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In his well-known paper [10], Kodaira introduced the concept of a positive
line bundle over a compact Kihler manifold. He then proved a ‘vanishing
theorem” for the cohomology groups of the associated coherent analytic sheaf
and, in [11] Kodaira used this vanishing theorem to show that, if E is a positive
line bundle, then some power E* = E @ -+ @ E (u times) has “sufficiently
many sections.” The converse is also true: if E is ample, then E is positive.

Now, although in [14] and [13] there was some mention of a definition of
positivity for general holomorphic vector bundles, it seems that there has never
been any explicit attempt to extend Kodaira’s results just mentioned. As a
possible exception to this, we mention Grauert’s paper [6] in which he intro-
duced the notion of a weakly positive holomorphic vector bundle.

On the other hand, there has recently been some attention directed to a
problem of Nirenberg and Spencer ([15] and [16]), the so-called rigidity problem
for holomorphic embeddings. Let X C W be a germ of a holomorphic embedding
with normal bundle N. Then Nirenberg and Spencer showed that this germ of
embedding is formally rigid whenever N is either positive or negative; in the
positive case, uniqueness holds. In [6], Grauert established the actual (z.e.
convergent) rigidity theorem when N is weakly negative by his definition.
However, Hironaka has given a counter-example to the actual rigidity in
case N is positive in some sense which has not yet been determined. It
then seemed that, in order to further discuss the rigidity and related problems,
it was necessary to have clearly in mind what is meant by a positive and/or
ample holomorphic vector bundle. The motivation for this paper was to clarify
these points for utilization in a companion manuscript on the extension and
rigidity problems for positive embeddings.

‘We now briefly discuss the main points which we hope to make. Recall that a
holomorphic line bundle E is said to be positive if a certain Hermitian form
O(%, £) is positive definite, where ® involves the curvature of E and £ is an
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element of E ) T*. Since E is a line bundle, £ e E Q T* may always be as-
sumed to be decomposable; that is, of the form ¢ = 7 Q) ¢ where n ¢ E and ¢ ¢ T*.
For a general vector bundle we wish to have a Hermitian form @(%, £),
t ¢ E® T* involving the curvature in E which defines positivity and is such
that the following requirements are met:

(i) For line bundles, we obtain Kodaira’s original definition;

(ii) A suitable vanishing theorem holds;

(iii) If E is very positive, it has sufficiently many sections in some reasonable
sense;

(iv) If E has sufficiently many sections, it is positive;

(v) If E is sufficiently positive, then a certain elliptic inequality (§6) holds;
and

(vi) Certain standard bundles, such as T(P,), should be positive.

One may easily see by examples that none of the existing definitions of posi-
tivity will do, and, in fact, the above six conditions are more or less inconsistent.
What we shall do then is to introduce two Hermitian forms © and ®; we say
that E is weakly positive if ©(%, &) is positive for decomposable tensors ¢ =
7@ ¢ ¢ EQ T* and we define E to be positive if ® (&, £) is positive definite on
all tensors. For line bundles, weakly positive = positive. The condition of weak
positivity is geometric and easy to check in examples, but (ii) and (v) do not
hold. On the other hand, it turns out that the condition of positivity is alge-
braic and not easy to verify, but positive bundles have the desirable properties
(i), (ii), and (v).

The situation is reminiscent of Riemannian geometry where, for Rieman-
nian manifolds of dimension 2n > 2, one tries to draw conclusions about poly-
nomials in the curvature (all tensors) from information on the sectional curva-
tures (decomposable tensors). This problem is in an unsatisfactory state. It is
then perhaps of some interest that we are able to prove: If E is weakly posi-
tive, then, for u sufficiently large, there exists a metric in E* such that the as-
sociated curvature form @*(¢, £) is positive definite. (If E is a line bundle and
E* is positive, then E is positive.) The way we do this is by means of the auxil-
iarly motions of ample and sufficiently ample. For line bundles, ample = suffi-
ciently ample. Here again, the condition of ampleness is geometric and easy
to check; furthermore, an ample bundle is weakly positive. On the other hand,
sufficiently ample bundles are positive, but the condition is clumsy to verify.
In §4 we prove that, if E is weakly positive, then for u large, E* is sufficiently
ample.

We now list our notations. A holomorphic vector bundle E over a complex
manifold X will be written as E — X; E* is the dual bundle of E. The holo-
morphic tangent bundle of X is T, or T(X) if ambiguity is possible. The sheaf
of germs of holomorphic sections of E — X is generally denoted by Q(E); the
following are the exceptions; ® = Q(T): Q°(E) = QE Q A‘T*); and 0 is the
structure sheaf. We denote by %*'*(E) the sheaf of germs of C* E-valued forms
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of type (p, q); A”%(E) = H°(X, A”*(E)). All other notations are the standard
ones found in [9] or [17].

1. Hermitian differential geometry. Let X be a complex manifold and
E Z5 X a holomorphic vector bundle with fibre C". Associated to E there is a
unique holomorphic principal bundle P 2, X, with structure group GL(r, C)
acting on P on the right, such that

E=PX GL(r.c)Cr-

A point p in a fibre P, is a frame p = (e, , -+ , e,), which is by definition a
basis for the complex vector space E, .

If we let H(r) be the manifold of r X r Hermitian positive definite matrices,
then an Hermitian metric in E is given by C'* function h : P — H(r) such that
h(pg) = ‘gh(p)g (p ¢ P, g ¢ GL(r, C)). Indeed, h is defined by

(1'1) h(p)pa = (ep :ev) b= (el y ° yer);
h is positive definite and b = ‘A.

There is uniquely defined a matrix o = {w’,} of differential forms of type
(1, 0) on P which satisfies

(1.2 w(pg) = gu(p)g™",
and
(1.3) dh = oh + h's.

In fact, if we set w = h™' 9h, then w satisfies (1.2) and (1.3), and defines the
unique complex connexion in P such that the covariant differential Dh = 0.

If we let B C P be the sub-bundle of unitary frames, then we write «’,|B = w,,
and then w,, + @, = 0 (from (1.3), since dh = 0). The curvature form
® = {0,,] on B is given, according to the Cartan structure equation, by

(1.4) Opr = dwpe + D wpr A By
We also have '
(1.5) 0, +0,, = 0.
Let U C X be an open set with holomorphic coordinates z = (2, , - -« , 2,)

and suppose that we have an analytic isomorphism &~ '(U) =~ U X GL(r, C),
and subsequently #~*(U) = U X C’. The Hermitian metric is given by a C~
function b : U — H(r). From (1.2) it follows that w(z, g) = ¢™* g + ¢~'6(2)g,
where 6 = (6°,) is a matrix of (1, 0) forms in U. From (1.3) it follows that
9 = h™' ok, and from (1.4) it is immediate that @(z, g) = ¢ 'O(2)g where
O() = (99)(2).

For a C” section £ : U — E|U, the covariant differential D¢ is uniquely de-
fined by D¢ = D’¢ + 3¢ and

(1.6) D't = ot + 6 A &
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This formula is equally valid if ¢ is a differential form with values in E; in this
case we write 8 A £ = e(0)£. It then follows immediately that, for a germ £ in

A (E),
1.7 D% = (D' + aD")t = e(O),

where ¢e(@)t = O A &.
If we have in E a metric b with connexion w and curvature ©, then there is

induced in the dual bundle E* a metric A* = ‘A" with connexion w* = —‘w
and curvature
(1.8) 0* = —'0.

If, in another holomorphic vector bundle E’, we have a metric A’, then in
E ® E’ there is a metric b Q) A’ with connexion w @ 1’ + 1 Q) ' and curvature

(1.9) OR1I+1R6e,

where 1 and 1’ are the identity maps in E and E’ respectively.
Both of these statements are easy to check:

h*7'9r* = ‘B'(OR7Y) = —'(h7'9h), and (A Q A) IR Q A’)
=G7T QN NORQLN +hQW) =Rl + 1R ¢.
2. Hermitian metric in the base space. Suppose now that on the tangent
bundle T of X there is given an Hermitian metric. Denote by E**¢ the bundle

E® A ’T*® A °T* of E-valued (p, q) forms. There is defined the usual star
operators *: E>* — E"" "7 and in E?'? an inner product by

@.1 E mdX =" A b7,

where £, 7 e E2'%, his the Hermitian metric in E, , and dX is the volume element.
For compact X, there is defined on A”'*(E) an inner product by

@ ¥ = [ o, 0 ax.

X

In particular, the adjoint D of g is defined; ® : A***(E) — A*>***(E) and ©* = 0.
Furthermore, we have the local expression

(2.2 D = —*D'* = —xg*x — *e(f)*.

Denoting by [0 = D3 + 9D the Laplacian, [1: A”*(E) — A”*(E); and the null
space H”**(E) is the finite dimensional vector space of harmonic forms in A”"*(E);
1.e. the forms ¢ ¢ A”*?(E) which satisfy d¢ = 0 = De.

We recall the isomorphism

2.3) H™(E) =~ H'(X, @*(E),
where Q°(E) = Q(E®°). The mapping # : E** — E*"">'*~? defined locally by
(2.3) #& = *hE
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is complex antilinear and O0# = # 0. Thus H**(E) =~ H"*'""*(E*) and from
(2.3) we get the duality theorem

24 H(X, Q(E)) = H" (X, Q" YE").
In particular, when ¢ = 0, we have
(2.5) H'(X, ) = (X, oK @ E¥),

where K = A "T* is the canonical bundle.

3. Remarks on the definitions of a positive bundle. There are, to the writer’s
knowledge, three extant definitions of positivity for holomorphic vector bundles;
we shall now compare these. Let E = X be a holomorphic vector bundle, of
fibre dimension r, in which we have an Hermitian structure and associated con-
nexion and curvature. Let U C X be an open set in which we have holomor-
phic coordinates z = (¢', --- , 2") and an isomorphism =™ *(U) == U X C". We
agree on the ranges of indices 1 < p, 0,7 S rand 1 = ¢, j, k = n, and write
the curvature tensor as @ = {@?,;}. Since, by (1.5), (O, §) + (9, @£) = 0 for
all n and £, we get RO + ‘©Oh = 0, h being the metric, which in turn gives

3.1 2 hp®is = 2 heOis
Setting
H(@))ﬂ'.pi = Z hp‘r®:i; ’ H(®)n‘,pi = H(®)pi.n‘ ’
and consequently the quadratic form © defined on E**® = E ) T* by

32 0 & = Zi H(®)s i E’

3,0,

is Hermitian. The first definition of positivity, which has been used by Spencer
[14] and Nakano [13], is that E is positive if the Hermitian form © is positive
definite,

The second definition, due to Nirenberg and Spencer [16], is as follows: For
each non-zero vector X = (\', --+ , \"), define H\(®),, = > k,,0;;\°X’. Then
E is positive if the quadratic forms @, defined on E by

(3'3) ®)\(77, ’7) = Z HX(G))ﬂv ﬁp"l'

are positive definite.
The third definition states that, if for each non-zero ¢ = (¢, --- , ¢") we
define

HE(G)H- = pzc hp-r@):il?svzp’

then the Hermitian form @, defined on T* by
(34) Oile, @) = 2 Hy(©)i70::
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should be positive definite in order that E be positive. This definition has been
used in [7]. Also, Andreotti and Grauert [1] have shown that this third definition
implies that there exists a strongly pseudo-convex tubular neighborhood of the
zero cross-section in the dual bundle E*.

It is clear that the last two definitions essentially amount to saying that the
Hermitian form @ in (3.2) should be positive definite on the set of decomposable
tensors of the form ¢ = 4 ) ¢ in E"'°. In particular, if E is a line bundle, then
all the above definitions coincide and agree with the original one given by
Kodaira [10].

Ifnow Lisa positive line bundle with curvature & = {&;;}, then the curvature
&(u) = {®(u);;} in EQ® L*is, by (1.9), given as

3.5 BS(Wei; = OLi; + ndlE:; .

Thus E ) L* is positive in the sense of (3.2) for u sufficiently large. Unfortu-
nately, this is the only way known to the author of constructing bundles which
are positive in this sense.

Definition. We shall say that E is weakly positive if the quadratic form ©
given in (3.2) is positive on decomposable tensors n X ¢ in E'°.

Thus E is weakly positive if, and only if, the quadratic forms (3.3) and (3.4)
are positive.

4. Positive and negative holomorphic vector bundles. We shall define what
it means for E to be negative; E will then be positive if E* is negative. This is
justified by (1.8).

Suppose that we have on X a Kahler metric ds’=Y ", »'a’ where (o', -, "
is a local unitary co-frame in T*. We also assume fixed a local orthonormal
frame (e, , - - - , e,) in E. We then write an element £ ¢ E®as £ =, (£%,) with

i1 XTI _1_ P -
q',.ziE ne _q!ZJ:EJw’
where J = (j;, *-* , jo) runs over all g-tuples and where £ - .- ;, is anti-sym-
metricin §, , + -+, jo .

Define now

(4-1) o, § = E ®pn€£K£K - q ZK ®pni£m'£m'}-
! p .4, P01, K’

In order to write (4.1) more concisely, we set

(4'2) @ (E £) = z ®p¢ni£KEK 1)
and
(4.3) 0D =1 T Ouitix¥u,

pvol
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so that

“4 0%, =0¢H — 0¢».
Observe that, for ¢ = 1, (4.3) coincides with (3.2).

Definition. E ts negative if ® is negative definite for 0 < ¢ = n — 1.

In order to justify this, we first show

Proposition 4.1. Negative tn our sense agrees with the definition given by
Kodaira when E s a line bundle.

Proof. When E is a line bundle, ® = {0,;} is an ordinary differential form.
Let £ = (£”)(1 £ 7 £ n) be the n eigenvectors of the quadratic form ©;;
relative to the Hermitian metric in T*, and denote by \', - - - , \" the correspond-
ing eigenvalues. Set £“*"""*? = ¥ A ... A E“?. Then it is immediate that

(4.5) @@””%W““W=&mw®—(2#ﬁ%$““ﬁ
a=1
Taking then ¢ = n — 1, it follows from (4.5) that, if E is negative in our sense,

then each A’ < 0 so that Z 0.;0°%" is negative definite and E is negative in
Kodaira’s sense.

If, conversely, E is negative in Kodaira’s sense, then all A’ < 0 and, by (4.5),
the Hermitian form @ is negative definite. In fact, if Y, .73’ is negative
definite, we may take the Kihler metric to be —_ 0,;0°a" and then ©(¢, £) =
—(n — q) | for all £e E™°. Q.E.D.

Proposition 4.2. If E is negative, then E is weakly negative.

Proof. Fixing £ = (¢, ---, ¢7), then quadratic forms on A °T* defined by

1 - _
O:(n, m) = P {2 0,0t Bnsiiz — ¢ 2 ©,0iiE nixcilix)

= {Trace 0; In|* — él_' > (®s)simxﬁfx}

are negative definite for 0 < ¢ < n — 1. But then, just as in Proposition 4.1,
we conclude that ©, in (3.4) is negative definite. Similarly, (3.5) is negative
definite. Q.E.D.

Proposition 4.3. Let L be a negative line bundle. Then the vector bundles
E @ L* are negative for u = po(E).

Proof. This follows easily from (3.5) and (4.5).

Let now E be a negative vector bundle. Then there exists ¢/ > 0 such that
Ot §) £ —c |Ef forall e E*% 0 < ¢ < n — 1. By (1.9) the curvature acts
as a derivation when passing to symmetric powers of E. Thus, letting ®* be the
curvature in E*, we find then a constant ¢ > 0 such that
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(4.6) "¢, 8 < —pclgl’, forall fe(E)™, O0=<g=<n-—landp2l.

‘We shall close this section with a certain algebraic lemma, to be used later. We
introduce the following notation: For a tensor ¢ = {¢;} where I = (¢,, - - - , 2,),
we denote by ¢(r, the corresponding skew-symmetrized tensor. Suppose now
that we are given a family {A.} of r X n matrices 4, = (4.,%) (1 < a = m).
Define a linear mapping A : C" Q@ A ‘C*— C" Q@ A **'C" by

4.7 ABT = A®% i r T =0, o ),
where ¢ = (¢)) e C"Q® A °C*and
(4'8) AA(E):":""'ﬂ-l = E Aﬂ'x tacccigtr *

Assume that we have a relation

(4.9) ®pvt’f = —E Azi‘A-"ai .

a=1

Proposition 4.4. O(f, £) = —3 ..z |A(D)ZL.
Proof.

9!0E, %)

> O ANALEE —q D AALEixEix

p.o,a,i, K po,a,i,i, K

= Z (E AL E i ))(E Aaafux y ql‘i:igm'))

a,1,i, K

= 2 A(z).,KA(a::.,-K,)

a,s,i, K

= Z , lﬁ(f)?eix')lz = Z}:c IA(E);;P Q.E.D.
Corollary. If A 1is injective for 0 < q = n — 1, then the Hermitian form ©
given by (4.1) s negalive definite for 0 S ¢ = n — 1.

5. The vanishing theorems. Let now X be a compact Kéhler manifold and
E — X a holomorphic vector bundle with an Hermitian metric. We shall adhere
to the notations previously established. A germ in U***(E) is then locally written
as £ = (¢°) where

1
P __ p_I-J
£ p!q!LZJEIwa ,

andI = (3,, + -+, ¢,) runs over all p-tuples, J = (j;, « -+, j,) runs over g-tuples,
and &y is antisymmetric in the 7, and j, separately. The inner product between
germs £ and 7 is

<£1 "7) E Elfhpvntf

p' q's,
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‘We shall write a lower semi-colon for covariant differentiation relative to the
Kihler metric on X. Thus V;(#7) = &;.; . The connexion form of the metric
connexion in E is given locally by

(5’1) 0::‘ = Z h""h'rr:l’ .

T

For the curvature, we have
5.2 07 = 0.7 -

We shall write a lower bar for covariant differentiation in E; so that, for
example,

(5~3) E;.fb = E;f:k -+ E oskf;i
(c.f. (1.6)).

With these notations, we now give the complex Weitzenbick formula ([4],
[10], and [14]), which will be of double importance for us. In order to write this
formula concisely, we first introduce the following operators:

(64 0@®)1r = ”Z‘ (SO R T NNE SRS
and
(5.5) 0¢, &) = (0@, §)-
Observe that (5.5) is consistent with (4.3).
(5.6) RE)r = ‘2‘ Rityisibluneeciraeeviphanesthaeeela »
and
6.7 R®tr = ’2; Rl ehraeeies
where R;y is the Riemann tensor and
(5%8) B = 2 Bui
is the Ricci tensor
The Weitzenbock formula is
(5.9) (0877 = — ‘k; grnme + RO — RO + 3005,

which may also be written symbolically as
(5.10) O = — 2 &ms + 3RE) — 3RE) + 300).

The formula (5.9) is proven, using (5.1), (5.2), and (5.3), just as the corre-
sponding equation in [4]. The factor of 2 is present to insure the relation 0 = 1A
on scalar forms.
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Lemma 5.1.

1

T [ (Z drmihfis) ax < 0.

Proof. Set
1 o -
= ol 2 Erahdiz and @ = 3 opd.

Letting —8¢ = D ¢r.: be the co-differential (adjoint of d), it is immediate
from (5.1) and (5.3) that

(5.11) —dp = 2 Brmhekis + lof.

1
plg!
By Green’s theorem,

f6¢dX=0 where dX = (V=D%" A&*, # =(1, - ,m).
X

By (5.11),

1

T [ A grwahkis} aX = = [ oFaX s 0. QE.D.

If now O0¢ = 0 so that £ is harmonie, then (5.9), (5.5), and Lemma 5.1 give

(5.12) [ ®@ - 2o, ax + [ 0¢,p ax s 0.

In particular, if p = n, then by (5.8) (R(%), £) = (R(%), £) and we get
(5.13) fx O¢ 8 dX < 0,

where

1 i -
®(£! E) = (q — 1)! E®:i;815;a“‘7q217;:"';q
is given by (4.3). From (2.3) we get

Proposition 5.1. If the quadratic form (4.3) is sufficiently positive, then
H*X, Q%(E)) =0for1 £ p = n.

Proposition 5.2. If the quadratic form (4.3) is positive on E°, then
H'X, Q"(E)) = 0.

Proposition 5.3. ([13]). If the quadratic form (3.2) is positive for K™ @ E,
then H'(X, Q(E)) = 0.

We observe also the original Kodaira theorem [10]:
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Proposition 5.4. If E is a negative line bundle, then H*(X, Q(E)) = 0 =
H X, QKRR E")for0 = ¢g=n—1.

Actually, we may obtain a little more information from (5.13). Suppose then
that E is a line bundle whose curvature form is positive semi-definite with at
least « positive eigenvalues at each point. Then the quadratic form (4.3) is
positive definite if ¢ > n — «, and so H*(X, QK ® E)) =0forq > n — a.
This result was announced in [7].

Finally, we shall prove:

Proposition 5.5. Suppose that E is a line bundle and that the curvature form
® = {O;;} has a posttive and B negative eigenvalues at each point. Then, for p = u,,

(5.14) H'X,UEN) =0 for 05¢<B and n—a < qg=n.

Proof. At each point z e X, write T, = TL @ T; @ T* where T is the posi-
tive eigenspace of ®, T~ is the negative eigenspace, and T* is the complement
to T* @ T". Then we may write

ds’ = (ds)* + (ds”)” + (dsD)*.
But, for positive constants A and =, A(ds®)* + 7(ds®)” + (ds®)* is a metric such
that, by choosing N and 7 suitably and passing to a power E*, the Hermitian
form (4.3) will be positive for E* ® K™* and ¢ > n — « and for (E*)* and

qg > n — B. Now this metric will not in general be Kahler, and so one must
generalize (5.10) and (5.13). The formula (5.10) is now replaced by

(5.15) Ot = — Ek: Ere + 30® + X Tt + 2 Tidu + S®),

where S(§) = >, S?&and T = Y, Tw" + Tw" and S are suitable tensors.
The same proof of Lemma 5.1 now gives more generally an inequality

(5.16) [eco+ [ @oso,

where P£ e A°(E) and P is a tensor independent of E and which vanishes if the
metric is Kahler. Thus, for p sufficiently large, we will have ®*(¢ £) +
(P&, £) > |£|” and from (5.16) it follows that H*(X, Q(E*)) = 0. Q.E.D.

Remark. See [1], Proposition 28.

6. More vanishing theorems and an elliptic inequality. The discussion in
§5 centered primarily around the quadratic form @(%, £) given in (3.2) and

(4.3). We shall now give two interpretations of the Hermitian form @(¢, £)
introduced in (4.1).

Lemma 6.1. For £ e A" (E), vV —1 (Ae(®)t, £) = O(& &), where A is the
Hodge-Weil operator [17].
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Proof. We easily see that
q! (V —14¢(0)5)7 23 007 — ¢ > ) OATR A RS

S¢J= (i1, dq

Il

;@)znsz- - ‘,,Z,, @7 + g 2, OLikin..il

o, 1¢J
= 2007 — ¢ 20t i
.0 1,0

(using the skew-symmetry of £4). The Lemma now follows from (4.2), (4.3), and

(4.4). Q.E.D.
We now recall from [13] the inequality
6.1) V —1(4e@)t, §) 2 0,

for £ ¢ H**(E).
Proof. Letting ' = adjoint of D/,
V=LA@, §) = V'=L(AD%, ) (by (1.7)
= v/ =1(A3D't, ) (by (1.7) and since ot = 0)
= V=I@BA — vV —=1D") D, £)(since Ad — 94 = V —1D’)
= (D'D’¢, £)(since DE = 0)
= (D¢, D'¢) 2 0.
Combining (6.1) and Lemma 6.1, we get then
Proposition 6.1. If E is negative, then H*(X, Q(E)) =0for0 < ¢ =n — 1.
This, together with the duality (2.5), gives
Proposition 6.2. If E ® K™ is positive, then H*(X, Q(E)) = 0for1 < ¢ £ n.
Definition. We shall say that E s suffictently negative if the Hermitian form
6.2) o, § + (R, &
is negative definite on B> * for 0 < ¢ < n — 1.
For an element £ & A”*(E), we set ||£]] = sup,.x |£(z)).
Theorem 6.1. If E is sufficiently negative, then there exists ¢ > 0 such that

(6.3) €Il = o [l
forall te A>%(E),0 £ g < n — 1.

In order to prove this theorem, we shall use Bochner’s methods [2] together
with the following
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Lemma 6.2. For a germ & ¢ A *(E),
64) O =2Re, 08 — [DE" — D + ©¢, & + (RO, &),
where D" is a linear first order differential operator.

Proof. We use the fact that, for functions, 0= —+/—1 A93 ([17]). From
this, a straightforward computation using (5.1) and (5.2) gives

(6°5) q! O IEIz V A(E Ejhpa®ru£f}w‘w') - z: (Ef khnrsf k)
- E (Efk + 0:sz)hpr(ff~k + 0/‘5-’)} - E (EJ;T:';I + avlé"f;z)hprg}

- Zf hpv(f.f kil + 0:151 k)
Using (5.3) and (4.2), (6.5) may be simplified to

(6.6) O & = 0°¢, & — |DE* — |D’E[* — 2 Re {‘ql‘! > $5‘hpa§3mk}.
where (D"£) ;= 53 .
From the Weitzenbock formula (5.9), we get
- Akv., £ = (007 + 3ROT — 3005 .
Substituting this in (6.6), we get

O [E* = — D% — D" + ©%¢, & — 0  + (RO, & + 2 Re (T%, &),

and Lemma 6.2 follows. Q.E.D.
The proof of Theorem 6.1 is now easy. Namely, let z, be a point where |£|3
has a local maximum. Then

O e @) = = 5 o7 ZEL 2y

0z* 9z’

is non-negative. Now, since E is strongly negative, there exists ¢/ > 0 and
independent of £ such that |¢* < —c'{®(¢ &) + (R(§), £)}. Thus

5 Lk = — (0@ o.. + B©, £.)

= 2 Re (¢, O0%)., — |D¢[;, — |[D"¢]2 — O I£2, = 2 Re ¢, 08, -

Then [£]2, = ¢ [(¢, O8).. < ¢ &, | &, or ¢z, = ¢|O&., . Thus[|¢]| = ¢ |[O 4|
where ¢ = 2¢’ is independent of £.

Now it is obvious that, if E is negative, then E* is sufficiently negative for p
large enough. Combining this with (4.6) and Theorem 6.1, we get

Proposition 6.3. Let E be a negative vector bundle. Then there exists a uo and
a constant ¢ > 0 such that, for all u = poand all £ e A>*(E*) with0 S ¢ S n — 1,
we have the inequalily

6.7 €]l = we ||DE]].
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7. On ample vector bundles. Let m,r be positive integers and G(m,r) the
Grassmann variety of complex m-planes in C™*". Denote by F(m, r) the holo-
morphic vector bundle over G(m, r) which assigns to each m-plane the corre-
sponding m-dimensional subspace of C™*". Letting €"*" be the trivial bundle
C™*" X G(m, r), there is an obvious exact sequence

(7.1) 0 — F(m,r) - €"*" — E(m,r) — 0.
Consider the line bundle L(m, r) = det F(m, r)* = det E(m, r). Let
e, -, e, give a basis for C™*" and set
_(m+r
N —( m )

Then A™C™*" is an N-dimensional vector space with a basis consisting of the
vectors ;,.ei, = €, A o+ A -+ Neg,, 124, <+ <%, Sm-+ 7). Each
point ¢ & G(m, r) may be written as ¢ = >, ¢*****"e,,...;,, and the ¢******* give
a basis for T'(L(m, r)). Furthermore, the mapping = : G(m, r) — Py_, given in
homogeneous coordinates by 7(¢) = [--- , ¢** "', ...] is an embedding, the
Pliicker embedding.

Let now X be a compact, complex manifold and E s X a holomorphic vector
bundle of fibre dimension r. For each x ¢ X, denote by p, : I'(E) — E, the re-
striction mapping. We shall say that E has no base points if p, is everywhere
onto. If this is the case, there is an exact bundle sequence

(7.2) 0—->F—->IE SE-—DO0,

where F, = Ker p, and where I'(E) = T'(E) X X is a trivial bundle of fibre
dimension m <+ r for some m = 0. The mapping fz : X — G(m, r) given by
fe(@) = F, C T'(E) is everywhere defined and f5'((7.1)) = (7.2). Conversely,
given E, if we can find f : X — G(m, r) such that f '(E(m, r)) = E, then E has
no base points.

Definition. We shall say that E is ample if, given any two distinct points
2,2 ¢ X and £ ¢ E,. , there exists a o ¢ T'(E) such that o(z) = 0 and o(z') = &.

(We also require that the obvious infinitesimal condition should be satisfied).

Remark. If E — X is ample, then the mapping fi : X — G(m, r) is an em-
bedding; however, E(m, r) — G(m, r) is not ample if m > 1 and r > 1.

Suppose now that E has no base points, and let m, be the maximal ideal of ©, .
Then there is an obvious mapping

(73) Tz :Fz"_)Ez®mt/m: ;

and from the 7, we get r : F > E ® T* We let & : T* @ A°T* —» A®*'T*
be the natural projection and define a mapping

A :E* ® A‘T* - Hom (F, A*'T%
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by
(7.4) Al @) = a{(r.(N, &) D o},
where e e E*x ;oe A°T%* ,and feF, .

Definition. We say that E s sufficiently ample if E is ample and if A is an
injection for 0 < ¢ = n — 1.

The following may be easily verified:

Proposition 7.1. For E a line bundle, the following are equivalent:
(1) E s sufficiently ample; (ii) the complete linear system |E| gives a projective
embedding; and (iii) E <s ample and 7, is surjective for all x ¢ X.

Now we shall prove
Proposition 7.2. If E is sufficiently ample, then E is positive.

Proof. We shall prove that the dual bundle E* is negative. Let ¢, , -
give a basis for I'(E), and define a metric in E* by

)y Omtr

m+r

(7.5) & . = “Z_; (04(2), EXoal@), 1),

for £, 7 ¢ E* . Since E has no base points, the inner product (7.5) is Hermitian
positive definite.

Suppose now that z, ¢ X and that U D {z,} is a holomorphic coordinate
neighborhood such that we have an isomorphism = *(U) = U X C'. Write

explicitly ¢, = (¢, --- , o) where the ¢? are holomorphic functions in U.
The metric is given locally by an Hermitian matrix o = (h,,) where
(7.6 Bor = 2 %55 .

The curvature is given locally by ® = a(h™ 8h) = —h™* 3h A h™' 0k +

k™' 90h. Having fixed x, , we may assume that our coordinatization is such
that h,.(z,) = 6 and (8h)(z,) = 0. Then

h
Pom g2 —2T
©::; 9 9z' 9z’ '

which, by (7.6), is given by
(7.7) 0,5 = — D2 AWAL;,
where

s 005)
(7.8) AL = (az‘ (o).

Now the mapping A given by (7.4) is, when written in the local coordinates
around z,, the same as the mapping A defined in (4.7) and (4.8) where
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A, = (4%,) is given by (7.8). Equations (4.9) and (7.7) then match and Propo-
sition 7.2 follows from the Corollary to Proposition 4.4. Q.E.D.
The following Proposition is similar to Proposition 7.2:

Proposition 7.3. If E is ample, then E is weakly positive.

8. Positive and ample vector bundles.
Proposition 8.1. If the bundle E — X 1is sufficiently positive*, then it is ample.

Proof. (See [11]) For p & X, we denote by X, the quadratic transform of X
at p and we let Q, : X — X, be the corresponding birational transformation.
Set 8 = Q,(p) and E = Q,(E). Then § is a projective (n — 1) space and
[Sl|S = H™* where H = [h] is the line bundle determined by a hyperplane
h C P,_, . Furthermore, E|S= E, X S where E, is the fibre of E at p.

Set now F,, = E ® {[S]™}. Then we have over X, the exact sheaf sequence

@8.1) 0 — QFai) = QF,) = E, @ 25(H") — 0.

Let K* be the canonical bundle over X, . Then, as in [11], we may check the
following: If E — X is sufficiently positive, then the bundles E ® {[S]™} ®
{K*"'} are positive for m = 1, 2. In this case, H'(X,, QFn+)) = 0 for
m = 0, 1. Thus we get

(8.2) 0 — I'(Fpy) = T'(Fn) > E, Q@ Tp,_,H") — 0,

form =0, 1. Since I'(F,) =2 I'x(E), E,Q T'p,_,(0) = E,,and E, ® T'p,_, (H) =
E, ® m,/m2, we get then

(8.3) 0— I'(F,) = I'x(E) > E, — 0,
and
84 I(F,) » E, @ m,/m; — 0.

But now it is immediate that r, = p, , T'(F,) = Kernel p, , and r, = 7, as defined
by (7.3). Thus E has no base points and the condition for ampleness is satisfied
locally. The global condition may then be checked just as in [11]. Q.E.D.

Remark. In Proposition (8.1), sufficiently positive then means the follow-
ing: There exists on X a fixed line bundle L such that E ® L™ is positive.

Proposition 8.2. If a suitable finite collection of cohomology groups
H'(X, 2E) ® 8.) = 0,
where the 8, are coherent analytic sheaves, then E is sufficiently ample.

Proof. Let p e X be a fixed point, Q(F,) C Q(E) the germs of holomorphic
sections of E which vanish at p, and denote by 3, and &, the‘“skyscraper sheaves”
whose stalks at p are T, and E, respectively and which are zero elsewhere.

* See the remark below.
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Define a sheaf homorphism
(8.5) ¢t OF,) @ A5, > 8, Q AD,— 0

as follows: For f ¢ Q(F,), and v ¢ (A**'3,), with z += p, 0,(f ® v) = 0; and,
for f e Q(F,), and v & (A**'3,),,

(8.6) 20 @7 = ‘Af®) @),

where ‘A :F, ® A*"'T, — E, ® AT, is the transpose of the mapping given
by (7.4).

The point is that the kernel of ¢, is a sheaf of the form Q(E) ), S, where 8,
is a coherent analytic sheaf on X, and thus we get an exact sequence

8.7 0— 2AE) Q@ 8,— oF,) ® A5, -6 A, —0,

and, if H'(X, Q(E) ® 8,) = 0, then the mapping A given by (7.4) is an injection
at p ¢ X. Since then A is injective in a neighborhood, the Proposition follows.

Corollary 8.1. If E is positive, then there exists a po such that E* is ample
for w = po .

Corollary 8.2. If E is positive, then there exists a p, such that E* ¢s sufficiently
ample for p 2 1 .

9. Weakly positive and ample vector bundles. We shall prove the following

Theorem 9.1. Let E be a weakly positive vector bundle. Then, for p = o , E*
s sufficiently ample.

Proof. Associated to the holomorphic vector bundle E =5 X there is a bundle
of projective spaces P(E) <> X where P(E), = P(E¥*) is the projective space
associated to E* . If we embed X in E* as zero cross-section, then E*—X is a
principal C* bundle over P(E), and we denote by L(E) — P(E) the correspond-
ing line bundle. Clearly L(E)|P(E), is the hyperplane bundle.

We shall complete the proof in a sequence of three propositions, some of
which may be of independent interest.

Proposition 9.1. If E is weakly posttive, then L(E) is positive in the sense
of Kodaira.

Proof. There is given on E an Hermitian structure and thus on E* — X
there is defined a positive function f by f(z, £) = (). = ‘Eh(x) £, where h(x)
is the Hermitian metric on E.

The reader may easily verify the following (see [11]):

Lemma 9.1. The differential form \/ —1/2x 99 log f is closed differential form
on P(E) which represents ¢,(L(E)).

To prove Proposition 9.1, we must then calculate 39 log (£, £), as a function
of z and £. In doing this, we shall adopt certain symbolic notations whose mean-
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ing should be obvious. First we get

e, &) _ ‘EohE + 'EROE + '9FhE
&8 &9

d log (¢, §) =

From this, it follows that

30 log (¢, &) = D) 9EORE + Sa?ghfg;; 9Ehot + ‘zohot)

_ (‘Eoht + ‘Ehop)(‘otht + 'EdhE)
& 8"

Expanding this, we get
{*9Ehh™ 9k + ‘Ehh™ 90kt + ‘0EhOE + ‘(b 0hE)hot)

39 log (¢, &) =

&8
_ (Bhh'oRe)(‘okhE) — (ERA ohe)(‘ {h 9hE} he)
¢ o
_ (Erap)(‘oghe) - <‘s§ws)<'{h*ahz}hs),
S! E ?

We writenow 0 = ™ 9hand ® = 89 = — (™" 9h)(h™" 8h) + h™*(39h). Substi-
tuting these in the above expression and rearranging terms, we get

(9.1) 30 log &, ). = Oz, © + Sz, & + T(z, &),
where
_ 88,
9.2 Oz, §) = &8’
_ (5, D38, 88 — (9%, D)X, 98).
(9‘3) S(Il?, g) - <£’ £>2 ’
and
_ J(ee, 69 + 2 Re (o, az)} _ (2%, £X0¢, e>}
04 T { &5 {2 Re e or |

The restriction of 99 log (£, £) to any fibre P(E),, is S(z, , £) in (9.3), which
we recognize as the fundamental form on the projective space P(E,,).

Fix now (2 ; &) ¢ P(E) and let z = (2%, - -+ , 2") be a holomorphic coordinate
system on X centered at x, . Then, in these coordinates, the form ©(z, £) in
(9.2) is given locally as

(9.5) @)(x, E) = G)E(dzr dZ),

where O, is given by (3.4). Furthermore, as in the proof of Proposition 7.2, we
may assume that 6(x,) = 0 so that T'(z, , &) = 0. By assumption, @.(dz, dz)
is a positive definite form in dz', --- , dz", and S(zx, &) is positive definite in
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[dg, --- , df’], the differentials of the homogeneous coordinates of the fibre
P(E)., . From Lemma 9.1, we conclude that L(E) — P(E) is positive.

Remark. As an application of the Proposition 9.1, we have the following
result of Kodaira [11]:

Proposition. Let B be a fibre bundle over a compact algebraic variety X with
Jibre P, . Then B is a compact algebraic variety.

Denote by K* the canonical bundle on P(E). Combining Propositions 9.1
and 5.2, we get

Corollary. If E is weakly positive, then H*(P(E), 2(K* ® L(E))) = 0
forp = 1.

In the fibering P(E) % X, if we let F(E) be the bundle along the fibres, then
there is an exact bundle sequence '

9.6) 0 — F(E) — T(PE)) — &*(T(X)) — 0.
Furthermore, the reader may, with some pains, verify
Lemma 9.2. detF(E) = L(E)".
From (9.6) and Lemma 9.2, we get
9.7) K* = L(E)"a*(K).
Thus K*' ® L(E) = L(E)"** ® &*(K™), and from Proposition 5.4 we get

Proposition 9.2. If u, is chosen so that E* R K™ is weakly positive, then
L(E*) ® K** 4s positive and

(9.8) H'PE"), ALE)) =0 for n2p, 1=g=n
Proposition 9.3. There exist natural isomorphisms
(9.9) HX, O(E)) = H'(P(E), &L(E))).

Proof. (This Proposition is implicitly contained in [9]; it is proven explicitly
in a very general form in [3]. For completeness, we give here a proof). Denote
the sheaf Q(L(E)) over P(E) by 8. We shall apply the Leray spectral sequence
[5] to 8 and the proper holomorphic mapping & : P(E) — X. Accordingly, there
exists a spectral sequence {E,} such that E, — H*(P(E), 8) and E2° =
H*(X, &°(8)), where @°(8) is the gth Leray sheaf. The Proposition will follow
if we can show that @°(8) = 0 for ¢ > 0 and &°(8) = Q(E).

Now &°(8) is the sheaf associated to the presheaf which assigns to an open
set U C X the group H(@ ' (U), 8@ *(U)). Let U C X be a polycylinder such
that @ '(U)=2 U X P,_,and " '(U) = U X C'. The principal bundle of L(E),
when restricted to @™*(U), is then given by C*— U X (C" — {0}) > U X P,_,.
Thus, letting H — P,_, be the hyperplane bundle, it follows that 8|&™(U) =<
Ov Q) Qp,-,(H). Since H'(U, 0,) = 0 = H*'(P,_, , Qp,_,(H)) for s > 1 and
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since H°(P,_, , Qp,_,(H)) = C', it follows immediately that
H@™(U), 8 |a(U) = T(U, 2E) | U), &(8 = QE),
and &°(8) = 0 forg > 0. Q.E.D.
Remark. The “obvious” Kunneth relations which we have used may be
justified by Grothendieck’s general machine [8] or perhaps more simply by

applying the theory of harmonic integrals developed by J. Kohn [12].
Combining (1.9) and Propositions 9.1, 9.2, and 9.3, we find

Proposition 9.4. Let E be a weakly positive vector bundle and F — X any
holomorphic vector bundle. Then there exists an integer uy = uo(F) such that
(9.10) H'X, AFQE) =0 for g=1 and p = po.

It is of course obvious that (9.10) holds replacing F with any coherent sheaf
on X. Theorem 9.1 now follows from Proposition 8.2.

Corollary 1. Let E be weakly positive. Then for u sufficiently large, E* s
positive.

Corollary 2. Let E be ample. Then, for u suffictently large, E* is sufficiently
ample and posttive.

Corollary 2 follows from Proposition 7.3.
Finally, as a consequence of Proposition 5.5, (9.1), and Proposition 9.3 we
have

Proposition 9.5. Suppose that for each ¢ += 0 the Hermitian form O, in (3.4)
has a positive and B negative eigenvalues. Then, for u sufficiently large,

9.11) HYX,QUE") =0 for 0=¢g<B and n—a<gq=n.
Remark. Compare with Proposition 2.8 in [1].

10. Applications and examples.

(i) Some of the differences between positivity for line bundles and general vector
bundles may be accounted for by the following

Proposition 10.1. The universal bundle E(m, r) — G(m, r) is not weakly
positive tf r > 1.

Proof. Write G(m, r) as the coset space U(m + r)/U(m) X U(r). Then
E(m, r) is associated to the principal fibering

Uim + r) > U@m + r)/T(m) X ()

by means of the usual representation of U(r) on C’. The Euclidean metrie
on C’ induces an Hermitian structure in E(m, r) whose curvature we shall now
compute.

Let @ = u™' du be the left-invariant Maurer-Cartan form on U(m + r).
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Since ‘au = 1, w + ‘@ = 0. Differentiating uw = du, we get the Maurer-Cartan
equation

(10.1) = —w A .

We now agree on the rangesof indices 1 £ o, 8,y Emym +1=14,5,k = m + r.
Writing
© = [waﬂ was]’
Wig  Wij

it follows easily that the forms w;; give the connexion form of the metric con-
nexion in E(m, ).
By (1.4), the curvature ® = {@,;} is given by

0;; = dw;; — ;w.-k A g .
By (10.1), we then get

(10.2) 0,; = Zwia A @jq -

a=1
The complex dimension of G(m, r) is mr, and, letting z, e G(m, r) be the identity
coset, a tensor in T* (G(m, r)) may be written as ¢ = {¢*‘}. Furthermore, a
typical element in E(m, r),, is written as £ = {¢'}. From (10.2) it then follows
that the quadratic form (3.4) is given by
(10.3) Oile, ) = 2 £Te 9"
Clearly, if r > 1, ©, is only positive semi-definite.

Now U(m -+ r) acts transitively on E(m, r) — G(m, r), and so any metric in
E(m, r) for which the Hermitian forms ©; are positive definite can be averaged
to give an invariant such metric. But any invariant metric is unique up to a
positive constant, and so E(m, r) is not weakly positive. Q.E.D.
(il) Now we prove the following vanishing theorem:

Proposition 10.2. Suppose that the canonical bundle K of X s negative. Then,
if E is any holomorphic vector bundle without base points, H*(X, Q(E)) = 0 for
gzl

Proof. By the argument in Proposition 7.2, there exists in E* an Hermitian
structure such that the form (4.1) is negative semidefinite for0 < ¢ = n — 1.
Since K is negative, it follows from (1.9) that the Hermitian form (4.1) is
negative definite for K @ E* and 0 < ¢ £ n — 1. By Proposition 6.1,
H'X, QK ® E*) = 0for 0 < ¢ £ n — 1. The result now follows from the
duality formula (2.5). Q.E.D.

In order to apply this Proposition, we observe that T(G(m, r)) =
Hom (F(m, r), E(m, r)). Thus, the canonical bundle K for G(m, r) is equal to
L(m, r)~* and K is negative. Applying Proposition 10.2, we get
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Proposition 10.3. H*(G(m, r), Q(E(m, r))) = 0 = H*(G(m, r), ®) for ¢ > 0.

(iii) An example of an ample, and hence weakly positive, vector bundle is
T(P,). The condition for ampleness follows immediately from the geometric
statement that the projective group acts transitively on the tangent directions
on P, . However, T(P,) is not sufficiently ample for n» > 1. Indeed, if this were
the case, then by Proposition 7.2 T(P,)* would be negative and by Proposition
6.1, H'(P,, Q(T(P,)*) = H'(P,, Q') = 0, which is absurd. This simple example
illustrates the distinction which must be drawn between weakly positive and

positive, and ample and sufficiently ample for holomorphic bundles of fibre
dimensions greater than one.

(iv) We may easily verify the following

Proposition 10.4. If we have an exact bundle sequence E — F — 0 and if E
1s ample, then F is ample.

Remark. Proposition 10.4 is not true with sufficiently ample replacing
ample. Indeed, letting H — P, be the hyperplane bundle and 1 the trivial
bundle, there is an exact sequence

(10.4) 0-1-H®P- --- PH—-TE®,) — 0,
;—_ﬂ——_—_—d

n+l

and H® --- @ H is sufficiently ample but T(P,) is not.
b——_q'_-_——l
n+l
Let now X C P, be a non-singular algebraic variety; then T(P,)|X = T is
ample, and the normal bundle N to X in P, is defined by 0 —» T(X) » T —
N — 0. Thus

Corollary. The normal bundle to a projective algebraic variety is ample and
hence weakly posttive.

(iv) For E — X a holomorphic bundle let
¢E) =0 +¢c + - +e., ;e H¥(X, Z))

be the total Chern class. If we have in E an Hermitian structure, then there
are defined (g, ¢) forms 6,(1 = ¢ = r) which represent ¢, via the deRham iso-
morphism (6, is a polynomial of degree ¢ in the entries of the curvature tensor 6;
in fact, we have 1 + 6,t + -+ + 6,8" = det (tI" + /' —1/2x ©)). For a vector
I= (@, -,1,) of non-negative integers, set 6, = 6;* --- 6, and |I| = 4, +
2, + -+ =+ 74, . One can prove the following

Theorem. Let Y C X be any irreducible subvariety of dimension s. Then,
if E — X is ample,

(10.5) f, 6, >0, forall T with |I] =s.
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If, conversely, (10.5) ¢s satisfied for every quotient bundle of E | Y and all Y C X,
then some power of E is ample.

Remark. (10.5) is not satisfied for E(m, r) — G(m, r) if r > 1.

11. A synopsis. For the convenience of the reader, we now give a resume of
the main implications which have been established in this paper.

The following is a list of the pertainent properties which may hold for a
holomorphic vector bundle E over a compact Kihler manifold X:

(1) E is weakly positive (§3);
(ii) E is positive (§4);
(i11) the vanishing property; that is, H*(X, Q(E*)) = 0for0 S ¢ <n — 1
(885 and 6);
(iv) elliptic tnequality; that is, (6.3) holds;
(v) stable vanishing property; that is, for any coherent analytic sheaf §,
H'X, Q(E") @8) = 0forp = u(8),1 =g =n (§8);
(vi) E is ample §7);
(vii) E is sufficiently ample (§7); and
(viii) the line bundle L(E) — P(E) is positive (§9).

With the obvious abbreviations, we list now the main inferences which have
been drawn in this paper:

E ample LN ) weakly positive LN L(E) positive
() | Bsendoy Stable vanishing ¥ E* sufficiently ample ¥
E* positive
%2 stable vanishing
(II) E positive %% vanishing
ge elliptic inequality for E*
(III) E sufficiently ample ¥ E positive
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