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Harish-Chandra was one of the outstanding mathematicians of his generation, an alge-
braist and analyst, and one of those responsible for transforming infinite-dimensional group
representation theory from a modest topic on the periphery of mathematics and physics into
a major field central to contemporary mathematics.

1. Kanpur and Allahabad

He was born on 11 October 1923 in Kanpur in North India. His paternal grandfather had
been a senior railroad clerk in Ajmer who, to finance his son’s education, had resigned his post
to collect the lump sum given as severance pay, and then rejoined the railroad, his seniority
lost, in a junior position. His son, Chandrakishore, later the father of Harish-Chandra, had
gained admission to the highly selective Thomason Engineering College at Roorkee, which
had been founded by Dalhousie in 1857, and which was responsible for the training of civil
engineers for the department of public works. Every graduate was assured a position in the
government services and admission was much coveted.
Harish-Chandra’s father, a civil engineer, eventually rose quite high, reaching the middle

echelons of the Indian Service of Engineers, and retiring as Executive Engineer of the Uttar
Pradesh Irrigation Works; but his early career would have been spent in the field, usually
on horseback, inspecting and maintaining the dikes of the extensive network of canals in
the northern plains. Roorkee College and the effort of competing with the British on still
unfamiliar technical ground seem to have produced a breed of serious-minded, conscientious
men, devoted to their work and somewhat distant from their families. None the less,
Chandrakishore’s family did share the life of the canal posts, and Harish-Chandra, although
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not a robust child, often accompanied his father on his rounds, but it was not until later,
when he was a young man and his father retired, that they became close.

In 1937, just three years before the father’s retirement, the whole family was able for the
first time to take an extended vacation. They travelled to Kashmir, their baggage carried by
seventeen porters. Harish-Chandra, who remained a keen walker throughout his life, always
recalled with pleasure the hikes in the hills with his father. Later on, after Harish-Chandra’s
moves to Bangalore and Cambridge, they corresponded regularly, and his respect for the
high-minded, religious Chandrakishore was to be an abiding influence on Harish-Chandra.
His life as a child was divided between the canal posts and the home of his maternal

grandfather in Kanpur. His mother, Satyagati Seth or, after her marriage, Chandrarani, was
the daughter of a lawyer, Ram Sanehi Seth. Both he and his wife were descendants of old
zamindari families, feudal landowners, in what is now Uttar Pradesh. One branch of the
Seths appears in the 18th century as the proprietors of an important banking house who
came to grief in the struggle between the East India Company and the Newab of Bengal.
A more recent incident, still recounted in the family, is that it was able to offer refuge to
the high-spirited but ill-fated Rani of Jhansi during the Mutiny of 1857, in which she was a
central figure. As a token of gratitude she left behind a sword. Since the family is of the
Rajput or Khatri caste, the men still have occasion to don it at their wedding celebrations.
Harish-Chandra might have worn it as well if he had not, to the scandal of his family, insisted
on a civil ceremony.
Although related to a prominent family Ram Sanehi Seth achieved his substantial social

position through his own efforts, for his immediate family was of modest means, and his
large house, in which Harish-Chandra was to pass much of his adolescence, was home to
innumerable relatives. Precocious in his studies and often ill, Harish-Chandra did not find
the turbulent atmosphere congenial, and one suspects that both home and school, where he
was teased by older, rougher classmates, exacerbated an innate timidity.

However, in his grandfather’s home, as in many North Indian households, music was
cultivated, and Harish-Chandra took from it a love of music which he never lost, not only
for the ragas of his homeland, but also in later life for composers of the West, above all
Beethoven.

Chandrarani appears to have inherited the energy and ambition of her father and to have
passed it on to her children, all of whom had distinguished careers. Satish, older than Harish
by seven years, entered in 1939 the Indian Civil Service, the élite administrative corps of
Imperial India, and became ultimately, after Independence, Chief Secretary of Uttar Pradesh
and then Secretary to the Government of India in the Ministry of Defense and Supplies during
the Indo-Pakistani War. Suresh, younger than Harish by seven years, was an engineer with
the Indian Railways, and then joined the State Corporation of India. He is now executive
director of a private corporation. The sole daughter, Vimala, married Jagdish Behari Tandon
who, having served with the Indian Agency in Burma, where he was made a prisoner-of-war,
joined the Indian Administrative Service, the successor to the Indian Civil Service, retiring
as a member of the Board of Revenues of the Uttar Pradesh Government. The husband of a
cousin was an admiral in the Indian Navy.
Considerable attention was given to the early education of Harish-Chandra. A tutor was

hired, and there were visits from a dancing master and a music master. At the age of nine
he was enrolled, younger than his schoolmates, in the seventh class. He completed Christ
Church High School at fourteen, and remained in Kanpur for intermediate college, which he
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finished at sixteen, and then matriculated at the University of Allahabad, where he obtained
the B.Sc. in 1941 and the M.Sc. in 1943 at the age of twenty.
High-strung and frequently ill, Harish-Chandra was especially vulnerable at the time of

examinations, all of which he seemed to take while suffering from some malady, serious or
comic, from paratyphoid to measles. This did not prevent him from performing brilliantly.
For the M.Sc., when he was examined by the physicist C.V. Raman, F.R.S., he was the first
in the state of Uttar Pradesh, receiving 100% on the written test.

He had learned some mathematics, as far as the calculus, and some science from his father’s
textbooks but his introduction to modern science came at the university. He described many
years later how Dirac’s Principles of quantum mechanics, which he had discovered in the
university library in 1940, evoked in him the desire to devote his life to theoretical physics.
Two years later K.S. Krishnan, F.R.S., an excellent physicist and a widely cultivated man,
was appointed Professor of Physics in Allahabad. He encouraged Harish-Chandra in every
possible way, lending him books like Hermann Weyl’s Raum-Zeit-Materie and recommending
him as a research student in physics to H.J. Bhabha, F.R.S., at the Indian Institute of Science
in Bangalore. The mild-mannered, gentle Krishnan inspired in Harish-Chandra not only
respect but also an affection that never abated. For the boisterous, egoistical Raman and his
achievements he had also, in spite of the difference in their temperaments, a high regard, but
his own ascetic nature did not allow him to perceive the virtues accompanying the high-living
Bhabha’s extravagance.

2. Bangalore and Cambridge

The South Indian environment would have been foreign to Harish-Chandra, but he spent
the first six months lodging with old friends from Allahabad, Mrs. H. Kale, who had been his
French teacher at the university, and her husband Dr. G. T. Kale, a botanist who had moved
to Bangalore to take up duties as librarian at the Institute.
The eager, serious student was an inviting target for the pranks of their young daughter,

Lalitha, but the interruptions could not have been entirely unwelcome, for many years later,
when he returned to India on a visit, she, now a strikingly beautiful young woman, became
his wife. There were other interruptions. Raman, already fifty-five, had taken a liking to
Harish-Chandra and would drop by unexpectedly to invite him for a walk. Harish-Chandra
would also walk alone, sometimes with his sketchbook in hand, for at that time he liked
to draw and to paint. He was an excellent copyist. He later gave up painting completely,
although in 1951 when visa difficulties prevented him from travelling he, in his own words,
made a virtue of necessity and enrolled in a painting course in the Summer School at Columbia
University. A few sketches, made on vacation, remain in the family, as well as a copy of
Ruben’s Le Chapeau de Paille from the time in Allahabad, treasured by his mother-in-law,
Mrs. Kale. He copied it for her as an eighteen-year-old in a gesture of affection and gratitude
to a favourite teacher from a collection of reproductions of paintings from the National Gallery
with which his father had presented him, choosing it as much for its French title as for any
artistic reason.
Shortly before leaving Columbia, in an interview with the alumni magazine he tried to

express his mathematical aesthetics in a metaphor from painting, stating that ‘In mathematics
there is an empty canvas before you which can be filled without reference to external reality.’
In the final phrase he is thinking perhaps more of mathematics than of painting for he adds,
‘The only value of mathematics lies in its internal structure.’ This is an extreme view, but it
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has real validity if taken to refer to his own style and to express his satisfaction at having
found in mathematics a subject better suited to his own inclinations than the physics he had
abandoned because ‘it is basically an empirical science.’

In painting, as in other things, he admired excellence. He was especially fond of the Impres-
sionists and in his last year, often too ill to work, he spent many hours with reproductions of
the paintings of Cézanne and van Gogh, reflecting on their lives, and perhaps seeing in their
intensity and struggles a similarity to himself.
Gandhi’s Quit India movement had been broken in 1942, and from then until the end of

the war the independence movement was dormant. So Harish-Chandra’s time in Bangalore
was untroubled by politics. Indeed, although his parents had been supporters of Gandhi, his
father adopting the wearing of khadi, Harish was never more than superficially touched by
politics. He had strong views, which he would sometimes vehemently defend, but he was
not distracted by them, and was impatient with the hypocrisy and sentimentality, perhaps
simply with the welter of emotions, that politics by their very nature entail.

Harish-Chandra’s career as a physicist was to be brief—two years in Bangalore with Bhabha
and two years in Cambridge with P.A.M. Dirac, F.R.S. He himself does not appear to have
attached much importance to the work done then, but it is of biographical interest and does
occupy considerable space in his Collected works.
In Bangalore there were two themes, both reflecting concerns of Bhabha and indirectly

Dirac. The first, on which he wrote some papers alone and some with Bhabha, was classical
point-particles, their equations of motion, and the fields associated with them. Its origins
lie in a 1938 paper by Dirac in which he derived equations of motion for a classical charged
point-particle moving in an external field by examining the combined effects of the external
field and the field of the particle itself on a small tube surrounding the world-line of the
particle. He lets the diameter of the tube go to zero, keeping only the finite part of the energy
and momentum communicated to the tube, and obtains equations agreeing with those of
the Lorentz theory. Similar ideas can be applied to other point-particles and the associated
fields, and Bhabha and Harish-Chandra developed them extensively, especially for neutrons
and their classical meson fields. This work found no echo in the literature.
The second theme, relativistic wave equations, especially for particles of higher spin,

touches issues that, although somewhat peripheral, remained of concern to mathematical
physicists and are still not completely resolved. It deals with problems that in the 1940s were
largely algebraic and some of the papers, like those on the Dirac matrices and those on the
Duffin-Kemmer matrices, are purely so. The innate algebraic facility displayed in them, and
in the early Princeton papers, was transformed by experience and effort into the powerful
technical skill of the papers on representation theory. As it gained in strength it lost in ease
but never in resourcefulness.

Serious problems arise when attempting to construct a theory of elementary particles with
higher spin. The inconsistencies that arise in attempts to include the affect of an external
field appear to be the most vexing. Harish-Chandra alludes to this problem and even suggests,
in an appropriately tentative introduction to one of his three papers on the topics, that his
efforts might lead to its solution, but sets himself a more modest goal.

Apparently there are several desirable features for a relativistic wave equation in addition
to Lorentz invariance: (i) unique rest mass; (ii) unique spin; (iii) positivity of total energy or
total charge. All these requirements were met by the Dirac-Fierz-Pauli theory but at the
cost of a simple Lagrangian formulation. Harish-Chandra attempted to preserve the simple
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Lagrangian, the unique rest mass that he took to be greater than zero, and the positivity,
without which there is no quantization, but to abandon the unique spin. He was then able,
among other things, to construct a formalism for elementary particles with spin that could
take on both values, 3

2
and 1

2
. However, I understand that nowadays, when there is a great

variety of particles with higher spin whose existence has been experimentally discovered, the
problems appear in a much different light than they did forty years ago. Either they are
dealt with in the context of supersymmetry, where the inconsistencies can by a felicitous
choice of coupling constants be made to disappear, or the particles are treated as composites
or resonances.

The earliest papers on point-particles had been communicated by Bhabha to the Proceedings
of the Royal Society and had gained for Harish-Chandra not only the hyphen in his name,
which was first placed there by a copy editor and which he decided to retain, but also the
attention of Dirac, who had been requested by Bhabha as a special favour, the wartime mail
between India and England being very slow, to correct proofs.
On the basis of this work and perhaps recommendations from Bhabha as well, Harish-

Chandra had been accepted by Dirac as a research student. Not long after the war in Europe
had ended he set sail for England, and was on board ship when the atomic bomb fell on
Hiroshima on 6 August 1945. Cambridge had still not returned to normal and was almost
deserted when he arrived to take up residence in Gonville and Caius College.
In Cambridge his personal contacts with Dirac were infrequent. He attended his lectures

at first but dropped out when he discovered that they were almost the same as the book.
However, he did attend the weekly colloquium run by Dirac. He found that ‘he was very
gentle and kind and yet rather aloof and distant’ and felt that ‘I should not bother him too
much and went to see him about once each term’.
The work on equations of particles with higher spin belongs on the whole to the Cam-

bridge period, but his thesis proper was on a different, although closely related, topic: the
classification of irreducible representations of the Lorentz group. It was proposed by Dirac
and, as Harish-Chandra later remarked, was how he got started in group representations.
They were to be his life.

One of the first papers on infinite-dimensional irreducible representations had been written
by Dirac himself in 1944. He introduced it with the remarks:

‘The Lorentz group is the group of linear transformations of four real variables
ξ0, ξ1, ξ2, ξ3 such that ξ20 − ξ21 − ξ22 − ξ23 is invariant. The finite representations
of the group. . . are all well known and are dealt with by the usual tensor
analysis and its extension spinor analysis. None of them is unitary. The group
has also some infinite representations which are unitary. These do not seem
to have been studied much, in spite of their possible importance for physical
applications.’

This is as close as one comes to the source of the theory of infinite-dimensional representa-
tions of semisimple and reductive groups, which as it turned out were to be of limited physical
significance but of great mathematical import. Soon after Dirac’s initial article three papers
were written classifying the irreducible representations of the homogeneous Lorentz group,
one by Harish-Chandra, who solved the problem posed by Dirac, another by Bargmann in
the U.S.A. and a third by Gelfand-Naimark in the Soviet Union. The paper by Bargmann
was the most influential of the three. He considered not only the usual Lorentz group defined
by four-dimensional space-time but also the analogous group defined by two space dimensions
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and one time dimension whose representations have, surprisingly, a more complex structure,
containing the discrete series of square-integrable representations, which would become, after
Harish-Chandra had demonstrated their importance in general, the rogue’s yarn running
through the subject.

Harish-Chandra’s own paper suffered from a lack of the rigour appropriate to the treatment
of a topic in pure mathematics. He later commented that,

‘Soon after coming to Princeton I became aware that my work on the Lorentz
group was based on somewhat shaky arguments. I had naively manipulated
unbounded operators without paying any attention to their domains of defi-
nition. I once complained to Dirac about the fact that my proofs were not
rigorous and he replied, “I am not interested in proofs but only in what nature
does.” This remark confirmed my growing conviction that I did not have the
mysterious sixth sense which one needs in order to succeed in physics and I
soon decided to move over to mathematics.’

In fact, it seems that he had been preparing for the move for some time. In Cambridge he
attended the lectures of J. E. Littlewood and Philip Hall, discovering mathematics as he began
to doubt his vocation as a physicist. In Princeton he would write one more paper on physics
and then, for all professional purposes, abandon the subject entirely. Harish-Chandra’s nature
was unrelentingly intense, and demanded a sharp focus. His daily and yearly routines grew
simpler with the years, and his temperament became more ascetic and more impatient with
richness of detail or complexity of character. The best aroused admiration and respect; to
the rest he was almost ruthlessly indifferent. From himself, too, he demanded the best and
had, I would guess from a distance, as a young man considerable confidence in his ability to
achieve it. But he would not dabble.
So once he recognized that his talents lay elsewhere his active interest in physics ceased.

However, the respect he continued to have for the subject and those whom he regarded as its
greatest practitioners, above all Dirac, was enormous, amounting almost to a religious awe.
He never accorded so much even to those mathematicians he most admired and was most
eager to emulate, certainly not to himself or his own work.
Although he was convinced that the mathematician’s very mode of thought prevented

him from comprehending the essence of theoretical physics, where, he felt, deep intuition
and not logic prevailed, and skeptical of any mathematician who presumed to attempt to
understand it, he was even more impatient with those mathematicians in whom a sympathy
for theoretical physics was lacking, a failing he attributed in particular to the French school
of the 1950s.
Harish-Chandra was introspective and often reflected on his own working methods. At a

conference in honour of Dirac shortly before his own death he expressed his views on the role
of intuition.

‘I have often pondered over the roles of knowledge or experience, on the one
hand, and imagination or intuition, on the other, in the process of discov-
ery. I believe that there is a certain fundamental conflict between the two
and knowledge, by advocating caution, tends to inhibit the flight of imagina-
tion. Therefore a certain näıveté, unburdened by conventional wisdom, can
sometimes be a positive asset.’

These remarks refer to Dirac but also, and quite consciously, to himself. However, his
admiration of Kodaira and Siegel expressed perhaps a clearer assessment of his own gifts.
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Harish-Chandra came to mathematics relatively late and, in spite of enthusiastic initial
attempts, there were broad domains of mathematics that he never assimilated in any serious
way, although he learned all that he needed, which was considerable. None the less, for a
mathematician of his stature and ambitions his base was narrow. He knew this; it troubled
him; and he was more than a little defensive. In the circles in which he often found himself
he had to be. However, what saved him was not, in my view, his intuition, of which he had
relatively little, either geometric or algebraic, but an analytic power and algebraic facility
unsurpassed in my experience. He of course exploited the ideas of others and techniques that
were at hand—they were occasionally crucial—but by and large it is not too much of an
exaggeration to say that he manufactured his own tools as the need arose, and that one of
the grand mathematical theories of this century has been constructed with the skills with
which one leaves a course in advanced calculus.

Over the years he kept himself informed in a casual way of developments in physics through
popular articles and conversation, and it gave him great pleasure that the elder of his two
daughters, Premala, chose to study it in graduate school. In his last years, no longer able to
work long hours, he had more time to spend with her and his younger daughter Devaki. He
would often thumb through Premi’s textbooks and when she was home spent many hours
closeted with her in his study to discuss all that she had learned since her last visit. That it
was solid-state physics, with which he was unfamiliar, and not his first passion, elementary
particle physics, only heightened the interest for him.

3. Princeton, Cambridge (Massachusetts), New York

In 1947–48 Dirac was a visiting professor at the Institute for Advanced Study in Princeton
and Harish-Chandra was appointed his assistant. He remained a second year on his own. In
Princeton he wrote one more paper on physics, became closer to Dirac and his family, and
also formed a friendship with W.E. Pauli, F.R.S., and his wife. He had already met Pauli,
first in England, probably at the International Conference on Fundamental Particles and Low
Temperatures held at the Cavendish Laboratory in 1946. There, to Pauli’s annoyance, he
had had the temerity to suggest, correctly as it turned out, in a remark at the end of Pauli’s
lecture that Pauli had made a mistake. Later in Zürich, while Harish-Chandra was there
for the summer to study German, Pauli had taken the occasion to invite him to his home.
Above all, during his stay at the Institute, he plunged into mathematics, keen, to judge from
his letters of the period, to master it all, and struck up friendships with other young visitors,
for example F. Mautner, G. D. Mostow and I. Segal. Some were to last a lifetime.
Curiously enough the last paper on physics [1948b],1 which dealt apparently with a

mathematically well-defined problem suggested by a paper by Dirac is vitiated by a topological
error. Otherwise Harish-Chandra might have anticipated by thirty years results of at least
some speculative interest. He considers the motion of an electron in the field of a magnetic
monopole, and professes to prove there are no bound states. It turns out there is one. So far
as I can see Harish-Chandra does not observe that the eigenvalue problem he is solving is
not for functions but for sections of a bundle, a point that Dirac in his own manner stressed.
So Harish-Chandra goes astray when separating variables, is able to imitate the relativistic
treatment of the hydrogen atom, and misses the novel feature of his equation.

1Numbers given in this form refer to entries in the bibliography at the end of the text.
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At the same time the mathematical springs, having finally forced their way to the surface,
rushed forth in a torrent that was not to abate for two decades, and indeed continued only
slightly diminished until his death.
His letters of the time reveal an eager, confident, almost brash young man. In Princeton

he took courses from C. Chevalley and E. Artin, but was disappointed in Hermann Weyl,
F.R.S., whose personality was perhaps too elaborate for him. At the suggestion of I. Segal he
read Weil’s book L’intégration dans les groupes topologiques. He read it carefully and quickly,
immediately noticing a gap in the proof of the duality theorem. In 1949–50 he spent a year at
Harvard as a Jewett Fellow to study algebraic geometry with O. Zariski with whom he seems
to have got along well, but his fellowship was not renewed. Perhaps he spent too much time
on representation theory, but he did learn some algebraic geometry, although little appears
in his papers.

One incident is worth recounting because it shows an aspect of Harish-Chandra that was
afterwards suppressed. Irving Segal was teaching a course on elementary number theory at
Columbia in 1953–54 from T. Nagell’s text, and one day was questioned by his students
about a seemingly easy problem he had assigned, namely, to show the existence for all primes
p not diving 7abc of solutions of the congruence ax3 + by3 ≡ c (mod p). He struggled with it
for the rest of the hour but was stumped. He left, promising to return to the next meeting
with a solution, and worked overnight on the problem, but without success. In desperation as
the class approached, he consulted the many eminent specialists among his colleagues, but to
no avail. He also mentioned the problem casually to Harish-Chandra, not expecting help, but
the next day Harish-Chandra observed that the genus of the projective curve being one and
there being at most 3 points at infinity the existence of solutions was for p > 7 a consequence
of the Weil theorem. For p < 7 it can of course be verified directly. Later appeals to E. Artin
and to Nagell himself yielded more elementary solutions but none simpler.

Algebraic geometry was not all he intended to learn. In a letter to Segal of 1951, in which
he first describes his results on representation theory and then expresses his regrets at not
being able to travel, and indicates his intention to take a course in painting during the
summer, he goes on to say that he is to lecture on topological groups in the coming year
and is beginning to be attracted to classical analysis, especially function theory (although he
realizes it is somewhat unpopular with the modern young men) and the theory of modular
functions. He describes his plans to spend most of his time on function theory and algebraic
geometry, but in the next line expresses the pleasure with which he anticipates a course
of Chevalley on class-field theory and zeta-functions. Turning to mathematical gossip, he
mentions the ‘sensational new developments in France concerning homotopy groups’, noting
with approval that ‘Cartan certainly seems to have brought in some fresh blood into topology,’
and observes that ‘Chevalley is still busy with his exceptional groups,’ adding that ‘I am sure
that after Elie Cartan he is the man who knows most about them.’ Finally he reports on
the work of G. Racah on the invariants of the exceptional groups, with its application to the
calculation of their Betti numbers, observing in a somewhat patronizing tone, ‘For a man
who is not a professional mathematician, he seems to be exceptionally well informed about
groups and is undoubtedly very able.’ The mature Harish-Chandra was more focused, and
more subdued.

In 1950 he took up a position at Columbia University in New York and remained there until
1963, although he spent several of the intervening years abroad. The academic year 1952–53
he spent in Bombay at the Tata Institute, returning also to Bangalore, where he was met
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at the airport by Raman. There he was married to Lalitha Kale, now Lily Harish-Chandra,
who with good spirits, generous affection, patience, and all-round competence was to pamper
him for thirty years.
It is not clear whether he seriously contemplated remaining in India. Bhabha seems to

have made an effort to create a reasonable permanent position in Bombay, but whether
Harish-Chandra felt that the proper recognition or the proper working conditions could only
be obtained abroad, he did not stay and did not return again except for brief visits. He
continued to concern himself with Indian mathematics and mathematicians. The strength of
his influence can be measured by the number of Indians who have contributed in recent years
to representation theory and related domains.
The academic year 1955–56 was spent at the Institute for Advanced Study and 1957–58

was spent in Paris on a Guggenheim Fellowship. He and Lily lived at Sceaux, where they
were often visited by André Weil. Both he and Harish-Chandra were keen walkers, and would
stroll in the nearby Parc de Sceaux, accompanied by Lily, who was usually ignored.
An incidental windfall from the time in Paris was a substantial increase in salary at

Columbia. The dean at Columbia, unhappy with two leaves of absence so close together,
expressed his displeasure in letters to Harish who was already in Paris and who, anxious
to remain there, turned to Weil for counsel. Weil, for whom dean-baiting was an agreeable
diversion, was glad to provide it and pointed out to Harish-Chandra that his scientific
contributions of the preceding few years had been such that a large number of universities
would be glad to have him, if Columbia felt it preferred to do without his services, and indeed
at a considerably higher salary, for at the time Harish-Chandra’s salary was on the low side.
Weil urged him to communicate all this to the dean, and even dictated an appropriate letter.
I am assured that it was sent, although reluctantly. The leave was certainly extended and his
salary raised.

In Paris Harish-Chandra attended lectures by Weil on discrete groups and was fired with
the ambition to prove the finiteness of the volume of the fundamental domain for arbitrary
arithmetic subgroups of semi-simple Lie groups. Returning to Columbia he studied with great
attention the papers of Siegel on reduction theory, working through the proofs repeatedly until
towards 1960 he found the key to the general theorem. It belonged to a line of development
that had felt the hand of many of the masters of number theory, from Gauss to Siegel, and it
brought Harish-Chandra great satisfaction.

In a lecture delivered in 1955 entitled On the characters of a semisimple Lie group [1955b]
Harish-Chandra was already attempting to discover the properties of the distribution character
of an irreducible representation, whose existence he had established in 1952. By the time
of his visit to Paris he was trying to show that it was in fact given by a locally integrable
function on the group. This he first announced in 1963, but at least one essential feature of
the proof was already in his mind in 1958, the reduction of the theorem on the group to a
similar theorem on the Lie algebra.

If ϕ is a function on an appropriate invariant neighbourhood U of 0 in the Lie algebra then

fϕ(expX) =

∣∣∣∣det{(exp(adX/2)− exp(− adX/2)
)
/ adX

}∣∣∣∣−1/2

ϕ(X)

is a function on an invariant neighbourhood of 1 in the Lie group. The dual map T → τT takes
invariant distributions in G to invariant distributions on U , and in order for the reduction
to function it must be shown that it takes eigendistributions of the operator ∂(pz), where
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pz is an invariant polynomial on the Lie algebra associated to z. For the Casimir operator
Harish-Chandra knew this, but that was not sufficient evidence that it was true in general.
So in Paris, contrary to custom, for he seldom considered special cases, he passed to the
group SL(3), for which there is a second generator of the centre of degree 3, and by explicit
calculation showed that ∂(pz)τT = λτT if zT = λT . This appears to have given him the
necessary confidence that it was true in general.

4. The Institute for Advanced Study

In 1961–62 Harish-Chandra spent another year at the Institute for Advanced Study, which
was contemplating appointing him a professor. The offer was finally made in 1963 and he
returned, remaining there with only brief absences until his death.

Although his health had been undermined by overwork he had regained his vigour and was
at the height of his career, about to establish the existence and the properties of the discrete
series. A tall, exceedingly handsome man, already somewhat on the thin side, he was a
little timid and reserved, and his intercourse was marked by a formal courtesy which did not
conceal the intensity of his feelings and was often broken by a laugh or smile, although in later
years he was inclined to withdraw behind it. However in 1963 his mathematical horizons were
still expanding and he was, if not easy, certainly confident and gregarious, moved by those
about him and willing to gossip, his comments lacking neither the appropriate malice nor
the necessary insight. He enjoyed conversation on general topics and on mathematics, where
his preferred style, reflecting his enthusiasm and the pace of his work, was the monologue,
but there was nothing inchoate about his thought and he spoke clearly and fluently. For
those who were willing to forget their own preoccupations for an hour or two it was a great
pleasure to see his ideas still red-hot from the forge.
He could listen too, respond to comments and reflect on questions, but it was difficult to

turn him to topics divorced from his own concerns or to make him consider a view different
from his own. However, he could change his mind and was deeply attached to younger
mathematicians whose work impinged on his own and who he felt had contributed decisive
ideas, even when, as sometimes happened, his initial impression had been unfavourable. The
influence of R. Howe, a mathematician of a cast of mind quite different from his own whose
ideas were a key to harmonic analysis on p-adic groups, is patent, and was enthusiastically
acknowledged. His response to my own work, perhaps because it underlined the value of his
own contributions for the theory of automorphic forms, was generous in the extreme. In later
years he became convinced of the importance of J. Arthur’s work on the trace formula. It
and the work of L. Clozel on Howe’s conjectures, to which he attached great importance,
were two topics that preoccupied him at his death. He did not assimilate the ideas of others
easily, but if he felt they would be useful to him he was unstinting in his efforts to put them
in a form he could understand.
He was inclined to brood on his own work as well. It was a sustained, cumulative effort,

and he liked to formulate explicitly the ideas that guided him. The philosophy of cusp forms,
which he borrowed from the analytic theory of automorphic forms, and in terms of which he
eventually cast his theory of harmonic analysis on real groups, was a favourite principle. He
later transferred it to p-adic groups and introduced it as well, in a short but influential paper
[1970b]), into the study of representations of finite Chevalley groups. He would have regarded
this as an application of the Lefschetz principle, which for him meant that real groups, p-adic
groups and automorphic forms (corresponding to archimedean and non-archmedean local
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fields and to number fields) should be placed on an equal footing, and that ideas and results
from one of these three categories should transfer to the other two. The name of the principle
is one of the few traces of Harish-Chandra’s early reading in algebraic geometry. In his hands
it led to substantial advances in harmonic analysis on p-adic groups, but it also encouraged
him to ignore the arithmetical aspects of p-adic groups and automorphic forms, which appear
to be richer than the analytic.

His preferred method of proof was induction, which was particularly suited to real groups,
for which he was able to reduce many problems down to SL(2,R). He compared it to high
finance. ‘If you don’t borrow enough you have cash flow problems. If you borrow too much
you can’t pay the interest.’ Just the day before his death he maintained in a large gathering
that ‘In mathematics we agree that clear thinking is very important, but fuzzy thinking is just
as important as clear thinking.’ None the less, he himself, although he could be wrongheaded,
was never fuzzy.

At the Institute for Advanced Study there are few formal duties, but Harish-Chandra loved
to lecture on work in progress. Most years found him delivering a series of talks. Once or
twice his enthusiasm encouraged him to precipitance. His first lectures on the discrete series
in 1961 were abruptly broken off, to be resumed two years later when the hole was patched.
In 1968 he was named I.B.M. von Neumann Professor of Mathematics at the Institute.

He was elected a Fellow of the Royal Society in 1973 and later of other academies. Such
honours pleased him, but for a mathematician of his stature he received very few. He was
considered for the Fields Medal in 1958, but a forceful member of the selection committee in
whose eyes Thom was a Bourbakist was determined not to have two. So Harish-Chandra,
whom he also placed on the Bourbaki camp, was set aside. Harish-Chandra would have been
as astonished as we are to see himself lumped with Thom and accused of being tarred with
the Bourbaki brush, but whether he would have been so amused is doubtful, for it had not
been easy for him to maintain confidence in his own very different mathematical style in face
of the overwhelming popular success of the French school in the 1950s.
He travelled little in later life, two short stays in Paris and a brief visit to India. Even

vacations became rare. However, he did travel to the International Congress of Mathematicians
in Moscow in 1966, at which he delivered one of the general lectures, and was delighted and
flattered by I. M. Gelfand’s hospitality.
In 1969 he had his first heart attack, and from then on his health was a serious concern.

His physician prescribed regular exercise and Harish-Chandra complied, walking in the late
afternoon in the streets near the Institute with long, rapid strides at a faster pace than many
of the joggers. But he could not rest on his accomplishments and did not cease working.
There was a competitive streak in him that he never recognized and never mastered. It
did not let him rest. Sometimes he would press himself too hard, as in his attack on the
spectral theory of Whittaker functions which yielded only on the second assault, the first too
sanguine attempt having been unsuccessful. During the ensuing period of enforced rest a
youthful almost ebullient Harish-Chandra reappeared, chatting easily about trivial matters
and discoursing passionately about his favourite painters.
His heart grew worse and in 1982 he had a third attack, from which he never properly

recovered. His last year was troubled by increasing frailty, the effects of medication and
the knowledge that he had little time left. A conference to celebrate his 60th birthday was
planned for April 1984 but he was not to live to participate in it. A similar conference in
honour of Armand Borel was held in Princeton in October 1983, and was attended, the fields
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of the two being so close, by many friends and colleagues of Harish-Chandra. No one knows
why or how, but for the week of the conference, his vigour and force reasserted themselves.
Princeton’s warm, clear autumn weather prevailed and between lectures at the conference, on
a lawn or a terrace of the Institute, he was the centre of a lively crowd, expressing his views
on a variety of topics. On Sunday 16 October, the last day of the conference he and Lily had
many of the participants to their home. He was a sparkling host. In the late afternoon, after
the guests had departed, he went for his customary walk, and never returned alive. His ashes
were spread in Princeton and immersed in the Ganges at Allahabad.

5. Mathematical Work

Harish-Chandra’s Collected works were published in 1984 and contain essays by V.S. Vara-
darajan, N. Wallach and R. Howe that provide a comprehensive survey of Harish-Chandra’s
mathematical papers, describing not only his general theory and specific contributions but
also the context in which they were produced. So the following description of his achievements
will be brief. His papers are with few exceptions cumulative, and to some extent accretive.
It appears that by the early 1950s he had already glimpsed the outlines of the theory of
harmonic analysis on real semisimple groups, and in the next ten years he marched towards it
with formidable determination and resourcefulness, inventing techniques and constructions as
he advanced. Even after the wave of advance had crested in the discrete series and its force
been partly diverted into other channels, the tenacity in the search for solutions to technical
difficulties which was a characteristic of Harish-Chandra’s style remained. It helps when
reading his papers if one can isolate the places where severe and steady pressure has had to
be applied and separate them from the stretches where experience and strength sufficed. I
have attempted something of the sort but my limited familiarity with many of the papers
does not permit much confidence. With time some of Harish-Chandra’s arguments have been
simplified and some specific results have been shown to be consequences of other general
theories. I have not alluded to any of this or to subsequent developments, nor to papers he
may have left in manuscript form. They have yet to be examined.

5.1. Apprenticeship. In a six-month period in 1948, beginning about half a year after his
arrival in Princeton, Harish-Chandra wrote five papers giving new proofs or extensions of
existing theorems in the theory of Lie algebras and, to some extent, groups. The influence of
Chevalley on these early papers is manifest. Among other things Ado’s theorem affirming
the existence of faithful representations of a Lie algebra over a field of characteristic zero is
proved and generalized. So is the Tannaka duality theorem, for Lie algebras and for groups.

The paper [1951a] written in 1950 is transitional. The first part, in which the remarkable
ability to deal with the abstract semisimple Lie algebra that was a hallmark of Harish-Chandra
is already highly developed, provides the first general proof of the existence of the semisimple
Lie algebra attached to a Cartan matrix. He establishes it at the same time as he proves
the existence by purely algebraic means of a finite-dimensional irreducible representation
of the algebra with a given highest weight. This is of course the basic theorem of the
subject, and had been proved before, with quite different methods, by Cartan and by Weyl.
Harish-Chandra attributes some of the ideas in his construction to Chevalley.

In the remaining three sections of this long paper he strikes out on his own. He considers
infinite-dimensional representations and initiates the theory of (G, K)-modules, but only for
complex semisimple Lie algebras, showing in effect that there are only finitely many irreducible
representations with a given infinitesimal character and containing a given K-type, and that
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a given K-type occurs only a finite number of times in a given irreducible representation. In
addition he introduces for any semisimple Lie algebra the isomorphism from the center of
the universal enveloping algebra to the algebra of elements invariant under the Weyl group
in the symmetric algebra of a Cartan subalgebra. It is now known as the Harish-Chandra
isomorphism.

Following I. M. Gelfand and M. A. Naimark, but working with a general complex semisimple
group, he introduces in the last section of the paper the unitary principal series.

5.2. Foundations of infinite-dimensional representation theory. These were created
rapidly, so that by 1954 he had already turned to purely analytic problems: harmonic analysis
and the existence of the discrete series. The main technical achievements were the existence
of analytic vectors, which allows one to purge the theory of inessential functional-analytic
features and thus to pass to the almost purely algebraic (G, K)-modules; and the subquotient
theorem, from which one can deduce the existence of the distribution character as well
as an integral formula for the matrix coefficients of an irreducible representation which
Harish-Chandra, under the influence of the theory of automorphic forms, later called the
Eisenstein integral.

5.3. Grappling with the Plancherel formula. The distribution character f → Tω(f)
associated to an equivalence class of irreducible unitary representations once introduced, the
Plancherel formula is a formula

f(1) =

∫
g

Tω(f) dω,

valid for smooth compactly supported functions on the group. The integration is to be
taken over an explicitly described collection of inequivalent irreducible representation of the
group with respect to an explicit measure dω. For complex classical groups such a formula
was found by Gelfand and Naimark. To prove it one combines integration formulas on the
group resulting from the circumstance that every element lies in a Borel subgroup with
elementary Fourier analysis. Harish-Chandra recognized ([1951f , 1954c]) that the proof could
be extended to an arbitrary complex semisimple group but not to a real semisimple group
with more than one conjugacy class of Cartan subgroups.

He began to attack the problem for real groups on several fronts. He proved the Plancherel
formula for SL(2) by explicit, elementary calculations [1952], using the existence of the discrete
series, and understood that as far as the representations needed for the Plancherel theorem
were concerned the critical point was the construction of the square-integrable representations,
often called the discrete series. The notion of a square-integrable representation had also been
extracted from the results of Bargmann by Godement, but what is striking is that Harish-
Chandra recognized, so far as I know before bounded symmetric domains and automorphic
forms became popular topics, in the work of Bargmann and that of Gelfand and Graev on
SL(n,R) the technique of constructing square-integrable representations on the L2-sections
of holomorphic vector bundles. He also showed, although he expressed himself differently
and the significance of the fact was not to be realized until much later when, after his proof
of the existence of the full discrete series, explicit constructions were sought, that (in current
terminology) only the holomorphic discrete series could be realized on cohomology groups in
degree 0.
He was marshalling other techniques as well, bringing the spectral theory of ordinary

differential equations and Fourier analysis to bear. He also observed that the character of an
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irreducible representation was an eigendistribution of the centre of the universal enveloping
algebra. This allowed him to show (the argument is not difficult) that the character is, at least
on the regular set, a function given by a quotient of a rather simple form ([1955b, 1956c]).
There is a well-determined denominator, and a numerator which is a linear combination of
elementary functions. It is the coefficients of the numerator that have to be determined in
later uniqueness arguments. It is by no means clear that the character itself is a function on
the singular set as well. In particular the denominator is 0 there. So one cannot say exactly
when Harish-Chandra began to suspect that the quotient was everywhere locally integrable
and represented the distribution, but it was certainly not long after 1955.
The deepest sequence of papers from this period is perhaps that devoted to the limit

formula, which expresses the value f(0) of a smooth, compactly supported function f on the
Lie algebra as a limit of derivatives of its orbital integrals. One supposes that he hoped to
apply the results to the Plancherel formula itself and that he was at the time unaware how
important they would be for the construction of the discrete series. Here, as everywhere in
the work of Harish-Chandra, there are basic identities for differential operators which result
from suppressing, for various reasons, coordinates that are in some sense polar and keeping
only radial coordinates. The identity that expresses the orbital integrals of zf in terms of
those of f when z is an invariant differential operator with constant coefficients on the Lie
algebra is, along with a similar identity on the group, the critical one in these papers and
is still basic. Harish-Chandra writes it as ϕ∂(p)f = ∂(p)ϕf . Another technique that appears
for the first time here is reduction to the semiregular elements. It was to be used over and
over again. Otherwise the limit formula results from combining integration formulas with
elementary techniques from Fourier analysis, and from properties of the fundamental solution
of some second-order hyperbolic equations with constant coefficients.

The search for an explicit Plancherel formula is a problem in spectral theory. The formula
can also be regarded as expressing a function transforming on the left and right under
given irreducible representations of a maximal compact subgroup K as an integral of matrix
coefficients of irreducible representations. Apparently attempting to obtain a handle on
the explicit measure in the Plancherel formula Harish-Chandra considered in reference
[1958a, 1958b] functions bi-invariant under K, for which he seems to have (correctly) believed
that the discrete series was irrelevant, so that he had all the ingredients of their harmonic
analysis at his disposal.
Here one is dealing with a higher-dimensional version of the classical spectral theory on

a half-line. The elementary spherical functions which are the elements of the expansion
satisfy differential equations that, when the K-invariance is taken into account, yield an
overdetermined system. The central topic of the papers is the asymptotic behaviour of the
spherical functions, for Harish-Chandra shows that the Plancherel measure is given, as in
the classical theory, by the coefficients of the asymptotic expansion. He shows that it has an
asymptotic expansion by generating a series by recursion, checking convergence and then
verifying that it satisfies the necessary differential equations by interpolating between those
values of the parameter that correspond to finite-dimensional representations. For the finer
study of the expansion he is able to reduce the equations to a form that enables him to exploit
along rays a method much like variations of parameters. The coefficient that appeared in
the asymptotic expansion he labelled the c-function. He gives an integral formula for it and
proves what he later referred to in a more general context as the Maass-Selberg relations. The
basic ingredients of his harmonic analysis, especially the weak inequality and the Schwartz
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space, are implicit in these papers. All that is missing, apart of course from the discrete
series, is the Bhanu-Murty-Gindikin-Karpelevich device for reducing the calculation of the
c-function to the rank-one case. However, the explicit formula for rank-one groups does
appear.

5.4. The discrete series. The basic results were announced in his papers of 1963. The first
is that every invariant eigendistribution, in particular every character, is a locally summable
function. The others, more difficult to state, provide the full discrete series. However, only
later was he able to describe explicitly the characters of the representations of the discrete
series on the elliptic set and thereby parametrize them. These are the central results in
the representation theory of real semisimple groups and the proofs were long and arduous,
requiring several difficult technical steps which were dealt with in a sequence of papers
culminating in papers [1965c] and [1966b], now referred to as Discrete series I and II.

There are two forms to the theorem that an invariant eigendistribution is a function. On the
Lie algebra the differential operators of which the distribution is to be an eigendistribution are
the invariant constant coefficient differential operators. On the group they are the elements
of the centre of the universal enveloping algebra. The theorem is first proved for the Lie
algebra and then transferred to the group.
Harish-Chandra first proves, in a local form, that an invariant eigendistribution of the

Casimir operator that is supported on the nilpotent elements is zero. The crux of the matter
is, of course, to show that there are transverse directions on the symbol of the differential
operator that there is no possibility of cancelling. The Jacobson-Morosov lemma, which was
to reappear in his work on p-adic groups, is an important tool.

Local summability on the Lie algebra is proved in reference [1965a]. As already remarked
it is not difficult to show that on the regular set the distribution is given by a function F .
Moreover he has proved in a preceding paper (the key being the identity ϕ∂(p)f = ∂(p)f
for orbital integrals) that F is locally summable and thus defines a distribution TF . So
he needs to show that T − TF = 0. By induction on the dimension of the algebra he
shows that it is supported on the nilpotent elements. For some r and some c the equation(
∂(ω)− c

)F
T = 0 is satisfied, ∂(ω) being the Casimir operator. By an induction on r he is

allowed to assume r = 1. Then
(
∂(ω)− c

)
(T − TF ) = T∂(ω)F − ∂(ω)TF . Since the right side

of this equation is a distribution defined by a function it can be studied by integration by
parts. Examining it around semiregular elements where it is shown to be 0 by induction
and by reduction to SL(2,R), which can be treated directly, one shows that it is 0. Thus(
∂(ω)− c

)
(T −TF ) = 0. Since T −TF is supported on the set of nilpotent elements it follows

from the first paper of the sequence that it is 0.
In reference [1965a] he also proves the theorem that is critical for transferring the results

from the algebra to the group. It states that an invariant differential operator that annihilates
all invariant functions also annihilates all invariant distributions.
The existence and uniqueness of the invariant eigendistributions, which turn out to be

the discrete series characters, is first proved on the Lie algebra. There the existence is in
essence proved by writing the distributions down as an explicit Fourier transform. The
existence on the group is proved by transferring in patches invariant distributions from the
algebra to the group by the duals of transformations on functions of the form f → ϕ with
ϕ(X) = ξ(X)f(expX), ξ being a fixed function. The distributions are specified by their
restriction to the open set of regular elliptic elements. Uniqueness is obtained by moving
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across semiregular elements to the open sets determined by the regular elements in other
conjugacy classes of Cartan subgroups, using the growth conditions imposed to force most of
the constants in the numerators to be 0. It involves also integration by parts and the use of
the differential equations to match the constants across semiregular elements.

In 1966 he finished his study of the discrete series [1966a, 1966b], proving that the eigendis-
tributions he had constructed are indeed characters of square-integrable representations, and
turned to the harmonic analysis. The function Ξ, which defines the rate of decay demanded
of functions in the Schwartz space C(G), appears and half of reference [1966b] is devoted to
the basic properties of this space. To show that the eigendistributions that he has constructed
and labelled Φλ are characters of square-integrable representations he must, first of all,
verify that their Fourier coefficients with respect to a maximal compact subgroup are square
integrable, or better, lie in C(G). The eigendistributions are tempered, in other words they
lie in the dual of C(G), and thus by the theory of C(G) so are their Fourier coefficients, which
therefore satisfy the weak inequality, the rate of growth permitted to K-finite functions in
the dual of C(G). However, the differential equations satisfied by Φλ are passed on, although
in somewhat altered form, to its Fourier coefficients, and they imply that slow growth must
be rapid decay.
To show that the eigendistributions are tempered is a serious matter. The argument is

convoluted and is made to rely ultimately on the maximum principle for the Laplace-Beltrami
operator on G, although that could be avoided. Because one of the invariant distributions,
later called the Steinberg character by Harish-Chandra, is constant on the set GB of conjugates
of regular elliptic elements, the necessary estimates can be reduced to one for

∫
K
ϕB(xk)dk if

ϕB is the characteristic function of GB, provided that the Fourier coefficient of the Steinberg
character with respect to the trivial representation of K is 0. It is in fact 0 for all the
eigendistributions. This is because an elementary estimate forces it to go to zero at infinity
while the differential equations force it to grow.

The final major task [1966b] was to prove that the invariant eigendistributions he had
constructed were up to sign the characters of the discrete series representations. The
argument is similar to that of Weyl for compact groups and employs the orthogonality
relations whose proofs are based on ideas from one of Harish-Chandra’s first papers [1956b]
on square-integrable representations.

5.5. Harmonic analysis. By the time he had completed the papers on the discrete series
Harish-Chandra had all the techniques necessary for the development of the harmonic analysis
at his disposal. However, in 1966 he gave a series of expository lectures on Eisenstein series and
the analytic theory of automorphic forms, and these strongly influenced his view of harmonic
analysis on a semisimple group and his presentation of it. In the lectures [1970a, 1970c] the
harmonic analysis of the space L2(G) is cast in the mould of that of L2(Γ\G). Cusp forms
appear, as do Eisenstein integrals, and cuspidal parabolic subgroups are displacing Cartan
subgroups. The Schwartz space is there from before and from now on the harmonic analysis
would be couched in terms of it and not of L2(G). As for ordinary Fourier analysis this
permits the formulation of more precise theorems. He introduces the space C(G) attached to
the ith associate class of parabolic subgroups and defined by means of the constant terms

fP (g) =

∫
N

f(ng) dn
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of functions in C(G) and verifies the direct sum decomposition

C(G) =
⊕
i

Ci(G).

In addition he introduces the spaces A(G, τ), which are analogues of spaces appearing in the
theory of automorphic forms, and for a function f in one of them defines, with the help of the
differential equations it satisfies, the weak constant term fP . The Eisenstein integral yields
functions in the spaces A(G, τ). He is still having trouble with the analytic continuation and
functional equations, which he wants to put in the form familiar from the theory of Eisenstein
series. They would be dealt with in the lecture [1972] in which the Maass-Selberg relations
suggested by the analytic theory of automorphic forms also occur. The Plancherel formula is
proved, although the measure is not given as explicitly as in reference [1972].
The proofs of these results appeared in three long papers [1975, 1976a, 1976b]). (The

techniques of the first two papers have their origins in the two early papers on spherical
functions [1958a, 1958b]). The existence and properties of the weak constant term that
allow him to prove that wave packets lie in C(G) are proved with the help of the differential
equations by variants of the method of variation of parameters. There is also a critical
formula that yields the constant term of a wave packet as an integral of the weak constant
term of its elements. The proof is subtle and appears, in simpler form, already in reference
[1958b]. There one has a double integral∫

dn

∫
a(λ)ϕλ(nh) dλ

to evaluate, the ϕλ being elementary spherical functions. Harish-Chandra replaces h by
h exp tH, uses the differential equations to show that this does not affect the value of the
integral, and then lets t approach infinity, replacing ϕλ by its asymptotic expansion.
Although the Maass-Selberg relations show that all members of the weak constant term

of an Eisenstein integral have the same weight on the unitary axis, in the domain where
the real part of the parameter lies in the positive chamber one member dominates because
of its exponent, and can be evaluated to yield a relation between the c-function and the
intertwining operators. For spherical functions the argument appears in reference [1958b],
and just as for spherical functions, the Bhanu-Murty-Gindikin-Karpelevich technique then
reduces the calculation of the Plancherel measure to the case of maximal cuspidal parabolic
subgroups.
The proof of the Plancherel formula [1976b] uses the limit formula [1957e] but perhaps

not in the way suggested by paper [1970c]. Using a measure µ(w, v) defined in terms of
the c-function, or the intertwining operators, he builds wave packets. Then, using the limit
formula, the explicit formula for the characters of the discrete series on the elliptic elements,
and the expressions for the constant terms of the wave packets in terms of the c-function, he
is able to evaluate their inner products with Eisenstein integrals. After that the Plancherel
formula for K-finite functions follows from formal principles, provided that one can control
the growth of µ(w, v) for large values of the parameters. For this he uses an explicit expression
for it that he can obtain from the relative-rank case by the product formula. For relative-rank
one the alternative approach to the Plancherel formula [1970c], which exploits the limit
formula [1957e], is manageable. So he applies it to evaluate a function which must be µ.

5.6. Discrete and finite groups. In the 1950s a large number of mathematicians began to
consider the notion of an automorphic form for discrete subgroups of arbitrary semisimple
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groups. The domain attracted Harish-Chandra and he made two contributions. The analytic
theory of automorphic forms cannot begin until one knows that the space of automorphic forms
defined by a given discrete group, a given representation of a maximal compact subgroup,
and a given ideal in the centre of the universal enveloping algebra, is finite-dimensional. The
first general theorem of this type is proved in reference [1959a]. The argument, based on a
theorem of Godement, anticipates in many respects that of the definitive results obtained a
few years later, whose proof uses the general reduction theory of the paper [1962] written in
collaboration with Borel. This reduction theory, which issued from the classical reduction
theory and subsumes it, has been incorporated into the very foundations of the theory of
automorphic forms. It yields, in particular, the finiteness of the volume of the fundamental
domain for an arbitrary arithmetical subgroup of a semisimple group and the criterion,
conjectured by Godement, for its compactness.
He also introduced the notion [1970b] of a cusp form into the representation theory of

groups over finite fields. The subsequent theory has been erected upon the framework it
provides.

5.7. Groups over p-adic fields. The representation theory of reductive groups over non-
archimedean fields was a preoccupation of Harish-Chandra from the late 1960s. His goal was
to carry the harmonic analysis of groups over R to groups over p-adic fields. The notes [1970d ]
are his first contribution to the subject, and he plunges in with the proof that an irreducible
square-integrable representation is admissible and therefore possesses a character. It was
perhaps the discovery of this proof that convinced him that a theory for p-adic groups parallel
to the real theory could be developed. Oddly enough, in Harish-Chandra’s theory, the general
proof that an irreducible unitary representation is admissible was to come only at the end
and only in characteristic 0, although in the meantime J. Bernstein had by other means,
proved it in general.
Two results from reference [1970d ], which was in some respects provisional, would be

incorporated in reference [1978], whose central result is that the character of an irreducible
admissible representation is given by a locally summable function. For real groups the
asymptotic behaviour of the orbital integrals near the singular points is analysed with the
help of differential equations. For p-adic groups the asymptotic behaviour is described by
fewer elements, the Shalika germs, but they are more difficult to get a handle on. In a long
chapter [1970d ] Harish-Chandra succeeded in establishing, with the help of the Jacobson-
Morosov lemma, important homogeneity properties of these germs, which yielded estimates
from which he could establish the local summability of a function majorizing characters. The
technique for estimating supercuspidal characters by expressing them as orbital integrals of
matrix coefficients that has its origins in reference [1956b] is developed in reference [1970b]
and appears in reference 1978 for the invariant distributions defined by cusp forms on the Lie
algebra.
As for real groups the tactic [1978] is to work first on the Lie algebra and then to pass

to the group. For p-adic Lie algebras there is no strict notion of invariant eigendistribution,
but there is a substitute, the Fourier transforms T of invariant distributions T supported
on orbits. Since the Fourier transforms of functions supported on a small compact set are
uniformly locally constant one may for the local theory even allow the distribution T to have
support in a thickening of the orbits. This is made precise by a finiteness theorem of Howe,
which then becomes the key to the theory on the Lie algebra. The passage from the algebra
to the group requires the introduction of a class of invariant distributions that is large enough
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to include the characters of irreducible admissible representations, and to permit localization
and reduction to the centralizers of semisimple elements. Once again the key notion, that of
(G,K)-admissibility, is extracted from results of Howe.

The notion appears already in his paper of [1973], which like reference [1977b] is a summary
of results. The complete theory was expounded by A. Silberger in his Introduction to harmonic
analysis on reductive p-adic groups. For functions, like matrix coefficients, that are K-finite
on both sides, the Hecke algebra provides an adequate substitute for the differential operators.
However, Harish-Chandra [1970b] was unable to utilize the condition of Hecke-finiteness as
he had used the differential equations to study the asymptotic behaviour of functions in the
space A(G, τ). The lock was turned by Jacquet with his introduction of the module now named
after him and the path opened to the development [1973] of the elements of harmonic analysis:
asymptotic expansions, the Schwartz space, wave packets and the Plancherel measure. It
remained to prove that the wave packets exhaust the Schwartz space. For a semi-simple
group this amounts to two closely related theorems: the trivial representation of a given open
compact subgroup K is contained in only finitely many discrete series representations, and a
K-finite cusp form which satisfies the weak inequality is Hecke-finite. These are proved in
reference [1977b], or rather deduced as consequences of another statement whose proof is not
given. Harish-Chandra has stated that it was inspired by Arthur’s integral formula for the
character of a square-integrable representation of a real group.

6. Honours

Harish-Chandra was a Guggenheim Fellow in 1957–58 and a Sloan Fellow from 1961 to
1963. He was elected a Fellow of the Royal Society in 1973. He was elected Fellow of the
Indian Academy of Sciences and of the Indian National Science Academy in 1975 and of the
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