n

)
0

0 0 0 0 exp
(
2πi(n− 1)m/n

)
,

B = β


0 0 0 0 1
1 0 0 0 0

0 0 0 0 0
0 0 0 1 0

,
so that ABA−1B−1 = J is equal to exp(2πim/n) multiplied with the unit. This expression, of
course, not uniquely determined, since only the conjugacy class is determined and expressing
the conjugacy class of the connection by powers of the matrices, we multiply A and B
independently with an arbitrary nth root of unity. These general observations are important
and it is useful to recall them, but they are not directly appropriate. ■

We choseM ′. I immediately introduce, at first in a clumsy form, because I am inexperienced,
then in a general form, a two-dimensional connection. The restriction of ρ : ΓR → GL(2)
to the corresponding subgroup Γ′

R yields then a direct sum and an associated bundle, the
existence of which is assured by the preceding considerations, is also a direct sum. Then we
consider a linear bundle on the covering M ′, chosen from one or the other of its components.

We turn now to the description of two-dimensional bundles, which was interrupted by these
accidental remarks. It is sufficiently clear what happens with the projection of a linear bundle
on M ′ to a two-dimensional bundle on M . What is necessary is a clear description and a
verification that the result does not depend69 on the three possible choices of the covering

68I do not know, how this manifests itself for other groups. For our group it appears, but only at the very
end, to be a false assertion. I left it in order to remind myself of the uncertainty in which I remained for a
long time.

69As already observed, on the contrary, it does depend on the choice.
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M ′. I apologize to the reader for such a detailed explanation, but for my personal edification
or education, this is very useful.

It is appropriate to represent the fundamental domain ∆ for M as a parallelogram, placed
more or less vertically, from the point of view, of the reader, in the complex plane. For M ′

this would be the parallelogram together with its translation upwards. Indeed, I wanted to
examine the construction carefully, explaining that, for example, how the result depends on
the choice of the generators A and B and on the choice of the subgroup given by {A,B2}
rather than that given by {A2, B} in the definition of M ′. In order to include a simple
diagram, I propose that A be horizontal and B vertical, and that the fundamental domain
be given by a square.70

(56)

The one-dimensional bundle onM ′ is such that the connection on it is also a one-dimensional
bundle or connection on C. Then we take the direct sum of this bundle and its translation
by 2ω2. This yields a two-dimensional bundle or connection on M .

But it is better to think like a topologist. If I were a topologist, I would say: “Take the
direct image of this line bundle relative to the double covering M ′ →M , in order to obtain a
two-dimensional vector bundle on M .” This yields the desired outcome. Indeed, although in
order to convince myself about this, I had to make an effort, it was all only a reformulation
of the assertion on [AB, p. 560]. We continue the discussion, asking the reader not to forget
about the three possible double coverings.

Before we continue, we have to examine the influence of the transition to M ′ on the exact
sequence [AB, 6.1]. The point is that, as we already know, J changes and becomes

(57) J ′ = AB2A−1B−2 = (ABA−1)2B−2 = (JB)2B−2 = J2.

On this covering the connection is a direct sum, whose components are different. Consequently
its construction is clear. The question reduces to the previous case, but with Z replaced
by Z′ = 2Z and U(1) replaced by its double covering U′(1). At the same time the group
π1(M) is replaced by a subgroup of index two. Thus Γ′

R itself is a subgroup of the group
ΓR of index two. The group U also changes. Earlier it was Z\R, but now it is Z′\R and
we allow representations that on Z′\Z are the unique non-trivial character of this group.
They determine, according to the previous explanation, above all a Yang-Mills connection of
dimension one on M ′ and, secondly, according to the description of the above construction, a
Yang-Mills connection on M of dimension two. The first is related to a representation of Γ′

R

70There are three choices. For one, the fundamental domain is given by the union of the squares at (0, 0)
and (1, 0), for another the union of the squares at (0, 0) and (0, 1), and for a third the union of the squares at
(0, 0) and (1, 1). They correspond to three non-zero elements in L/2L, namely (1, 0), (0, 1) and (1, 1). In the
diagram, offered by Anthony Pulido, it is this last choice that is offered. It would be best of all to present it
with another choice of fundamental domain, the square rotated by 45 degrees.
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of dimension one. The second is related to the induced representation of the group ΓR, and
this has dimension two. It is irreducible because ABA−1B−1 → J and J → −1.

I do not know how this manifests itself for other groups but for the present example it is
useful not only to consider the phenomenon from the point of view of the pair of groups ΓR

and Γ′
R but also from the point of view of the pair Γaut and Γ′

aut, one pair geometrical, the
other arithmetical. For the first pair, for which the corresponding definition appears on [AB,
p. 560], it is evident that the restriction of the representation ρ to the group Γ′

R becomes the
direct sum of two different representations because the image ρ(A) ∈ GL(2) has two different
eigenvalues ±1.71

A question of conscience. There are important remarks about GL(1)-bundles that I forgot
to explain, although the necessary preparation had been made. Above all, for G = GL(1) the
homomorphisms of ρ [AB, p. 560] are equal to 1 on z = J = 1 ∈ Z. This is simply all that we
need. For the group G = GL(2) this will be another matter. Indeed, for our purposes, for the
theory of automorphic forms it is equal to 1 on U(1) if G = GL(1). This means, that they
are given by two numbers in U(1). The existence of the related bundles has to be deduced
either from the phrase on [AB, p. 561] cited earlier or from our discussion (36.k). However,
at a first glance, we are dealing with differing concepts of flatness. First of all, there exist
many-valued functions, in which changes are determined by homomorphisms of the Galois
group to U(1), and secondly linear flat functions in which the slopes are given by two real
numbers, one for each side of the fundamental parallelogram. Thus they are essentially the
same. It is the second form that will be preferred in (53).

It is also necessary not to lose sight of the condition [AB, 6.6] and the definition of ρ. If
the restriction of ρ to the inverse image U(1) is trivial, then for the determination of the
connection attached to it we may simply replace Q by the trivial one-dimensional bundle
because the construction understood in the words ‘Given any homomorphism ρ : ΓR → G we
then get an induced G-connection,’ assumes a division by the kernel of the mapping ρ, thus
Q×M M̃ is replaced by 1×M M̃ = M̃ or rather U(1)×M M̃ . Such a connection is necessarily
constant. In our particular case the constancy of the kernel and the metric mean that the
powers of U(1) yield a flat connection.72

That which becomes transparent, when we begin to think about Hecke eigenvalues of
the form A, is the similarity between ΓR and the automorphic Galois group, which is so
important for the theory of automorphic forms and representation theory.73 This leads, in the
same way as in this theory, to some functoriality in the Yang-Mills, but it also leads to the
possibility of direct images, and this I have not seen in the customary automorphic theory or
in the local representation theory. At least, if I saw it I did not recognize it. Perhaps this is
a change of base? None the less, in particular for the theory for the groups GL(1) and GL(2)
that we are about to describe, there is a hint on something known. That which appears in
the geometric theory and not in the arithmetic theory is induced representations and direct
images. The fundamental concept is ΓR, which I call the Atiyah-Bott group. It is related to

71As was observed, the relation GX = GY appearing on the upper part of the following page of the article
[AB] is not necessarily well-founded.

72The purpose of U(1) and its representation are not clear in this paper, in which only GL(1) and GL(2)
are considered. It would be clearer if we examined groups of higher rank. Rather they, the purposes of this
article, manifest themselves only at the end of this article.

73It is best to deal with these assertions carefully. The geometric theory and the arithmetic theory are
different.
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the group Γaut, with which we are already familiar. The theory on M ′ manifests itself as a
part of the theory on M . As is known from the arithmetic theory—rather as is expected from
the arithmetic theory and from the geometric theory—a series of important deductions in
this theory may be expressed at present from the point of view of the automorphic galoisian
group, although we are far from a general understanding of this group.

The group ΓR appears to be the analogue of the automorphic Galois group in the sense
that its homomorphisms to the group G determine the Yang-Mills connections with values in
G. However the automorphic Galois group has in addition a local form. It is possible that
some readers are familiar neither with the global nor the local form.74 The group ΓR does
not have a local form. Rather we consider only its quotient, that determined by unramified
representations, thus representations of the Hecke algebra. Consequently it is possible that
this is the partial, local form, the simple local LG, but it seems to me better to consider
GL(n) before reaching any conclusions. It is possible that GL(n) is more complicated.75

In this way, we transport an automorphic form from M to M ′, as far as we understand
this, related to the image of Γ′

aut in Γaut. In the theory of base change76 we pass from one
field to a larger field. The field of the curve M ′ is larger than the field M , so that we study
here something similar. The taste is, however, different. Indeed, the movement is in the
opposite sense, and this is confusing. M ′ appears as a covering of M and we are dealing
with a direct image.77 In the given case this corresponds to induction of a line bundle on M
to a two-dimensional vector bundle on M ′. We already described this in detail and simply.
The goal is now to explain it as induction from a one-dimensional representation of Γ′

aut to a
two-dimensional representation of the group Γaut. This, in its turn, can be expressed as a
passage to a two-dimensional connection, that with integration, just as for GL(1), in order to
determine the possible eigen conjugacy sections. Then this is to be compared in the following
section with the Hecke classes described in §VII. ■

We pass from forms on M ′ to forms on M . On the other hand, in the theory of Yang-Mills,
thus in a theory in which connections are the principal objects, there exists a direct image,
and indeed a direct image from fibre to fibre. What is its relation to the homomorphisms of
Atiyah-Bott and to the homomorphisms of the automorphic galoisian group. In this article
we study a simple but instructive case of this question. There are many tiresome secondary
questions that it is necessary to explain, but their presentation is necessarily disordered. The
reader will have to excuse me.

The first matter, which is not clear to me, is the relation between A0 or Λ0 and the
multiplier U(1) in (6.6). We also did not clearly resolve the difference between the theory of

74One local form appears in the article [L2] On the Classification of Irreducible Representations of Real
Algebraic Groups, Math. Surveys and Monographs vol. 31, 1988 as a Weil group. The local form of the
group, in so far as we are considering only unramified representations, but for all base fields, thus fields of
algebraic numbers or function fields, appears to be simply Z, so that we are dealing with the image of 1 in Z
and its conjugacy class.

75Some mnemonic comments. If M ′ →M is a smooth finite-dimensional covering, then the inverse image
of the bundle on M is a bundle on M ′ with the same dimension. On the other hand, the dimension of the
direct image of the bundle A on M ′ is equal to [M ′ : M ] dimA. The first construction is base change, but it
is the second that is important at the moment.

76[L1] Base change for GL(2), Annals of Mathematics Studies, vol. 96 (1980).
77In the customary theory the group on the larger field is considered as a group on the smaller field. The

relation to a direct image is not immediately seen. We return to this. The reader will observe a certain
amount of repetition. This is because I only slowly come to understand what I am explaining.
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Yang-Mills and the theory of Hecke eigenfunctions. The first, on first glance, is for connected
spaces, thus for connected components of the set BunG. The second is for all of BunG. For
us, as for Atiyah, there is a fixed A0 and a fixed Λ0. The tensor product with a power of Λ0

carries us from one component to another. If ϵ is an arbitrary complex number of absolute
value 1, then we can extend the function from one connected component of BunG to another
with the equation f(Λ0 ⊗ Λ) = ϵf(x). This means that in the construction of the Hecke
eigenfunctions or eigenvalues we may focus on some connected components of low degree.
For GL(1) this degree is 0 and for GL(2) the degree is 0 and 1. It is possible that I forgot
to say this because I was unaware of its significance, but the bundle Q of Atiyah-Bott also
appears as the bundle A of Atiyah. That is, it is understood that they are equal (or, perhaps,
one of them is inverse to the other, in which case our discussion has to be slightly modified.78

It seems that there is no possibility of avoiding the introduction of A0. Unfortunately,
this evidently presupposes a choice, in so far as this is possible, of A′

0 for each unramified
covering M and in a compatible form. We may think of A0 simply as a point in M and
A′

0 as a point in point in M . In this way, we may suppose that if M ′′ → M ′ → M then
A′′

0 → A′
0 → A0. Thus we suppose that we have consistent choices of base points for all

unramified coverings M , Thus we have a consistent possibility of transformations of linear
bundles on any M ′ on bundles of degree 0. For a two-dimensional bundle the tensor product
with a power of Λ0 transforms it into a bundle of degree 0 or 1. Thus it is sufficient to
consider these two possibilities. Of course, the choice A′

0 then determines Λ′
0.

A delicate question. In order to take a direct image the lattice L′ must be a subset of
the lattice L. In the given case, 2L ⊂ L′ ⊂ L. On the other hand, it appears that the
parameters of linear functions associated with L′ are associated only with those that are
related to L, L′ ⊊ L. However, this is not so because [AB, Th. 6.7] allows the necessary
freedom. Irreducible representations, which are the essential representations, are given by a
glueing of representations of Γ and R. ■

We have not yet described an example of the connections between representations of the
group ΓR and linear bundles. The time has come to do so. It is now clear that we need only
consider bundles of degree zero. According to [AB] it will be given by a one-dimensional
representation πM and that the representation will be, above all, trivial on J , in so far as J is
a commutator, and, secondly, that it will be trivial on U(1) if the degree is 0. In so far as we
consider only elliptic curves, this means that it is given by the images exp(4kaπi), exp(4lbπi)
as in (53). These two numbers lie in U(1), but are otherwise arbitrary. On the other hand,
for those representations ΓR, which are related to the Hecke theory, the two numbers k, l
must be whole numbers. According to the discussion on p. 560 in [AB], in particular, the
equation (6.10), the representation is linear on R: x→ ϵx, x ∈ R, and ϵJ = 1, in so far as
ABA−1B−1 = J ∈ R. This is the determination of the number ϵ. The numbers a and b lie in
R. The condition in (53), that they lie in Z is not imposed by the Yang-Mills condition but
because of the relation to Hecke eigenvalues. A more interesting question seems to be the
purpose of the direct image. We need only to concern ourselves with the case that M ′ is a
double covering of M , because we are considering quadratic extensions of the field.

Some general remarks. Although our general theme is now the appearance of the group
GL(2), it is possible that our conclusions will be more convincing, if we interrupt the discussion
with some remarks about GL(n)-bundles for general n > 0. We consider only irreducible

78I find it difficult to recall the precise definition of the Chern class.
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bundles. Although our theme in this article is chiefly GL(2), I would suggest that with
the help of [A] the case of general n, if not simple, is at least worth reflection because it is
accompanied by the discovery of all classes of eigen conjugacy sections for GL(n).

We have already begun to study the formal properties of the relation between ΓR on one
hand and Γaut on the other, as well as the relation between Γaut and conjugacy classes on
the one hand and ΓR and connections on the other. In particular, for m = 1 we completely
understand all relations.

These observations are related to other subordinate questions that, although they are also
related to difficulties familiar from the general theory of automorphic forms, were not expected
in the present essay. The function field of the curve M ′ is a quadratic extension of that of
the curve M . Thus the L-group of the group GL(1) for M ′ is an extension of the L-group for
M , namely GL(1,C) is replaced by Z2 ×GL(1,C), because the appropriate Galois group is
Z2. This alteration has to be included in the corresponding diagrams [AB, 6.5] and [AB, 6.6].
More precisely, if we consider the geometric theory on the double covering M ′ →M , then
the Galois group Gal(M ′/M) has to be included in the Galois group of the diagram (6.6),
which is replaced for the group M ′ in such a way that π1(M) is replaced by π1(M

′), but
J → 2 ∈ Z by J ′ → 1 ∈ Z, in such a way that (J ′)2 = J . In this way the representation π′ of
the group Γ′

R is given by z → z, z ∈ U(1) together with the given representation of the group
π1(M

′). Thus, the corresponding representation Γ′
R is a bundle defined by the representation

U(1)× π1(M ′). In other words the corresponding representations of ΓR as well as of their
restrictions to Z map J ′ to −1, J to 1. Thus the inclusion of G in the theory is somewhat
subtle because the passage from bundles on M ′ and of the Yang-Mills connections related to
them determined by the direct image is an extension of the one-dimensional representation of
the group ΓR to an induced two-dimensional representation of Γ′

R. ■
As a second step we explain further the purpose of the bundle A0 in the present cir-

cumstances, the eigen conjugacy sections for GL(2) on elliptic curves. They were studied
in §VI and divided into two classes: of type A and type D. Those whose type is D were
already considered and their relation to representations of Γaut was explained, although not
to representations of the Atiyah-Bott group. We consider now eigenfunctions of the form A.
They have a curious but appropriate property. They vanish on the set Aodd. Thus they can
be uniquely expressed as the tensor product of powers of linear bundles Λ0 and bundles of
degree 0 or 1. Thus these eigenfunctions apart from a character of the group Z are determined
by their values on bundles in A of degree 0 or 1. Namely, each bundle Θ of dimension two is
the product of a linear bundle Λ and a bundle Θ′ of degree 0 or 1. Namely, each bundle Θ of
dimension two is the product of a line bundle Λ and a bundle Θ′ of degree 0 or 1. Each eigen
conjugate section f is such that f(Λ ·Θ) = χ(Λ)f(Θ), where χ is a character of the Picard
group. In the present case, duality imposes itself but it demands some explanation.

We turn to the Yang-Mills theory, allowing ourselves some room. This theory, which
appears at the level of connections, thus related to manifolds, in contrast to the Hecke theory,
which is uniquely determined at every level. In other words, the Hecke operators move
between degrees, but connections at different degrees are independent. They are however
connected with each other by powers of the bundle A0. Thus to each is assigned an integer.
Thus the separate sets are identified with each other, in a somewhat arbitrary form, so that
each function or connection on the bundles of degree 0 determines a function, corresponding
to the connection, on all of BunG. In this way, a function on one of the manifolds can be
transformed or translated to all of the rest, using this integer and the given character on Z,
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the first factor in (1.d). Thus, we understand the purpose of the bundle A0. We do not,
however, understand it in the context of Yang-Mills connections. There is a difficulty. The
tensor product with A0 does not change the determinant of the bundle. It changes the degree.
This degree is the dimension of the bundle. Thus, for example, for a bundle whose dimension
is equal to two the factor is A2

0, and this is for us a serious problem. Connections for even
and odd degrees must be considered separately.

The group ΓR is related not alone to the two factors (1.d) but also to products. The
first factor Z is related to the factor U(1) in [AB, (6.6)], but also with products. The first
factor Z is related to the multiplier U(1) in [AB, (6.6)]. From [AB, (6.6)] and the following
explanation it is clear that we can replace a representation of the group ΓR with the degree
of a representation of U(1) itself, using the mapping ΓR → U(1), and that this changes the
degree by a product with the dimension of the initial representation. The conclusion is that,
with our present assumptions, we need to examine only two-dimensional bundles of degree
0 or 1.

The comparison of Yang-Mills connections with Hecke conjugacy classes, with represen-
tations of ΓR, and with representations of Γaut turn out to be fastidious. Thus we stop
explaining what is necessary and explain, rather, what we did. The appropriate comparison,
a comparison of the set { ρ⊗ σn | n ∈ Z }, where σ is a representation of U(1) in U(1) and ρ
a representation of ΓR, because BunG is not connected and the definition of the group ΓR in
[AB] is adapted to connected curves. Recall that in (1.d) there is an implicit choice of A0.
The calculations leading to (56) lead one to think that for a comparison with representations
of Γaut only those ΓR-representations for which J , which we may suppose is 1 in R, has an
image of finite order matter.79

The one-dimensional representations of ΓR that correspond to one-dimensional bundles
are necessarily trivial on R because of [AB, 6.5] and have already been examined. For
them J → 1. We recall that we are dealing with a series, infinite in both directions, of
representations. For the central element of this series of connections and our choice of metric
and of the connection Q, the connection is constant. The others oscillate regularly and all
are periodic with a period dividing 1. There is no finite-dimensional representation of ΓR for
which the image of J is irrational.80

It remains now to understand the relation of the eigenfunctions of the form A that are not
also of the form D, on one side, and to two-dimensional irreducible representations of the
group ΓR or Γaut on the other side. Once again there is a condition of rationality, placed
on the first. The three sets Si are different, namely the behaviour of each is determined
by its relation to the three characters χi. They correspond to the three possible unramified
quadratic extensions or the three coverings M ′ of the curve M . We consider one of them,
let’s say the one whose fundamental group is generated by A2 and B.

79We may expect that the problems posed by functoriality in the geometric context similar to those
which we consider here appear also in the arithmetic theory. In that theory they, undoubtedly, will be more
complicated, including the simultaneous use of the trace formula and calculations that resemble those in the
book of Hasse, Klassenkörpertheorie, although much more difficult. There are few mathematicians with the
courage to consider these problems and I am not one of them.

80When it came to translating the Russian text into English, and thus when I had to some extent forgotten
the details of the paper, it was very difficult to make sense of some of them, partly because I had forgotten
the structure of the theory as a whole. I had found it best to envisage the functions as waves! Indeed, at first
glance the Russian text in this part of the paper made absolutely no sense!



70 ROBERT LANGLANDS

We consider the quadratic covering M ′ of the curve M . What is the influence of such a
change on the product of the Atiyah-Bott group Γ′

R with Gal(M ′/M). This is sufficiently
clear. The group π1(M

′) in [AB, 6.5] is contained in π1(M). It follows from this that J ′

for M ′, thus J ′ ∈ Γ′
R maps as 2J , thus as J2, to ΓR. This determines the mapping from Γ′

R

to ΓR, x ∈ R is mapped to 2x. It is obvious that the index of the set Γ′
R in ΓR is equal to

two. This means, thanks to the theorem of Atiyah-Bott, that a one-dimensional Yang-Mills
bundle for M ′ yields a two-dimensional Yang-Mills bundle for M . Geometrically, the second
is simply the direct image of the first, but none the less it is better to assimilate all these
concepts and constructions, which may be as unfamiliar to the reader as they are to me, and
to continue the study of their definitions. In particular, it is useful to reflect on the nature of
the direct image in connection with the present considerations.

Recall that the author of this essay has some understanding of the theory of automorphic
forms over algebraic number fields, over C, and even over finite fields although we do not
consider these in this article. The guiding principle is this, that Hecke eigenfunctions are
parametrized, possibly with some minor changes, by homomorphisms of a hypothetical
automorphic Galois group to the L-group. The structure is functorial, thus a homomorphism
from the group LG1 to LG2 leads to a mapping from the Hecke eigen conjugacy classes of
the group G1 to those of the group G2. There are many questions in connection with this,
basically unresolved. In this article, we are dealing principally with GL(1) and GL(2).

Apology. There are many reasons for an explanation. It is possible that some may seem to
be a repetition of others. It is so here. For me this is simply a confirmation of the functorial
relations, in which the theory of automorphic forms, and thus other theories, similar to the
Yang-Mills theory, lie. I ask the reader’s forgiveness for any enthusiasm that he considers
extreme. I cannot simultaneously grasp all consequences. ■

We presented the possible choice of this automorphic galoisian group Γaut by analogy with
the theory of class fields. If we were dealing with automorphic forms over a number field a
supposition would be that this group had as a quotient group the Galois group of the field
considered, more precisely the inverse limit of the Galois groups of its finite-dimensional
extensions. Here it is precisely the inverse limit group of the Galois groups of unramified
finite Galois coverings of the curve M .

For a field of algebraic numbers it is conjectural, but even more is conjectured, that it counts
(rather so defined that it counts) the L-functions of all (perhaps of all smooth) algebraic
manifolds. That is, this group would be an important component part in the creation of a
theory of L-functions for algebraic manifolds over number fields. We suggested above the
group Γaut, which would play a similar role for the fields of functions over a curve M , although
we excluded for now the possibility of ramification.

As we remarked, a Yang-Mills connection appears with a factor from a connected manifold,
because any comparison is made between infinite series, from −∞ to ∞, related to the
connection and to a representation of ΓR. More than that, if the representation is finite-
dimensional, then the image of J has to be of finite order. Finally, we are dealing with
representations, in which the image of A and B are of finite order. If this is accepted, then the
existence of a bijective relation between such families of representations and representations
of Γaut is clear.

If one is not careful, the circumstance that the bundle of the form A is two-dimensional
although it is related to parameters that appear to be one-dimensional can lead to confusion.
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What it is now necessary to explain, in so far as in this essay we consider only particular
curves, this relation of induction of one-dimensional representations of the group Γ′

R to a
two-dimensional representation of ΓR and to an eigen section of the form A. The curve M ′

appears as one of three possible elliptic curves, covering M as double coverings. In order to
be concrete, we suppose that this is such that the fundamental group is generated by A2 and
B. These three curves correspond to the three characters χi of the group Pic2(M).

It is necessary to observe, once again, that J is replaced by J ′ = J2, thus J ′ = 2J = 2
in R. The basic relation is ABA−1B−1 = J or equivalently BAB−1A−1 = J−1. Consequently
ABA−1 = JB and AnBA−n = JnB. The fundamental group π1(M

′), associated with the
covering M ′, has index two in π1(M). Consequently [ΓR : Γ′

R] = 2.
In order not to confuse myself and the reader, I consider the Hecke eigen sections only

on the connected component of BunG, although they cannot be determined only for this
component, but are Yang-Mills connections without any reference to the possibility of a
tensor product with a representation of the group U(1). The necessary supplementary
discussion is sufficiently clear. In order to be precise, if the representation of R in ΓR is the
trivial representation, then thanks to the preparation in §VII we are dealing with the trivial
connection with a constant integral, but if the representation of R ∈ ΓR is not trivial, then
we are dealing with a power of the connection Q [AB, p. 560] constructed in the well-defined
manner of §VII.

There exists three classes of eigen sections, each of which corresponds to a subgroup of order
two in C/L or in the lattice L′/L. The curve M ′ is determined as a covering M ′ = C/L′,
L ⊋ L′ ⊋ 2L, of the curve M = C/L, a covering of degree two. The direct image of a linear
bundle on M ′ would then be a bundle of dimension two on the curve M . On the other hand,
linear Yang-Mills connections on M ′ with single-valued integrals are parametrized, as we know,
by characters of M ′, but we now know how to treat them. However, only those that are not
characters of M , for which the conditions of periodicity are more demanding, are relevant now.
Indeed, with more precision, they are parametrized by one-dimensional representations of the
group ΓR or, with even more precision, by one-dimensional representations that represent
π1(M) in a finite set. We must show that the functions on A with which we are dealing
are parametrized by the one-dimensional Yang-Mills connections on M ′ already described
and also by their direct images on M , where M ′ is a double covering of the curve M .81 It is
clearer that M ′ determines L′ in L, where L/L′ = Z/2Z, but we are working with functions
on C/L̃, which appears as a factor of C/L and which is isomorphic to C/L′.

In §VI we saw that eigen sections of the form A, that are not of type D, are given by
characters of the group C/L′ that are not functions on C/L̃, L̃ = L/2.

In the end we have also to take into account the possibility that two different line bundles
have one and the same direct image but at the moment we ignore this possibility.

The circumstances are the following. There are parameters for M ′. They determine first
of all linear bundles on M ′ with connections and also one-dimensional representations of
Γ′
R. Attached to each of the linear bundles with a connection there is also its direct image,

a two-dimensional vector bundle on M with a connection. Both the initial connection and
its direct image are Yang-Mills connections. Each of them is related to representations, one
of the group ΓR, another of the group Γ′

R. We have to show that the first is induced from
the second, so that the necessary compatibility is clear. There are compatibilities that we

81In the end it will be necessary to consider the possibility that two different linear bundles have one and
the same direct image, but so far we have not noticed this. One might examine [AB, Th. 6.7].
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have to understand clearly. The formalism allows us to perform the test on linear bundles
of degree 0 and on the resulting class of representatives of ΓR. One factor is the important
circumstance that allows an appropriate reduction for two-dimensional representations. It is
that the corresponding eigenfunctions are equal to 0 on Aodd, so that on this set the Hecke
eigen sections are not determined. This means that when examining the conjugacy sections
we can, by taking tensor products with powers of Λ0, reduce our investigations to bundles
of degree 0, as we shall do. Our uneasiness in regard to the Hecke eigen sections is related
principally to their restriction to the bundles of degree 0 and their values on the others are
tensor products with the powers of Λ0. This is also in order, because the tensor products
with powers of the bundle Q, which, although we constructed it explicitly for elliptic curves,
appears to be a somewhat obscure object, not easily grasped. We attempted this in §V. The
direct image of these bundles appears to be important and interesting, as do their relations
to two-dimensional representations of the groups ΓR or Γaut. For the first this is explained
in [AB]. For the second it appears as a consequence of the relation between ΓR and Γaut,
namely between Γ and Γaut, where Γ is a subgroup of ΓR that appears in [AB] and in (1.a).
We explained above the significance in [AB] of ΓR as a section of Γ. In fact, we postponed
this, although not entirely, by the transition to bundles of degree zero.

Before we begin, allow me to explain how the reflections developed. We introduced earlier
the correspondence between one-dimensional representations of ΓR and one-dimensional
Hecke eigen sections. This is possible for all elliptic curves, in particular M ′. The group Γ′

R

is embedded in ΓR as a subgroup of index two, in such a way that J ′ is mapped to 2J . The
index 2 is given by

[
π1(M) : π1(M

′)
]
= 2.

The parameters of the Hecke eigen sections of the form D that are not equal to those of
type A are related to one of the three possible coverings M ′. For a given M ′, the parameters,
which appear in §VI, turn out to be those characters of the group M ′ that are not restrictions
of characters of M . The eigen sections are exponential integrals of Yang-Mills connections.

In addition, it is possible to combine a parameter that is a character of M ′ with an arbitrary
character of the group R that is −1 on J and 1 on J ′ in order to determine a one-dimensional
representation of Γ′

R. This determines by induction a two-dimensional representation ΓR,
which is necessarily irreducible, for the image of J is otherwise necessarily the unit matrix.
On the other hand, the character of M ′ also determines in the theory for GL(1) described
above a linear bundle on M ′ with a connection, the direct image of which is a two-dimensional
bundle on M with a connection. The integral of this connection is then a Hecke conjugacy
class. The question remains, ‘Which representation or what character of R in ΓR should we
take?’ The diagram [AB, 6.6] is replaced by

1→ Z′ → Γ′
R → U′(1)× π1(M ′)→ 1, Z′ = 2Z, π1(M)/π1(M

′) = Z2,

and the sequence

1 Z2 U′(1) U(1) 1

is exact. The two groups of rotation of a circle are, of course, isomorphic.
I note that we already observed that the one-dimensional representation from which we

induced is not trivial on J , since the following two-dimensional representation is necessarily
irreducible. Each of these characters determines a connection on M ′ of Yang-Mills type. It is
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of degree 0 and its direct image on M will also be of degree 0 and of Yang-Mills type.82 We
want to convince ourselves that the connected two-dimensional union is of Yang-Mills type
and that the integrated exponential of the union determines a connected eigen part. This is
in some sense obvious but we still must try to sort things out in the confusion of definitions.83

Supplementary general remarks. The group ΓR is almost a direct sum of products
of the group R with the group Γ [AB, p. 559]. It is equal to this product divided by{
n× J−n

∣∣ n ∈ Z
}
. Keeping this in view, as well as the relation (55), I would like to

consider the irreducible finite-dimensional representations of ΓR. These are of course simply
tensor products of an irreducible representation ρ(·) of the group Γ, which we already
discussed, with an appropriate character χ of the group R, namely ρ(J)−1χ(1) is equal to
1. Since we may extend each character of the group Z to a character of R, it follows from
the precise conclusions of [AB, 6.6] that each irreducible representation of the group ΓR is a
product of a representation ρ of the group R and a representation of the group U(1)×π1(M).
We already treated the second factor earlier, rather its first factor. This means that we need
only treat the irreducible representation π1(M), but we did this in (55). The factors α and β
have less structural importance.

If we suppose that, no matter what else, the representation of the group, R in U(1) is
simply x→ exp(2πixa) and if we suppose, again as we may, that a is rational then we can
write it as a = b+ c/d, where b, c, d are integers, 0 ⩽ c/d < 1, and where c ⩾ 0, d > 0 are
mutually prime. What I want to do is to establish that the eigen connections of type A that
appear in §VII can be realized as direct images of integrals of Yang-Mills connections on
quadratic coverings of M . As soon as one recognizes this possibility, the temptation arises to
examine it in a more general context, in particular for coverings of higher degree. However
this immediately opens far too many possibilities. I am completely content to leave this
investigation to others, at least to those who are competent and honest!!

We must, however, first understand why Atiyah-Bott introduced the field R and ΓR in
[AB, 6.4]. It is clear that with our conditions84, this is simply to allow an addition to the
connection of an arbitrary imaginary term iθ, θ ∈ R. For our goals it is suitable to limit
ourselves to rational multipliers, because we want to introduce periodic connections. Then
R→ ΓR in [AB, 6.5] is replaced by Q→ ΓQ, thus by the image of J (and its multiples) in Q.

More precisely, if we consider only continuous finite-dimensional representations π1(M),
then according to (55) there exist three parameters: a, b and the image J , which is necessarily
a root of unity. Moreover, for our purposes a and b will be roots of unity, if the representation
is single-valued. This means that the representation is constructed in two parts. First of

82We need now a general remark. Let M̂ be a finite Galois covering of the curve M . We can first choose
Q̂ and then for each M ′, M ⊂M ′ ⊂ M̂ , take

Q′ =
⊗

σ∈Gal(M̂/M ′)

σQ̂.

This is understood in the following discussion, in which M̂ = C/2L. The question arises whether this is
compatible with our choices. (See [WW].)

83The present text is a rough translation into English of the Russian text. I confess that in the two years
that passed between the writing of the original text and the writing of the translation, I lost to a large extent
the vivid understanding of the material that I had acquired with six or seven years of reflection. Whatever
defects the original might have, I understood clearly what I was saying or trying to say. This is no longer
entirely so and it is sometimes obvious.

84Thus the representation ΓR → G is determined by the given representation ΓR → π1(M) and π1(M)→ G.
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all the character of the group R. The image of J is also necessarily a root of unity, if the
representation is finite-dimensional. This means that the representation is constructed in two
parts. First a character of the group R of the form x→ exp(iax) exp(ibx) with a ∈ Q, and
0 ⩽ a < 1, and with b ∈ Z a whole number. At first a+ b appears to be an arbitrary real
number but for our goals it is better that a+ b ∈ Q. Thus ΓQ appears as an inverse limit of
groups. It is possible to obtain the second of these characters of the group R, x→ exp(ibx),
by the composition of ΓQ → U(1) (or ΓR → U(1)) with the degree of a single representation
of U(1). This is a representation of ΓR or, rather, of ΓQ, the inverse limit of finite subgroups
in U(1), or rather of a representation of the inverse limit U(1) in ΓQ, which is also a group.
They must be supplemented by an appropriate representation of π1(M), compatible with the
image of J as in (55) and thus of finite order.85

The following step will appear initially to be inappropriate. If we have a sublattice L′

of the lattice L in the plane and of index two, then we may choose such a basis of L that,
relative to this basis L′ = {abc, bd}, c, d ∈ Z arbitrary, a, b ∈ Z, a, b > 0. For the present
purposes, and namely for the group GL(2), a will be 2 and b will be 1. For other groups there
will be more coordinates and more possibilities. At present we consider two elliptic curves,
the curve M with which we began, its lattice L, a sublattice L′, the associated covering M ′,
itself covered by the curve defined by 2L, which is equivalent to M itself. There are three
possible coverings M ′ implicit in §VI.

Having explained this, we turn to the analysis of the preceding paragraph.86 First of all, the
restriction of the irreducible representation to Z, the subgroup generated by the element J ,
is given by a root of unity exp(2πia/k), where either a = 0 and k is irrelevant or k > 0 and
0 < a < k. The greatest common divisor (a, k) = 1. Then the representation on R is given
by the formula x→ exp

(
2πi(a/k + l)

)
x, where l is a whole number and 0 ⩽ a < k. Then, as

an integer, l determines a character of the group R/Z that, as seen, in particular, from [AB,
6.6], determines in turn a representation of R. The difference between this representation
of the group R and the initial representation appears as a representation of R given by the
fraction a/k, which itself is given by its value at J = 1 ∈ R, which is a root of unity. Observe
that k is the length of a full period and a is the number of waves in the period.

We already observed that the tensor product with a representation of the group U(1)
changes the order by a whole number. Thus we may suppose that l = 0. Thus four numbers
are being considered, a, k and the two numbers α and β in (56), which will be groups of unity
if we are examining ΓQ. More than that, the object of our considerations in this paper now
appears to be only irreducible representations for GL(2), so that according to the remark,
following (56) a = 1, k = 2. This case is, without a doubt, typical. We are given the curve M
and a double covering M ′. This covering was implicitly discussed above. More than that,
we also discovered earlier, following the determinations in [AB], that the data that we have

85Added with the translation. I have already observed that what I clearly understood when writing the
Russian version, which entailed some linguistic obscurity, is no longer so clear to me so that there is some
mathematical obscurity of ideas with which I had no trouble two years ago. There are none the less signs of
fatigue.

86It is possible that these evidently petty complications are the essence of non-abelian class field theory for
the function field of an algebraic curve defined over C. Thus it is better not to scorn them. Unfortunately,
the construction, like my explanation, is clumsy and also repetitive. My understanding is complete but also
somewhat blurry. I still cannot present it linearly. The presence of fine elementary calculations is, thanks to
their similarity with the classical theory from Gauss to Hasse, promising. I add in 2020 that this statement
may or may not have some truth, but it seems a little premature.
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in hand, determine a one-dimensional representation of the group ΓQ. These data are a
one-dimensional representation of U(1), thus, a whole number, together with a character of
finite order of the group lim−→n

Z/nZ and, finally the images, also of finite order, forming A′,
B′ in π1(M ′), chosen for compatibility with the representation of M ′ as a quotient of C by
the lattice L′. This character is given by87

x→ exp(2πiax), x ∈ Z/kZ,

and compatible forms on all higher levels of the inverse limit.
Before we continue, I note that which, although evident, may be ignored—the restriction to

irreducible two-dimensional representations of ΓR or ΓQ to the subgroup generated by π1(M)
as in (55). Besides that J = −I. Thus, the single free parameter is χ : R→ R, χ(J) = 1.

I present this construction in a somewhat different way, so that it is clear. The first step
in the construction of one-dimensional representations of Γ′

Q, but also of ΓR, appear as a
construction of a representation of U(1)× π1(U), and thus a simultaneous representation of
the group88 lim−→Z/nZ.

It is now necessary to explain the relation between Γ′
R and ΓR or that between Γ′

Q and ΓQ.
It is possible that this is all clear to the reader. It suffices to explain it for the second
pair. The single difference, apart from the inequality π1(M

′) ⊊ π1(M) is the relation
J ′ = 2J . Besides this [ΓR : Γ′

R] = 2, but this is because M ′ is a double covering of M , thus[
π1(M) : π1(M

′)
]
= 2. We know how to pass from a one-dimensional Yang-Mills connection

on M to another on M . This is a direct image from a one-dimensional connection to a
two-dimensional connection. What relation is there between the corresponding Yang-Mills
groups and the related representations? The natural supposition is that one is induced from
the other.

We first consider the imbedding of one in the other. For simplicity—the imbedding Γ′
R ⊂ ΓR.

This is clearly determined by the imbedding aJ ′ 7→ 2aJ , a ∈ R and π1(M
′) ⊂ π1(M).

Thus, each one-dimensional representation of the group Γ′
R determines a two-dimensional

representation of the group ΓR, necessarily irreducible, in so far as the image of J ′ equals
1, and the image of J is equal to −1. This is a condition on the restriction of the first
representation to R. It yields in the given circumstances x → exp(πmx), m odd. The
significance of this condition will become clear later. I stress that we are discussing here the
key to this paper.

The last question, preparatory for us, consists of the following: is this induced representation
a representation related to the direct image? We may also suppose in the present discussion,
since this is a condition that is significant for us, that the condition in the last hypothesis of
the preceding paragraph is fulfilled. That is, m is odd. On one hand, this is clear from initial
conditions in [AB, p. 560]; on the other hand, this condition is rather brief. Nevertheless, I
shall also be brief. This is not the place for a lengthy discussion of its nature. In particular,
the factor U(1) does not play a role in the present conditions,89 so that we are discussing the
comparison of two bundles, one on M , the other on M ′, each determined by the same bundle
on the universal covering of M . Consequently our assertion is tautological.

87Unfortunately we have ceased to be consistent in our notation. The coordinates (x, y) here appear
in (36.c) and in other places as (a, b). I am not capable of complete consistency.

88If the reader is somewhat confused by the various limits, so am I.
89The relevant ρ : ΓR → G on p. 560 is trivial on U(1).
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All that remains now it to compare this deduction with the conclusion §VII. This is the
theme of the following section.

Before all we have to understand clearly the relation between the diagram [AB, 6.5] and
the corresponding diagram for M ′. The second is inserted in the first with Z′ = 2Z, so that
U′(1) is a double covering of the group U(1). The group π1(M ′) is imbedded in π1(M).

We have already chosen the bundle Λ′
0 of the group M ′ identified with the connected

component of its Picard group Pic0, and the characters of this group parametrize, as we
saw, the eigen sections of the group GL(1) up to a supplementary factor, related to the
supplementary factor in (1.d). The last we may boldly ignore. As we saw, these characters
are also given by Yang-Mills connections, whose direct image on M is relevant. These direct
images will be two-dimensional connections. These to a significant degree correspond by the
definitions in [AB] to a representation of the group ΓR induced from a representation of Γ′

R.
This is, in my view, a striking conclusion.

The possibility of a general theory appears, but we do not pursue that here. There is still
something, equally striking, at least for those familiar with the work of Harish-Chandra. The
curve M has three unramified coverings M ′. We discovered four classes of GL(2)-bundles
on M , one class associated with decomposable bundles, and each of the other three with one
of the unramified quadratic extensions of the function field on M . The similarity with the
spectral theory of semi-simple groups over the field of real numbers, even with conditions
that are more general, is evident, but much remains to do.

Peripheral remarks. At the cost of overdoing the matter but for clarity, I again return
to [AB, 6.1]. The expression ⋆F (A) turns out to be simply a real-valued function and not
a section of some more complicated bundle, dA is simply the ordinary differential of this
function. More than that, for the bundle Q we chose F (A) and ⋆F (A) constant, if A was
Q or a power of Q. As a consequence, the connections introduced with the constructions
preceding the definition ρ in [AB, p. 560], turn out to be flat, in a strong sense, since they
yield the usual derivative on M , in this case the (x, y)-plane. This appears in (53). I remark
this here, because it is necessary to explain that, even though this connection is very simple,
it contains two free real parameters, the velocity in two independent direction. With the
limitation that k, l lie in Z, and not in R, we abandon the domain of connections and pass
to the eigenvalues of Hecke operators, which for GL(1) are given by functions with values
in U(1), and not functions whose values are conjugacy classes. We shall return to this. ■

Unexpected consequences that will be emended below. It seems that the introduction
of the function s(·) will turn out to be the central discovery of this article, at least for me,
because with it abstract concepts are accessible. First of all it leads to the definition (36.h)
and then to (36.i), which, in turn, leads to the constant curvature (47). There is still another
agreeable consequence. This is the connection to the natural curvature in the formula (47)
and its relation to A0 and Λ0. I assert that replacing A0 by A′

0 leads to a constant (in relation
to flat coordinates) change in the connection and, therefore, there is no change of curvature.
It remains constant. More than that, the change in the connection itself is very simple. A
constant term is added. ■

Still more remains to do, but it is best to stop and consider our position. In essence, when
we, finally, return to the demonstration [AB, Th. 6.7], a great part of the preparation will
turn out to be superfluous. However, at least for me, this was very useful. So far we have a
complete view of the structure of linear Yang-Mills connections, and we find ourselves now
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on the edge of an understanding of the structure of Yang-Mills bundles of dimension two.
This is of course only for elliptic curves. They appear as direct images of line bundles on one
of three possible double coverings of M . The transition is from M and a representation of
ΓR to the covering M ′ and the representation ρ of its fundamental group Γ′

R ⊂ ΓR.
In my view, even if it is not the view of the reader, there is some careless understanding

that has to be corrected. During the discussion of the consequence (36.i) we introduced a
connection on the bundle Λ0Λ

−1
1 , and the curvature of this connection was zero. In so far

as the metric on M or on C is invariant under translation, this connection is (rather these
connections are) Yang-Mills connections.

They are not the connections appearing in (53). These are simply constant connections
on the trivial bundle. They are introduced in [AB, (6.12)] with H and β trivial, if we
replace U(1) × π1(M) by R×. If G = GL(1), S = {1}. This is the correct assertion. It
would seem that there is another careless, although minor, error. The word “flat” does
not mean well-defined. It means well-defined on the universal covering. The reader with a
limited familiarity with differential geometry should be aware that a flat connection is one
whose integral defines a function, locally well-defined but, perhaps, globally multi-valued.
Topologically, it distinguishes itself by changes among the leaves. Thus, for an elliptic curve it
may be linear. There is still something else to keep in mind. The two groups R and U(1)×Z
are very close. I excuse myself for the footnotes and digressions, but we are working in a
complex context.

Useful but superfluous explanations. In this attempt to introduce or to create a theory
of functoriality in the context of the simplest case but with almost no understanding of the
relevant ideas, I avoided the very concepts that, inserting themselves on the path through
ideas that, although not relevant in any strong sense, became in the final analysis the source
of the solution. I made every effort to cast odd, false or unnecessary ideas away and to
keep only relevant ones, but this turned out to be impossible, because they were inseparably
attached in my head with the solution. However, the following lines are clearly unnecessary.
I kept them in order to stress that the entire article was in need of a revision, but that it was
better to wait for the creation of a general theory. What is finally striking in the resolution is
the complete precision of the comparison between eigen sections and Yang-Mills connections.
The diagram (56) is for amusement.

In the diagram (56) each square, whether black or white, represents by itself a simple
covering of M . The union of a black square with the white square above it is a simple
covering of M ′. A one-dimensional Yang-Mills connection on M ′ is given by a constant, which
itself determines a bounded representation ρ′ of Z, thus z → cz, c ∈ R. A one-dimensional
(local) section z → f(z) of a bundle on M ′ is simply a function f(·) with values in R.
This determines (again locally) a section of a two-dimensional bundle on M . It is given
by z →

(
f(z), f(z +B)

)
, thus the value of f in the black square joined with its value in

the white square lying above it. A brief reflection is necessary in order to understand the
two-dimension gluing that this entails. The value in a given black square must change
smoothly when we move in either direction, up or down, and left or right, and also diagonally,
not to the neighbouring white square but to the black square. The same is true for movement
from a white square to a white square. But there is still more. The movement includes in
itself a change of two coordinates as well as a change of the tangent vector in a way given by
the section. If we are dealing with a connection, this is a regular movement in a diagonal
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direction.90 For this the black and white squares can be considered separately. It is however
necessary to ensure that the result is smooth when we pass from squares of one type to
squares of the other type. This, undoubtedly, will be so for constant connections and their
integrals. As for the partitions, but not the connection, the behaviour in the centre of the
black squares does not depend on the behaviour in the white squares. The corrections occur
on the boundaries of the squares. I remark as well that A and B play the same role.91 ■

There is yet another detail that should not be forgotten. In the transfer from M to M ′

we replace J by the element J ′ and, thus, we replace the group U(1) with another group,
although it still turns out to be U(1). Just as for GL(1) the resolved connection yields a
constant function, but now two constant functions, the order of which is irrelevant.

Finally, we discovered a two-dimensional form of the expression (53), but the question
remains. What are the conditions of periodicity. The situation is that we want to represent
the eigen conjugacy class as an integrated exponential function. For GL(1) the conjugacy class
has a unique representative, but for GL(2) this is not so. We return briefly to the equation
(53), but the question remains. What are the conditions of periodicity? The difficulty is that
we want to represent the eigen conjugacy as an integrated exponential function. For GL(1)
the conjugacy class has a unique representative, but for GL(2) this is not so. We return
briefly to the equation (53), for which there are two conditions under discussion: periodicity
and initial conditions. We already discussed periodicity. This is the integrality of the numbers
k and l. The initial conditions are introduced by means of the multiplication of (53) with an
arbitrary element of U(1).

Initial conditions. Namely this element is determined by a character of the subgroup Z of
the group Γaut in (1.d), thus on 1 ∈ Z. This Z consists of powers of an arbitrarily chosen
Λ0 = ΛA0 , which itself determines the lower limit of integration in (53).

Here something arises that it is easy to lose sight of, the arbitrariness of our choice of Λ0

or A0. This is necessary but also ubiquitous. In (53) the moving point is aθ + bθ and the
connection provides the integrand. By itself this expression does not provide a conjugacy
class in the point A0. It is necessary to multiply it with the value of the conjugacy class at
the point A0. This can be arbitrarily chosen and is the reason for the supplemental factor Z
in (1.d). There is something that it is easy to forget, when we arrive at the desired pair—the
integral of a Yang-Mills connection on one hand, and the conjugacy class for GL(1) or the
eigen conjugacy section for GL(2) on the other. Thus, we are not attempting to find the
eigenfunction for which there exists an indeterminate constant, but a family of eigenvalues
and this is not ambiguous.

For GL(2) the construction is more complicated. As already explained, in the geometric
theory the eigenvalue varies from point to point, changing the conjugacy class, which also
varies from point to point on M . For GL(2) this is a question of giving two numbers, the
eigenvalues of the class, and a single ambiguity—this is the order in which they are given.
A clearer expression is that we are dealing with a conjugacy class of two-by-two hermitian

90This statement is unclear. I believe it is a reference to a movement in a four-dimensional space given by
the base and the fibre.

91This explanation is not satisfying, for reasons related to the footnote ‘Insignificant oversight,’ namely,
we were imprecise in connection with the pasting. We are dealing with flat connections and these we may
integrate on a single-valued connection over M̃ . Moreover, a line joining a point in one of the squares of the
diagram with another determines an element of the fundamental group and, therefore, a movement from the
fibre at one end to the fibre at the other. This is the glueing understood here.



ON THE ANALYTIC FORM OF THE GEOMETRIC THEORY OF AUTOMORPHIC FORMS 79

matrices, and these determine its eigenvalues, both of which are real. However they do not
have a determined order. Thus there is a collection of possibilities for presenting the spectral
decomposition. The group π1(M) has three normal subgroups of index two, each of which
contains only one of A, B, AB and we may pass to the covering determined by any choice
of one of them. When we do this, the two-dimensional representation of the corresponding
subgroup of the group G has two different irreducible components of dimension one. Thus
we have in essence six possibilities for describing related Yang-Mills connections. This evoked
in me considerable uncertainty and confusion. My description of the conclusion may evoke
the same feelings in the reader. However it became familiar to me.92

For G = GL(1) the correspondence consists, on the one hand, of a Yang-Mills connection
and the representation of ΓR attached to it, on the one hand, and the corresponding eigen
conjugacy class as well as the representation of Γaut attached to it on the other. We understand
how this functions also for G = GL(2) in so far as the representations or the connections are
direct sums of some corresponding one-dimensional objects. In the general case, general for
GL(2), we consider only Yang-Mills connections, and they, according to [AB], are given by
representations of ΓR. Besides that, as we already discovered for GL(1), for our purposes
not all connections are relevant. This entails the restriction to a special choice of such
representatives, those trivial on the inverse image of U(1) in ΓR. For GL(2) this is not so.

The analog of (53) will be an exponential function, whose exponent is the integral of a
matrix. It may be diagonal in so far as the coordinates a and b are determined on the sides
of the fundamental domain. The condition is that the integrals of the two diagonal elements
are periodic except for a common sign.

We chose a metric on M invariant relative to the periods and the point A is given. At first
it was 0 ∈ L. We may replace it by any other point, thus a transfer of the point A0, which
yields a transfer of the function s(·) and also of the form (36.i). The first is arbitrary and
determines the two others. The changes entail a modification of the Yang-Mills connection,
but as we saw there is no change in the curvature, which is constant. The function s(·) itself
becomes a function on the plane and not on M . As we described, the replacement of A′

0

by A0 entails a change of the related connection, although this change is not in its curvature.
Its change, thus the difference between the connections related to A0 and A′

0, is flat, that is it
has zero curvature. In so far as A0 is given, the remark just made allows us to determine the
Yang-Mills connection for the group GL(1) with integers k, l and a linear bundle of degree
zero. It is itself related to the difference A′

0 −A0. For the group GL(1) the homomorphism ρ
in [AB, Th. 6.7] is necessarily such that Z ⊂ ΓR. The restriction ρ|U(1) is given with a whole
number and ρ|π1(M) is given by two numbers.

All this, perhaps, it may be best, at least if the language used is Russian to describe in
connection with the notion of “строка.” This does not really mean anything to me. A reader
with a limited familiarity with differential geometry may know that a flat connection is such
that its integral determines a function that is locally single-valued, but globally, perhaps,
multi-valued. It distinguishes itself topologically as a shifting among loops. Thus for an
elliptic curve it may be considered linear. Let k = 0, L0 = A · A−1

0 . A connection attached
to A0 = 0 ∈ L, has already been introduced, but it depends on A (or A′

0) as well as a point
in C rather than a point in C/L. The calculations related to A0 are also applicable for A.
This is all simply a question of introducing new values for the coordinates. In particular,
the curvature remains the same and it is constant. The new bundle is simply a translation

92Added in 2020—but is daily growing more uncertain.
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related to A. As far as the change of coordinates, this is simply a translation of the initial
data, thus simply the addition of constants to the two coordinates a and b in (36.i). These
two connections determine a connection on the new L0, whose curvature we can calculate. It
is the difference of two curvatures, the curvatures for A and A0. In other words, the constant
in [AB, (6.10)] is arbitrary, although there is a decision that I find inappropriate and that
evokes perplexity. This is to take it modulo 2π. The reader can decide for himself. Either he
must, like me, simply correct these as signs of a hurried composition or he must take them
seriously. As a consequence of the difference [AB, (6.10)] all these are Yang-Mills connections
for the group GL(1).

In the introductory sentences there is a certain ambiguity. Two different connections may
lead to isomorphic sections. For example, the Lie algebra of the two groups R and U(1) are
the same, so that they may have equal connections but with different integrals. I usually
take the first possibility.

Explanation. When are two Yang-Mills connections equivalent? This is only one of many
questions arising during an examination of the conclusions in [AB, §6]. For example, in so
far as the corresponding connections must be unitary, they, as we have seen, depend on the
metric on the fibre and it is not invariant. This means, in particular for the connections that
we are examining, that they vary linearly with the parameters a and b and, therefore, are
not L invariant (36.i). This is difficult for me to understand. An integral modification of the
parameters a and b changes the metric on the fibres but not the connection; consequently it
is necessary to consider it as a modification of the data. Thus, the family stops being a torus
and becomes a complex line. This is important for our statements and for [AB, Th. 6.7],
which without this has no sense. The condition [AB, 6.1] is linear. ■

This assertion is almost incompatible with [AB, (6.10)] and with the assertion that a flat
connection on the trivial bundle of Yang-Mills is of Yang-Mills type.

The error corrected or the devil is in the details. 93 This essay is a digression. This is
because it was impossible for me to understand the material in [AB] on the first, second or
even third reading. I had to return frequently to the sources, in order to understand fully
the meaning of the authors’ statements. If M is an elliptic curve then M̃ = C and it is easy
to imagine. It is also easy to imagine the group ΓR and its representations in GL(1). It is
also important to note that ΓR has several automorphisms, so that some of these, evidently
different, representations, may be equivalent. This would be the source of possible equalities,
described in the discussion of the equation (36.k). The group ΓR is generated by A, B and
the group R of real numbers with the one relation ABA−1B−1 = exp(2π · i). We write the
element x in R formally as 2π · xi. Some, possibly all, automorphisms of the group are given
by the equations A→ exp(iλ)A, B → exp(iµ)B, λ, µ ∈ R, and if x ∈ R, x→ x.

All one-dimensional representations of the group ΓR are such that exp(2π · 1)→ 1 ∈ C.
Thus, there is such an m ∈ Z that λ ∈ R→ exp(2mπiλ), which is equal to 1 if λ ∈ Z, but
A → α, B → β, |α| = |β| = 1. These two numbers are arbitrary. At the present moment

93In so far as there was much in [AB] that I did not completely understand and also one or two points
that at the best were inadequately explained by the authors, different parts of this article were written at
various steps of my struggle with the material, I resolved, partly because of indolence and partly because
it might be better for those, who like me are studying the basics of differential geometry together with its
application to the theory of automorphic forms, leave a part of the material in the disordered form in which I
first understood it.
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we are dealing only with linear bundles and only with linear bundles of degree zero. This
is possible because we introduced a supplementary linear bundle that allows us to describe
each linear bundle as a product of this linear bundle with itself several times and, in addition,
a bundle of degree zero. Can this be done in another way. This is a question that at the
movement it is best to set aside. At the moment our problem is to find the linear bundles
associated with the homomorphisms just described. ■

Inappropriate hesitancies. The factor s(·) or its inverse element do not determine with
the equation (36.b) the metric on M , they determine a metric on its universal covering. This
means that a large number of our assertions are correct only for the universal covering. This
is in order but it is necessary to recall it. The ambiguity is removed only when we pass to a
connection related to the difference A′

0 − A0. Even so, we have obtained a great advantage.
The Yang-Mills connections that are determined by a metric invariant under translations
are given by two real parameters, determining a movement with constant speed in the plane.
Thus we proceeded with the minor explanations related to (53). What happens? The factor A
in A · A−1

0 changes but it is possible that it returns to its starting point in M but not in
M̃ = C. This is possible because s(·) is a function on M̃ but not on M . ■

The incomprehensible becomes understandable. §VIII begins with five assumptions,
the full significance of which was clear only to me, but not fully. In particular, I did not
understand the sentence that followed them, ‘Given any homomorphism ρ : ΓR → G we then
get an induced G-connection Aρ also satisfying the Yang-Mills equations . . . ’. Up to that
moment I had succeeded in coming to some understanding of the construction of the bundle Q
and its consequences, but without a full understanding of its precise significance. Something,
something special, had fully escaped me. This was the construction of a flat connection of
dimension one. Rather, I understood this but not its consequences, at least not with their full
significance. Besides this, beginning with the classical theory, thus the theory of Weierstrass
and others, I did not know how far this still remained from the passage to unitary connections.
I had not evaluated the distance, dividing it from the unitary theory. This question arose
not so much for U(1) connections as for the related R-bundles. I had difficulty imagining
the consequences of the introduction of zeros or poles, as with the construction of Q. I am
not a topologist! More than that, I introduced the extremely important connection Q very
casually, with the definitions of α̃, β̃1, β̃2, γ̃ underneath the formula (36.i). Now we have to
examine it with more care if we want to appreciate the definition preceding [AB, Th. 6.7], in
so far as this is the principal particularity of their efforts. Rather, I think that we are, finally,
in a position to use this theory for a comparison of eigen conjugacy classes with Yang-Mills
connections. ■

After all our efforts, in particular, after all my efforts, an unexpected question arises in
connection with the application of [AB, Th. 6.7]. Do we take an arbitrary homomorphism
ρ : ΓR → G or a limited class? In order to continue, I suppose that [AB, p. 559/560] is open
before the reader. The difficulty is that we apply a theorem with a limited choice of ρ. I am
amazed, but I have often been amazed as I wrote this article. We take G = GL(1) as an
additive group iR with a one-dimensional representation ρ, whose values are arbitrary on the
representatives of A and B. On R their value is zero. In particular, the factor U(1) is not
relevant here. The representation ρ is trivial on it. On the other hand, there is more freedom
than I thought in the form of the G-homomorphism ρ. U is replaced by R×.
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Thus the exponents that appear in formula (53) of the Yang-Mills connections are limited
by the condition that the exponential functions determined by their integrals are single-valued
on M . With this it must be clear that the fundamental conclusion of this article is established
for GL(1). However, as the final goal we hope to show that (1.d) on a given algebraic curve
is the automorphic galoisian group. None the less, in this article we are concerned only (or
primarily) with GL(2). There are two kinds of eigenfunctions: those whose support is D and
those whose support is A. The first correspond to an unordered pair of eigenfunctions for
GL(1), whose parameter is given by (50.a). For those whose parameter is given by (50.b), the
relation of the parameter to the eigenfunction is more complicated. Yang-Mills connections
appear. The transition is: the homomorphism Γaut → LG; the Yang-Mills connection; the
choice of integral that gives the eigen conjugacy class is made. The conclusion is then
compared with the results of Section VII.

It is necessary first to turn to the second doubtful assertion in [AB, p. 561]. There is no
reason for GX = G. By the way, to avoid confusion I recall that ΓR and Γaut are different,
although closely related groups.

For GL(2) there exists eigenfunctions of two forms in relation with the subset B on which
they are defined: D and A. For the first, the eigen class of the section is an unordered
direct sum, the parameter of which is also a sum of two one-dimensional representations of
the group Γaut. Some of these, of the second kind, are also related to the first kind. We
can ask why they appear but we do not need to find for them new parameters. These are
other functions with which we have to deal and each of them is related to one-dimensional
representations of three subgroups of the group ΓR, determined by the inverse image of three
subgroups of index two in πM . We remark that the representation τ induced from the trivial
representation of each of these subgroups of the group ΓR is the same and their restriction to
the given subgroup is the direct sum of the trivial representation and the unique non-trivial
representation that is trivial on M2. As a particular choice, we chose the subgroup generated
by A′ = A and B′ = B2.

The passage to the covering group affects not only π1(M), which is replaced by the subgroup
π1(M

′) of index two, but also the element J , which is replaced by J ′ = 2J . The group R
however is not changed. Consequently Γ′

R turns out to be a subgroup of order two in ΓR.
On the other hand, we began with a one-dimensional connection on M ′ and related to it
a two-dimensional connection on M . At the same time, the one-dimensional connection is
related to the one-dimensional representation of ΓR and the two-dimensional connection is
also related to the two-dimensional representation of ΓR. What we want to do is to verify
that the two-dimensional connection is the one given by the theorem of Atiyah-Bott for two
two-dimensional representations. Once again, the two-dimensional representations of ΓR are
not all relevant.

We now consider the discussion on [AB, p. 560], applying it to both groups ΓR and Γ′
R.

The elements X in g will be the same for ΓR and Γ′
R. Thus we pass to GX for both of them,

not asserting however that GX is connected. The U(1) × π1(M)-bundle on M turns out
to be simply the direct image of the bundle U(1)× π1(M ′) on M , although our geometric
description, perhaps, does not show this clearly. In so far as the composition of two direct
images turns out to be again a direct image, our argument is complete.

Now only a minor matter remains. This is simply a question of leftovers. In ‘The
transition from Γaut to ΓR’ we considered this passage for one-dimensional representations.
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The discussion is equally pertinent to the induced representations of two groups, for the field
and for an extension of the field.

Another confession. For me, it is difficult to understand completely the theory of Yang-
Mills. I never considered the general theory. Consequently it is necessary to recall constantly
its consequences. My apologies. ■

As I frequently acknowledged, I only slowly understood and still only partially understand,
the relation between eigen conjugacy classes and Yang-Mills connections. In particular, I was
careless when I wrote (53), rather I did not explain how to choose the initial values. They
are given by the powers of Λ0, in particular by Λ0

0, thus by the trivial linear bundle, where
the value is 1 (perhaps rather 0). The value in other degrees is given as we explained in
the section ‘Initial conditions.’ The definition is complicated but consistent. More than one
initial condition is necessary because BunG is not connected. The eigen sections for GL(2)
are not so easily described. In addition, even for GL(1), only those conditions that yield a
single-valued result are allowed. It is also necessary to underline, that for a given group G
the appropriate connection is a LG-connection, better a Lg-connection or LUG-connection,
where LUG is a unitary form of the group LG. Only the latter appears fully precise. The
designation is not fully precise. In contrast to the group LG, which is somewhat imprecise,
because we may introduce a galoisian component. In addition, Lg is ambiguous only in so far
as it may be the Lie algebra of the group G or of its compact form.

In order to continue, I suppose that G = GL(1), GL(2) or, perhaps, SL(2). The fixed
point A0 and the constant linear bundle Λ0 were chosen in §4, as in [A]. According to [A,
Th. 5, Th. 6], after this choice, for G = GL(2), the connected components of BunG, represent
for us a fundamental interest. They are given either by an unordered pair

{
(m,Λ1), (n,Λ2)

}
,

or by (m,Λ), m1, m2, m lie in Z. We know already that eigenfunctions are determined either
by a set of points of the first kind or by a set of points of the second kind. One factor is
αmβn, α, β ∈ C×, |α| = |β| = 1 or is simply αm.

The intention of this section is to persuade ourselves that Γaut has some convincing
properties, at least for the groups GL(2) and SL(2) and elliptic curves. The presence of Z in
the determination of the groups Γ̃ and Γaut arises from the presence of the degree and its
purpose is clear. We consider principally Γ and limZ/n(k)Z.

XI. Integrable connections and eigenfunctions of Hecke operators

The case G = GL(1) was treated in the paragraph ‘Some general remarks.’ The func-
tion94 (53) may be considered as a function on all of M , taken as a connected component
of BunG. Then they can be extended to all of BunG, adding a factor α for Λn

0Λ, if Λn
0 is a

member of this component and α ∈ U(1) is given. In this paragraph a parametrization of
the representations of Γaut is also described.

On the other hand, for GL(1) the set BunG is an abelian group with a connected component.
It is possible to treat it as the direct product of Z with M . Thus, in this way, two functions,
the one equal to the Hecke eigenfunctions and the one determined by its eigenvalues, reveal

94There is an important question that puzzled me when I wrote this article and whose answer, discovered
only at the end, is amazing. The eigen conjugacy sections, apparently just as for GL(1) are given by an
integral of a Yang-Mills connection, but how are the initial conditions calculated? For GL(1) this is clear.
We determine them with the degree of Λ0. For GL(2) not only the bundle but also the initial conditions are
given by the direct image of the section of the GL(1)-bundle. It is possible that something similar is true in
general.
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themselves as one and the same function on M . The eigenfunction, of course, is determined
only up to a multiplicative constant.

But for G = GL(2) there is not a clearly determined element in LG at each point. Only a
conjugacy class is available and this ambiguity makes itself clear. Two apparently different
sections may belong to a single class. Thus at each point their value is only a conjugacy
class in BunG. Recall that these are ordinarily, perhaps always, unitary elements in LG.95

We observe finally that the natural representative of a conjugacy class might be a smooth
function on the plane, whose values at two points, differing by an element of L, may be
conjugate but not equal. We already saw this in §VII, although only implicitly, because the
sign in (32.a) is indeterminate. However, the function f(·) is uniquely determined on the
particular covering M ′. This is an M ′ for which there are three possibilities. We describe one;
the others are similar. What happens is that the coefficient αx in (32) may change in sign
when we move through a period, but the conjugacy class does not change. Moreover, this
may happen in three different directions, given by L/2L. Thus, as we added a supplementary
factor96

lim←−Z/nZ

in (1.d), we may add it to ΓQ. This enables us to pass to all of A, once we understand A(0, 0).
Thus, it suffices to study the following construction on A(0, 0). The logarithmic function
or its derivative determine a one-dimensional connection on M ′ and its direct image is a
two-dimensional connection on M . Both the one and the other are Yang-Mills connections.
It is clear that the integral of this section is related to the function f(·).

It remains to discuss the connection between these bundles and representations of ΓQ (or
of ΓR) and Γ′

Q (or Γ′
R). Recall that [ΓR : Γ′

R] = 2 and that J ′ = 2J . Moreover, and this
is the key to and the solution of this article, the character of R ⊂ G′

R, connected with the
character χ determining f(·) in (32), is equal to −1 in the point J . We waver between BunG,
thus a disconnected set and a connected subset, thus the set of bundles of degree zero. Some
details are left to the readers.

I repeat something that we already noticed. A character of the group R may be described
as

exp(2πiαx) exp(2πiβx), α ∈ Z, 0 ⩽ β < 1,

where the first factor has the period 1, because its wavelength is equal to 1/α, but the second
factor has a wavelength equal to a whole number, itself equal to the denominator of the
fraction β. In the present case this is two, reflecting the group GL(2). Thus we know what
to expect if G = GL(n). I do not know what to expect for other groups.

The situation is the following. Eigen sections of the form A are related to the one-
dimensional bundle on M ′ the value of which at the point J = −1. Indeed the wavelength
with respect to J is equal to 2.97 It determines a one-dimensional representation of the
group98 Γ′

Q. We already understand that the induced representation of the group ΓQ is
irreducible.

95This contrast between the phenomena familiar for a number field and those that we observe in this essay
on the geometric theory for GL(2) astonish me.

96Although I very carefully chose A0, A′
0 and the initial conditions in (53) I often forgot to draw my own

attention and that of the reader to this. None the less they they are present constantly during all of our
discussion and remain similar, but not explicit and, apparently, not identical.

97Added in translation: this second sentence clarifies the first.
98The reader is to complete the determination of the supplementary factor.
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We discovered that the corresponding representations have two forms A and D. The
parameters of the latter are simply two unordered parameters for GL(1). Thus the ambiguity
is also simple. For the first ambiguity is also possible, but it has a different appearance and
I was confused for a long time. Of course, the representations of the form A were studied
in §VII and it is only necessary to turn to that. We discovered that the eigen sections were
given by functions with values in LG, which were periodic either with period L or with periods
in a lattice lying between L and L/2, so that they could be linked to one of three double
coverings M ′ of the curve M . They were discovered before I understood the corresponding
parts of [AB, §6] sufficiently well and they were a major riddle for me.

Important recollections. There is something so simple that it does not seem worthwhile
to recall it again, but for us it is very important to keep it in mind. The group R ⊂ ΓR is
such that J = 1 ∈ R. Even so, it is not necessary that for a given representation J → 1.
Nevertheless we consider only those characters χ of the group R such that χ(J) is a root of
unity. Then χ(x), x ∈ R, is such that χ(x) = exp

(
2πi(k + α)x

)
, k ∈ Z and, if we consider

ΓQ, then α ∈ Q, 0 ⩽ α < 1. The two characters x → exp(2πikx), x → exp(2πiαx) have
altogether different purposes. The values of the first characters are 1 on ZJ . Consequently
they are given on R as the inverse image of a character of the group U(1), thus u→ uk. We
already discussed these. The second factor is the value of J and we already discussed this in
(55). I underline that the value of J is 1 ∈ R ⊂ ΓR but it is possible that ρ(J) is not the unit
element. These reflections are important for us when we consider the double covering M ′ of
the curve M , since then J ′ = 2J . ■

At the first glance the argument in §VI consists of the following: there exists four forms of
eigen conjugacy sections, which are related to the type A; each section is given by a character χ
on Pic(M) and its form is distinguished by its restriction to Pic2(M) ≃ Z/2Z×Z/2Z, which
is either trivial or one of the characters χi of the group Pic2(M). Those χ that are related to
the trivial character of this group are equivalent to classes of the form D. This was established
in §VI.

Those which are related to the other three characters are determined by functions x→ α2
x,

as in (32), because only the conjugacy class of the matrix (32) is relevant. However, if two
characters are equal on Piceven(M), then they are equal on Pic(M) up to a character of the
group Z/2Z. Although we did not examine them, it is clear in §VI that this is relevant only
for the restriction of the character to Aeven. This restriction to Aeven is what determines the
eigenfunction and the eigen class. Consequently, the three different classes of eigen conjugacy
classes do not intersect.99 I did not expect this. Some time passed before I remarked this
important circumstance, and this invoked in me a serious confusion. It was rather difficult for
me to explain the obvious consequence of the discussion that (32) and (32.a) evoked. If the
squares of two continuous non-vanishing functions are equal everywhere then they themselves
are equal up to a constant sign. Thus, if the functions are equal at some point of a connected
set, then they are equal everywhere. From this it follows, that the three mutually exclusive
forms discovered in §VI do not overlap.100 Two such functions cannot be equal everywhere

99If two classes of the same type coincide, then we would have two characters χ1 and χ2 with periods
in L = 2L/2, such that χ1/χ2 would be equal to ±1 everywhere and consequently would be equal to 1
everywhere. This is impossible if the two characters are not equal.

100Although I leave this conclusion in its present form, it would have been better to remark that the eigen
conjugacy sections considered are determined by their determinant and that these are exponential functions
with a linear exponent 2ma+ 2nb, m, n ∈ Z.
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unless the coefficients m, n are equal. As a consequence, the eigen classes related to A are all
equal, even those that are also related to D. In particular, there exist three types of these
that are related only to A, each of which is determined by a different non-trivial character of
Pic2 and, consequently, a different quadratic extension. The distinction is determined by the
remainders of m and n modulo two. Whole numbers determine the exponential function in
(32).101

We now have in the class of representations related to A four classes, one of which is also
related to the class D and three related to three non-trivial characters of the group Pic2(M).
Each of these non-trivial characters determine with their kernel a quadratic covering M ′

of M . A pair, M ′ together with a character, determines a two-dimensional representation
of the group ΓR. All that we need do is to show that these representations are different,
but this is clear from the above discussion, and also that they contain in themselves all
two-dimensional representations of Γ′

R of the appropriate form. But what is this? It is clear
that the representation of ΓR or of ΓQ is irreducible only if the restrictions to Γ are irreducible.
We understand this from the diagram (55). They are induced representations and J → −I.

This is now completely clear. We have three types of M , just as in §VII, each of which
is uniquely determined by the relation of M ′ and M . Each of them then determines, again
uniquely, a character of M ′ of order two. This is namely the one that we needed in the
preceding section, in order to determine the representation ΓR, and then ΓQ.

On the other hand, the direct image of a one-dimensional Yang-Mills connection is a two-
dimensional Yang-Mills connection. This is an obvious consequence of the definitions in [AB,
p. 560]. The construction of Atiyah-Bott clearly connects a two-dimensional representation
of the group ΓR (or of ΓQ), induced from a one-dimensional representation of Γ′

R (or of Γ′
Q)

to the direct image of a linear bundle related to it. It is necessary only to read carefully the
first few lines of p. 560. We may take this conclusion as our theorem. This is unconditionally
the conclusion of this article, but a very much more important statement is under discussion,
namely a precise general theory, which we might consider as the basis of the geometric theory
of automorphic forms—a theory parallel to the arithmetic theory, which itself has yet to be
constructed.

I recall to the reader once again, but for the last time, that J → −1 is a relation for a
one-dimensional representation of the group Γ′

R!

XII. On the possibility of a general theorem

The problem is clear. We need first of all a general form of the theory of Atiyah and with
this it will be necessary to understand the Hecke operators. This seems to me accessible and
very promising, but difficult. I have no definite proposals but it does seem to me that the
Gauss-Bonnet for particular manifolds would be necessary, thus the study of Pfaffian forms
on BunG. It seems to me that this alone would attract significant interest in connection
with Hecke operators.102 I do not know what differential geometric difficulties will manifest
themselves in such an attempt. It is not clear whether a ramified theory could be considered
a path to the study of coverings of the initial curve.

101This latest paragraph is unnecessary and confusing, but it is correct.
102There is a preprint by Paolo Aluffi and Mark Goresky but I know of no other reference.



ON THE ANALYTIC FORM OF THE GEOMETRIC THEORY OF AUTOMORPHIC FORMS 87

Confession. My attempt to write a mathematical article in Russian has no basis, except a
wish to understand finally a language, with which I acquired some familiarity, although not a
great deal, in my youth, in the beginning of my life as a mathematician, for which this was
at the time regarded as necessary. This is no longer so. An incentive to the attempt was an
invitation by Dmitri Lebedev to visit Moscow, which I accepted and for which I was and
remain thankful.

I discovered that my knowledge was not deep. My native tongue is the English language
and, according to my experience, the mastery or the attempt to master Russian or Turkish is
completely different than a decision to learn French or German. A genuine composition, as
this was, is better than remaining completely silent. Russian words, Russian nouns, Russian
adjectives express the real world. This is a world whose nature I still do not understand. The
present essay is better thanks to a conversation with Valentina Sergeev about the nature of
Russian words, for example, ‘скрыть.’ Above all, it is better because Oktay Pashaev read the
essay carefully from beginning to end and made innumerable suggestions for improvement.

He read the initial text, correcting my lexicology, my choice of nouns and verbs, from
beginning to end, and made numerous suggestions for improvement.

If and when the article is published, if ever, it will be subject to further corrections,103

but I, at least, now understand that with Russian as with Turkish, we are dealing with a
structural complexity at a different level than that of languages, like German or French, closer
to my own.

The article is a consequence of two impulses, first of all, an attempt to understand the
nature of the geometric theory, to form for myself a clear notion of the difference between it
and the arithmetic theory and, of course, of the similarities. Here, I believe, I was successful,
although I proved little. The second goal was to improve seriously my knowledge of Russian.
Here I had limited success. For me, Russian is at a completely different level than the two
foreign languages, French and German, with which I am familiar. As I observed above, the
Russian language is substantially more complex than I imagined, even more than Turkish,
another language with which I have a limited ability acquired only with difficulty. Thus my
efforts and the efforts of friends and acquaintances, who encouraged me as I wrote this article,
had limited success. I am none the less pleased that, in spite of my age, I do not regret either
the time or the effort I gave to it.
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