Hermitian differential geometry,
Chern classes, and
positive vector bundles

By PHILLIP A. GRIFFITHS”

0. Introduction, statement of results, and open questions

(a) Statement of results. Our purpose is to discuss the notion
of positivity for holomorphic vector bundles. This paper is partly
expository, and in so doing we hope to clarify, simplify, and unify,
some of the existing material on the subject. There are several
new results, mostly relating the analytic notion of positivity to the
topological properties of the bundle. We also correct two errors in
our previous paper [10].

We now give the main results to be proved in this paper.

Let V be a compact, complex manifold and E — V a holomor-
phic vector bundle; we denote by I'(E) the space of holomorphic
cross-sections of E— V. The relevant definitions are the following:

(0.1) E—V is positive if there exists an hermitian metric in
E whose curvature tensor © = {O;;;} has the property that the
hermitian quadratic form

@(Ea ??) = E.“;C.i.j (_)::ij'sag:p}?‘-f’j
is positive definite in the two variables £, 7;

(0.2) E— V is ample if

(a) the global sections generate each fibre, so that we have
0—F,—T(E)—E,—0(forallze V), and

(b) the natural mapping F. — E.Q T: is onto (F, = sections
of E vanishing at 2);

(0.3 E—Vis cohomologically positive if, given any coherent
sheaf S — V, there is a pt,= /¢,(S) such that H(V, NE"YRS)=0
for ¢ > 0, pt = f; and

(0.4) E— V is numerically positive if, for any complex ana-
lytic subvariety WV and any guotient bundle Q of E|W, we
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186 PHILLIP A. GRIFFITHS

have S P(c,, ---,¢,) > 0 where P(c, --+,¢,) is a positive polyno-
w
mial in the Chern classes c,, - -, ¢, of Q — W (cf. § 5 (b)).
Our main general results are:

THEOREM A: ample — positive;

THEOREM B: positive — cohomologically positive;

THEOREM C: positive — E'* ample for all pr = pu,;

THEOREM D: ample — numerically positive;

THEOREM E: numerically positive—cohomologically positive.
THEOREM F: cohomologically positive— E'* ample for LSt

In summary, if we take the sequence of bundles & = (E, E?,
-, E¥, ...), then, modulo finitely many bundles, positive =
ample = cohomologically positive.
Our principal specific results generalize the Kodaira vanish-
tng theorem and the Lefschetz theorem. For example, we prove

THEOREM G. If E—V 1s generated by its sections, and if
F—V is a line bundle such that F* @ K @ det E < 0 where K —
V is the canonical bundle, then:

HY(V,0E™"XF)) =0 forg>0,1=20.

The Kodaira theorem is the ecase E = trivial line bundle in
Theorem G. In §3 (b) (cf. (3.25)) we shall give a precise vanishing
theorem which has Theorem G as a consequence.

As a generalization of the Lefschetz theorem, we assume that
E — V is a positive bundle with fibre C” and where dim V = n. Let
¢ e H'(V, O(E)) be a holomorphic section whose zero locus S c V is
a smooth subvariety of codimension 7.

THEOREM H. We have H(S,Z) — H{(V,Z)—0 forg<n —r
and 0 — H(S,Z)— H(V,Z)—0forg<n —r — 1.
The Lefschetz theorem is the case » = 1.

As an application of Theorem H, we prove in § 3 (d) (cf. (3.51))
that the cup product

(0.5) H> (V) —— H*"*(V),p + ¢ =n—r,

is an isomorphism where we H""(V) is the »* Chern class of
E—V.
This result is the analogue of a well-known fact in Kghler
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POSITIVE VECTOR BUNDLES 187

geometry [26].

We now give another generalization of the (coarse) Kodaira
vanishing theorem. Let E — V be a positive vector bundle with a
non-singular section & € H(V, O(E)); denote by I the ideal sheaf
of the zero-locus S of £, We introduce the curvature form

0.1y @L&,7n) =(r+1) Z{?_q QL By — E{{).; @ EEYT .

For the significance of this form, we refer to (3.25), Theorem
G’ where it is proved that, if @, > 0, then HY(V, O(E*)) = 0 for
q = n — 1. The Kodaira theorem is the case » = 1. Note that, if
L — V is a positive line bundle, then ®%¢,» > 0 for x sufficiently
large; this is because of the » + 1 factor in front of the first term.

THEOREM 1. Let F — V be a holomorphie vector bundle. Then
there exists a constant e = ¢(F, V) such that, if

L, ) >clélnl,
then
HY(V,IQXF) =0 forg=mn—r.

Another analogon of Kodaira’s (coarse) vanishing theorem is

THEOREM J. With the same assumption as in Theorem 1, we
have

HY(V, I"QAF)) =0 forpz=p(F,g=n —r.

As an unsolved problem, we would like to mention the follow-
ing possible generalization of the precise Kodaira vanishing
theorem.

(0.6) Congecture. If E — V is positive, then

H(V,0(E*)) =0 forg=mn—r.

Remark. For E—V a line bundle, (0.6) is just the Kodaira
theorem. Taking V =P, and E = T(P,) the (positive) tangent
bundle, Q(E*) = ' and H'(P,, Q') # 0, so that (0.6) is the best
possible. We will prove the conjecture (cf. §5(e)) when » = 2 and
E — V has a non-singular section.

Another problem is

(0.7) Congecture. If E— V is positive, then E — V is numeri-
cally positive.

Remark. We will prove (0.7) in case V is a surface (n = 2)
and E has fibre dimension 2. This proof, given in the Appendix to
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§ 5 (b), involves a Schwarz inequality for differential forms. In
the context of algebraic geometry (characteristic zero), the as-
sertion "E— V cohomologically positive = E — V numerically posi-
tive” has been proved for » = 1 (Nakai [21]), » =1 and » = 2
(Hartshorne [14]), and » = 2 (Kleiman [17]). The first step in prov-
ing (0.7) would be to show that the Chern classes ¢,(E) of a posi-
tive bundle E— V are positive. Still another problem we mention is

(0.8) Problem. Find a better definition of the cone of positive
polynomials and prove that cohomologically positive — numeri-
cally positive,

Remark. For r = 1, we have the theorem of Nakai [21] (ef.
§ 5 (¢) below).

Another question is

(0.9) Problem. If E — V is cohomologically positive, isE — V
positive?

If true, this would give the nicest general result, as we would
have

(0.10) Positive (differential-geometric) < cohomologically posi-
tive (algebro-geometric) < numerically positive (topological) —
E* ample for ¢ = p,.

If E—V is cohomologically positive, then there is a non-linear
positive metric in E as follows: By sending ¢ into ¢ @ --- ® £

-

4

(diagonal mapping), we have an embedding E c E*, and E~ is am-
ple for x = p,. Using this metrie, a tubular neighborhood of the
zero cross-section of E* — V is strongly pseudo-convex (cf. §3 (a)
below).

The reason that we use the differential-geometrie notion of
positivity (0.1) rather than the function-theoretic definition (cf.
Grauert [9]) just mentioned is that the curvature is relevant for
precise vanishing theorems and for the Lefschetz theorem, where-
as pseudo-convexity will yield only coarse results. These precise
vanishing theorems will have several uses in geometric problems;
for example, Theorem G has been used by W. Schmid [23] to give
a generalization of the Borel-Weil theorem to real, semi-simple
Lie groups.

(b) Complements and corrections to [10]. The difficulty in
[10] is that there were several definitions of positivity and ample-
ness given and these did not leave a clear picture of what positive
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POSITIVE VECTOR BUNDLES 189

and ample bundles should be. If we are not worried about the
bundle E —V itself but are content to take symmetric powers, then
the various notions coincide, as indicated below Theorem F ahove.
This is the approach taken by Hartshorne |14], whose definition of
an ample bundle coincides with our cohomologically positive (cf.
[10, Prop. (3.3)]).

It now seems that (0.1) is the best differential-geometric
generalization of positivity for line bundles; other definitions are
discussed in [10, § 3] and still another definition is given in [22].
Qur positive here is the same as weakly positive in [10], and is a
condition which turns up most naturally in geometric situations.

QOur definition of ampleness (0.2) expresses the geometric as-
sumption that E — V should have “sufficiently many sections”. In
case E is a line bundle, “sufficiently many sections” means that
the mapping into projective space is an immersion. However, in
general the universal bundle over the grassmannian is not positive
or ample (in any sense), and “sufficiently many sections” means
that the immersion of V in a grassmannian is twisted.

The notion of sufficiently ample in [10] is not a good definition,
nor is the definition of negative given above Proposition 4.1 in
[10].

The definitions (0.3) and (0.4) of cohomologically positive and
numerically positive are seemingly good notions.

The main error in [10] is Proposition 7.2. An application of
this, Proposition 10.2 of [10], is incorrect, as the following example
shows: Let X = P, be projective 2-space and T — X the tangent
bundle. Then T is generated by its sections, asis A°T = K*. Thus
we have 0 — F* — E* — K* — 0 where E is a trivial bundle; this
dualizes to 0 > K - E —F —0. Now E and F are generated by
their sections and K is negative; if Proposition 10.2 were true,
then HY(X,O(F))=0=H*X,0(E)) and so H*(X,)(K))=H¥X,Q") =
0, which is absurd.

The mistake in the proof of Proposition 7.2 arises in equation
(7.7), in which the row and column indices for the curvature matrix
are interchanged. This error can be traced to just below equation
(1.3), where the connexion form should be w = éh-kh~'. With the
correct formula @%;; = —3_ A%.A3; (cf. equation (2.24) below), the
curvature operator (&, &), given by (4.2) in [10], on an E-valued
(0.1) form & = {£5w?} becomes
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— L ATALERS + 3D A Az e
= 2. {Trace (A%(§)'A°(€)) — | Trace A*(¢) [}

where A%(§); = Y Ag:£%, which is neither positive nor negative.
With the incorrect formula, 8(¢, &) < 0 and this is the mistake,

The other error in [10] is Lemma 9.2, which is corrected in
formula (2.38) below.

The corrected version of Proposition 10.2 in [10] is Theorem G
above; and the corrected form of Proposition 7.2 is Theorem A
above. The remaining results in [10] are presumably correct.

Referring again to Hartshorne’s paper [14], he works on the as-
sociated projective bundle P(E*), as was done in of [10, § 9] and is
done here. Many of the general results of [10] on positive bundles,
such as the fact that a quotient of a positive (ample) bundle is posi-
tive (ample), also appear in [14]. The Theorems D and E on
numerical positivity, which are proved for ample bundles in [11],
are given in [14, Prop. 7.5] for the case of V a curve and E a bundle
with fibre C2. Interestingly, the proofs are quite similar; both use
the numerical criterion of Nakai [21] on the associated projective
bundle. Finally, as mentioned above, Kleiman has proved (0.7) in
case dimV = 2 [17].

1. Discussion of methods and calculations

Suppose that E — V is ample and let T'(E) be the trivial bundle
V x T'(E). Then there are exact sequences

(1.1) 0—F—TI(E —E—0,
and
(1.2) F—E®T*—0,

where the fibre F. = {se'(E): s(z) = 0}. The flat metric in the
trivial bundle I'(E) induces a metric in F and, by orthogonality, a
metric in E. A computation shows that the curvature matrix @ of
this metric in E has the local form

(1.8) Qf = Y AjnAds
where Af = 3 A%dz is essentially the differential of the mapping
of V into a grassmannian. The quadratic form @(&, %) in (0.1) is

then 3 7 | A*(&, %) |* where A%(&, ) = 2, 4sE, and from (1.2) it
will follow that @(£, 7) is positive definite, which proves Theorem A.
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POSITIVE VECTOR BUNDLES 191

The formula (1.3) for the curvature is a special case of study-
ing the hermitian geometry of an exact bundle sequence

(1.4) s s B s ——

A metric in E induces metrics in § and Q, and the deviation of
the induced connexion on S from the connexion of the induced
metrie is measured by an important invariant, the second funda-
mental form of S in E, introduced in [11, § VI. 3], and discussed
in some detail below. This tensor has both geometric and cohomo-
logical significance,

To prove Theorem D, we use the representation of Chern clas-
ses by differential forms [5] and [12], together with the form (1.3)
of the curvature. Then, as was outlined in [11, § IV], it will follow
that a positive polynomial

(L.5) PG, oy 0) (L) (=1 (T, B: A By}
where B, is a (g, 0) form (¢ = dim W). Using (1.2) we find

(L) vme] (B A BY >0,

2

which proves Theorem D.
It is an open question whether or not a positive bundle, or per-
haps a cohomologically positive bundle, is numerically positive.
The more difficult assertions are Theorems B, G, and, later on,
E. A proof of Theorem B directly, by differential geometric
methods, involves (for ¢ = 1) the quadratic form (cf. [10, Prop. 5.2
and [22])

(1.6) e, p) = 2, ..., Vi5PiP;

and we need to show that ®(p, @) = 0. Suppose that E has a lot
of sections so that @ has the form (1.3)., Using the identity

Azt A3 ,9% + AspiAlip;
= A,‘S;C_szm + ASip! Ao
— (ASip? — AL@l)(As;p57 — Acipf)
(no summation), we get

(L.7) 0, @) = X0 | AN [ = — X, , . | A@) "
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where A(@);, = J-. A%ip? and A(p)s, = 3, (Asp? — Alp?). If E
is a line bundle, @(go) = 0 and, by (1.7), &(p, ») = 0. In general,
however, the quadratic form (1.7) does not have a sign.

The conclusion is that a geometric assumption (ampleness)
gives an inequality on the quadratic form ®(p, ») where ¢ = (R
is a decomposable tensor, whereas to prove directly a vanishing
theorem we need information on &(e, ) for all tensors.

A means around this trouble is suggested in [10, §9]. Let
E* — V be the dual bundle, P(E*) = P the associated projective
bundle, and L —P the standard line bundle whose restriction to
each fibre of P(E*) — V is the positive hyperplane bundle. There
are two basic faets

(1.8) E — V positive — L — positive, (cf. [10, Prop. (9.1)] and
§ 3. (b) below); and

(1.9) HY(V,9E")® S) = H(P, L") ® =*S)

for any coherent sheaf S over V. These two facts, together with
Theorem B for line bundles give the assertion for general vector
bundles,

The proof of Theorem G follows from the usual Kodaira vanish-
ing theorem on P(E*), coupled with a precise curvature compu-
tation. Passing from E — V to L — P(E*) has the analytic effect
of splitting all tensors, which in turn leads to the desired in-
equalities.

The proof of Theorem E, as outlined in [11, § A. 1], uses the
result for line bundles (ef. Nakai [21]) and (1.9)), so that it will
suffice to prove that L — P is numerically positive if E — V is.
This involves relating the algebraic homology ring of P with that
of V and use of integration over the fibre in P — V.

The proof of Theorem H is done by suitably generalizing Bott’s
Morse-theoretic argument [2] for line bundles to the case of vector
bundles. This result substantiates the definition of positivity.
Along with the proof of Theorem H we show that V — S is #-con-
vexr (i.e., there is an exhaustion function for V — S whose
E. E. Levi form has n — r + 1 positive eigenvalues).

The proof of Theorem I uses Theorem G’ and a standard locally
free resolution of the ideal sheaf Iof S — V. The more interesting
Theorem J is proved by first blowing up V along S to obtain a
codimension one situation of S c V where § is given by the zeros
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of a holomorphic section of a line bundle L— V. The metric on
E — V induces a metric on L — V whose curvature we compute
using the second fundamental forms. It follows that the curvature
©, has everywhere n — r + 1 positive eigenvalues, and then a
suitable vanishing theorem gives Theorem J.

In §4 we discuss Chern classes. A direct geometrie definition,
involving an algebraic-geometric obstruction theory, and the defini-
tion using differential forms are given. Using the theorem of
Weil, proved in § 4 (b) below, these definitions are proved to be the
same. By putting a little more effort into this argument, we give
in § 4 (c) another proof of the theorem of Bott-Chern [3].

In §5 we discuss positive cohomology classes and give the
proof of Theorem E. Remarks on the problem (0.7) are also given
(cf. below the proof of Theorem D in § 5 (a)).

2. Hermitian differential geometry

(a) The frame bundle. Let V be a complex manifold and E—V
a holomorphic vector bundle with fibre C'. We think of C’ as
column vectors

Let P —— V be the principal bundle, with group G, of all holomor-
phic frames f = (e,, -+, e,) for E— V. Then G actson P by fg =
(-++,22,9%,, -++), and a section { of E— V is given on P by ¢ =
>, &(f)e, with

£(fg) = X, (@7)8°(f) .

Similarly, a differential form on V with values in E is given on P
as @ = ), @', where @° is a horizontal form on P satisfying
equivariance conditions.

As an example, consider the Grassmann manifold G=G(r, m)
of r-planes in C*. We let P be the r-frames f = (e, ---, e,) in C™,
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where ¢, = (£3) is a column vector and ¢, A --- A e, # 0. Then
7: P— G is given by m(f) = subspace spanned by e, ---,¢,. Ob-

serve that

f9 = (Er’sggﬁ) = ("'! EP g€, - - )
so that our notation is consistent. The vector bundle E — G is the
universal bundle whose fibre Eg at a subspace Se G is the vector
space S itself.

(b) Metries, connexions, and curvatures. A hermitian metric
in E—V gives a matrix function % on P by the rule A(f),.=(¢.,¢,).
Then

(5, 60 5,70 = 55, Thaek? = THE .

We have i = ‘h, h > 0, and h(fg) = ‘Gh(f)g. From this last equa-
tion, we see that the (1.0) form ¢ on P defined by 6 = h~'oh; i.e.,
65 =3.(h")o:0h.,, satisfies (fg) = g7'0(f)y and gives a connexion
in P— V. Forasection £ =3 &¢e, of E—V, we define the co-
variant differential Dé=} ,dé%e,+) &’ De, where De, =) 0ze,;
i.e., (Df)" =dé& + ) 65°. Then D¢ is an E-valued 1-form and
d(z, n) = (D&, ) + (&, D) for sections &, 7 of E. Writing D =
D' + D" where D' is type (1, 0) and D" is of type (0, 1), we have
that D' =6 + 6 and D” = 5.

More generally, for an E-valued g-form @ on V, we set Dp =

3. (dpe, + (—1)'¢* A De,); Dy is an E-valued ¢ + 1-form on V.

" The curvature form @ = (@?) is given by ® = df + 6 A 6; i.e.,
@, =do; + > 0:N0;. Since o(h™'0h) + h™'0h AR™'6k = 0, it follows
that
(2.1) @ = 00 = —h™'60h — h~'0h A\ k~6h ,

and @ is of type (1, 1).
For an E-valued form ¢, we have the Bianchi identity:

(2.2) Dip=0Np =3 0O,Ap%,.

Returning to our example of the principal bundle P — G over
the grassmannian, we define a metric in the universal bundle by

(2.3) rf) = ‘ff,
where f = (&%) is the m X 9 matrix whose columns give the frame
f. Then k(fy) = *g'ffg = ‘gh(f)g and the curvature:

(2.4) = h~U'df A df — ' (CdfN)R(FAS) .
Incase » =1, P = C™ — {0} and, by (2.4),
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2.5 ® = i
=2 77

Thus ® is the negative of the standard Kahler form on P,,_,, which
checks our signs since E is the dual of the positive line bundle
given by the divisor P,,_, C P,,.

(e) Caleulations in local coordinates. Let z = (2', ---, 2") be
local holomorphie coordinates in V and f(z) = (e,(z), ---, e.(2)) a
local holomorphie section of P— V. Then %.,(2) = (e.(2), e.,(2)) is a
function of z and

o L.
0) = X, (@)oot 2de

The curvature ©(z) is given by (2.4), where & = h(z) is a function
of z.

If g(z) = (g2(2)) is a holomorphic matrix, then f(2)g(z) is another
holomorphic frame. Taking g(z) to be a suitable constant matrix,
we may assume that h,,(0) = d7; i.e., h(0) = I. Let A(z) =(3_, A7)
be a linear matrix with

oh. ,(0)

oz
Then dA(0) = —oh(0) and so d(‘g(2)h(z)g(2)),-c = 0 with g(z) =
I + A(z). In summary, we may choose our frame f(z) = (e/(z), +- -,
e.(z)) such that, at z=0,h = I and dh = 0. By (2.1), at the origin,

(2.6) Q= —oah .

For example, letting Z.= (&) (1=x=m —»,1<p0=1r) be

Azj:_

an (m — r) X r matrix, the mapping f(Z) = (é) gives a local
cross-section of P— @G, the bundle over the grassmannian considered
above. The metric W(Z) = I + ‘ZZ and so h(0) = I, dh(0) = 0.
The curvature is given, by (2.6), as

2.7 O =dZNdZ,
or
(2.8) Q) = -3, dsAdE.

Observe that the general linear group GL(m, C) acts transitive-
ly on P by Af = (A%)); this action preserves the fibering P — G.
The unitary group U(m) acts on P and preserves the metric, since
RAS) = ‘AfAf ="'f'AASf = 'ff = h(f). The action of U(m) on G
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is transitive, and so the curvature in E — V is determined by (2.8),
which is ® at a point.

Let ¢,(2), - - -, ¢,(2) be a local frame for E and ef(2), - - -, €X(2)
the dual frame for the dual bundle E* — X. Then there is defined
a connexion D* in E* by the requirement

0 = dle,, € = <De,, &) +<e,, D*e;) .
This gives 65 + 6*% = 0 or * = —@;. The curvature
(2.9) are = —ar.,
It is easy to verify that ¢* is the metrie connexion of the in-
duced metric in E*. In fact, #* is obviously of type (1, 0) and pre-
serves the metric in E*; by uniqueness, #* is the metric connexion.

If E and F are bundles with frames e, ---,¢,; fi, --+, f., then
e, X f. is a frame for E ® F and we may define a connexion in

E®F by
D(e, @ fo) = De, @ fo + €, & Df.
=3, 006 ® fut+ 35,006, f ;
i.e., the connexion figey = 6, @ 1 + 1 @ 6 and the curvature
(2.10) Opar =0 R+ [ RO .

We may consider the bundle B P of orthonormal frames. On
B. &, = d; and the connexion form ¢ satisfies 62 + 6; = 0. For the
curvature then we have the symmetry

(2.11) ;+60 =0,
or
(2.12) @%; + @5;: = 0.

The holomorphic frames f(z) constructed above pass through
a point f(0) € B and are tangent to B at f(0).

(d) The second fundamental form of a sub-bundle. Suppose
that we have an exact sequence

(2.13) 0 O 0,

of holomorphic vector bundles over V. In this case, we let P be
the bundle of all frames f = (e, -- -, e,) for E where ¢, ---, ¢, 1sa
frame for 8. The group G of P is now the group GL(s, r — s) of

all » x r matrices g = (‘g ‘g) with 4 an s x s matrix. Weagree

on the rangeof indices 1l = p, 0 =< 7; 1=\, g <s;ands+ 1= a,
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B =

Suppose now that we have in E a hermitian metric. Then
there is a connexion Dy: A(E) — A'(E), where A%E) are the C=
g-forms with values in E. This gives in particular Dg: A%(S)—A(E).

Since S C E is a sub-bundle, there is an induced hermitian
metric which has its own metric connexion Dg: A%(S) — A'(S). The
difference Dy — Dg: A"(S)— A'(E) is then linear over the C= functions
and so is given by a Hom (8, E)-valued 1-form be A' (Hom (S, E)).
What we claim is that be A (HomS, Q)); i.e., b is a (1, 0) form
satisfying (b(8), 8) = 0.

To see this, we let h = Gzi ;i) be the metric function on P
where k. is the induced metric on Sf We first choose a holomorphic
frame

J(@) = (e2), - -+, e.(2); €,1.4(2), - -+, €,(2))
such that /,(0) = I,, dh,(0) = 0. This is done by varying the A part
of gy = (‘g g) Letting e/ (2) = €.(2) — 3. h..(0)e,(z), we have a
new holomorphic frame in P for which A(0) = (g h‘?O})’ dhl{})} :0())

By using the C part of g, we may assume that h(0) = (0 I

dh,(0) = 0, dh,(0) = 0.

We let @, be the connexion for E and #; the connexion for

S;@ = h~'0h and 8 = h;'0h,. Then

ble;) = (DL - DS)gA = El,, Ple, — EP tle. .
Since, at z = 0, @4(0) = 0, 8:(0) = 0, we have that b(e;) = 2. Ple,
@; = 0h,. This proves that b is of type (1, 0) and (b(e;), S) = 0 as
required.

By definition, be A" (Hom (8, Q)) is the second fundamental
form of S in Q. This b has been used in [11, § VI. 3], where the
terminology is justified.

We now compute the curvatures at z = 0 using (2.1). This
gives (@g), = —ddh,, and

(Og)i = —00k;, — Y, Ohy, A Oh,
= Bl — 3, T A\ Oy
Combining, we have
(2.14) (©9); = (Og)i = X0, 0o A ohy, .

In invariant terms, this gives:
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(2.15) O = g |S + BAD,

where b is the 2" fundamental form.

Let us check our signs by computing an example. If G =
G(r,m) is the Grassmann variety and S— G is the universal bundle,
E = G x C™ the trivial bundle, then we have 0 =S —E— Q — 0.

The metrie in S is induced from the flat euclidean metric in E =

G x C™. As above, we choose the frame f(Z) = (é) for S over

an open set in G. Writing f(Z) = (e, -+, ¢,) we complete this to
the frame

I 0
(els"'Qer;er+lv"'1em):( ) fOI'E.
Z I

The metric function for E is

k_(hl h, _(I’Z (I 0 (I1+'Z2Z 'Z
_h3h4_OI)ZI_ Z 1)'
Then k,(0) = I, dh,(0) = 0, h(0) = I, dh(0) = 0. Furthermore, b =
dZ and, by (2.15), we have @, = ‘dZ AdZ, which agrees with (2.7).
(e) Properties of the second fundamental form. We want to

diseuss further the second fundamental form b€ A"’ (Hom (S, Q))
given above. The basie facts are

(2.16) D=1 ;
(2:17) b =0 if@,=0.

To check these, we use orthonormal frames. Thus let BC P
be all unitary frames f = (e, ---, ¢,) for E where ¢, ---,¢, isa
frame for S. Given fe B, we can find a holomorphic frame f(z)
for E with f(0) = f, but, in general, this cross-section will not be
tangent to B at f. The obstruction is essentially the second funda-
mental form b, as was seen above.

On B we write Dge, = 3 @ie, and Dge, = >, 0%, Then
@+ @ =0, 0, + 8; =0. We claim that @} = 6% and that b =
2 Pt D €.

Let De, =), @le,; this gives a connexion in S which preserves
the metrie, and to show that D = D, we need to prove that D" =
3. Choose a C= frame f(2) = (e,(2), -+ -, ¢,(z)) for B. We may then
find holomorphic sections £,(2)=) . §i(2)e;(z) of S with £,(0)=e.(0).
Then

0 = DgEA0) = X2, 05(0)ex(0) + 3=,  <i(0)5(0)"e,(0)
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which gives 2 = 0, (Dg — D)" =0, and D" = D§ = d. Further-
more b(e;) = (Dg — Dglex = 2, pie. where @f is of type (1, 0).
We now compute

Db=Y .dpse.Qer — 3 .. PiNPies Qef
+ X o Aple. Qe
=Y. @08 + . P APh + T, PiApile. @ ef
which gives:
(2.18) Db=Y,, 0. Q¢ .

Since b is of type (1, 0) and @; of type (1, 1), we get D'b = 0,
and clearly b = 0 if @ = 0.

There are two applications of this. If welet ¢ =) . ,pie,Qea,
then, since @ = 0 and @§ + @4 =0, 4 = 0 and ¢ € A" (Hom(Q, 8)).
From (2.16) we get dc = 0, and it is proved in [11, § VI. 3] that the
Dolbeault cohomology class of ce HY(V, Hom (Q, S)) is the ob-
struction to splitting the sequence 0—S—E—Q—0 holomorphically.

Secondly, if we take V to be the grassmannian G = G(r, m)
of r-planes in C™ and S — G the universal bundle, then we have
0—S—E—Q—0 where E = G x C" is a trivial bundle. Taking
the flat metric in E, ®; = 0 and db = 0. But then b is a holomor-
phic section of Hom (T, Hom (S, Q)) and from the local coordinate
description of b above, we see that the second fundamental form
b gives an isomorphism:

(2.19) b: T— Hom (8, Q) .
(f) Curvature of ample bundles and proof of Theorem A. As
an application of the second fundamental form, we let E—V bea

holomorphic vector bundle such that the global sections I'(E*)
generate E*. Then we have I'(E*) — E* — 0 and, by duality,

(2.19) 0— E—s T(EY—F—0,

where T(E*)* = V x ['(E*)*.

Let G be the Grassmann manifold of »-planes in I'(E*)*; for
each ze V, E, gives a subspace of I'(E*)* and ¢: V — G given by
p(z) = E, c T(E*)* has the property that *(8) = E where S— G
is the universal bundle. In fact, * lifts the exact sequence
(2.20) 0—S— G X (EY)*— Q—0

back to the exact sequence (2.19).
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To find the induced metric in E — V, we choose a unitary basis
s, » -+, s™ for I'(E*) and set

(2.21) (e &) = 307 5,7 e,Xs%, ¢, ,
where f = (e, «++, ¢,) is a frame for E. Thus
(2.22) hoo = 237 ALAL = (‘A(f)A(S)),,

where 4] = (s, ¢,>.

If we let P— V be the frame bundle for E — V and B—G
the frame bundle for S — G, then the mapping ¢: P — B given by
o(f) = A(f) satisfies o(fg) = p(f)g for ge G = GL(r, C); the in-
duced mapping @: V—G (V = P/G, G = B/G) is the same as @
above,

We now give ¢: V— G locally. Let 2, -. -, 2" be local coordi-
nates on V and assume that s', .-, 5" e ['(E*) are linearly inde-
pendent near z = 0. We let f(z) = (ei(z), ++-, e.(2)) be the frame
for E with {s*,¢,> = 6% (1 < 0, ¢ = 7). Our range of indices is to
be 1=p,06=<7;r+1=<a B <m. Then @(2) = (B{z}) where
B(z2) = (bs(2) is an (m — r) X » matrix with bi(z) = <{5%(2), €,(2)>.
By (2.22),

AT I .
h(z) = (I‘B{z))(B(z)) = I + 'B(2)B(2) .

Making a unitary change of s',--+,s™, we may assume that B(0)=0.
Then h(0)=1, dh(0)=0, and, by (2.6), the curvature in E at z=01is

(2.23) Op = —doh = ‘dB A\ dB ;
that is
(2.24) &= =3 >"  dbeAdb.

We want to relate these formulas to the second fundamental
forms. If by € Hom (T(V), Hom (E, F)) is the 2" fundamental form
of E in I'(E*)*, then at z = 0, by is just db?. The formula (2.23)
for the curvature is then the same as (2.15). Furthermore, the
following diagram eommutes.

(V) — -  71(6)
(2.25) JbE 155
Hom (E, F) —*— Hom (S, Q) .
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Now, as discussed in (e) above, bg is an isomorphism (cf. (2.19)) and
@ is an algebraic isomorphism. With these identifications, we con-
clude that ¢,: T(V) — T(G) is the same as

(2.26) bg: T(V) — Hom (E, F) .

In terms of the local coordinates above ¢(z) = B(z) and (2.26)
is clear.

ProOF OF THEOREM A. It will suffice to show that if E¥ —V
is ample, then E — V is negative in the sense that the quadratic
form
(2.27) 2o (Op)esEENY = Bg(€, 1)
is negative definite. Indeed, (®g.); = —(8g)7 by (2.4) and so
— (£, 1) = Op(&, 7).

At z =0, write db; = 3 _ bl.dz'. Then, by (2.24), ©}; =
—3. b%bs; and so
(2.28) 86, ) = 3o, 132, . bady [

Since E* is ample, we have
0— F*— I'(E*) — E*
F* — E*@Q@T*—0.

>0

(2.29)
Taking the second exact sequence at z = 0 and dualizing, we get

(2.30) 0— E Q®T, > F,—0.

In terms of the frames (e, - -+, ¢,) for E, (f,, *-+, fn_,) for F, and
coordinates above, we have that

. Jd\ _ .
(2.31) q,,r(ed @19?) = 3. b5t -
Combining (2.31) and (2.28), we have that
(2.32) A&, ) = —|¥(ERQN ",

which is negative by (2.30). This proves Theorem A.

Remark. If r > 1, the universal bundle S — G is not ample,
and is in fact not positive, as follows easily from (2.8).

(g) Curvatures in the associated projective bundle. We now
compute an example discussed in [10, Lemma 9.1]. Let E—V be
a holomorphic vector bundle in which we have a hermitian metric.
On E — V we define a positive real function i by h(z,£) = (£, 8), =
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tEh(2)s, where S € E,, the fibreof E at ze V. For » e C*, h(z, \£) =
|\ PRz, ).

The quotient space E — V/C* = P(E) is a bundle P(E)—V,
whose fibre P(E), is the projective space P(E,) of lines in E,. Clear-
ly E — V — P(E) is a principal bundle and h(z, &) is a metric in the
associated line bundle L(E). By (2.1), the curvature is given by
BOp = —00 log h(z, £).

To calculate O, g, we choose local coordinates z', ---,2* on V
and a frame f(z) = (e.(z), - -+, ¢,(z) for E — V such that h(0)= I,
dh(0) = 0. Evaluated at z =0, we have (cf. the proof of Lemma 9.1
in [10]).

(2.33) O = — ‘53?:‘?;5 _ { (d:,d3)(¢,€) — (d&,£)(&,d8) } )
|€] |€*
To interpret this, we consider the dual projective bundle P(E*)— V

and the line bundle L — P(E*) which, on each fiber of P(E*)—V, is
positive; thus L = L(E*)*. By (2.33), the curvature of L at (,0) is

(2.34) 0, = - ‘£00hE + {{df,di)(i,é) s (d£,8)(§, &) )
i Hi J

If we set

(2.35) Opld) = X, .., O0uséEdet A dE

and

) = (45, dE)E, &) — (d&, )¢, d8)
B ’

(3

m

then we have:
Og(s)
[

Comparing (2.35) with the definition (0.1) of the introduction,
we find (cf. [10, Prop. 9.1]):

(2.37) L — P(E*) is postitive if E — V is.

We now want to compute the canonical bundle Kp of P(E*).
The formula to be verified is
(2.38) Kp =L7"®det(E)R K, .
In (2.38), det (E) @ K, is a line bundle on V which has been lifted
in the fibering P(E*) — V.

In order to keep our signs straight, we need a few preliminary

LAt

(2.36) 0, = + o) .
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remarks. Let K be a vector space, E* the dual space, and P(E*)
the projective space. If L* — P(E™) is the tautological line bundle
whose fibre L} over a line » © E* is just the 1-dimensional vector
space \, then E is the space H(P(£*), O(L)) of holomorphic cross-
sections of the dual bundle L. — P(E*). In particular, each vector
e € E gives a holomorphic function on L*; note that L* — P(E*) =
E* — {0} and then it is clear how to think of e as a function on L*.

Now let e, ---, e, be a basis for E and let £, be the funection
on E* — {0) defined by ¢,. Then

N =2 (=1 TEdE N <o AdE N -+ ANdE,
is an (+ — 1)-form on P(E™) with values in L*" = L-". If we have
a linear substitution &, = ) gie,, then &, = Y g8, and df, =
3. gidé,. Clearly then §) = det (7).

If now 2!, -+ -, 2" are local coordinates on V and ¢,(z), - - -, e,(z)
is a frame for E, we let &, = £,(z) be the corresponding functions
on E* — {0} and set
P(2,5) =d2 N -+- Ad2*D (=1 dE N -+ NAE,N <-- NdE] .
Then @(z,£) isan (v + r — 1)-form on P(E*) with values in L=, If
é.(2), ---, €,(2) is a new frame for E, then €,(z) = } | gi(2)e.(2) and
dé.(2) = Y, g:(2)d&,(2) modulo dz', ---,dz". Thus & = (det g)p.
From this it follows that K, = L™ ® det (E) ® K, as desired.

To close this section, let us prove (1.9) for S a locally free
sheaf (this is the case to be used below). Thus, given F — V, we
must show

(2.40) HY(V,(E*@F)) = H(P,(L"Q 7*F)) .
For this, we use the Leray spectral sequence [8, p. 201]. The p™
derived sheaf R2(L* ® n*F) for O(L* ® 7*F); P(E*) — V is the
sheaf arising from the pre-sheaf

U— H(x7(U), O(L" Q #*F) | =7Y(U))
for U — V an open set. Taking U for which F | U is trivial, we see
that R*(L* @ *F) = RX(L*) ® O,(F). Taking U for which E* |U
is trivial, #(U)=U x P,_, and L*|77(U) = O ® Op,_,(H")
where H — P, _, is the hyperplane bundle. If P,_, = P(E*) for a
vector space E, then H?(P,_,,0H*) =0 for p > 0,2 =0 and
H'P,_,, O(H") = E'». It follows that R?(L*) = 0 for » > 0 and
RY(L#) = O(E"). The assertion (2.40) now follows from the spectral
sequence,
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(h) ProoOF oF THEOREM H. We let E — V be a positive bundle
with fibre C7, and we consider a section £e HYV, O(E)) whose
divisor S = {z € V: £(2) = 0} is a non-singular subvariety of dimen-
sion n — r, where n = dim V. We define a non-negative function
@on V by p(2) = |4(2) |F = ‘€(z)h(2)é(z), where h(z) is the metric in
E — V. We want to check first that S is a non-degenerate critical
manifold of @, which means that we must show:

dp = 0 along S ;
(2.40) if ze S, the null-space of the hessian H(p)
at z is the tangent space T (S) .
We may choose local coordinates 2%, ---, 2" on V and a frame

e(z), ---, ¢.(z) for E such that

Zl
i) = ( :
2

r

We may also assume that £(0) = I. Then @(z) =3 _ h..(z)z"2" and
the hessian H(gp) of @ at the origin is '

H()—(I'O
= Lo 0)'

From this, (2.40) is clear.

Let now z, be a ¢ritical point of @ on V — S; i.e., dp(z,) = 0.
In local coordinates 2', - - -, 2", we may assume that z, is the origin,
and we may compute the hessian H(p) of @ at z,. The index of ¢
at z, is the dimension of the subspace of T, (V) on which H(p) is
negative definite. We want to show

(2.41) The index of @ at z, is no less than n — »r + 1,

We assume that A2(0) =1 and dh(0) =0. Then o¢(z) =
‘£(2)h(2)é(z) and, at z = 0, we have ‘dif + ‘Zdé = 0 since z, is a
critical point, and ddp = *Z80hé — ‘dE A dé. Thus, by (2.6),

o 3—’;? 0¢*
(2.42) H(g’))i; = -—EP_E @ﬁe}f“gf + Ep a:f ;‘;;

Let A be the r x n matrix A? = 6£°/oz'. For
)?l

:?ﬂ

146 SELECTED WORKS WITH COMMENTARY



POSITIVE VECTOR BUNDLES 205

we have
(2.43) >, Ho)an' ! = —6(E, 7)) + (‘Ap)(47) ,

where —#(£, 7)) is negative definite since E — V is positive. If we
set W = {yeC": Ap = 0}, from (2.43), to prove (2.41) it will suffice
to show that dim W =#n — » + 1,

Now dim W = n — rank (4) where rank (A4) is the number of

independent row vectors A” = (A{, ---, A7) in A. From ‘ds: =
we get
s aéf‘ -
Y. frr. =0 1=1,.-4,m),
fd s az‘: ( )

so that 3 2*A*=0. Thus rank(4)=r»—landdimW zn—r+1
as required.

The same argument as used in [2, Prop. 4.1 and Th. II] shows
that

V=SUeuU---Ue, where dime, = n — r + 1.

This notation means that, up to homotopy type, V is obtained by
attaching cells ¢, ---, e, to S. From this it follows that H,(S, Z)
maps onto H,(V, Z) for ¢ < n — » and H,(S, Z) maps into H(V, Z)
for ¢ £ n — v — 1, which proves Theorem H.

Remark., We let W =V — S be the open manifold obtained
by removing S from V. Then 4+(z) = —log @(z) is an exhaustion
Sfunction on W, and we let L(y) = 93+ be the E. E. Levi form
of +r.

(2.44) L(+y) has everywhere at least 2 —+ positive eigenvalues

PROOF. L(y) = —ddlog @ = —a(ﬁ?i) _ —99p on aqoaaqo )
@ P P

Now dp = (£, §) = (D'¢, &) (since 3¢ = 0); op = a($, &) = (¢, D'3);
and ddp = o(¢, D'¢) = (D's, D'€) + (&, ®¢) (since aD'¢ = (3D’ +
D'9)¢ = D% = ©¢). This gives that

(2'44)1' L(’l}f“) = "(D’E; D’E)(E: E) + (D'E; E)("Ea D'E) + (@:':1 ‘f} .
#° ¢, 4)
If 9 = {'} is a vector and ¢ = E;El £*e, our section of E, then
@O, A =3 . G55 =0@En >0

so that L(v) is positive on the space of vectors 7 such that
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{D'¢, 7y = 0. But the dimension of this space is less than or equal
7 (since D’¢ = E;q D’ére,), so that L(v) has everywhere at least
n — o positive eigenvalues.

We observe that the calculation just used shows that de =
(D'¢,¢) and H(p) = (D¢, D'¢) — (03, §) where ¢ = (£,$) is the
function used in the proof of Theorem H.

3. Positive, ample, and cohomologically positive bundles

(a) General properties. We want to give some funectorial
properties of positive, ample, and cohomologically positive bundles.
The first are

3.1) {If E — V is positive, ample, or cohomologically
: positive, then so is L — P(E*) ;

3.2) If L — P(E*) is ample or cohomologically posi-
@. tive, then E — V is also.

We have already proved (cf. (2.37)) that
E positive = L positive .

We now shall show that E ample — L ample. Let z,¢ V and
E, be the fibre of E at z,. If (z, ) € P(E*) is a point lying over z,,
then ¢ is a line in E and we let

F... =1{ecE,:{e, > =0}.

As in §2 (g), we see that L, . = E./Fi.qe: and, in the exact
sequence 0 — F — 7*(E) — L — 0 over P = P(E*), Fio is the fibre
of F at (2, £). Using the isomorphisms

HYV,(E)) = H(P, O(=z"E)) = H(P, O(L)) ,

we see that E is generated by its sections if, and only if, L is. This
checks the first condition in the definition (0.2) of ampleness. To
verify the second condition, we choose local coordinates z%, « -+, 2"
on V such that z, is the origin and a frame for E so that E, = C~
is column vectors

and F, ., is given by {' = 0. Suppose that F, = {seI'(E): s(z,) = 0}
and that F, — E, ® T} — 0. Then we may find s’ € F, with
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z:‘

) 0
s(z) =| .| + (higher powers) ,

and s* € I'(E) with
s°(z) =| 1 | + (higher powers) .

Then s', ---, s%; ¢’ ---, 8" lie in F, ., and the differentials ds', - -,
ds*; ds’, +-+,ds” span L @ T.,.(P)*, so that L is ample. By
reversing this argument, we see that L ample — E ample, which
proves our assertion.

To prove cohomological positivity (ef. definition (0.3)), it will
suffice to take S to be locally free sheaf O(F) where F is a holomor-
phic vector bundle (cf. §3 (b), the proof of Theorem B). From (2.40)
it follows that L cohomologically positive — E cohomologically
positive. To prove the converse, by examining the proof of (2.40)
above, it will suffice to show that

(a) there is v = ¥(F) such that R?(F® L*) = 0 for p > 0, and

(b) R(FQL* QL") = R(F QL") ® RUL").

In fact, given (a) and (b),

H'P(E*), q(F Q@ L**")) = H(V, Ru(F Q@ L**"))
= H(V,RA(FRL)YKROE®)) =0
for gt > p1(F), ¢ >0,
since RY(F®L*)is locally free. Now both (a) and (b) are well-

known.

We cannot prove that L — P(E*) positive = E — V' positive.
However, for the notion of weakly positive, due to Grauert [9],
it is true that

(3.3) E weakly positive = L weakly positive.

In fact, Grauert says that E —V is weakly positive if, and only
if, a tubular neighborhood of the zero section in E* — V is strongly
pseudo-conver (cf.[13]). Since E* — V = L* — P(E*) (cf. 2(g)), it
is clear that (3.3) is verified.
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On the other hand, it is true that

(3.4) E positive = E weakly positive.
The proof goes as follows. On E — V, we define a positive func-
tion @ by @(z,£) = |£ 2 = ‘Eh(z). The tubular neighborhood T of V
in E is given by @ < e. We must calculate the E. E. Levi form
L(p) = d9p evaluated on the tangent space to the boundary 37, of
T.. Choose coordinates 2!, ---, 2" and a frame for E such that
h(0) = I,dh(0) = 0. Then, at (0, &), dp = Eﬂ (d&rEe + £°dZ*) and
the tangent space to the boundary is all vectors

0 d
j o
2P TR 55

with EP gn* = 0. The Levi form is given by

(3.5) Lp) = =X, .; ®niécEede’de’ = 35 dedEr

since d0h = —@g at z = 0 (cf. 2.6)). From this, (3.4) follows.
Grauert’s weakly positive is a better funetion-theoretic notion

than our positive. However, the differential-geometric methods

lead to Theorems D, G, and H, and we know of no function-theoret-

ic argument which gives these results.

Suppose now that 0 — S — E — Q — 0 is an exact sequence of
holomorphice bundles. Then

(3.6) If E is positive, ample, cohomologically positive,
: or numerically positive, then sois Q .

Assume that E is positive and let f = (e, - - -, ¢,) be an ortho-
normal frame for E such thate,, -- -, ¢, isa frame for S (cf. 2(e); as
done there, welet 1< g, A< s;s+1<a,B<71<p,0=<0).
From (2.15) we have that
(3.7) (®9)F = (®p) + X, b3 A b}
where b = (b;) € A(Hom (S, Q)) is the 2" fundamental form of S
in E. Thus

Eu.j.i.j (®Q)gi?’sﬁ§aviﬁj = Ea,g,;,,- (Bg)si; P&y’
I Ea,g,g.;_j bgig“)?ibfjgﬁvj
= 2 (®g)5i;8%E ') > 0
since E is positive. This proves that E positive = Q positive.

It is clear that: E ample = Q ample.
Equally trivially, we note that: E weakly positive — Q weakly
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positive.

Suppose now that E is cohomologically positive; we want to
show that, for F—V a bundle, there is z = z(F) such that
HY(V,0(Q)* ® F)) = 0 for g > g, ¢ > 0. An algebraic proof be-
gins by observing the exact sequences

(3.8) 0— 3, — E® — Q® —0,
(3.9) 0—> ASQE* —SQErH —3,—0.

From (3.8), it will suffice to check that =, is cohomologically posi-
tive; this follows from (3.9) and the fact that E is cohomologically
positive. This proves that E cohomologically positive = Q coho-
mologically positive.

A more instructive geometric proof can be given using the
fact that L(E) — P(E*) is cohomologically positive (cf. (3.1) above).
Forze V, let P(Q*),CP(E*), = P(E!) be those lines ¢ in P(E;") with
¢£,8) = 0. Then U.., P(Q*). = P(Q*) is a sub-bundle of P(E*) —
V. As the notation suggests, P(Q*) is the projective bundle as-
sociated to Q* — V. Clearly L(E) | P(Q*) = L(Q), and so we have
the exact sheaf sequences

00— IR NL(E)" ® n*F) — O(L(E)* ® *F)
— QLQ)* ®*F) — 0,
where I ¢ O(P(E*)) is the ideal sheaf of P(Q*). Using the cohomo-
logical positivity of L(E) — P(E*), we find that
HY(P(Q"), A(L(Q)* Q7*F)) =0 forpp=0,g>0.

From (2.40) it follows that Q is cohomologically positive.
The final general property is:

(3.10)

(3.11) If E and F are positive, ample, or cohomo-
* logically positive, thensois EQF .

Letting (e, ---,€,) = (--+,€,, ---) be a frame for E and
(foy +++yf) = (+++, fa, --+) a frame for F, by (2.10) we have

@.12) (Ogep)ss; = 05(Og)oi + 05(Op)s:; -
Then
3 (Bper) i £ = Y, (@g)oi 67 Ee iy’
+ 3 (®p)5;6°°8 ' > 0.
Note in fact that EQF > 0if E > 0, F = 0.
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It is trivial that, if E and F are ample, then EQ®F is ample.
In fact, if E is ample and F is generated by its sections, then EQRQF
is ample.

For the proof of E, F cohomologically positive — E & F coho-
mologically positive, we refer to Hartshorne’s paper [14]. This
paper contains a through account of the relationship between
cohomological positivity and the algebraic operations @, ®, ete.
on vector bundles.

(b) The Nakano inequalities and proofs o f Theorems B and
G. The vanishing theorems we shall use are based on representing
the cohomology groups H(V, O(E)) by harmonic forms [19], [22],
and [15]. Suppose that we have a hermitian metric in E — V and
Kahler metric on V. We choose locally an orthonormal frame
f=(e, +++,¢,) for E and an orthonormal co-frame @', - - -, @" for V;
the Kahler form is then

v n iAo
T = ? Ej=l w /\ w
An E-valued (p, g)-form @ is written

P = ZP.I.J‘ ‘;‘D'?JBP ® @' ® @’

1
plg!
where I = (3, ---,%,) and J = (5, +++,7,), @ = @1 A «-- A @ie,
ete. The point inner product is

[ 1 2
<¢"r V> - W (Ep,r,.r (P'.?.T""'I"}'.?) .
Setting

@0 =| @ {(L)ordn- nona),

we obtain a global inner product and we let 6* be the adjoint of 3;
thus (3*p, ¥) = (@, 3¢) for all 4, and this equation defines *p.
The laplacian [] is defined by [] = 3*3 + 39*, and the space of
harmonic forms is
(3.13) H*(E) = {p: o = 0} = {p:9p = 0 = 5*¢} .

For p an E-valued (p, q) form, we now write ¢ = E,, " Re,
where ¢* is a (p, q) form and we set

(8.14) ONp=3 ONPRe,,
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(3.15) Lp=37N9*Qe,,
and we define the adjoint L* of L by
(3.16) L*p, ¥) =<p, Ly ,

for all . We remark that usually L* is denoted by A and 5* by
D. Comparing (3.14) with (2.2), we see that

OAp =D = (D3 +3D)p .
The following basic inequalities are due to S. Nakano [22].

For ¢ € H?(E),

(3.17) %'(L*@ Ao, @) 20,
(3.18) LOAL'P,9) 0.

For the proofs, which use only one basic Kihler identity and no
tensor calculations, we refer to [22], [10], or [4]. As hinted above
the operator ® A @ in (3.14) arises from ® A ¢ = Dp.

We shall use the Nakano inequalities primarily in case E — V
is a negative line bundle. Then we take as the Kihler metric v =
(—1%/2)@ and subtract (3.18) from (3.17) to get: For ¢ € H**(E),

(3.19) (L*L — LL*}p, 9) < 0 .

Combining this with the elementary identity (L*L — LL*)p =
(n — p — Q)p [26, p. 21] gives

(3.20) (n—p—qgpp =0 for p e H**(E) .
From (3.20) we obtain our vanishing theorem

(3.21) H(V,Q*E)=0forp+g<nand E—V a
) negative line bundle .

For p = 0, (3.21) is the original Kodaira theorem [18], which
may be dualized to read

(3.22) HY(V,0E)) =0 for ¢ > 0 if E® K* is positive .

Here K — V is the canonical bundle and we have used the duality
theorem: H(V, O(E)) = H*(V, 0K ® E*))* (cf. [15]).

PRrOOF OF THEOREM G. Letnow E— V bea general holomorphic
vector bundle with fibre C*, P(E*) —— V and L — P(E*) the tauto-
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logical bundles discussed in §2 (g), and F — V a holomorphic vector
bundle. We shall use the isomorphism (1.9) (cf. (2.40)).

(3.23) H(V,0(E™" QF)) = H(P, O(L* Q =*F)) ,

and the curvature calculations in §2 (g) to prove a vanishing
theorem for the groups HY(V,O(E*Q@ F)), F—V being a line
bundle. To state this result, suppose that we have hermitian
metrics in E — V, F— V, and a Kahler metricon V. We denote the
curvature forms for E, F, K, by } . - @/5dz° AdZ7, ),  pzdzi NdZ7,
and Em_ ki;dz' A\ dz’ respectively. We introduce the gquadratic
form:

Q&M = (e +1) 2, , . O e

- Ei,j (ki — @5 + E,, ®;§£?}7}iﬁj 1
(3.25) THEOREM G'. If Q.(§, 1) is positive definite, then
H(V,0(E“ X F)) =0 forg > 0.

To prove Theorem G’, by (3.23) it will suffice to show that
H(P, O(L*® F)) = 0 for ¢ > 0. This will be done using (3.22) on
P; thus, in (3.22), replace V by P, E by L*®F, and K by K,.
Using the formula (2.38) for K,, we must show

(3.26) Lt @ Ki @ det (E)* ® F is positive if Q, in (3.24) is.

But (3.24) follows immediately from (2.36), and this proves Theorem
G'.

(3.24)

To prove Theorem G, we need to show that Q.(¢, ) in (3.24)
is positive definite forall # = 0 if F* ® K, ® det (E) < 0, provid-
ed that E is generated by its sections. By (2.24), at a given point,
@55 = 3, As:As; and so

2y BTN =33, AEMATEY 2 0.
Then 0,(¢, 7) = (curvature form for K @ F @ det (E)* [£[?) > 0.
This completes the proof of Theorem G.
Proor or THEOREM B. Suppose we can prove that, for any

vector bundle F — V,
(3.27) H(V,0E"XF) =0 for ¢ > 0, ¢t > p(F) .

Then, taking as definition of a coherent sheaf S — V a sheaf
having a global resolution

(3.28) (TS S P I—— - — < -
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by locally free sheaves, using exact cohomology sequences we will
find that H(V, W(E" ® S)) = 0 for ¢ > 0, £t = p(S).

Now that usual definition of a coherent sheaf is that there are
locally resolutions by free sheaves; then as a consegence of coho-
mological positivity for some particular line bundle, we can find a
global resolution (3.28). Taking a projective embedding V C Py,
one of Serre’'s basic theorems [24] and [25] is the cohomological
positivity of the standard positive line bundle. The conclusion
then is that, to prove Theorem B, it will suffice to show (3.27).

We shall prove (3.27) by showing that (3.27) holds in case E —
V is a positive line bundle. Then, in the general case, L — P(E*)
is a positive line bundle (cf. (2.37)) and so HY(P, O(L* ® F)) = 0 for
qg >0, 2 = p(F). Using the isomorphism (3.23), we get (3.27).

To prove (3.27) for E — V a positive line bundle, it will suffice
to show that

(3.29) H(V,(E"*"XF) =20 for g < m, pt = p(F) .

Indeed, one may pass from (3.27) to (3.29) and back by using the
duality theorem. We shall prove (3.29) by using the first Nakano
inequality (3.17). As our Kahler metric, we take v = (¢/2)®; where
O is the curvature in E. By (2.10), we have

Op-rer = —#Oe Q1 + 1R B .
For @ a (0, ¢) form with values in E™* ®Q F,

%L*@E_WA o = —puL*Lo + %L*F Ao
= —p(n — @)p + %L*Gp/\fp .
From (3.17) we get:
(3.30) L0 N, P) Z i~ O, 9 -
Taking y large in (3.30), we get @ = 0, which implies that

H(V,E*®F) =0 for pt = p(F), g < m .

(¢) Proor or THEOREMS C AND F. We shall prove Theorem C
using Theorem G’ above (cf. (3.25)) and using quadratic transfor-

mations [20]. Let z,€ V be a fixed point and W —— V the quad-
ratic transform of V at z,. This may be described as follows. Let
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2!, - -+, 2" be coordinates in an open set U C V with 2, = (0, ---, 0).
We consider the principal bundle C* — {0}—P,_, = P and let H* —
P be the corresponding line bundle. Then H* — P = C* — {0} and
so U corresponds to a tubular neighborhood T(U) — H* of the zero
section, and W is obtained by replacing U with T(U). Geometric-
ally, we have replaced z, with the lines through z,.

Letting P = 77'(z,), Pis a P,_, embeddedin Wand W — P =~
V —{z}. If L—W is a line bundle determined by the divisor
PC W, then L |P = H*. To find a metric in L, — W, we choose a
concentric open set U, Cc U with U, c U, z,€ U, and let 0 be a func-
tion which is one on U, and zeroon W — U, Then there is defined
a metric in L whose curvature is [20]

(3.31) @, = dd(olog (", |2°1Y) .

Thus , = 0 on W — U and, on U,,

(3.32) @, = _{ (dz, dz)(z, 2) — (dz, 2)(z, dz)}
(2, 2)*

(cf. (2.5)). In particular, ® < 0 on U..
Over W we consider the exact bundle sequences
5 @ 0—+R*EIF’®L* ___;,I*E[;‘J__,;-I*Etpa iP—+0 ,
— ]'0 —7*E* @ L* » m*E® @ L* — 7*E® Q@ L* | P — 0 .
We observe that
H(W, O(r*E'""")) = H(V, Q(E'») ,
H'(P, O(x*E'*)) = E} ,
H(P, )(*E'" @ H)) = EX® Ti(V)
(since H'(P, O(H)) has basis z', - - -, 2*). Thus, if
HY(W,O(x*E'" @ L*)) = 0 = H(W, O(z*E*" @ L*Y) ,
we get from (3.33) that
0— F¥ —T(E")— E" — 0
Fl—F, Tt —0,
where Fi' = {se (E"): s(z,) = 0} = HY(W, I(x*E* ® L*)).
Thus, to prove Theorem C, we need to show that
(3.35) E positive = HY(W, O(z*E“ Q L*)) = 0 =
’ H W, 9(r*E” @ L*)) for all ¢z > g, and all z,e V.
We want to look at the quadratic form (3.24) on W for 7*E and

(3.34) l
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where F = L* or L**, Since E — V is positive, the quadratic form
©..g(6, ) on W is positive definite outside of P. From (3.32), the
curvature ®,. is positive definite in U, and zero outside U. Finally,
the canonical bundle [20]

(3.36) Ky =K, @ L.
Thus @, = @..x, + (= — 1)®;.. From the explicit form of (3.24),

we see that Q,(&, ) is positive definite on W for ¢ = p,. In fact,
0,(5,7) = (&2 + 186, ) + (WOL()) — Oreaee(N) — O, (M} €%
from which our assertion is clear. Furthermore, by using obvious
estimates from continuity, we see that the quadratic forms will
be positive definite for y¢ = p, and all z,€ V. Then (3.35) follows
from Theorem G’ ((3.25)).

This completes the proof of Theorem C.

PROOF OF THEOREM F. Let z,€ V and I, C O be the ideal sheaf
of z,, We can choose g(z,) such that
HY(V, I, @ O(E¥)) = 0 = H(V, I] @ O(E™))
for £ = (), ¢ > 0.
From the cohomology sequences of 0— I, Q O(E*)—(E"')—
E—0and 0—I Q OE")— I, Q (E*)—E QT;—0, we
get
{0 — FP — D(E%) — B ——.0
F —— ENQT;—0
for p = p(z,). In particular then, there is a neighborhood U(z)
such that, for z € U(z,), we have

(3.37)

0 —— Fitz) — D(E#07) — Bt — (),
{Fif‘"f’” — B QT —— 0.
Observe that (3.37) holds for any f¢ = f,2¢(2,).
Given now z, € V, we may find z(2,) such that
{0 — Fi0 — T(E*) — B — 0
Fy' — ENWQT; —0
where v, = v(z,)¢(z,). Also, (3.38) holds in a neighborhood U(z,),

as well as in U(z,). Continuing, and using the compactness of V,
we may find a z such that E® is ample. That is

(3.38)

(3.39) E cohomomologically positive = E'*' ample for some p.
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This is weak version of Theorem F, which asserts that E® is ample
for all pr > p,. To prove this, it will suffice to show

3.40) {1V L @ OE ") =0 = H(V, I, @ O(E"))
. forg>0,p¢ = p, and all 2, V.

Consider now L — P(E*). Since E is cohomologically positive,

L is colomologically positive and, by (3.39) applied to L, L* — P is

ample for some . Thus L* is positive; i.e., there is a metric in L*

whose curvature 8, > 0. Since @, = L((@m), we have that @,>0.
2

In the fibering P—— V, let P(z,) = 7~(z,) and I(z,) 0O, be
the ideal sheaf of P(z,). Then, by (1.9),

HY(V, I; ® O(E*)) = HYP, I(2,)* ® O(L"))
and, using (3.40), to prove Theorem F it will suffice to show:

q & " o
(3.41) HP T @ L) =0 for ¢ > 0; o = gty ;
k=12,
We shall prove (3.41) by a method similar to the proof of Theorem
C above.

Let @ —— P be the quadratic transform of P along P(z,). For
the equations giving Q, see [11, §V]. We set S=w"(P(z,)) so that
@ — S =P — P(z,), and we let J — Q be the line bundle determined
by the divisor S © Q. We recall that R (J*') = 0 for »p > 0 and
RL(J*') = I(z,)'. This, plus Leray’s theorem, gives

(3.42) H(Q, 00" ® @~'L¥)) = H(P, I(z,)' ® O(L¥)) .

We used special cases of (3.42) just below (3.33) above.
To prove (3.41), using (3.42) we need to show

H(Q, 00" @ @™'L") = 0 for g > 0; £ = p, ;

3.4
(3.43) k=1,2;and forall z,e V.

As in the proof of Theorem C above, we shall prove (3.43) for fixed
z, by a curvature estimate and then, using continuity of these esti-
mates relative to z,, we will get (3.43). Thus we need to compute
the curvature @, on Q.

Let U be a polyeylindrical neighborhood of Z,suchthat E | U =
UxC. Thenn(U)= U x P,_, and 7Y U) < P(E*) is a tubular
neighborhood N(P(z,)) of P(z,) = {0} x P,_,, where 2,= (0, - - -,0). Let-
ting U be theordinary quadratic transformof Uat {0}, @(N(P(z,))) =
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T(S) is a tubular neighborhood of S and T(S) = UxP,.. Ifz,
.++, 2" are coordinates on U and &, - - -, £ homogeneous coordinates
on P,_, we have that @, = ©(dz!, d&*) is positive definite on
N(P(z,)). Furthermore, there is a metric in J| 7(S) such that the
curvature ®; = 90 log (3 |2° [*) (cf. (3.32)). Thus @g-yy, + Oy is
positive on T(S). Since O,-1,,|Q — T(S) is positive, we may fit
the above metric on J | T(S) is to get a metric on J — @ such that
Y@,-1y; + Oy > 0 for v = v,. By proceeding now just as in the
proof of Theorem C, we will get (3.43) as desired.

(d) Positive bundles and topological properties of algebraic
varieties. Let E—V be a positive vector bundle and ¢ € H(V, O(E))
a holomorphic section whose divisor S C V is a nice subvariety as
discussed in §2(h). Then Theorem H on the topology of S in V
yields the following vanishing theorem for sheaf cohomology

(3.44) H(V,I)=20 for0sg=n-—1,

where I is the ideal sheaf of S in V. For the proof of (3.44), we
consider the exact sheaf sequence 0 — I3 — O, — O; — 0. Since S
and V are Kihler manifolds, we have a diagram

0 0
(3.45) -+ — H'(Iy) — H'(Oy) — HY(Q5) — -

l |

(H(V,C) — H*S,C) .

Using that 0— H*(V,C)— H%S,C) for ¢ < n—1 and 0— HY(V,C)—
H(S,C)—0forg<n—r—1, wefind H(Ij)) =0 for0=g=n—7r
as required.

In case S is a hypersurface (E is a line bundle), we have I; =
O,(E*) and (3.44) becomes
(3.46) H(V,0(E*)) =0 for0=¢g=n-1,
which is the original Kodaira theorem [18].

Still considering the case when SV is a hypersurface, we
shall show that Theorem H gives
(3.47) H(V, QE*)) =0 forp +g¢<mn,

which generalizes (3.46). For the proof, consider the pair of exact
sheaf sequences [15, page 127]
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0 — QP(E*) ——» QF — Opj; — 0

(3.48)

0— 22(EY XL 0r,— Qi — 0.
In cohomology, we have:
— H(V, Q)E*)) — H(V, Q) — H(S, Q3,5) —
(3.49)
w0 — HY(S, Q5H(E*)) — HY(S, Q25) — HY(S, Q3).
Using that 0 — HY(V, Q) — H%(S, Q2) for p + ¢ < n, and that this
mapping is onto for p + ¢ < n — 1, we get (3.47).
Conversely, from (3.47), we obtain
0— H(V, Q) —> H(S,Q2) — 0, p+g<n—1
0— HY(V, Qp) — H'(S, Q) , p+qg=n-—-1,
This in turn gives Theorem H over Q.

In conclusion, for a positive line bundle E — V which has a
non-singular section, we see that Theorem H (over Q) and the
vanishing theorem (3.21) are equivalent.

As another application of topology to sheaf cohomology, we
let E — V be a positive bundle having a non-singular holomorphic
section ¢ with divisor S. Let w € H*(V, C) be the " Chern class
[15] of E —V; then we H'(V, Q;) is dual to the homology class
[S]e H,,_,.(V, C) defined by S. We shall prove

P {The cup product HY(V, Q) —2» H*+"(V, Q2+) is

an isomorphism for p + ¢ =n — » .

(3.50)

For r = 1, this is a well-known result in Kihler varieties [26].
We have to show that H*"(V, C) -2 H*(V, C) is an isomor-
phism. First we dualize H,_,,(V, S) - H,_(S)— H,_(V)—0
to get H**""(V — 8) — H*"(S) — H**"(V) — 0. Combining this
with 0 — H*"(V) — H*"(S) — H"(V, S), we find a diagram
H* =YV — S)
ge

,0 AP— Hn—r( V) \__’ Hn"—r(S) __:'Hu—r+l(V, S)
(3.52) NG

A
Y] P

Hn+r( V)
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From (3.52), to prove (3.51) it will suffice to show that kernel 6* =
kernel 4*. Dually, we must show that, in

H,_..(V,S)
la \#
N

H, _(S)"+H, V-5,

¥ and ¢ have the same kernel; i.e., if 9o # 0, then (o) = 0.

At each point z € S, the normal sphere S**to Sin Vatzisa
(2r — 1)-sphere. If vye H,_,(S)isacycle, thenz(v)e H,,, (V —8)
is the cycle traced out by the spheres S~ for z € v (this follows
from the Thom isomorphism [15]). Let o€ H,_,,,(V, S) and do =
6€ H, .(S). Now finda eycle§ € H,_,(S) whose intersection number
with 0 is +1. Then it is essentially clear that the intersection
number ¢-7(§) = +1, and so ¥(g) # 0. This proves (3.51).

We remark that (8.51) is false for the universal bundle over
the grassmannian (cf. [11, § IV. 4, page 397]), of course, this bundle
is mot positive.

To close this section, let us give one of the most noteworthy
“vanishing theorems” derived from topological considerations; this
is the famous regularity of the adjoint theorem of Picard [27].
Let V be an algebraic surface, E — V a positive line bundle, and
£ e H(V, O(E)) a non-singular section with divisor Sc V. We set
N = E| S, K, = canonical bundle of V, K; = ecannonical bundle of
S; the adjunction formula gives (cf. [15]):

(3.53) Ki=L®K,|S.
Using (3.53), we get the exact sheaf sequences
0 — 0K+ ® E™) — 0,(K, ® E7)
— O(KsQN')— 0.
The regularity of the adjoint theorem is

HOK: ® EN) — H(O(K;s @ N™) — 0,
r=2.

(3.54)

(3.55)

In classical language, if V' P, is a surface of degree n with
ordinary singularities given by an affine equation f(z,y,2) = 0, then
the adjoint polynomials P(x, v, z) of degree at least n — 3 + 7
(7 = 1) cut out on a generic plane section x = constant of V a com-
plete linear series.
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It will suffice to prove that H' (K, @ E™")) = 0 for r = 2. We
shall do this for » = 2 by giving Picard’s original argument. For
r = 1, (3.54) becomes
(3.56) 0 O =5 (BB sl D),

In cohomology we get a diagram:
H(Qs) — H'(Q)) — H'(Q(E)) — H'(Q) = H*(Q})

| /
/

I

0
As discussed above (ef. (3.51) and (3.52)), it is a purely topological

fact that @ is an isomorphism, and obviously ¢ is an injection.
Thus HYQNE)) =0 = H'(O,(K, ® E)). Using this in the exact

cohomology sequences of (3.54) when r = 2, we get
H'(0,(Ky ® E?)) — H'(0s(Ks @ N)) — 0
as required.

ProoF oF THEOREMS I AND J. Let E — V be a positive vector
bundle and £e H°(V, O(E)) a holomorphic section such that S =
{£(z) = 0} is non-singular. Letting I = I; be the ideal sheaf of S
and F—V and arbitrary holomorphic bundle, we want to show that
there is a constant ¢ = ¢(F, V) such that, if the curvature form
(0.1)" has the property ®%(%, %) = ¢ |5 [* |7 %, then we have

(3.58) H(V,IRQOF)) =0 forg=n—1r.
We remark that, for F = 1, (3.58) follows from (3.44).
Now we use the Koszul comples

Oy @(AFE*) _i’ P TI O(AZE*)
(3.59) c ¢
— UE*)——T—0,
where A’E* — A*'E* is contraction with £ ¢ T'(E). For example, if
r = 2 then (3.59) becomes
(3.60) 0— OANE*) — O(E*) —IT—0.

The sequence (3.59) remains exact after tensoring with O(F).
From (3.25) we see that, if for 1 < ¢ < r we have
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(3.61) G, ) Z (@) 1619
where ¢(q) becomes large as ¢ becomes large, then we will have
(3.62) H{(V,0AE*@F) =0
for 0 < p < n — 1. But, by using (3.59), (3.62) implies that
H(V,0F)QI) =0 forg<m —r
as required.
Suppose now that ®%(¢, 7) = ¢ || 7 |* and that we have E =
S &b Q as a direet sum of holomorphic bundles. Then, for the curva-
ture of the induced metric in S, we will have @(&, 7) = ¢ | £ |7 [*.
Since A’E is such a unitary direct summand of @° E, it will suffice
to show that
(3.63) O, M Zc|EP |9 =— 0%, 7)) Z ¢, |EF T),
where ¢, becomes large as ¢ does. This is easy to verify using the
tensor product rule for curvatures.
Proof of (0.6) for r = 2. Here we simply use (3.60),
H(V, O(A’E*) = 0 forg<mn—1
(Kodaira vanishing theorem), and H%(V,I) = 0 forg < n — 2 (by
(3.58)) to conclude that HY(V, O(E*)) = 0forq = n — 2.

Proor oF THEOREM J. Let SV be the zero locus of Z¢
H*(V,9(E)) and S c V the result of blowing V up along S. Thus, if
N— S is the normal bundle, S = P(N) and so z€ S is blown up by
sending z into P(N,). Let L — V be the line bundle determined by
S; then L | S is the normal bundle and L | P(N,) is the negative of
the hyperplane bundle. If our blowing up diagram is

e 4
Scv,
we want to show that
(3.64) Thereisan exact bundle sequence 0—L—7*(E)—Q—0.

(Proof. S determines a section ¢ € H(V, A(L)) and the locus
o = 0 is the same as 7*¢ = 0, where n*¢ € HY(V, O(r*E)). It wiil
suffice to show that 7*£/o is a non-vanishing holomorphic section of
L* @ n*E. Locally on V we may choose coordinates 2, - - -, z® such
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that

If A = [y, -+, \,] are homogeneous coordinates on P,_,, locally ¥
is the set of (2, M) satisfying the quadratic relations 22\, — 2", = 0
(L= a,B < r). Inthe open set 1, = 0, S is given by 2z~ = 0, since
z"=0and 2"\, — 2"\, = 0 taken together givez*=0forl < a <.
Thus ¢ is locally a unit times 27, and it will suffice to have T*Elz" a
non-vanishing holomorphic vector. But 2* = 2"\, and so

m"1
e _| -
2" Ny
1

which is as required.)
We now recall that, setting I =0O(L*), the direct image sheaves
Ri(I*) are given by

(3.65) Ry(I*)y = 0 for ¢ > 0, ¢ = 0 and RY(I*) = I".
Using the Leray spectral sequence, it follows that
(3.66) H(V, I* @ OF)) = H(V, I ® O(x*F))

for any holomorphic bundle F — V. Now by assumption E — V has
a metric such that the curvature form @, given by (0.1) is positive.
Since 7*@g = @..g, there is induced a metric in 7*E whose curva-
ture is positive semi-definite. In fact, @..; is zero on the » — 1
dimensional tangent spaces to the fibering S — S.

By (3.64), there is induced a metric in L and, from § 2. (c), we
have that

(3.67) OL=06.|L—-bA%

where b € A™* (Hom (Q, L)) is the second fundamental form of L
in z*E. Choosing unitary frames e,, - --, ¢, for 7*E such that ¢, is
a frame for L — V, (3.67) gives '

O, =06 — E;=zbi'/\ 5’:;

3.68
et b=>7 bleRer.

We want to show that
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(3.69) ®, has everywhere at least n —r+1 positive eigenvalues.

From (3.68), this is clearly the case on ¥V — S where ©! is positive
definite. Let ZeS and z = 7(Z) so that Z € P(N,). Sinceb A ‘b has
rank less than or equal r — 1, if we show that b A ‘b is non-singular
on the tangent space to the projective space P(N,) passing thru %,
then ® — b A *b will be positive definite on the n — » + 1 dimen-
sional null-space of b. This will prove (3.69). But 8, | P(N,) =
—b A b | P(N,) is the curvature of the negative of the hyperplane
bundle over P,_,, and so —b A ‘b is negative definite on the tangent
space to P(N.,).

Now we use the theorem of Andreotti-Grauert [1] to conclude

(3.70) HY(V,0L"Q@z*F)) =0 for p = p, g <m — r.
Combining (3.70) with (3.66) and using I* = O(L-*) gives Theorem J.
4. Chern classes and numerically positive bundles

(a) Chern homology classes of holomorphic bundles. Let V be
an algebraic manifold and E — V an ample holomorphic vector
bundle (cf. (0.2)). Then we have

(4.1) 0 » F r E 0
where I' = V x I'(E) is a trivial bundle. Dualizing (4.1) gives
(4.2) 0 > E* > I* » F* »0 .

We assume that E* has fibre C” and F* has fibre C**". Choose
a sequence of linear subspaces I''c ', --- C I',.,_, C I'* where
dim1’, = «. For each »-tuple of integers o = (o, ---, p,) with
00 =< -0 £ p, <m, we define S, C V as follows

(4.3) Sp = {z eV such that dim (Ez* n P-"-‘:'pj} g J‘
for =1, xeny#} ,

Referring to Hodge-Pedoe [16, Ch, XIV], we see that S, is the in-
tersection of V with the Schubert cycle of symbol p on the grass-
mannian G(r, m). Taking the I', to be generic, we find

(4.4) S, is an irreducible variety of dimension
lmt @+ -+ p) = mr.
For later use, we record the trivial formula:

(4.5) dim(E* N I,) = » + « — dim (E* + 1)) .
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The dimension formula (4.4) above will be checked in the case of all
S, we shall use.
Let now p, be the Schubert symbol

(4.6) (9‘;';,.-_1,...,J,;;n;,_]_’qfn,...,qrn,)‘I
— N i
q r—gq

and S, = S,,q. By (4.4)dimS,=n + q(m — 1 + m(r — q) — mr =
n — g so that S, defines ¢, € H,,_,(V, Z).

(4.7) Definition. o,is the ¢ Chern (homology) class of E— V.

Remarks. (i) There are r irreducible algebraic subvarieties
S,, - -+, S, which carry the Chern classes g,, -+ -, g, of E—V. Since
S,cS.ifp<z7(ie.,p;<7;forj=1,--.,7), wehave S,5---O8.,.

(ii) Let ¢ e I'(E) be a section of E and (¢) the zero locus of .
Then (5) carries the homology class ¢,. In words, the " Chern
class is the divisor of a (generic) section of E.

ProoF. We consider ¢ as a linear function on I'* and choose the
I', such that I, ;,_, is the set of vectors in I'* annilated by £. From
dim (EX N ypny) =2r +m — 1 — dim(EF + I',.,._,), we see that:
dim(E NCyy,) 2 7 =dimE* + 1, )Sr+m—1=EfC
| I E(Z) - 0; i.e.,

(4-8) dim (E: n l1r+m—£) =P = E(Z) =0.
On the other hand, if dim (E* N I',.,._,) = r, then E* CT',,,_, and
dim(Ef +jyn)<7r+m —1 for j =1, ---,r. Using this in

dim (Ef NTjsm) =7+ 5 +m —1 — dim(E* + I.n_.), we find:
4.9) dim(EX N Dyypy) Z 7 = dim (E* N Tj,p_) = J
’ forj =1, ---, 7.

Combining (4.8) and (4.9) gives our assertion.

(i) The general rule is: Let %, ---, &, be » generic sections
of E. Then ¢, ---¢,_,., is a section of A™**'E and S,V is the
zero locus of this section.

Proof. We may let I';;,., be given by & =0, -+, £, .., =0
where the &’s are elements of the dual space of I'*. The Schubert
symbol of S,is (m — 1, ---, m —1,m, ---,m). Since

dim (Ef N I';,) = m, the tt},;ml;gr non-trivi;i“cqonditions are

dim (B N Cjymy) = 7 forj=1,«+4,q.
This condition is equivalent to
(4.10) dm(E + Tjymy) =m +7r—1 forj=1,.--,q.
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Since all T}y C Tgimy (=1, -+, @), we see that (4.10),= (4.10);
forj =1, +-+,q. Thus

(4.11) z€8S,=—dim(Ef NTpsn-1) =4 -

Now (5, A\ +++ A&rgu)(2) = 0in A"""'E, < there exist fi, =+,
£.eE* with fiA == Af, # 0 and {&,(2), fop = 0 for j =1, -+,
r—q+1landa@ =1, ---,q. Combining this with (4.11), we have
(4.12) zeS, =R A +++ Né.1i(2) = 0,
as required.

(iv) A few comments about (4.12) are relevant. The section
E A -oo A& o of A7'E is mot generic unless ¢ = 7 or ¢ = 1.
The reason is, of course, that 5 A -+ A&._,n(2) is the vector of
an r — q + l-plane in E,, and so satisfies the Cayley-Grassman
relations.

A better way to think of S, is to let P(» — ¢ + 1) —V be the
bundle whose fibre P(r — q + 1), is the complex Stiefel manifold
of (r — q + 1)-frames in E,. For ¢ = r, we have P(1) = E — {0}
is the bundle of non-zero vectors. Now & A --- A&,_q4 glves a
rational cross-section of P(r — ¢ + 1) =V and S, C V are precisely
the points where this cross-section is not defined.

(4.13) ProrosITION. Let TCV be an irreducible subvariety
of dimension q and v € H,(V,Z) the homology class of T. Then
the intersection number t-o, > 0.

(4.14) Remark. In words, we may say that the Chern classes
of an ample bundle are numerically positive. For the universal
bundle over the grassmannian, the Chern classes are non-negative,
but not positive except in the projective space case.

ProoF. The proof is based on the following general fact: Let
{Si}iery, be a rational system of (n — g)-dimensional subvarieties
S, C V such that the generic S, is irreducible. Suppose that, given
z,c¢ V and an (n — g)-plane J] € T.(V), there is an S; passing
through 2, and with T, (S;) = J]. Then the homology class carried
by a generic S; is numerically positive.

Let now z, be the origin in a coordinate system 2*, - -+, 2" on V.
We may locally trivialize E so that sections of E—V in a neigh-
borhood of z, are C’-valued holomorphic functions of 2!, ---, 2".
Since E — V is ample (cf. (2.29)), we may find &, - -+, §,_¢+: € I'(E)
such that
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.(0 1
1 ¥ 0
0 . i
6; = o s " gr—q = 1 1 &r—q+1 = '8 B
) :

0 -
0

where the symbol “="" means “modulo quadratic terms in 2, ene,
2", Then (6, A -+« A& _.+)(@) =0 and the tangent space to
ELN eee Né& ¢s1=0at 2,=0is given by 2z' = 0, -+, 2°=0. Using
the general intersection number principle above, we complete the
argument for Proposition (4.13).

It remains to define the Chern (homology) classes of a general
holomorphic bundle E— V. Let L —V be an ample line bundle
such that E @ L is ample. Then the Chern classes d, ---,d, of
E @ L are defined, as is the Chern class ¢ of L, by using (4.7). To
determine the Chern classes c,, - - -, ¢, of E, we use the formulas
in [15, page 66]. Thus writing 1+ ¢ + -+~ + e.t” =], (L + ),
1+dt+ - +d,t"= II., (L + %), 7% = +; + e, we can deter-
minec, ---, ¢, fromd,, ---,d, and e. The multiplication is in the
sense of intersection of homology classes. To show that this is
consistent, we must prove.

(4.15) PROPOSITION. Let E,, E, be two ample bundles over V
such that there is a line bundle L with E, = E, ® L. Then the
Chern (homology) classes of E,, E,, L, as defined by (4.7), are con-
sistent with the @ rule given above.

This proposition will be proved in § 4. (c) below. In particular
it follows that the Chern (homology) classes are algebraic cycles [6].

(b) Chern classes as differential forms. We now give the
definition of the Chern classes using differential forms [5] and a
brief discussion of the Weil homomorphism [12] and [3].

Let E — V be a vector bundle with fibre C’; for this discussion,
we only need a C~ bundle. Let P — V be the principle bundle of
C= frames f=(e,,---,e,) for E—V and choose a connexion 8 for P.
Thus 6 is a matrix-valued 1-form on P satisfying 6(hg) = g—'0(h)g
and where 6 is the Maurer-Cartan form on each fibre of P—V. If
we choose a trivialization E|U = U x C’ for an open set UcCV,
then each
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&
6 =1\ 2
&
is a column vector and f= (e, - - -, ¢,) is a non-singular r x » matrix.
Letting z = (2, - -+, 2*) be a coordinate system in U, we easily have
that d(z, ) = f~'0(2)f + f~'df where 6(z) is a matrix-valued 1-form
on U.
The curvature ® of ¢ is given by

(4.16) ®=di +0ANE.
In terms of the local expressions above,
(4.17) 8(z, f) = feR)f
where O(z) = df(z) + 0(z) A 6(z).
Consider now a multilinear form P(A4,, ---, 4,) where the A4;
are r X r matrices. By linearity, if A; = (4,%), then,
(4.18) P(An ANy Aq) = E.hﬁpl.---.pq,; Cp,Af.}l A Ai: .
o=(a).---s0g

We will call P symmetricif P(-«+ Ay «+<, Aj-+2) = P(-+ A;, «+-,
A; ---)and invariant if P(g~'Ayg, «++,97'4,9) = P(4,, ---, A,) for
all g e GL(r, C). The condition that P be invariant is, in infinitesi-
mal form

(4.19) Y i Pl-ee[B, A, --0) =0,

i=1

where B is an arbitrary r x r matrix. These symmetric invariant
g-linear forms will be called invariant polynomials and form a
vector space I,. By an obvious multiplieation, I,-I,c1,,, and we
letI = Em I, be the graded ring of invariant polynomials.
To justify the terminology, we remark that a symmetric g-
linear invariant form P gives a polynomial P(4) = P(A4, ---, A) in
————

q
the matrix entries A of A satisfying P(¢g—'Ag). Conversely, given
such an invariant polynomial in the A%, we may recover the corre-
sponding g-linear invariant form. For example, when ¢ = 2,

P(A,, A)) = 1/2{P(A, + A,) — P(A) — P(A)}.
We now define the Weil homomorphism
(4.20) W:1— H*(V, C)
by letting, for Pel,
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(4.21) W(P) = P(®) .

By definition, P(Q) = P(@, ---, ®) is obtained by plugging in the
curvature matrix @ for A. This makes sense, since ® is a matrix-
valued form of degree 2. From (4.17), P(®) = P(B(z, f)) =
P(f~'®(2)f) = P(8) so that P(®) isa C* formon V. Also, dP(®) =
2 P(---,d®, --) =33 P(--+,[8,6], ---) =0 (by (4.19)) since
d® = ®@ N6 — 0 A\ O by differentiating (4.16).

The main fact is:

(4.22) W:1— H*(V,C) is an algebra homomorphism

which is independent of the econnexion @ .

Weil’s proof of (4.22) is short enough to be given here. Let
6, 6, be connexions in P—V so that 6, — § = 7 is a Hom (E, E)-
valued one-form. Setting 6, = 6 + iy, we get connexions 4,
with curvatures @, = déf + tgby + (6 + in) A (6 + t). Then O, =
dg + [0 + tn, 7] = D,y = D,#, so that

P(@)n ”'1@:) = ZP(@M TR é“ “'v®:)
= EP(GL’ A Drén coe, @)
= d{E‘P(H "'!ér! "':r)} .
Thus
P®©) ~ P®) = d{T | P@, -, 6, -+, ©)dt}
0

so that P(@,) = P(@) in H*(V, C). This proves (4.22), since it is
trivial that W is an algebra homomorphism.
We also observe that, on P,

(4.23) P@,---,8) =dP(#,0, ---,0).

To define Chern classes, we define invariant polynomials P,(4)
by setting
4.24 det (A, + —L_A) = 3 (—1)P, (4 .
(.24 et (M, + —L-4) = T, (—1'Py4)

(4.25) Definition. The ¢" Chern class (in cohomology)
¢, € H*(V, C) is given by ¢, = P,(@) = W(P,).

The total Chern class ¢(E) is defined by
(4.26) o(E) = 37_ cite .

Remarks. (1) Suppose that E — V is a holomorphic vector
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bundle in which we have a hermitian metric. We let B — P be the
bundle of__ unitary frames f = (e, ---,¢,). Then the curvature
form @ of the metric connexion is of type (1, 1) (cf. (2.1)) and on

B, ® + ® = 0. Thus
‘(_@’_) wx 60
271 271
and so

det (u+ %) o det(XIJr ’6_) - det(u+ O)

LT
(if  is real), so that we have

(4.27) The Chern classes (4.25) of a holomorphic vector bundle
are real and of type (q, ¢) .

(2) Suppose that E,—V,E,—V are (C®) vector bundles. Then
we have the duality theorem

(4.28) ¢(E, © E,) = ¢(E)c(E,) .

Proor. If 4,, 8, are connexions for E,, E, and with curvatures
©,, @,, then
g, 0
6 =
0 64,

is a connexion for E, B E, with curvature

(2
“\lo @)

Letting » = 1/t, we have by (4.24) and (4.26) that

Il

(E) = t"det (AL, + —-0)
2T
tn det (M,l - hgi_—tal)nfz det (MW + — («)2)

27

= ¢(Ey)e(E,) ,
where r,, 7, are the fibre dimensions of E,, E..

3) Let E—V,F—V be (C*) bundles and write ¢(E) =
H;=1(1 +%,t), ¢(F) =TT _,(1 + 7.t) where r, s are the fibre dimen-
sions of E, F. Then we have
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(4.29) CEQF) =TI, 1+ (% +7)0) .

Proor. Choosing connexions 0y, 6y in E, F, then fggp =
I ®1+1Q) 0 gives a connexion in EQF with curvature @pgp =
O R1+ 1Q 0 (cf. (2.10)). Using this, (4.29) will follow from
the algebraic facts,

(1) det (A Q@ B) = (det A)* (det B)"if Ais rx» and Bis sxs;
and

(ii) if A, B are general » x u matrices satisfying AB — BA =
0,if det(I+tA) =3 " P(A)t =[]}, (1+7,(A)t) and det (I+tB) =
II:., (1 +7,(B)t), then

det (I + ¢(4 + B)) = II}_, {1 + (7(4) + 7«(B))t} .

Of course (i) is standard, and (ii) follows by simultaneously

diagonalizing A and B. We apply (ii) letting

_ i < g i
A o ®E® ;B 1® ST ®F
(then [4, B] = 0) and » = rs. Then
= i i
(EQF) = det(I+ t( e @1+1@-—L @F))
= II;. {1 + ¢(v(4) + v(B)}

_ H;»;;1{1 & t('r,,( ?';'r @)E) + 7 ;;r op))} :
which proves (4.29).

(¢) Proof of the equivalence of definitions. Let now V be an
algebraic manifold and E — V a holomorphic vector bundle. Then
we have defined the Chern (homology) classes o, € H,, ,(V, Z) (cf.
§ 4 (a)) and the Chern (cohomology) classes ¢, € H*(V, R).

(4.30) THEOREM. 0, is the Poincaré dual of e,.

Before giving the proof, we make some preliminary remarks.
If we can prove (4.30) in case E — V is an ample bundle, then (4.30)
will be true for all bundles. This follows from the definition of o,
for a general holomorphic bundle E — V, together with (4.29). At
the same time, if Theorem (4.30) is true for ample bundles, then by
(4.29) it follows that the definition of g, for general E — V is con-
sistent, which proves Proposition (4.15). So it will suffice to prove
Theorem (4.30) for ample bundles, and we now give the argument
in this case,.
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What has to be shown is this: Let S, C V be a general 2n — 2q
dimensional subvariety which carries the homology class o,¢
Hool(V, Z).

We let I be a 2¢ cycle which meets S, simply at a finite number
of points. Then we need to have

(4.31) @D = Lo, 1,
where the left hand side of (4.31) is the intersection number.

PrOOF. We assume that I’ is an algebraic submanifold, the
general case is based on the same ideas. Let &, «+-, &, 4, be
general holomorphic sections of E— V. Then S, is given by
E A e+ A& =0 and we may assume that £, A =+ A&, # 0
on S,-T (since & A +++ A§,_, defines a 2n — 29 — 2 dimensional
subvariety of V). Then & A ++« A&,_, %0 on I" and so, over I,
we have

(4.32) 0—S—E—Q—0,

where § is the trivial sub-bundle generated by &,, ---, §,_,. From
¢(8)e(Q) = ¢(E) and ¢(8) = 1, it follows that <c,,I') = {w,I') where
® is the ¢** Chern class of Q —I'. Now £, ., gives a section £ of
Q — " such that ¢,-I" is just the zero locus of £. In conclusion:

(4.33) To prove (4.31), it will suffice to take E — V 2 holomor-
phic bundle with fibre C* (n = dim V), ¢ = n, S, the divisor of a
general section ¢ of E, and @ the n" Chernclassof E— V.

There are two steps in the proof of (4.33). One is the geometric
notion of transgression, due to Chern [7], and the other consists of
applying certain formulas in the unitary geometry of E—V. These
formulas have an independent interest.

Suppose then that & vanishes at z, (the case of several zeroes
is the same) and let S(E) — V be the bundle of unit vectors in E —
V. Then n*(E)— S(E) has a non-vanishing section and so, by
(4.28), c.(7*(E)) = 0. Thus 7*® = dy where ¢ is a 2n — 1 form
on S(E). Letting S, © S(E) be the unit sphere in E,, we claim that

+ is independent of z. (Proof. If v is a curve joining z, and 2z,
aflzd T= Ui S theng ¥ — S o = S ¥ = Lar*co = 0 since w

E 5 Sz Sz T
is “horizontal”.)

Let a = —~S +; we claim that

s
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(4.34) SVGJ = a-(number of zeroes of £).

For the proof we let A be a spherical neighborhood of z, such that
E|A = A x C. Then &(z) = (z, {(2)) for z€ A, where { has an iso-
lated zero at z,. Using ~ for “approximately equal to”, we have:

[o~] o= emo=| av=-{ ev==] v,
v V—A =4 1—a A—a giaa)

where this last integral is taken over the unit sphere S. in E. and
{ is considered as a mapping of 6A into S.. Thus

PNE

and, letting A shrink to z,, we get (4.34).
To prove (4.33), it will thus suffice to show that:

(4.35) —+|S. is the normalized volume element.

We shall prove (4.35) from the structure equations in the hermitian
geometry of E — V.

Let then E — V be an hermitian vector bundle and suppose
that we have an exact sequence

(4.36) 0 S E Q—0

of holomorphic bundles. Then S and Q have each induced metrics
with their respective hermitian geometries; the relevant formulas
are discussed in §1 (d). We let ® be the curvature in E and @ the
curvature in E = S @ Q. As C~bundles, E = E so that ® and 6
are both curvatures in the same C= complex vector bundle. By
Weil’s theorem (4.22), if Pe1, is any invariant polynomial (cf. §4
(b)), we have

(4.37) P(®) — P©) = dop ,

where @ is given in the proof of (4.22). We shall prove Bott and
Chern’s refinement [3] of Weil’s theorem by showing that
(4.38) P(8) — P(©) = ddvy ,
where ¢ is a form of type (¢ — 1, ¢ — 1) which may be given ex-
plicitly. Our proof is a continuation of Weil’s proof of (4.37) and
is somewhat different from the proof in [3].

Let then B — V be the principal bundle of unitary frames f =

(e, +-+,e,) for E—V such that ¢, ---, ¢, is a frame for S—V
(cf. §1 (e)). We write the connexion form for E as
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(611 612

0 =

821 622

where 6,, is an s X s matrix giving the induced connexion in §, 6,,
gives the induced connexion in Q, 6,,€ A** (Hom (8, Q)) gives the

second fundamental formof Sin E, and 6,, = —*0,, € A"(Hom(Q,S)).
Then

(4.39) ©@=do+0A0,
and

(4.40) O=di+ N0
where

% 6, 0
6 o ( 11
0 622
is the metric connexion in S §5 Q.
Write § = 6 + @ where

0 —b,
® :(_‘6& 0 )
and let
) 0 0
7 :(—fhl 0)
be the (1, 0) part of ¢,
i 0 —46,
v 2(0 0 )

the (0, 1) part. Then ¢ = @' + ¢" and
Do =dop + [0, @]

i ( 0 _dau ) + (6“ 619)( 0 _612)
- _daﬂ 0 521 922 = '921 0
+ 0 e 612 811 912)
- 921 0 621 822
( 0 - ®12 ( T 312621 0 )
= +2 :
—®21 0 0 — 621612

We collect this equation and the ones resulting from it by using
decomposition into type as follows:
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0 = ®12 ( e 012921 0
4.41 Do = 2 ;
( ) # ( = G)n 0 ) * 0 - 021612)
0 -0, 0 0
DF - Df " = 2
? & (0 0 ) N (0 = 621912)
(4.42) ( 0 0 —646, O
DH = Drr r — 2
¥ -e, 0) B ( 0 0)

D'@’ —_ D?f¢l’f — 0 .

Let 6, = 0 + tp be the linear 1-parameter family of connexions
with 6, = 6, §, = . Then we have

tz
B, =0 + tDp + o,
(4.43) { ‘ ?+5lo ol
8. = Do + t[p, ¢] .
Here, as opposed to the proof of (4.22), D is always taken with
respect to the connexion #. We claim that (cf. the proof of (4.22)
(4.44) P@®,, -+, 8)=d{P@®, -, 9, -,0,),
where P = dP/dt. In fact, P@®, 0, = Y P®,-,0,---,0,) =
E P(®n *s D(P + t[g’! ?], " @1); while
P(e,, -, Do + t[p, ¢], -, ,)
= _"Z:P('t t[CP, G)&]’ *y P ') + P(@u i) D‘;’; -, 9,)
= EP('! De,, @)+ P(9,, Do, -, ®,)
= dP(f.: Py 0y ®t)
Since D@; - d@; + [6,@3] = d®g + [6“ e:] - [9: = 9, ®:] = _t[@r @s]
because D,®, = 0.
Taking types in (4.44), we obtain
P@)=0{T P@®, -, 9" -, 0,)
+ {3 P@, ¢, +,0,}.
10

Let £ = (0 0) where 1 is an s X s unit matrix (¢ is the orthogonal
projection on S). We set

(4.45)

(446) Q= 2o (T PO, .4+, 0) = D P@, .4, -, O)

and assert that
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@, is a smooth family of C= forms on V and
(4.47) Q. = 2{(3_ P(®,, -, 9", -, ®,)}
aQ: = _2{2 P(®n ) (P'a 'y ®t)} .
Combining (4.47) and (4.45) gives P(®,) = 99Q, or
(4.48) P@®) - P@®) = aa‘{S’Q.d:} .
Proof of (4.47). We have
11 1 1 611 it — ¥
pe=t01= (" oo o) =0 oo o) =lo. o)
a4, 0,/\0 0 0 0/\6, 6, a,, 0

which gives

Pl
Now
3P(®h *y ‘E; '!@t)
= 3, P(+; D@y~ &, ) + P(B; =, D"E, +, 8)
= =Y P(-,tlp", 8], -, & )+ PO, -, 9", -,0)
= P(@)n -, tlp", €], -, ®e) + P(8, -, 9", -, 8)
=1 -8)P@, -, 9", 0,)
since [@”, ] = —@"”. This gives
(4.49) o—L _(P@, .t -, 0) =P@O, 9", -,0).

11—t

Since P(®,, -, &, -, 0,) is a polynomial in ¢ whgse coefficients are C=
forms on V, and since P(O,, -, &, -,0,) = P(@, -, &, -, ®) to prove
(4.47) (for 5) from (4.49) we must show that 3P(®, -, £, @) = 0.
Letting D be cwariﬂant differentiation with respect to #, we have
D" =3,D"8 = 0,D"¢ = 0. Thus
§P(@, 3 E$ 't@))
= EP('! -ﬁ"é! "1 'Er ') + P(@, " ﬁng’ bt é)
=0.
This proves (4.47) for d; the proof for d is similar.
ProOOF OF (4.35.) What we have to show is this.

(4.50) Let E — V be an hermitian vector bundle with fiber C*
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and with a non-vanishing section ¢. Let w be the form of type
(n, n) on V giving ¢,(E) computed from the curvature in E. Then
® = d+r, where  gives the negative volume element on the unit
spheres S, C E..

To prove (4.35) from (4.50), we look at 7=*E —E where E =
E — {0} is the bundle of non-zero vectors in E. There is a ecanonical
section ¢ of ?T*E-—*f], and (4.50) applied to this situation gives
(4.35).

PROOF OF (4.50). Let SCE be the bundle generated by g so that
we have an exact sequence (4.36) with curvatures O, Og, ©,. For
a ¢ % q matrix @, we set ¢(®) = [(1/272)]° det @; then, by (4.38),

(4.51) ¢(Og) = ¢(Bg)c(Og) + 007 ,
and

(4.52) ¢(Og) = dy

since 8 is trivial. Combining (4.51) and (4.52) gives
(4.53) ¢(Og) = d{ne(©y) + 97} = dvr

where + = 7¢(0g) + dv. We want to compute v | S., and, in so
doing, we may ignore all terms 6,,, which are horizontal forms.
Using the frames in the proof of (4.38), and using “=" to mean
modulo terms 0,,”, we need to show that

4,54 o= _( : . )“ . 6116 191' Le e 6:@;01?1} .
( ) 4 271 (n—l)I{ e

Now, by (4.44)
(4.54) 3y = S 2 P®©, -9, -, 0)dt,

1

a
where P is the invariant polynomial corresponding to ¢(0). Using
(4.41) and (4.43),

0, = tDgp + f [p, 9] = (—t + -tzi)[% Pl .
Thus
EP(G:: 2Py 7y 0,) = (_t + t2- )”_1213(-‘ [(P! ‘PI! *y Py :)
= (t - i)n_lp(‘?? "y ["P‘ [(P, rp]], iy cp)
0
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since [, [p, ]] = 0. Thus we obtain the equation:

(4.55) ¥ = 7¢(0y) .
Now, by (4.43) at ¢t = 1,

(65 0 ) (612621 0 )
0, = = .
0 O, 0 0,,6.

Also, 6, is defined on V (using ¢) and df, = —6.0, so that
= —(1/2m2)8,, and

. — X A"
(45b) 7/16(@(.1) el (__ZQT’L) 91: det (621612) .
But det (6,6,,) = (n — 1)! 6..60,,0,6, --- 6,.0,, which, using (4.56)
and (4.55), gives (4.54).

Remarks. (a) Let “~7 denote “congruent modulo commuta-
tors” (so that, e.g., AB ~ BA). Referring to (4.43) we have

(4.57) 6, ~ Do,

(4.58) g~ D’D”(—;—) :

(Proof. Dp = (D' + D" = (D' + D"YD" — D) = (D'D" —
D"D"E. Now D*¢ = (D'D" + D"D')s =[0,&] ~0sothat —D"D'é ~
D'D"E)) Equation (4.57) which holds for general vector bundles,
is the basis for Weil’s theorem (4.37); it says that, modulo commu-
tators (which essentially give zero in an invariant polynomial), the
variation in O, is an exact form. Similarly, (4.58), which holds for
hermitian vector bundles, is the basis for (4.38).

(b) Referring to (4.38), suppose that P(0) is an invariant poly-
nomial of degree q. Then we claim that, in (4.38),

s P 1 g —1\/s+ 1t

(4.59) i qE’*'”(z) (2s+t)(s+2( s )
x P(0; 6; [, #1; )
T s
where
P(@;é;IWI;E)zP(@,'--,é,é,---,é,[@,@],'H,[QD,QZJ},E)
?‘ s t s

and
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(0 ©:
N (@2. 0 ) '

Proof. By (4.46), Q, = 2q/(1 — ¢}{P(®,, ---,0,,£) — P(®, ---,
8, 8). Now 6, = 6 +® where ® = —(1-t)Dp—{(1-t*)/2}[p, p] =

(1 - {8 + (1 - #/2)[p, ]}, by (4.41) since Dp = —& — [, ],
Thus

Q, = I2qt{P(@+¢’, ---,@—I—(D,E)—P(@, ,@,E}}

- 2R (T )r6. - 6,0.0)

0 (o 3) (7 V)t - 00P@:8: 1, g1 0)

m

and

Lo 1A 1 g —1\/ 1 . % . }

0= 2 {2 (5 () ) )78 8 12210

= (4.59) .

When ¢ = 1, P(0) is a multiple of Trace © and Tr©® = Tr &
since Tr[p, @] = 0 = Tr®. When ¢ = 2, there are only two terms
(t=0,s=1and t=1,5=0) in (4.59) and v = P([p, 9], &) +
4P(®, ¢). If r = 2 and P(B) = det®, then + = P([o, 9], £) = 6,6,,,
which means that
@11 - 621612 0

0 822 + 921512

an equation which may be verified directly.

(4.60) det(g” 9‘2)—de’c(

21 22

) = 35(021618) '

(¢) Suppose now that, in the exact sequence (4.36), S has fibre
dimension one, E has fibre C", and P(0) = det ©. Then ¥ given by
(4.59) may be written as

“‘I}‘:"}?O_!- TER +"4""r—i

where ., is homogeneous of degree ¢ in terms 00,5 Recall that,
using natural frames,

0 613"'611-
Gy 0«4+ 0
p== . .
6,, 0 ---0
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and
E;ﬂ Gy, 0 -+ 0
0 921’912 s 82161-
¢, @] =2 . . :
0 99—1612 s ﬁrlﬁlr
Now P(A4,,---,A,) is the polarized determinant function and, since
0 Q,---0, 1 0---0
2 0, 0 ---0 0
e=|. g = and £ =] .
6, 0 ---0 0 -0

we see that P(6; ®; [», @l; £)=0if t > 0. Thus

N & R

Let

321612 i 621617 ezz i 92:-
o= : ) and 7 = :

61-1‘912 e 0,40, @,-2 6,,
(= 0g). Then P(8; [p, @]; &) = 2°R(y + 7, 7), where R is the poly-

8 r—a—1 &
nomial obtained by polarizing the determinant function on (» — 1) x
(r — 1) matrices. It is then clear that 4 = 4, + -+ + +r,_, where

¥, = N R(7,7), the \, being suitable positive constants. This gives:

q
(4.61) In case S has fibre dimension one, we have

¢.(Bg) — €,(8g)e,_(Og) = 00(vr, + =+ + ¥,_,)
where

. c
(4.62) Ve = iy 2 S8R Felinay ++* Oegiciay

X 9,91:(31: monie @a,_q_lzwr_q_]a

and where the summation in (4.62) is over permutations 7 of
(2 --- 7) into disjoint sets (a, --- «,), (B, --- B,_,_.) of increasing
indices. In particular,

(4-63) Yoy = (T:;:'arfﬁnglz ree 8,0, .
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5. Numerically and arithmetically positive bundles

(a) Positive forms and cohomology classes. Let V be a com-
plex manifold and w a differential form of type (g, ¢) in an open set
UcV. We say that w is positive, written w > 0, if @ = 0 and if
there exist (g, 0) forms @, such that

5.1) o= (-1 T (V_L)(T, 0. A5 -

The signs are such that, in C¢,

(&1)“9?”(_'/;1)"(@1 A or AdEAAEA -+ AdE)

=d ANdy' A - Ad2 A dy? .

The symbol @ = 0 has the obvious meaning. If @ = 0, @ = 0, then
wAp=0andw+ o = 0if degw = .

We let A"¢ be the vector space of C= (g, q¢) forms on V and
A* =37 A*. A form we A is positive if locally @ > 0. The
space P? C A?? of positive (g, g) forms is a convex cone.

If w=0in an open set UcV and Sc U is a ¢g-dimensional

analytic set, then | @ = 0. If Zc Uis a subvariety, thenw|Z =0.

Consider now Hgf’“( V') and let @ be a cohomology class which
is real; @ = @. Then we write @ > 0 if {w, > > 0 for all
o€ H,(V,Z) where ¢ is the cycle carried by an irreducible sub-
variety of dimension ¢ lying in V. Obviously we have:

(5.2) Let we H*(V) and suppose w € A** is a closed (g, q)
form representing the cohomology class w. Thenw > 0 if w > 0
andw=0if w = 0.

(b) The coneof positive polynomials and proof of Theorem D.
Let V be a compact, complex manifold and E— V a holomorphic
vector bundle with Chern classes ¢, -+, ¢,. For a g-tuple I =
(% ==, %), weset [I|=19,4+---+4,and ¢, =¢; ---¢; € HV(V,Z).
We let R = @,z R, be the graded ring of polynomials P = }_ p,¢,
in ¢,, -+, ¢, with rational coefficients; clearly R,-R, C R,.,. We
want to define the cone of positive polynomials TI = @,., I1,; II
will be a convex graded cone (over Q) with II.TI, c I, ,. Then we

will prove
If E— Vis ample and PeIl, (¢ < dim V), then

(5-3) P(Cu R cr) > 0 in HN( V! Q) %
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This is Theorem D. It should remain true when E— V is
positive, but we can only prove that certain PeIl give positive
cohomology classes (cf. the appendix to 5(b) below).

To deseribe II, we follow Hirzebruch [15] and write formally
1+et+ -+t =1+ 1L+ (1+ 1.

Then R = R* where R* is the ring of polynomials
(5.4) {in7,, ++-,v, which are invariant under the permu-
tation group .

We remark that v, = v;, --- v;, now has weight g, so that R} con-
sists of all invariant polynomials p(v) = 32, ......, P:7s-

We now let B = (B,,) be a variable r x » matrix (1 < 0,0 =)
and v, = B,,. Then

The ring R* of polynomialsin v,, - -+, 7,, invariant

under the permutation group, is isomorphie to the

5.5
(5:3) ring I of polynomials in B,, invariant under B —

MBM-(M e GL(r)) .

Proor. I is the ring of polynomials P(B) satisfying
P(MBM™) = P(BY(M e GL(r)). The mapping I — R* is given by
P(B) — P(7) where

v, O
1 )
0 Tl

(i.e., 7, = B,,, B,, = 0 for p # g). To see that this makes sense,
we let h be the vector space of diagonal matrices and N =
{MeGL(r): MhM' ch}. Then N> H where H is the group of
non-singular diagonal matrices; H acts trivially on h (i.e.,
MyM—* = for Me H) and N/H = W is the permutation group
acting on h. Consequently, if Pel, then P(v) is a polynomial in
¥,, +++, 7, invariant under v, — 7., where z € S(r), S(r) being the
permutation group on r symbols. Thus the ring homomorphism
I — R* is well-defined.

If P(B) eIand P(v) =0, then P(B) = 0 for any matrix B which
can be diagonalized. This implies that P =0in], and so [ —R* is
injective.

Similarly, if P(v) e R* and B is diagonalizable, then we may
set P(B) = P(MBM™) where MBM~' ¢ h. Thisis well-defined since
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P(7) is invariant under N. By continuity, we may then define P(B)
for all B and so I — R* is onto, which proves (5.5).

The gist of (5.4) and (5.5) is that the graded ring I = @,;, I,
of invariant polynomials (cf. 4 (b)) gives isomorphically the ring R
of polynomials in the Chern classes. A direct mapping W:I—R
is the Weil homomorphism (4.20).

We now describe those polynomials P(B) eI which will be
positive in R. As motivation for this, we first observe that any
P(B) €1, can be written as

(5-6) P(B) = E{P=[P}s’t";ﬁq} pp.:,rBszPrm e BP:(«}P.—(«} -
T.TES(Q

Proor. If we let I(B) = 1 and, for q¢ = 1,
(5'7) IH'(B) = Efiﬁi_‘{"_“:loq sgn ;TBPIF':U] Lk B#ql”r{q] 1
then I is just the ring of polynomials in I(B), ---, I(B). This is
because of (5.5) and the fact that I(v) = 2 eicinsog Yo+, 18
the ¢ elementary symmetric function of v, ---,~,. Note that
I(B) eI, because
(5.8) det (B + tI) = Yl B,

Since

1 2
I(B) = (‘Q—I) E‘:i{gé}:{'pql Sgn TSN TBo 0.1y *** B gorqq)

it is clear that any P(B) €1, is of the form (5.6). To define II,, we
only need to say which polynomials (5.6) are to be positive.

5.9 Definition. P(B)el, is positive if
(5.10) P(B) = E{p=[p1,---.ﬁq$ ;\'p,:'Q#v:.'.::ap..f..-Bf’:mﬂrm o Bﬁ;mp,m

sires
where 2, ; = 0.
Remarks. Using (5.6), P(B) > 0 if
(5.11) Dosere = 23, Mo, 0.i,20p.5.- -
Observe that if P(B) € II,, then

P(7) = E P=(P1-‘",Pq} R‘ﬁ;:‘ J q'.faﬂ |z TP;[” WS ’TP:‘-(II'J
{;este_}

El

el ODR DRI AP L ST

so that, numerically, P(v)>0 if 7 is real and positive (i.e., 7,>0).
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More generally, we have
(5.12) If B=‘Band B = 0, then P(B) > 0 if PeTl, .

Proor. We may write B = A'A for some matrix 4 = (A5).
Then B,, = ), Ac A~ and
P(B) = P(A'A)
= E{m:‘ }'ﬂ.:‘qﬂ.x.jﬁp,.‘iA;,l-.mAglm <o Age "&“q

Paiqiftozig)
= E{P.J‘.a K#.jQp.x—‘,jqp,r—le;‘:{” s A;;‘”Ag;“’ “ee A;’:;tw
x'f
=2 2p.i Moi | Qo s(A) [

where

(5.13) Qorai = D e Qoo AGTY 0 AJTO
From the definition it is clear that
(5.14) II, is a convex cone and ILII, I, .

Roughly speaking, P(B)e€]l, is positive if, upon writing B =
A'A,
P(B) =3, QA
where @,(A) is a polynomial of degree ¢ in A.

Examples of Positive Polynomials. (i) The ¢* Chern class
¢, = ):pﬁ___% Yo, *** Yo, corresponds to the polynomial

1 2
I'(B) = (F) E?:K.T S5gn @ sgn rB-":(l]l"‘.-'f]_l AR BP:[Q]P:I’?? "

In (5.10) we then take A, ; = (1/¢!)* and ¢, ;. = sgn 7. Thus E;250

and, in fact, ¢; = ¢; --- ¢;, > 0. This gives
(5.15) Any polynomial ), p,¢; with p, = 0 is positive .

(i) If E— V is a line bundle with Chern class w, then II, are
the classes Aw? with » > 0.

(iii) Consider the polynomial P,(v) = Eaﬁ___ﬂr:q PECIRR R ik
Obviously P,(7) is invariant under S(g) and so P,(v) e R7. We claim
(5.16) P7) = T atortaymg Ve oo 92
is positive.

PROOF. Let p=(p,, ---, p,) be a g-tuple where the p; need not
be distinct. We let £&(p) be the number of permutations x € S(q)
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which leave p invariant; i.e. which satisfy o, = o,,, - - WS
If the p; are distinct, then £(0) = 1; if the p; are all equal, then
&(0) = q!. It is clear that q!/é(p) is the number of distinct g- tuples
g = (o, «++, d,) which are rearrangements of p. Thus we find

o oz 0 1
E“;“’"""“’r:“ eyt = ? Eﬂ=(ﬁ1----.9ql 'E(p)yh ter 7?0 ’

which gives us that

1 2
(5.17) Po(r) = (?) E::tsﬁlq'll"'”v] E(P)’Yf’:[n == Vostar «
Consider now
1 £
(5-18] PG(B} = (?!") E),:,,- BF’:[::P:u: S Bﬂzmr’_—{qu -
If
Bi:
B = : .
0 Bf!'

is diagonal, then

Py(B) = ( q! ) Ep ) ]‘E 5 == B PziPe; T 7T BI‘”:mPrm

() =r(q)

= (_ql_') En,: E(lo)BP:mP.—m e B!’sz’:{q] = Py(7),

where v, = B,, and P,(7) is given by (5.17) above. Thus we need
to show that P,(B) is invariant and positive. For the latter asser-
tion, we simply take A, = (1/¢!)* and ¢, = 1 in (5.10).

To see that P,(B) is invariant, we set B = ACA~! so that

P(ACA™)

1 =
(?) CR IR P ey “1 ;(A Bl ST AP:Eq'“qC“GTe(A 1)71"’*“1’
_ (-‘_)
- o
= (_1_)

q!

= P,(C} .

1
RN {E (47); —Imf’1 fraz—lyy *°°
—1ig;fq AP‘q":"‘IWJCﬂl?z s CﬂqT.,}

Tl e §Y =l Vi
@75, T ﬂ'r—lu\ Gﬂ:"‘l[mca;n Caqrq

(A7),
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This proves that P,(B) is invariant and completes the proof of

(5.16).
We list here the first few polynomials P,(v).
Pl(r)‘) = ¢
(5.19) Py(7) = ¢ — ¢,

Pi7) = ¢l — 2¢.6, + ¢
Remark, For later interpretation, we record here a fact
proved in [11, Lem. A, 1, p. 405]. Let E — V be a holomorphie
bundle with fibre C", P(E*) —~,V the associated projective bundle,
L — P(E*) the standard line bundle, and w ¢ H}P(E*), Z) the
characteristic class of L. Recall that there is defined the integra-
tion over the fibre ([3]):
(5'20} ﬁ*: H2N+Y—1](P(E*)) R HZQ’(V} s
which satisfies
(6.21) wm(UT =(@EHUY (EecH*(P(EY),neH*(V)).
(5.22) PROPOSITION. 7. (@' ') = P,(v)e H*(V, Z).
(iv) Let P(B)= E_a.:.: qzij:BP:mPrm s
dependent of p. Then
P(ACA™) = Ea.r.p.r.r q=§-’AI":m“1 e A!”:{q:“q(A_l)?i-":m e
(A"1)‘"9Prtq:.0“171 s I
= Ea.r,p,:.r q=_167_](A_l)?‘:mv"lAPx“m] e
(A_l)frtel"’qAan:fw'C“1?'1 e Caq.r?
= Ve (1010500 C o,y -+ C
= Em.x,.— q‘afc“l“:_lrtil e C“q‘*:r_lrw}
= Ep,:.f q“aTC“:rll}“z_lrx{lJ o C“’ﬂ[o]“r‘lf:iq! »
Thus we will have P(ACA™") = P(C) if q. = ¢.-1.. for , v € S(q).
In other words:
P(B) — Eﬂ.:..— Q=§:mapm] e B.Oxiq;ﬂ_-[qg. is an in-
variant polynomial=gq.=g¢q...”" for all 7,7 ¢ S(q) .

S where ¢. is in-

gl

%giq

(5.22) {

This allows us essentially to determine the positive polynomi-
als of low degree. For example, when ¢ = 2 = », S(¢q) has two
elements ¢, f (e is (1,2) — (1, 2) and fis (1, 2) —(2,1)). We let
q. = a and ¢, = B and, supposing that e, B are real (and rational),
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we have P(B)=(a+B){B.B.,+ BuBu}+2(a*+ 8°)B,,By, + 4a8B,,B,,.
Thus P(7) = (@ +B){ri+ 277 + 7} + 2{a* + 88 — (@ + By, =
(@ + B)cl — 4aBey; i.e.,

(5.23) P(7) = (a + B)'ci — 4aBe,

1s the general positive polynomial when ¢ = 2 = »,

If & + B = 0 (this is essentially the case ¢, = sgn 7 in example
(i) above), then P(v) = pc, where gt > 0. If a = B, then P(7) =
(et — ¢;) where g2 > 0, and this is essentially (iii) above.

Assume now that @ + 8+ 0. Then P(v) = ¢!— {4afS/(a+ B)e,.
Now {4aB/(a + B)*} < 1 so that P(y) = (¢} — ;) + e, where ¢ =0,
Thus I1, is generated by ¢, and ¢! — e,.

PRrROOF OoF THEOREM D. Suppose that E—V is ample and
P(B) eIl,. It will suffice to find a metric in E — V with curvature
@ such that

(—1-,-)20(@) >0
271
in the sense of 5(a). Of course we take in E the metric given by
the global sections, which is the same as the metric induced in E
from the universal bundle over the grassmannian (cf. § 1(f)).

Given 2z,€ V, we can find a loeal holomorphic frame f(z) =
(ex2), -+, e,(2)) for E— V and a matrix 4 — (A:(2)) of (1, 0) forms
such that f(z,) is unitary and

(5.24) Bp(z) = Y, AN(z)A%z,) .
This follows from (2.24),
Let P(B) be given by (5.10). Then

PO) = Tiprs NoiunTonsAbho iy, -+ Aft o Al
a O‘q

m{g) T f g}
17me

= (_l)[vw—llm E Np,jq,r—l,p,jfjf—l,p,jA;:m e

AS 0 A% o0t 42510
“q 1 g

= (—1)lee-nr EMM_ Ao, i00,50 A\ o ia
where 6,;.= ). 91,0, ;A5F0 < -t Aj:@ is a form of type (g, 0).
This proves that (1/271)'P(®) = 0; we need only show that some
bp,;.4(2) = 0.

Changing notation slightly, let Opa = 3. Q. pAsrw -2t Ajr@,
If all 6,, = 0, then we have

(5.25) Do GpAsr o A0 = 0
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for all p, @, and j, < --- < j, where A% = 2 Asidz.

We need now to interpret the matrices A2, This is given in
Section 2 (f) where it is shown that: In terms of the holomorphic
frame f(z) above (with f(z,) unitary), we may choose a basis s'(2),
cer, 8™(2) = (+++ $%(z) - - -) for the sections of E — ¥V which vanish
at z, such that

(5.26) s%(z) = Em. Ag;z’e, + (terms of order 2) .

Since E — V is ample, the forms }7 . As,e, ® d2’ span E, ® T:.
We may choose the sections s* such that the matrix (A4%,)ic.<ra
is non-singular and A;; = 0 for @ > rn. Relabeling, we write
sM(2)=3 . Asiz’e,+(- - ) where (A3}) is non-singular and ds*(z,) =
0 for @ > rn. Then (5.25) becomes:

(5.27) Ew q:_,}A;f}i“‘“” i A::}.{;t:m =2/

Multiplying (5.27) on the right by (A3 - .- (A™"):2is and sum-
ming on gy, «++, 0, k,, +--, k,, we get

(5.28) I Al Fa el P

forallp,7,i = (4, *++, %), and j, < --- <j,. From (5.28) we get
g.,, = 0, a contradiction which completes the proof of Theorem D.

Remarks. As mentioned below (5.3), it should be the case that
P(e, =++,¢,) >0 if E—V is positive and PcIl,. In particular,
we should be able to prove:

e, >0

5.29
( ) qu(cl, cee,e) >0, where P, is given by (5.16) .

Now in the Appendix to 5(b), we show that ¢, > 0 by proving that
(1/271)*I(@) > 0 if E— V is positive. It is probably true that
(1/274)*I,(®) > 0, but this will require a better understanding of
the algebraic properties of the curvature form @.

If E — V is spanned by its sections, then ¢, = 0. Using (3.51),
let us prove:

ij E — V is spanned by its sections, if E -V
(5.30) 4is positive, and if Z, C V is an algebraic sub-
tmanifold., then<c,, Z> > 0.

Proor. Using a standard result, we have over Z an exact
sequence

0—S——E|Z—Q—0
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where S is a trivial bundle with fibre C"~*. Now E| Z is positive
and spanned by its sections; by (3.6) the same is true for Q. Since
¢(E|Z) = c(Q) and ¢,: H(Z) — H*(Z) is an isomorphism (by
(3.51)), it follows that <¢,, Z> > 0 as required.

A possible alternative approach to (5.29) is to split E into a
sum of line bundles (certainly, if @ is diagonal, then (5.29) holds).
We shall show that this method gives Pe,, ---,¢,) > 0, but not
¢, > 0.

For simplicity, suppose that E — V has fibre C* and consider
the exact sequence

(5.31) 0— F—a%E)— L——0

over P(E*). Here F. ., ={r € E.: {5,\)> =0} whereze V,6 e P(E}).
We choose unitary frames f = (e,, e,) for n*(E) such that ¢, € F and
e, € L (cf. 2(e)). Then, if
(811 ®12)
@ e
E')21 82'3
is the curvature for E (and also 7*(E)), the curvature in F is @p =
©,, — 0 A0 and the curvature in L is O, =0,+ 0NE06. Here
¢ € A" (Hom (F, L)) is the 2™ fundamental form of F in 7*(E) (cf.
2 (d)).
It is easy to check that 6 | P(E}) is non-zero, so that ®,, +
6 A 8> 0on P(E*) and L — P(E*) is positive (cf. 2(g)).
We now prove that P,(v) > 0in H*(V, Z), where P,(7)is given

by (5.16). Let ZC V be a g-dimensional algebraic subvariety and
Z, = n(Z)C P(E*). Then, by (5.22),
<Pq(cn L Z> = <7r$wq+s_-1! 'Z> = <wr+q_1v Z,> >0
since @ > 0 on P(E*).
If we try to use this argument to show that, e.g., ¢, >0, we
have {¢,, Z) = {m*c,w, Z_) so that we need 7*c,@ > 0. By (5.31),
m*c, = ¢, (F)e(L), so we want

®F®L@L - (®22 = 96_}(@11 + 65)(811 + 95)

to be positive. The relevant term in this product is (20,,0,,— ©7,)44,
which however need not be positive.

Here we use n*c,w because 7, (1*c,0) = ¢, (by (5.21)). Any
7€ HYP(E")) with 7,7 = ¢, would work equally well (e.g., T =
P,(7) = m (7*(c} — e,)w)); to prove ¢, > 0 by this method we need
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to choose the class 7 correctly and then make a judicious choice of
a differential form representing 7. This we are so far unable to do.

Appendix to §5. (b). We shall prove.
(Let E—V be a positive holomorphic bundle
| with fibre C*. Then ¢(E) > 0.

Proor. It will suffice to assume that dim V = 2 because, if
E —V is a positive bundle according to (0.1) and if Zc V is an
algebraic subvariety, then E | Z is positive.

By assumption, there is a metric in E — V with curvature @
such that the form

@(E, 7?) = Ep.a’.i,j ®:ii Eagpj?iﬁf

(1 =p,0,1,5 = 2) is positive. Let ® = (1/277)*det ® be the 2
Chern class of E— V according to (4.26). We shall prove that ®>0.

Write
O — (@u ®12) .
®21 ®22

(5.32)

Then, using at a point a unitary frame for E—V, we have
©+'®=0. This gives ®,+8,,= 0,0, + 6, =0, and @, + &, = 0.
Since ®,, > 0, we may choose a co-frame @', @* for V such that
Ou =0'N\NO + @*A\@&. Since ®, > 0, by a unitary change of
@', ®® we may assume that ®,, = aw'@"' + Bw’@* where a, 8 > 0
(we omit the “A” symbol). Thus
" '@ + WG 6
- -0 aw'®' + Lw'd*
where 8 = Ei,j kgjwi(i_)j. Letting @ = O'@W'W?,
dEt ® = (a + 48 - huﬁzz - ksz}?-'u + hxz};m + kZIEZI)w .
Now, by the Schwarz inequality, A, /is + hohy < (| |* + | hw'), SO
that:

(6.33) det®@=(a— [hul + B — |haol* + | B[ + | by [0 .
From (5.33), it will suffice to prove @ > | A, >, B > | kx|’
i
For £ = (g) we let @(§) = Yo, ©2,,65". We have used that

@((1}) =8, > 0, @(‘1}) =0, > 0. Now
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pY e
0<@(1)=(~)}|M2+®;x+®,x+®§

B (| AP+ MRy + Ny @ hoh + Ry )
- Hodd B R e Rl S T b8

Write A = 2 + iy and f(z,y) = |\ [* + Nhy, + Ny, +a; then f(z,y) >0
for all z,y. Seeking a minimum for f(z,y), we set 3f/ox(x,y) =
0, 3f/dy(x,y) = 0 and find x = —(h,, — %,,/2), y = S En)/Z},
and A = —k,,. At this point, 0 < f(A\) = a@ — |k, > so that |k, [*< «,
|k [* < B as desired.
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