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Group-representation theory is a broad topic which impinges on many domains of mathe-
matics. The characters of abelian groups are of course central to Fourier analysis and entered
at an early stage the theory of numbers, one of several spurs to the study of representations
of finite nonabelian groups. Finite-dimensional representations of continuous groups, the
groups with which the work of Harish-Chandra is largely concerned, arose in invariant theory.
Interest in representation theory was stirred in the twenties and thirties by its utility in
quantum mechanics, which probably encouraged the emphasis on unitary representations
and, the Lorentz group having no interesting finite-dimensional unitary representations, led
to the investigation of infinite-dimensional representations, whose mature theory has in turn
profoundly influenced our thinking about zeta-functions.
Harish-Chandra’s principal contributions were to the theory of infinite-dimensional rep-

resentations of continuous groups, and it is a subject—a branch of analysis with algebraic
prerequisites and geometric consequences—which still bears his imprint more than anyone
else’s. He was trained in India and England as a physicist and his papers on physics come to
more than two hundred pages, almost half of the first of the four volumes of his Collected
Papers. None the less the last of them was written when he was only twenty-five and already
turning to mathematics in Princeton, where he was exposed to the mathematical traditions
of representation theory in which, following Cartan and Weyl, who had woven together Lie
theory and invariant theory, the groups to be represented were arbitrary semisimple groups.

Specific semisimple groups or algebras are familiar, indeed everyday, objects, but not every
mathematician is able to assimilate the general theory. Harish-Chandra, however, had great
strength as a formal algebraist, and considerable experience, and from the very beginning
worked not with concrete but with abstract semisimple algebras and groups. This is justified
on all grounds but that of accessibility. As mathematics grows and sprawls, less and less of it
can be regarded as common knowledge, and if it is not to break apart into several distinct
sciences, it is best not to erect unnecessary obstacles to communication. There is little in
the papers of Harish-Chandra which is not as important for the symplectic group as in the
general case, and it is to be regretted that those who are persuaded of the significance for
number theory of the existence of the discrete series or who could appreciate the spectral
theory of his later papers, but who are chary of roots and weights, will not be able to refer
easily to the master.
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None the less, Harish-Chandra was one of the leading mathematicians of recent decades,
with a difficult style but unique gifts, and some notion of the contents of his eighty-odd
published papers is probably indispensable to an understanding of what mathematics has
achieved in our time.
It is best when describing these contents to leave aside at first the papers in physics, the

early papers on Lie algebras and the later papers on p-adic groups, and to consider only
the work on real semisimple (later reductive) groups which began about 1950, reached a
high point with the proof of the existence of the discrete series in the early sixties, and was
completed toward 1970 with the proof of the explicit Plancherel theorem.

We can take the reductive group to be G = GL(n,R). It has a Lie algebra g, the algebra
of n× n real matrices with bracket product [X, Y ] = XY − Y X, and the maximal compact
subgroup K of orthogonal matrices. The first thing to notice, or rather to prove, is that the
essential features of an irreducible representation π of G on a Banach space are captured by
a representation, again denoted π, of the pair (g, K) on a dense subspace V0 of V , which
consists of those v ∈ V such that

{
π(k)v

∣∣ k ∈ K
}
spans a finite-dimensional space. Thus

V0 is a sum over the classes δ of irreducible representations of K of isotypical subspaces
Vδ, and it is basic that dimVδ ⩽ dim2 δ, for from this it follows easily that for any smooth
function f of compact support on G the operator π(f) =

∫
G
f(g)π(g) dg, defined by a Bochner

integral, is of trace class and that Tπ : f 7→ traceπ(f) is a distribution on the manifold G. It
characterizes π (up to equivalence).
The universal enveloping algebra A of g is the associative algebra generated by g and

subject to the relations X · Y − Y · X = [X, Y ], X, Y ∈ g, the multiplication on the left
being that in A and not matrix multiplication. It is impossible to study representations of g
without considerable information on A, of which the most important piece is perhaps that its
centre Z is isomorphic to the algebra of symmetric functions in n variables.

The algebra g is also an algebra of vector fields on G and the elements of A are differential
operators, and if π is irreducible Schur’s lemma implies easily that Tπ is a simultaneous
eigenfunction of all z ∈ Z, so that zTπ = λ(z)Tπ, λ(z) ∈ C.
The distributions Tπ are clearly invariant under conjugation and one form of an explicit

Plancherel formula would be a relation

f(1) =

∫
Π

Tπ(f) dπ =

∫
Π

traceπ(f) dπ,

valid for smooth compactly supported f , where Π is a collection of irreducible unitary
representations and dπ a measure on it. Thus our problem is to expand the invariant
distribution δ : f 7→ f(1) as an integral of eigendistributions of Z. So formulated it is a
somewhat unusual problem in spectral theory, and it is to be stressed that the methods
used by Harish-Chandra to solve it are on the whole elementary—curvilinear coordinates,
Fourier transforms, variation of parameters—although they are heaped up in elaborate logical
progressions.
The character is the simplest invariant attached to π but the matrix coefficients are also

important. For simplicity take π to be unitary. If δ and ε are two classes of irreducible
representations of K and if {xi}, {yi} are bases of two subspaces of V , one transforming
under K according to δ and one according to ε, the functions fij(g) =

(
π(g)xi, yj

)
are matrix

coefficients of π. Since every element of G may be written as a product k1 expHk2, where H
is a real diagonal matrix with descending coefficients h1 ⩾ · · · ⩾ hn, and since the matrix
of spherical functions (fij) transforms in a prescribed way under K, it is determined by the
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restriction
(
Fij(H)

)
=

(
fij(expH)

)
. Each fij is an an eigenfunction of each z in Z with

eigenvalue λ(z). Writing these equations in terms of F = (Fij) we see that it satisfies a
maximally overdetermined system of linear differential equations ∆zF = λ(z)F , for as we
observed there are n independent operators in Z. Such equations have a finite-dimensional
space of solutions and behave in many respects like ordinary differential equations.
The problem of obtaining an explicit Plancherel formula can also be formulated as the

problem of obtaining (for each ε and δ) the spectral decomposition of the commuting family
of operators ∆z on the domain h1 ⩾ · · · ⩾ hn, and those who are familiar with the spectral
theory of ordinary differential equations will be pleased to see the theory reappear intact in
higher dimensions and fascinated by the interplay between the two formulations. They may
not be too surprised to discover that the spectral measure dπ is obtained from the asymptotic
behaviour of the functions F , although they may not easily follow the group theory that
leads to the final explicit formula; but they will probably be startled to see how one passes
to the invariant problem to determine the spectrum precisely.

Harish-Chandra discovered quite early the principles which allowed him to do this but he
overcame the obstacles to their proof only slowly. The critical notions are those of a Cartan
subgroup, of a parabolic subgroup, of an induced and of a square-integrable representation.
For G = GL(n,R) a typical parabolic subgroup P is obtained from a partition n =

n1 + · · ·+ nr by embedding M = GL(n1,R)× · · · ×GL(nr,R) in G by diagonal blocks and
then multiplying it by the group N of matrices with ones along the diagonal and zeros below
the blocks to obtain P = MN . A typical Cartan subgroup T of G or of M is obtained by
fixing 1× 1 and 2× 2 blocks along the diagonal and taking matrices which are zero outside
the blocks, invertible in the blocks, and in a 2× 2 block of the form(

a b
−b a

)
.

In the context of reductive groups an induced representation of G is obtained from one of M
by extending it to P , making it trivial on N , and then inducing to G in a manner familiar
from the theory of finite groups, taking just a little care to ensure that unitary representations
remain so upon induction.
The group M is the direct product of its connected centre A and the group M0 of those

matrices whose blocks have determinant ±1. An irreducible unitary representation σ of M is
the product of a character χ of A, which depends on r parameters, and a unitary representation
σ0 of M0. The representation σ0 is said to be square-integrable if its matrix coefficients
are square-integrable functions on M0. The square-integrable representations of M0 clearly
form a discrete family or, in the jargon of the subject, series. The first principle is that the
representations of G induced from those σ for which σ0 is square-integrable suffice for the
Plancherel formula. The second is that M0 has square-integrable representations if and only
if there are Cartan subgroups T such that M0 ∩ T is compact.
For G = GL(n) this forces the connected component of M0 to be a product of several

copies of SL(2,R), a group which illustrates much of the general theory but for which it is
not necessary. It is, however, for the symplectic group, which also plays a role in algebraic
geometry denied GL(n). The two facts are linked. We continue none the less with GL(n,R),
overlooking the simplifications possible for it.

The central problem now becomes the existence of the discrete series of square-integrable
representations. The proof of existence is elaborate, and is tied to uniqueness results which
flow from basic but unforeseen properties of the distributions Tπ. On the open subset G′ of G
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formed by matrices with distinct eigenvalues we can use the eigenvalues as radial coordinates.
The angular coordinates are irrelevant since Tπ is invariant. So it is a distribution in the n
radial coordinates. The n independent equations which it satisfies force it to be a function Fπ,
indeed (when the algebra is worked out) a simple elementary function, which becomes infinite
as one approaches the singular set G − G′. It turns out, although difficult to prove, that
Fπ is none the less locally integrable on G, so that it defines a distribution. The difference
Tπ − Fπ of the two distributions is thus supported on the singular set. The astonishing fact,
which takes a long series of papers to prove and on which the whole theory turns, is that it is
zero. So Tπ − Fπ is not only a distribution but a true function.

Simple experiments with the δ-function and its derivatives show that whether a differential
equation admits singular distributions as solutions depends upon its delicate numerical
properties. To deal with Tπ and show it is a function one has to exploit not only the
differential equation but also the invariance. It is not possible to designate any result
in a theory with the elaborate architecture of Harish-Chandra’s harmonic analysis as the
fundamental one, but the theorem that the character is a function is as important as any,
and in addition, so far as I know, an unprecedented result in partial differential equations.

Although it is the individual achievements which are the striking, perhaps even the lasting,
part of the theory, it was the goal of an explicit Plancherel formula that shaped it. Harish-
Chandra maintained a certain rhythm as he proceeded, which of course slowed as he grew
older—a quick burst of announcements, followed by a long series of papers providing the
details, and then another burst of announcements, and so on. The announcements are
remarkably clear, and can be recommended to those who want to see the theory being formed
but not necessarily to master it.
The first papers on physics, some written in collaboration with Bhabha, treat from a

classical standpoint interactions between particles and fields, and are followed by a series of
papers in which the form taken by the most general relativistic wave equation for a simple
particle is discussed. Traces of these papers can be found in the physics literature, but
most readers of the Collected Papers will look at them, and are urged to do so, to see the
young algebraist developing his skills. There are two papers written under the influence of
Dirac, one on the irreducible representations of the Lorentz group, whose part in preparing
him for his later career is evident, and another, very short, little more than an exercise, a
quantum-mechanical treatment of the motion of an electron in the field of a monopole, in
which it is touching to see the classical techniques, spherical coordinates and the method
of Frobenius, which are applied so relentlessly and carried so far in the later papers, being
exploited by him for the first time.
In Princeton, Harish-Chandra took courses from Artin and Chevalley. The influence of

Chevalley is manifest in his first mathematical papers, on finite-dimensional representations
and on the structure of the universal enveloping algebra; that of Artin, because it did not
correspond to a natural bent, was more subtle. Harish-Chandra’s encounter with class-field
theory awakened in him ambitions which he was first able to satisfy toward 1960 when,
benefiting from his experience with representation theory, he proved a general finiteness
theorem for automorphic forms and, in collaboration with A. Borel, extended the classical
reduction theory to arbitrary groups. These are important papers, but the influence of
Harish-Chandra on the theory of automorphic forms goes far beyond them. Automorphic
forms can be viewed in several contexts, and one of them is now representation theory, which
has blown away a lot of must.
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The relation between representation theory and automorphic forms is indeed very close.
One notion from automorphic forms of which Harish-Chandra was very fond was that of a
cusp form. He expressed the results of his last papers on harmonic analysis on real groups in
terms of it, and exploited it brilliantly in a brief but influential paper on representations of
finite groups of Lie type.

It dominated his thinking on p-adic groups, a topic to which many papers in the final volume
are devoted. There are sound mathematical grounds for studying the representations not
merely of GL(n,R) or GL(n,C) but of GL(n, F ) where F is any local field, or of the F -valued
points on any reductive group. These representations are known to reflect the structure of
the set of Galois extensions of F , and for that reason the theory over a non-archimedean
field is quite different from that over the real or complex field, and is still incomplete. What
appears in these last papers is that from one point of view it is possible to go a long way in
the harmonic analysis on p-adic groups—as far as a concrete, if no longer completely explicit,
Plancherel formula—without any consideration whatsoever of the arithmetic of the field, in
which Harish-Chandra was perhaps not much interested, or of the structure of the discrete
series.

Often the publication of collected or selected works is no more than a tribute paid to the
achievement and influence of a friend, teacher or colleague, springing from affection and
respect but with no claim on time. However, occasionally they are to be a monument, to
endure and remind coming generations that our age did not lack all greatness. So it should
be with Harish-Chandra. The editor, V. S. Varadarajan, has understood this, has overcome
difficulties caused by Harish-Chandra’s final illness and untimely death, and has prefaced the
papers with an account of his achievement, to which all readers will turn with profit, and a
moving homage to the conviction that sustained him.
It is supplemented by comments by Nolan Wallach on individual papers and by an essay

on Harish-Chandra’s work on p-adic groups by Roger Howe which perhaps errs on the side of
modesty. Some critical ideas are due to Howe himself.
The volumes also contain three important but previously unpublished papers and are

accompanied by expressive, and revealing, photographs. It is a pity that those papers which
appeared in camera-ready form were not set in type. They detract considerably from the
appearance of the later volumes.
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