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Hyperbolic Exterior Differential Systems and their 
Conservation Laws*, Part I** 

R. BRYANT, P. GRIFFITHS AND L. HSU 

Introduction 

This paper  falls under the general subject of the geometric theory of differential 
equations. The theory, founded in the last century by Lie and Darboux and exten- 
sively developed by Goursat,  Cart, an, and others, seeks to understand differential 
equations through the s tudy of their invariants under suitable groups of coordinate 
transformations (such as contact, point or gauge transformations).  The goals of the 
theory are, first, to understand interesting special equations through explicit solu- 
tions or algorithms for solutions, or other properties such as conservation laws or 
estimates; and, second, to s tudy the geometry of differential equations as a subject 
of interest in its own right (like Riemannian or CR geometry). 

Much of the classical theory is centered on the a t tempt  to describe the gen- 
eral solution of a given system of partial differential equations in some reasonably 
explicit way. The method of Darboux (a generalization of the method of charac- 
teristics which is so familiar in the study of hyperbolic systems) is perhaps the 
most successful of these techniques developed in the classical theory. However, the 
geometric methods developed during this period have significance even when no 
explicit general solution can be found. The application of these methods is in its 
infancy as regards modern issues in differential equations, such as inference of prop- 
erties of solutions (especially global ones) rather  than the explicit construction of 
solutions. 

The variety of phenomena studied in the theory of partial  differential equa- 
tions is, of course, very great. To get to the deeper aspects of the subject, it is 
necessary to specialize to some extent. Thus, for example, while hyperbolic and 
elliptic systems share some very basic features, the sorts of interesting problems 
that  one poses for these two classes of equations are very different. NaturMly, this 
happens in geometry as well, with Euclidean and Lorentzian geometries bearing 

• This research was supported in part by NSF Grant DMS 9205222 (Bryant), an NSERC 
Postdoctoral Fellowship (Hsu), and the Institute for Advanced Study (Griffiths and Hsu). 
IAS Preprint: 1/25/94. 

• * Part II will appear in Vol. 1, No. 2 of this journal. 



22 R. BRYANT, P. GRIFFITHS AND L. HSU 

superficial resemblances, but  having quite different deeper behaviors. It would be 
unrealistic to expect that  the geometric method applied to the study of partial 
differential equations would not exhibit the same sort of divisions. For this reason, 
we have opted in this paper to specialize the class of equations to be studied. 

In fact, we shall introduce the concept of a hyperbolic exterior differential 
system, a proper generalization of the classical case of second order hyperbolic 
PDE in the plane, and shall begin the study of the conservation laws and other 
geometric properties of such systems. The conservation taws provide an interesting 
intrinsic invariant of the hyperbolic system and are of use in understanding its 
solutions. We expect the class of hyperbolic exterior differential systems to provide 
a good case study within the general program. 

Hyperbolic exterior differential systems are divided into the sets ~ s  of systems 
of class s where s may be any non-negative integer. The classes s = 1 and s = 3 
inctude hyperbolic Monge-Ampere systems and second order hyperbolic equations 
for one unknown function z(x, y), respectively. The class s = 2 includes the case 
of a hyperbolic pair of first order equations for unknowns u(x, y) and v(z, y), The 
various classes are inter-related by the constructions of prolongation and (more 
subtly) integrable extensions. 1 

A hyperbolic system of class s = 0 is given by a transverse pair of decompos- 
able 2-forms ftt ,  ft2 on a 4-manifold M ~-- thus we have 

{ f~lA~21 = 0 = f~2Aft2 

f~IA~2 ¢ 0. 

This simple structure turns out to have a very rich geometry and appears in sev- 
eral guises in the course of this paper. Moreover, the application of the geometric 
method leads to some very special and interesting PDE systems, such as (1), (2), 
and (3) below. 

In general, a hyperbolic exterior differential system (M, Z) of class s is given 
by a differential ideal Z on a manifold M of dimension s + 4 where Z is generated 
algebraically by a rank s Pfatfian system I and a transverse pair of 2-forms that  
are decomposable modulo I. The k th prolongation of (M, Z) E 7~ is a hyperbolic 
system (M (k), 2 -(k)) E 7/s+2k. In order to understand the most interesting systems, 
which are those of classes s = 0, 1, 2 and 3, it seems to be advantageous to consider 
the whole set of hyperbolic exterior difi%rential systems and its inter-relationships. 

The most important objects associated to a hyperbolic system are the charac- 
teristic systems El, E2 and their prolongations E~k), ~2=(~)- Each of E~ k) and F.~ k) is 

i) A system of partial differential equations canonically gives rise to an exterior differential 
system. Differentiation of the PDE system then corresponds to prolongation of the exterior 
differential system. An integrable extension roughly corresponds to adjoining the primitive 
of a conservation law as a new variable -- in the setting of exterior differential systems this 
/nay be done in a canonical way. 
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a Pfaffian system of rank s + 2 + k on the (s + 4 + 2k)-dimensional manifold M (k) 
and their geometry - -  especially their integrable subsystems - -  is the dominant 
geometric feature of the hyperbolic system. Classically the characteristic systems 
arose in at tempting to find explicit solutions of hyperbolic PDEs of Monte-Ampere 
type. Later they were used by Riemann to produce explicit integral formulas for 
certain special hyperbolic systems. The synthesizing concept of Darboux integrabil- 
ity was introduced by Darboux in 1870. A hyperbolic system is Darboux integrable 
at level k if there are rank 2 integrable systems 

A~ c ~i k), A2 c z~ k) 
which are transverse to the ideal Z (k). The solution to the Cauchy problem for 
such systems may be reduced to ODEs. Many interesting equations are Darboux 
integrable and first integrals may be found explicitly, leading to explicit forms for 
the general solution of the equation (well-known examples are the Liouville equation 
and the VCeierstrass formulas for minimal surfaces). 

An integral surface of a hyperbolic system (A~ r, 27) is an immersed surface S C 
3zf such that all the forms in Z pull-back to be zero on S. The characteristic systems 
induce on any integral surface a pair of foliations by curves. The initial value 
problem for such a system is the problem of how to extend a given integral curve of 27 
to an integral surface of I. We show that if the integral curve is 'non-characteristic' 
in the appropriate sense, then local solutions to the initial value problem always 
exist. More interestingly, the geometry of the characteristic emwes allows us to 
intrinsically define a condition (which we call characteristic completeness) that  
is equivalent to the existence of global solutions to the initial value problem. The 
exterior differential system associated to many non-linear PDEs, such as the famous 
Fermi-Pasta-Ulam equation 

- -  X X x  ~ 0 

where k : R --* IR is a diffeomorphism, are shown to admit unique global integral 
surfaces even though singularities necessarily develop for solutions to the PDE. 

In this paper we are especially interested in the space C of conservation laws 
for a hyperbolic exterior differential system. From the general theory [BG1] we 
know that  (i) conservation laws have a normal form derived from the symbol of 
the exterior differential system, (ii) C is naturally given as the kernel of a linear 
differential operator (thus, we eliminate the trivial conservation laws), and (iii) C 
is filtered by subspaces Ck where • E dk means that ~, assumed in normal form, 
is defined on M(k). 2 One of the principal objectives of this paper is the study of 
conservation laws of hyperbolic systems of class s = 0. 

2) ~I~caditionally, a conservation law is given by a 1-form ~ involving the unknown function 
z together  wi th  its derivatives zx,  zy, Z x x , . . .  up to some finite order such tha t  d~ = 0 
whenever we subs t i tu te  in a solution to the equation. For us conservation laws are given by 
dosed 2-form • E 27; wri t ing Iocally q~ = d~ gives the  usual conservation law. In Section 2.1 
we have included an introduct ion to the theory  of conservation laws so tha t  this paper  can 
be read independently of [BG1]. 
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Our main general results on conservation laws are: 

(i) d2k = C2k-1, thus new conservation laws can be added only at odd levels; 

(ii) @ C d2k+l has a highest order part B = (B1, B2) with the properties that  B 
uniquely determines ~ modulo C2k-1 and that for a pair ~5 ~ E C~+1 

d ( B 1 / / ) l )  E Z (k). 
 (B2/t?2) 

Thus, there is a direct relationship between conservation laws and integrable sub- 
systems of the characteristic systems. This relationship has several consequences. 

At one extreme, we can add (at least) two functions of two variables worth 
of new conservation laws when we pass from C2~-I to C2k+i, and this many are 
added if the hyperbolic system is Darboux integrable at this (or possibly a lower) 
level. The converse to this statement is quite plausible but we have not attempted 
to formulate and prove it in this paper. At tile other extreme, if there are no 
integrable subsystems of the characteristic systems at level 2k + I, then 

dimC2k+i/C2k 1 ~ 2. 

On the other hand, the s = 0 sine-Gordon system 

u ~  = s i n  v 

v v = sin u (1) 

has rank one integrable subsystems of the characteristic systems and is shown to 
have the property that dimC0 = 1 while dirndl~CO = 3. Perhaps most interesting 
will be those hyperbolic systems which satisfy dim C = oc but dim Ck < oc for all 
/c. The study of such systems will be the objective of a future paper in this series. 

In this paper we shall work primarily with systems that; are symmetric in that 
they exhibit symmetric behavior in the characteristic systems (the precise definition 
is given in Section 1.5). For these systems we shall determine those hyperbolic 
systems of class s = 0 for which the space C0 of level zero conservation laws - -  
or as we shall say classical conservation laws - -  has infinite dimension. 3 The word 
"determine" here has two meanings: First, we shall find the conditions imposed on 
the invar'iants of the system in order that dimC0 = ec. In practice, this gives an 
algorithm for checking whether or not a given PDE system has an infinite number of 
classical conservation laws. Secondly, we shall derive a normal form for hyperbolic 
systems having dim Co = oe. Among the corollaries of our analysis is the result: 

I f  dimCo > 7, then dimdo = oo. There is exactly one non-linear symmetric hyper- 
bolic exterior differential system having an infinite number of classical conservation 

3) We should remark that unsymmetrie systems for which dim Co = oo have also been char- 
acterized. The results will be presented elsewhere. 
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laws; namely,  the exterior differential sys tem associated to the s = 0 Liouville sys- 
t em 

"ay ~ e v 

Vx = e u. (2) 

A m o n g  hyperbo l i c  ex te r ior  different ial  sys tems  of class s = 0 especia l ly  inter-  
es t ing  are  those  of  Eu le r -Lagrange  type .  Given  a symplec t i c  4-manifold  (M, ~ )  and  
a 2-form A, t he  cr i t ical  po in t s  of  t he  funct ional  

s- fA 
s 

defined on ~ - L a g r a n g i a n  surfaces are  solu t ions  to  axl ex ter ior  differential  sys t em 

• = ~  = 0  

where  ~ is a closed 2-form cons t ruc ted  from A. I t  t u rns  out  t ha t  this  t heo ry  has 
a s t r ik ing  in te rna l  s y m m e t i  T which exchanges  t he  roles of  • and  ~ .  T h e  s = 0 
G o u r s a t  sys tems  

uy - (x + y) 

cv/Tu_ 7 , c E R* (3) 

(x+y) 

are ' ha l f '  of a cer ta in  o n e - p a r a m e t e r  family- of sys tems  which m a y  be  uniquely  

charac te r i zed  as be ing  Eu le r -Lagrange  in a two p a r a m e t e r  fami ly  of geomet r i ca l ly  
d i s t inc t  ways  - -  the  m a x i m u m  possible  for hyperbo l i c  sys tems  of class s = 0. A 
var ian t  of Noe the r ' s  t h e o r e m  gives an  i somorph i sm be tween  the  symmet r i e s  and  
conseIwation laws modu lo  ~ ,  • of Eu le r -Lagrange  sys tems,  and  we show t h a t  in 
th is  case g0 is infini te d imens iona l  if, and  only if, t he  sy s t em is t inearizable.  4 

The  s t u d y  of Eu le r -Lagrange  sys tems  and o ther  cons idera t ions  suggests  the  
i m p o r t a n c e  of symplec t ic  hyperbolic s y s t ems  (M,  ~ ,  27), th is  be ing  a hyperbo l i c  
sys t em ( M , Z )  toge the r  wi th  a symplec t ic  form (iT) such t ha t  (I) E Z. A u t o m o r p h i s m s  
of such sys tems  mus t  preserve  b o t h  Z and  ~ .  We show t h a t  the re  a re  th ree  classes 
of  ( symmet r ic )  symplec t i c  hyperbo l i c  sys tems  having  an infini te  n u m b e r  of classical  
conserva t ion  laws. These  are: 

4) One of the unexpected discoveries of our study is the seeming ubiquity of linear hyperbolic 
systems. Of course, a highly non-linear PDE may be linearizable as an exterior differential 
system, as is the case for the system (3); moreover, an integrable extension of a non-linear 
PDE may linearize it, as is the case for (2). The fact that many- interesting PDEs may be 
linearized in a variety of ways (hodographic transformation, Legendre transformations) is 
of course classical [CH]. The setting of exterior differential systems appears to synthesize 
and extend these classical methods. 
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Class A: consisting of systems that may be symplectically linearized; 

Class B: consisting of symplectic hyperbolic systems that  become Darboux inte- 
grable at level one (such as the system modeled on (2) above); and 

Class C: consisting of symplectic hyperbolic systems modeled on the non-linear 
PDE system 

uy = F(z, y)v  
vx = F ( x ,  y)v u/W. 

Note that when F ( x ,  y) = c / ( x + y )  we recover the s = 0 Goursat systems 
above. 

Our technique of proof is to use the equivalence method of ]~. Caftan to in- 
troduce a canonical G-structure and class of pseudo-connections intrinsically asso- 
ciated to the hyperbolic system. This describes the intrinsic "geometry" associated 
to a PDE system up to contact equivalence, and associated to this geometry are 
the invariants or "curvatures" of the system. The condition that  C0 have a certain 
structure - -  e.g., that  there be infinitely many classical conservation laws - -  then 
imposes constraints on these invariants. Some of these constraints have direct ge- 
ometric meaning - -  for example, if the characteristic systems do not each have an 
integrable subsystem then dim C0 < 5. Others are expressed by algebraic conditions 
imposed on the various "curvatures". As an application, using the general theory 
we may easily write down the explicit form of the conservation laws for explicitly 
given systems such as (l),  (2), or (3). For example, for (2) the conservation laws 
a r e  

cp = f ( z ) ( d u  - e~dy - eUdz) + 9 ( y ) ( d v  - e~dx  - e'°dy) (4) 

where f and 9 are arbitrary functions, each of one variable. 

A very interesting issue is the extent to which these intrinsic invariants relate 
to the more traditional estimates in PDE theory. The ultimate objective of each is, 
of course, to provide a means to understand the "solutions" of the system. As an 
illustration, we use the conservation laws (4) to infer that  singularities of solutions 
to (2) are essentially of the form 

u(~, t) = - c l o g  ~ + (regular terms) 

v ( { , t )  = clog{ + (regular terms) 

for some constant c > 0, in space-time coordinates (~, t) as { ~ 0. 

We also use the method of equivalence to answer a number of natural geomet- 
ric questions concerning hyperbolic systems of class s = 0. Thus, in Section 1.5, 
we give necessary and sufficient conditions, expressed in terms of the torsion and 
curvature of the system, that it be linearizable. For example, this general result 
tells us that  (3) is linearizable. This should be compared with the usuai Goursat 
equation 

Z x y  - -  x + y  
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which is obtained fl'om the linearized form of (3) by a non-linear integrable exten- 
sion; it is well-known that  the usual Goursat equation is not linearizable within 
the class 7-tl. A linearizable system has a pair of intrinsic curvatures K and F and 
those for which K and F are constant, say K = c 2 > 0 and F = Kfl  are locMly 
equivalent to the exterior differential system associated to the PDE system 

V 

= c o s l + , ( c ( x  + y)) 
%t 

= cosl- (c(x + 

(5) 

Another natural question is: When is a hyperbolic exterior differential system 
Darboux integrable at level one? Both the systems (2) and (3) (with e = 2) satisfy 
these conditions and once the general result is known, the explicit integration may 
be carried out. (In fact, guided by the general theory, the explicit linearization 
and/or  integration of examples such as the above may seem more straightforward 
than some of the calculations in the classical theory (cf. [Go]).) We show that  there 
are, in fact, only two equivalence classes of hyperbolic systems of class s = 0 that  
are Darboux integrable at level one, namely that  corresponding to (2) and linear 
equations with constant curvature. 

W-e also want to remark that this may be related to the interesting recent 
paper of Anderson and Kamran [AK] which studies the conditions that a hyperbolic 
system of class s = 3 (e.g., a scalar second order hyperbolic equation for one 
function of two independent variables) be Darboux integrable at any level. 

This paper is part of the general subject of the "geometry" associated to a 
differential equation. By geometr)% we mean a G-structure together with an intrinsic 
class of pseudo-connections. The structure given by a 4-manifold together with a 
pair of transverse, non-integrable 2-plane fields is sumciently simple that we are 
able to study it in an essentially self-contained manner using the genera~ theory as 
a guide. It is, on the other hand, a very rich structure and the study in this paper is 
incomplete in two major aspects. The first is the analysis of systems that admit an 
infinite nm~nber of conservation laws of all levels. The second is the relation of the 
geometry of the unique global smooth integral surfaces "upstairs" with given non- 
characteristic initial data to the existence and uniqueness of global shock solutions 
to hyperbolic PDE systems of conservation laws with that same initial data. Both 
of these topics have been introduced and illustrated in the present work, but their 
satisfactory understanding is far from complete at this time. 
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§1 Hyperbolic Exterior Differential Systems 

1.1 Basic definition and examples. 
1.1.1 Some terminology. First, for convenience of the reader, we will recall some of 
the basic ideas of the theory of exterior dKi~rential systems. A much more extensive 
treatment of these concepts can be found in [BCG3]. 

An exterior differential system is given by a manifold ~V/ and a differential 
ideal 27 C ft* (M) in tile algebra of smooth differential forms on M. We denote 
the exterior differential system by (M, 27). Recall that  by definition the differential 
ideal Z is homogeneous in the sense that  

5 = @qkO 5q  , 

where 5q ----- 5[ N f~q(M) is the space of q-tbrms in Z, and that  5 is closed under 
exterior differentiation d : 5 ~ 5. 

A symmetry of an exterior differential system (M, 5) is a diffeomorphism 
f : M ~ M which satisfies f * 5  = 5. An exterior differential system (M, Z) is 
said to be equivalent to an exterior differential system (_~/, :~) in case there is a 
diffeomorphism of M with 1~ which takes ~- to 27. 

Given a set 0i, 02, . . .  of forms of degrees ql, q2, . . . ,  we denote by {01, 02, . . .} 
the algebraic ideal they generate in f F ( M ) .  The differential ideal generated by 
01, 02, . . .  is then denoted 

5 = {01, 02,... ; dO1, dO2,...}. 

In practice, differential ideals are locally generated by a finite set of forms in this 
way. In case all the forms 01, 02, . . .  have degree one, 5 is called a Pfaffian system. 

An integral manifold of an exterior differential system (M, 5) is an immersed 
submanifold f : N ~ M which satisfies f*O = 0 for all 0 C 27. When written 
out in local coordinates, this condition is a system of partial differential equations 
for the mapping f .  Conversely, a sutficiently regular PDE system gives rise, in a 
canonical way, to an exterior differential system such that  the solutions to the P D E  
system and the integral manifolds of the exterior differential system which satisfy 
a transversality condition are locally in one-to-one correspondence. 

However, the notion of equivalence of exterior differential systems is different 
from tha t  for partial  differential equations. In particular, the symmetry  group of 
an exterior differential system can be strictly larger than that  of the PDE system 
from which it arises. This important  point is explained and illustrated in Section 1.2 
of [ BG 1]; a consequence is that  an exterior differential system has fewer invariants 
than the generating PDE system. Confornfing to classical terminology, we shall call 
the symmetries of an exterior differential system contact transformations. 

As always in the theory of exterior differential systems, we shall, without fur- 
ther mention, make suitable constant rank assumptions. For example, if 01, 02, . . .  
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are 1-forms generating a Pfai~an system, then for each point z E M the vaJues 
01(x), 02(x),.. .  span a linear subspace Ix c T~M. We shall assume that  dimir~ 
is constant (i.e., independent of x) and shall denote by I either the corresponding 
sub-bundle of T*M or the sub-module of VP (M) generated by 01, 02,. . . ;  the con- 
text  should make clear which of these interpretations to use. We shall generally use 
the notation 

I : [01, 02 , . . . ]  

in either of the above two senses. (In general, the square bracket [0i, 02,. . .]  will 
denote the linear span over the functions of a set 01, 02, . . .  of differential forms.) 

As another illustration of implicit constant rank assumptions, suppose we are 
given a Pfaffian system generated by I C ~I(M). Then the exterior derivative 
induces a C~(M)- l inea r  mapping 

8: I --+ ~2(M)/{I} ,  

where we recall our convention that  {I} is the algebraic ideal generated by I (since 
the meaning is clear, we do not use the more correct but  clumsy notation {I} n 
f t2(M) in the denominator above). We shall assume without fro%her mention that  
8 has pointwise constant rank. Then ker (~ = i {1} generates another Pfaffian system 
called the first derived system of I .  Setting 

1( 2 ) = ( / (1))  (1) 

and so forth leads to the derived fla 9 

I D i(1) D i(2) D . . .  

of I .  We shall think of the I (~) as either sub-bundles of T*M or sub-modules of 
f~l (M). This construction will play a central role below. 

1.1.2 Hyperbolic systems. We will now define the main object of s tudy of this paper, 
this being a hyperbolic exterior differential system ............ or briefly a hyperbolic system. 
This is a special type of exterior differential system which is meant  to capture the 
essential features of the classical theory of hyperbolic (systems of) PDE in the 
plane. We shall give a more intrinsic definition below, but,  informally stated, a 
hyperbolic system is an exterior differential system (M, Z) where M is a manifold 
of dimension s+4  and Z is a differential ideal with the property that  every point 
of M lies in a neighborhood U on which there exists a coframing (i.e., a basis of 
1-forms) 

(0;(xJ) = ( 0 1 , . . .  ,0s ;  a21, 022 , (M3,CU 4) 

so that,  on U, the ideal 27 is generated algebraically in the form 
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Such a coframing (0; w) will be referred to as an admissable local coframing for 2-. 
The  condit ion tha t  2- be locMly generated in the  s ta ted fashion implies that ,  for 
any admissabte local coframing, there are relations of the form 

dO ~ ~ A a ~1A~2 @ BaW3A~ 4 mod{0 ~} 

about  which we will have more to say in Section 1.5. 

It  is not  immediately  apparent  what  a hyperbolic system in this sense has 
to do with hyperbolic  PDE.  However, as we will show by examples later in this 
section, many  classical or well-known hyperbolic  P D E  systems for functions of  two 
independent  variables can be reformulated as hyperbolic  systems in our sense. 

From now on, 2; will denote  a hyperbolic  sys tem on M.  We will call s the class 
of the hyperbolic  sys tem under  discussion. Note  tha t  s may  be any non-negative 
integer. It  is easy to see tha t  our assumptions imply tha t  zq  = f~q(M) for all q _> 3. 
In particular,  it follows tha t  the dimension of an integral manifold of 2- is at most  2. 
Integral  surfaces of 2; will generally be referred to as solution sssfaces of 2-. 

We can give a more "intrinsic" description of what  a hyperbolic  sys tem is, 
but  first we want  to make two remarks. 

The  first remark concerns the ambigui ty  in the choice of an admissable local 
coframing for Z. If  (0; a )  and (0; c~) are two admissable local coframings on the same 
domain in M,  then, by  inspection, we see tha t  the span of the  1-forms 0 (~ and tha t  
of  the 1-forms 0 ~ must  be equal. Thus  there must  exist a globally defined Pfaffian 
sys tem I c T*M of rank s of which the 0 ~ in any local admissable eoframing are 
local sections. Moreover, as is easy to see, there must  exist non-zero functions A 
and # so tha t  either 

~lA~2 ~ ~ a lA~2 ~ m o d 0  ~ 
~3A~4 ~ ~ ~3AW4 J 

or 

~lA~2 ~ ~ ~3AW4 

~3A~4 ~ ~ ~lA~2 
mod 0% 

Our  second remark is about  linear algebra. Let  V be any vector space of 
dimension four. A non-zero 2-form t2 E A2V * is by  definition decomposable if it 
can be wri t ten in the form t2 = wlAw 2 for some aJ 1, w 2 E V*. For a non-zero 
f~, decomposabi l i ty  is equivalent to the condit ion t2at2 = 0. Because we are in 
dimension 4, a non-zero decomposable 2-form f~ = wlaco 2 determines a 2-plane 

a ± = c v :  = = 0 } .  

We will say tha t  a pair of  non-zero decomposable  2-forms (f~l, f~2) is transverse if 
the  corresponding 2-planes are transverse: i.e., f ~  N f ~  is a point, t t  is easy to see 
tha t  this is equivalent to  the  condit ion t21af~2 ¢ 0. In  this case, there always exists 
a basis (wl,a~2,aJs,c~ 4) of V* so tha t  t21 = a~I/~w 2 and f~2 = cvaAcv 4. 
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A pencil of 2-forms is, by definition, given by a line L C P(A2V*). If ~ l ,  q~2 C 
A2V * are independent 2-forms that  generate the pencil, then elements of L may be 
represented as 2-forms ~(p)  = #1~1+#2~2 where # = [#1, #2] are homogeneous 
coordinates in L ~ p1. The decomposable elements of the pencil are given by 
solutions to the exterior equation 

= o .  

Assuming that  this equation is not identically satisfied for all #, it is a homogeneous 
quadratic equation in #1, P2- We will say that  the pencil L is hyperbolic in case 
this equation has distinct, real roots. In this case, it is not hard to see that  there 
exists a transverse decomposable pair of generators for the pencil. 

We now give the promised more intrinsic definition of a hyperbolic system. 

DEFINITION: A hyperbolic system of class s is given by an exterior differential 
system (M, 27) where M is a manifold of dimension s + 4 and 27 = ®q>0Zq is a 
differential ideal satisfying 

(i) 271 = I is a Pfatfian system of rank s; 

(ii) Z2/{I}  is a hyperbolic pencil at each point. 

More explicitly, for each x ¢ M, the subspace I~ c T~M is a 4-dimensional vector 
space V with dual V* ~ T~/I~. The values 

e 

are well-defined. Condition (ii) then means that  the 2-forms ~(x)  should then give 
a hyperbolic pencil. 

Note that  this condition has the effect of defining a P tbund le  LCP (A 2 (T*/ I ) ) ,  
each fiber of which contains two special points, the decomposable elements of the 
pencil. These points fit together to form a smooth double cover of M. Vge are going 
to assume that  this double cover is trivial, mainly for ease of exposition, though, 
in fact, this condition is satisfied in all of the interesting examples anyway. 

In fact, by passing to a finite cover of M (with index at most 8), we can and 
shall assume that there exists a pair of non-vanishing, decomposable 2-forms ~21o 
and f~Ol on M so that 27 is generated algebraically by the sections of I together with 
f~10 and ft01. This necessarily implies that ftl0Aft01 7~ 0, since these 2-forms must 
restrict to each/x 2 to be a transverse pair. (The reason for the peculiar indexing 
of the ~ 's  will be explained below.) 

1.1.3 Some examples. We will now give some examples of hyperbolic systems, 
starting with those of class s -- 0. Such a system 27 is defined on a &manifold M 
by a pair ~10, ~01 of everywhere transverse decomposable 2-forms. 
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EXAMPLE 1: Over a domain U C ]R 2 with coordinates (x, y) we consider a quasi- 
linear first order hyperbolic PDE system for two unknown functions u, v. Such a 
system is usually written in the form 

V x Vy  
(1) 

where A and B are 2-by-2 matrices and C is a 2-by-1 column, with entries which 
are functions of (x, y, u, v) defined on some open set M C R 4. 

The usual condition that  a solution (u, v) : (/(x, y), 9(x, V)) be hyperbolic 
(or, more properly speaking, that  (1) be hyperbolic at the solution (u,v) = 
(f(x,  y), g(x, y))) is that  the quadratic form 

Q(/,g) (&, ~2) = det (& A(x, y, f ,  g) + ~2 B(x, y, f ,  g) ) 

= Q l l  C2 2 ,q12 c e- 22 
(/,g) sl + ~(Lg) qlg2 4- Q(f,g) ~22 

11 22 have real, distinct linear factors, i.e., its discriminant A(f,g) = Q(/,g)Q(/,g) - 

(~12 ~2 should be negative. '~(f,g)] 
To write (1) as an exterior differential system in the open set M C N 4, we 

consider the pair of 2-forms ~1 and ~2 defined by the matrix equation 

~2 2 = A(x,y ,u,v)  \dvAdy] - U(x,y,u,v) \dvAdx] + C(x,y,u,v) dxAdy. 

The graph in M of a solution to (i) is easily seen to be an integral surface of the 
exterior differential system 27 generated by ~I and ~2. Conversely, integral surfaces 
of 27 on which dxAdy is non-zero are locally graphs of solutions to (I). Thus, locally 
the solutions to the former are in one~to-one correspondence with those integral 
surfaces of the latter which satisfy a transversality condition. 

Now, 

(A1 + A2  2)2= d AdvAdxAd> 

where P = p n  A2 + 2p12 A1A2 + p22 A2 is a quadratic form whose coefficients are 
functions of x, y, u, and v. Moreover, computation shows that  its discriminant 
D = p n p 2 2  _ (p~2) 2 has the property that,  on the graph of a solution to (1), we 
have 

D(x,y,  f (x ,y) ,g(x,y))  = A(f,g). 

It follows that  the pair of 2-forms ~ 1  ~2 span a hyperbolic pencil (and thus define 
a hyperbolic exterior differential system of class s -.  0) on the open subset of M 
which has the property that  it contains the graphs of the hyperbolic solutions of (1). 
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EXAMPLE 2: Consider the general hyperbolic exterior differential system Z with 
s = 0 generated by a hyperbolic pencil of 2-forms {~1/i~2}. In any local coordinate 
system (x, y, u, v), there are expressions 

~1 __ A 1 duAdy + B 1 dxAdu + C 1 dvAdy + D 1 dxAdv + E 1 duAdv + F 1 dxAdy 

~p2 = A 2 duAdy + B 2 dxAdu + C 2 dvAdy + D 2 dxAdv + E 2 duAdv + F 2 dxAdy 

where the coefficient functions A 1, etc., can be essentially arbitrary functions of x, 
y, u, and v (subject only  to the conditions that  the forms ~1 and (I) 2 generate a 
hyperbolic pencil). Then the integral surfaces of 12 to which, say, x and y restrict 
to be independent functions are locally graphs of the form (x, y ,u (x ,  y), v(x ,  y)) 
where u and v satisfy the pair of first order equations 

0 = A 1 u~ + B ~ uy + C 1 v~ + D 1 vy + E 1 (uxvy - vxuy) ~- F 1 

0 = A 2u~ + B 2uv + C 2vx + D 2vy + E  2 (UxVy-  VxUy) + F  2. 

Note that, if the functions E 1 and E 2 vaaish identicMly in this coordinate 
system, this reduces to a quasi-linear first order hyperbolic PDE system as studied 
in Example 1. In fact, in Section 1.1.4 below we shall show that  if the system Z is 
real analytic in some local coordinate system, then each point of M lies in a neigh- 
borhood on which there exists a local coordinate system in which the generating 
2-forms ~ 1  (i)2 have no du/,dv terms. Thus, at least in the real-analytic category 
(and, presumably in the smooth category as well, though we do not know this) the 
general hyperbolic system with s = 0 is locally equivalent to a hyperbolic pair of 
first-order quasi-linear PDE. 

EXAMPLE 3: Not all hyperbolic systems with s = 0 come directly from a first order 
system. Other natural constructions also yield these systems. Consider the second 
order Monge-Ampere equation 

E (zx~zyy - z~v ) + A z ~  + 2B zx~ + C zyy + D = 0 

where A, B, C, D, and E are functions of x, y, p = z~, and q = z~ only, i.e., they 
have no explicit dependence on z. In this case, the exterior differential system 
generated in xypq-space M by 

5~ = dpAdx + dqAdy 

= E dpAdq + A dpAdy + B (dqAdy + dxAdp) + C dxAdq + D dxAdy 

has the following property: Integral surfaces on which dxAdy is non-zero are locally 
graphs 

(x, y) -* (x, y, p(x, y), q(x, y)),  
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and • = 0 implies that  there is (at least locally) a function z so that  

p = zx and q = zv. 

Then if2 vanishes on this graph exactly when z(x, y) is a solution to the Monge- 
Ampere equation above. The condition that  this solution be hyperbolic in the 
classical sense (see [CH]) is easily found to be equivalent to the condition that  the 
graph lie in the open set where (I) and qJ generate a hyperbolic pencil. 

We shall s tudy several explicit examples in later sections. However, this might 
be a good place to illustrate the notion of equivalence that  we alluded to earlier. 
According to the general procedure that  we have just  outlined, the classical wave 
equation zyv - zxx = 0 corresponds to the ideal 511 on R 4 defined by 

I1 = { dpAdx + dqAdy, dxAdq - dpAdy } 

_2 - 1  corresponds to the ideal 5[2 while the Monge-Ampere equation zxx Zyy - -  ~ S x y  = 

on R 4 defined by 

I2 = { dpAdx + dqAdy, dpAdq + dxAdy }. 

Even though there is no change of variables in xyz-space which will convert one of 
these equations into the other, the ideals $i are diffeomorphic: the diffeomorphism 
f : R 4 -+ R 4 defined by the formula 

f ( x , y , p , q )  = ( - p , y , x , q )  

clearly has the property tha t  f* (511) = 5[2 and f* (I2) = 511. Thus, the two systems 
are (globally) equivalent. 

This example points out the importance of understanding when two systems 
are equivalent. Later  sections of this paper  will be directed at understanding how 
one can develop invariants which distinguish hyperbolic systems. The s tudy of 
these invariants will then point out tha t  several classically studied systems can be 
characterized by invariant properties. For example, in later sections our study will 
uncover, among  others, the system 

Uz -- vx = sin(u ÷ v) 

uy + vy = sin(u -- v) 

which generates the famous Bgcklnnd transformation for the sine-Gordon equation 
Zxy = sin z, the system 

I t  x ~ e v 

V y  z e u 
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which is important in the study of the classical Liouville equation Zxy = e z, and 
the system 

V 
U x - -  

x + y  
U 

V y - -  
x + y  

which turns out to be a 'linearization' of Goursat's equation zxy = 2zv/T2-~/(x + y). 

The invariants to be discussed also influence the space of conservation laws of 
the systems in question, and other special systems will turn up in that  context. 

EXAMPLE 4: Among the most interesting and important  exterior differential sys- 
tems are those that  arise from critical points of functionals. In the present setting 
we consider a symplectic manifold (M, ~) where dim M = 4 and q~ is a symplectic 
form on M. Recall that  an immersed surface 

f : S ~ M  

is said to be Lagrangian if f*(I) = 0. Let A be another 2-form. Consider the func- 
tional on Lagrangian surfaces 

L( f )  = J(v f*(A) .  (2) 

We will now construct an exterior differential system, called the Euler-Lagrange 
system g(A) associated to A, whose in te~al  surfaces are the critical points of the 
functional (2). 

To do this, we first write dA = gpAga for some (unique) l-form ~b. (This form 
exists and is unique since 4)A : T * M  --+ AaT*M is an isomorphism.) We will say 
that  (2) is non-degenerate in case the 2-form q2 = dg) is a symplectic form on M, 
i.e., tPA~ is nowhere vanishing. 

We now define g(A) to be the ideal generated by ¢5 and ~ . W e  are now going to 
show that  a Lagrangian immersion f : S --+ M is critical for the functional (2) with 
respect to (compactly supported) variations of f through ~-Lagrangian immersions 
if and only if it is an integral manifold of g(A). 

To see this let ft : S -+ M be a compactly supported variation through (1}- 
Lagrangian surfaces. Assuming for simplicity of notation that  the f t  are imbeddings 
and setting St = f t (S) ,  a standard calculation gives 

dt ~ t=o 
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where v is the variational vector field along S = So. Now, restricted to S we have 

v J(eA ) = ( Je)A  

= dh/,,~ 

for a suitable function h that  depends linearly on v. The first equation follows from 
~ls  = 0, and the relation 

v - ~ l s  = dh 

follows from tile fact that  the St are ~-Lagra.ngian surfaces. By Stokes' theorem 

dt ~ t o s 

If this vanishes for all {P-Lagrangian variations, then ~ l s  = 0, as we wanted to 
show. 

In case • and • span a hyperbolic pencil, it follows that  the Euler-Lagrange 
system E(A) is a hyperbolic exterior differential system of class s = 0. 

We shall now give some examples of hyperbolic systems with s > 0. 

EXAMPLE 5: A general Monge-Ampere equation 

E ( z ~ z v v  ...... Z~y) + A z ~  + 2Bz~  v + C z y  v + D = O  

as mentioned above, except where, now, the coefficients A, B, C, D, and E are 
functions of all five variables x, y, z, zx, and zv, may be written as an exterior 
differential system (M, 27) on a 5-manifold. In fact, M is a suitable open set in 
the jet  space j1 (R2, R) with coordinates (x, y, z, p, q) and Z is generated as a 
differential ideal by the contact 1-form 

0 = dz - p d x -  qdy 

and the 2-form 

~P = E dpadq + A dpAdy + B(dqAdy + dxAdp) ...~- C dzAdq + D dxAdy. 

Algebraically Z is generated by the 1-form 0 and the 2-forms (9 = dO and ~,  As 
expected, the Monge-Ampere equation turns out to be hyperbolic in the usual sense 
if and only if @ and • generate a hyperbolic pencil modulo 0. 

The relation between this example and the hyperbolic system ( ~ r  27) of' class 
s = 0 constructed above is that ,  in the case the eoet~eients A, B , . . . ,  E do not 
depend on z, the system (M, 27) is an integrable extension of (37/, 5~) in the sense 
of Section 6 in [ BG 2]. 
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Explicitly, following the notat ion in Example  3, we note tha t  ~ = p dx + q dy 
satisfies d~ = • C ~-. Thus, ~ is closed moduto Z. It  follows that,  on M 5 = 3]I × R 
with coordinate function z on the R-factor, we may introduce a 1-form 

0 = d z - p d x -  qdy  

on M. The exterior differential system generated by 0 and gs (same notation in both  
examples) is then 2 /as  introduced above. We may think of the fibration M ~ 31I 
as being given by the primitive of the 1-form giving a conservation law for 2~. 

EXAMPLE 6: Suppose that  we consider the general first-order system for two func- 
tions of two unknowns: 

F 1 (x, y, u, v, u~, uy, v~, vy) = 0 

F2(z,  y, u, v, u~, uy, vx, vy) = 0. 

We shall naturally assume that  these equations are non-degenerate in the sense 
that  it is always possible to solve them locally for two of the partials. On R s with 
coordinates x, y, u, v, p, q, r, and s, consider the dit~rential ideal generated by 
the two 1-forms 

01 = d u  - p d x  - q d y  

0 2 = dv - r d x -  sdy .  

Pull these forms back to the submanitbld M 6 C R s defined by the equations 

F l ( x , y , u , v , p , q , r , s )  = F 2 ( x , y , u , v , p , q , r , s )  = O. 

Then they generate a rank 2 Pfat~an system I .  Let Z denote the ideal generated 
by {01, 0 2, dO 1, dO2}. 

It  is not ditficult to show that  a solution (u, v) = ( f ( x ,  y), 9(x, y)) of the PDE 
system is hyperbolic in the usual PDE sense if and only if its 1-graph 

(x, y) ~ (x, y, f ( x ,  y), 9(x, y), f~ (x, y), J~v (x, y), gx (x, y), gy (x, y)) 

(which is clearly an integral manifold of Z) lies in the open subset of M on which 
Z is a hyperbolic exterior differential system of class s = 2. 

EXAMPLE 7: Now consider a single second-order hyperbolic equation 

F(x,  y, z, zx, z~, zxx, z ~ ,  %~) = 0 

which we assume to be non-degenerate, i.e., one can, at least locally, always solve 
this equation for one of the second order partials. 
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On R s with coordinates x, y, z, p (= Zx), q (= 
t (--- zyy), we consider the Pfaffian system generated 

0 ° = d z - p d x -  qdy  

0 1 = d p -  r d x -  s d y  

0 2 = d q -  s d x -  tdy .  

zv) , r (= zx~), s (= z~ ) ,  and 
by the three 1-forms 

We pull these 1-forms back to the hypersurface M 7 in R s defined by the equation 

F(x ,  y, z ,p,  q, r, s, t) = 0 

and let 27 denote the differential ideal generated by these forms. Now, dO ° =_ 
0 mod 0 °, 0 1 , 0 2 as is easily verified, so it follows that 27 is generated algebraically by 
the forms {0 °, 0 1, 0 2, dO 1, dO2}. It is not difficult to show that  the above equation 
is hyperbolic at a solution z = f ( x ,  y) if and only if its 2-graph 

(x, y) ~ (x, y, f ( x ,  y), f,: (x, y), fy  (x, y), fo:~ (x, y), fxy (x, y), fry (x, y))  

(which is clearly an integral manifold of the system 27) lies in the open subset of M 
on which 27 is a hyperbolic exterior differential system. Thus, (M, 27) is hyperbolic 
of class s = 3. 

EXAMPLE 8: In the previous examples, we have shown how several classical hy- 
perbolic PDEs can be recast as hyperbolic exterior differential systems. In fact, in 
geometry, this is frequently the reverse of the natural order. One generally encoun- 
ters problems cast naturally in the form of a differential system and the "reduction" 
to an equation or system of equations can only be done after a somewhat arbitrary 
choice of coordinates. (One of the motives of studying exterior differential systems 
is to avoid having to make these choices of coordinates.) In this example, we want 
to show how a hyperbolic system arises naturally in differential geometry. We will 
assume some familiarity with the language of moving frames. 

Let (N3,g) be an oriented Riemannian 3-manifold. Let ~r : F ~ N be 
its oriented orthonormal frame bundle. Thus, an element f E F is a quadruple 
f = (x; el,  e2, e3) where x = ~r(f) is a point of N and (e~, e2, e3) is an oriented 
orthonormal basis of T x N .  There are canonical 1-forms wi defined on F by the rule 

wi(v) = ei . 7r'(v), for all v C T I F  . 

It is easy to show that  ~* (g) = C~l 2 + cJ~ + co~. By the Fundamental Lemma of Rie- 
mannian geometry, there exist unique 1-forms w~j = -a~j~ (the connection forms) 
so that  the following so-called structure equations hold: 

dcd  i ~-- - - c o i j  AOJj . 
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The 1-forms @all, (.d2, ~3, ~d23, ~d31, ~)12) then form a global coframing of F (which has 
dimension 6). One proves that  the connection forms satisfy structure equations of 
the form 

1 da)ij • --02ik ACdkj -t- [ R i jk l  02k AaJl 

where Rijkt = -R j i k t  = --Rijlk, represent the components of the Riemann curva- 
ture tensor. 

Now let M 5 C T N  be the unit sphere bundle in the tangent bundle of N. 
There is a canonicM map a : F --* M given by or(x; ei) = (x; e3) and this map is 
a submersion. Looking at the definition of w3 on F ,  it is clear tha t  there exists a 
unique 1-form 0 on M so that  a* (0) = w3. Since 

(7* (O AdO 2) = w3A( dw3 ) 2 = --2 Wl /,W2A~3AW3F, W32 • O, 

it follows that  0 defines a contact structure on M. Moreover, because the fibers 
of a are the leaves of the Pfafflan system generated by {wl,w2,w3,~z31,~32}, the 
structure equations imply tha t  there exist well-defined 2-forms ~0, ~tl, ~2 on M 
so tha t  

~ * ( ~ 0 )  = ~ I A ~ :  

O'* ( ~ 2 )  : ~d31A~d32" 

In order to understand the geometric meaning of these forms, w e  consider 
the geometry of the integral surfaces of{O, dO}. For any immersed oriented surface 
f : S --* N,  there is a canonical lifting f : S --* M defined by 

/ ( s ) = ( f ( s ) , ~ ( s ) )  

where ~(s) E Tf(~)N is the oriented normal to the oriented 2-plane f ' ( s ) (TsS)  c 
Tf(s)N. It  is easy to see tha t  /*(0) = 0, so tha t  f : S --~ M is an integral surface 
of {0, dO}. Conversely, any integral surface g : S --* M of 0 which satisfies the 
condition tha t  g*(~t0) ¢ 0 is easily seen to be of the form g = ] for some immersion 
f : S - - - + N .  

Moreover, a simple calculation shows that ,  first, f*(~0)  = dA is the area form 
induced on S by its immersion into N,  second, ]*(~1)  = 2HdA ,  where H is the 
mean curvature of the oriented immersion, and, third, ]*(~2) = K dA where K is 
the product  of the principal curvatures of the immersion. 5 

Now let A0, A1, and As be constants (not all zero) and let 

5) Note  t h a t ,  unless t h e  met r ic  g is fiat, th i s  funct ion K will no t  general ly be  t he  Gauss  
curva tu re  of the  induced met r ic  f*  (g) on S. 
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Consider the ideal Z on M generated by {0, dO, ft}. It  follows from the above dis- 
cussion tha t  the integral surfaces of Z on which f~0 is non-zero are exactly the 
canonical lifts of immersions into N which satisfy the relation 

A2 K + 2),1 H + Ao = 0. 

This will be a hyperbolic system of class s = 1 exactly when the pair {dO, ft} 
generates a hyperbolic pencil modulo 0. A straightforward computat ion gives 

(~1 a + ~2 dO) 2 = ((At - AoA2)~ + ~ )  (d0y.  

It  follows that  I will be hyperbolic if and only if A~ - AoA2 < 0. 

Thus, for example, when (N, 9) is fiat Euclidean 3-space, setting (A0, A1, A2) = 
(1, 0, 1) gives the system whose integral manifolds are the surfaces in 3-space of con- 
stant Gauss curvature K = - 1 .  Even in flat 3-space, however, there is no natural  
coordinate system for reducing this hyperbolic system to a partial  differential equa- 
tion. The introduction of the Tschebycheff coordinates usually associated with this 
problem (which are crucial in the proof of Hilbert 's  theorem that  there are no corn- 
plete surfaces of constant negative curvature in Euclidean 3-space) depend, as we 
shall see, on understanding the conservation laws of this system in a coordinate- 
free manner. The relation of this system with the Bgcklund transformation for the 
sine-Gordon equation is well-known and will appear  later in the paper. 

In later sections, we will see further examples of hyperbolic systems with 
class s > 0 and will explore some of the relationships among systems of different 
classes. Although we are primarily interested in equations of class s = 0 or s = 1, it 
turns out that  considering the more general case simplifies our study considerably. 

1.1.4 A local normal form for hyperbolic systems of class s = 0. Let (M, Z) be a 
hyperbolic system of class s = 0. We will show that  in the real analytic case such 
a system is locally equivalent to the system associated to a quasi-linear first order 
hyperbolic PDE system exhibited in EXAMPLE i in Section 1.1.3 above. We begin 
by proving the following 

PROPOSITION: Let (M,Z)  be a real analytic hyperbolic system of class s = O. Then 
given any point p E M there is a neighborhood U of' p and a non-zero 2-forra ft 
defined on U satisJying 

(i) ftAft = O; 

(ii) f~Aq~ = 0 for all 2-forms q~ ~ Z; 

(iii) f~ is integrable, i.e., df~ - 0 "rnod ft. 

Proof: We 
dimension 
of 2-forms 

begin with a brief linem ~ algebra discussion. Let V be a vector space of 
4 and P = P(A2V *) tile projective space associated to the vector space 
on V. Then dim P = 5 and in P the equation 

ftAft = 0, ft C A2V * 
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defines the Grassmannian G of decomposable 2-planes. (More precisely, a point in 
P is the line [~] spanned by a non-zero ft c A~V *, and the validity of the above 
equation is independent of which point on the line we choose. We shall follow similar 
conventions for the remainder of this argument.) Let L C P be a hyperbolic pencil 
with intersection 

L n G = {[~1],[~2]} 

where f~l and D2 are the two decomposable elements of the pencil, each of which 
is defined up to non-zero scalars. For a point [~}] E G the equation 

ftAf~l = 0 

is equivalent to the condition that ~ and ~I have a common non-zero linear factor. 
Since the projectivized tangent space 

P(TL~lG ) = {[~] ~ P :  ~ : 0}, 

we see that  the above equation exactly defines 

Thus the double intersection 

S -- P(~I~IG) ~ P(TI~IG ) n G 

is a smooth surface that defines the set of points [~] C G such that ~] has a 
common linear factor with each of ~i and ~2. For any such ~t we may choose a 
basis cdl,~'2,aj3~Cd 4 for V* such that  

~'~1 ~ 0ylAbd2 

f~2 = ~ A ~  4 (3) 

~ 021ACU 3. 

For each point p E M we may apply this construction to V = TpM and obtain 
a surface Sp C F(A2T~M). In fact, there is an obvious 6-manifold E C F(A2T*M) 

given by UpcMSp. To give local coordinates on E we choose a point (P0, [f~0]) of E 
and a basis cJl,cd2,aJ3,w 4 in TdoM for which (3) holds. We may extend the w i to a 

coframe near P0, and then for (p, [a]) a point of E close to (P0, [a0]) we will have 

f~ = (a~ 1 + uco~)~(c~ a + vc~ 4) (4) 

for unique (u, v) ~ N2 These u, v together with local coordinates near P0 on M 
will give a local coordinate system on E. 
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On E we have a tautological 2-form ft, defined up to non-zero factors, and 
the exterior differential system that we want to consider is 

dft _= 0 mod ft (5) 

subject to the condition 
COlAOj2ACd3AW '4 ~ 0. 

An integral manifold of this system is then locally given by a section f : M -~ E 
such that f*ft  satisfies the conditions of the proposition. Locally we write 

= 71" 1ATr 3 

where 7rl = co I -~- ucd 2 and 7c3 = cz 3 + va: 4 are the linear factors appearing in (4). 
Equation (5) above then implies 

dTrlATrlATr 3 = 0 

dTr3ATrsATq = 0. 

If we write 
du = ui 02 i 

d v  = V i ~ i  

then solutions of the exterior differential system are given by solutions to the PDE 
system 

~4 = f ( ~ ,  V~ ~tl , ' t t2,  U3, Vl ,  V3, V4) 

V2 = g ( U , V , U l , U 2 , U 3 , V l ~ V 3 , V 4 )  

where f -- 9 = 0 whenever u = v = 0. This is a determined PDE system for 2 
unknown functions on an open set in R 4, and by the Cauchy-Kowaleska Theorem 
it will have local solutions in the real analytic case. [] 

REMARK: The above PDE system is in fact hyperbolic with characteristic variety 
given by the union of the two hyperplanes c~ s = 0 and c~, 4 = 0 in the tangent space 
at (P0, [~20]). Even though this characteristic variety is singular, it is possible that 
the methods of [Ya] might apply to give a C ~ result. 

As an application of the proposition we have the 

COROLLARY: Any real analytic hyperbolic system of class s = 0 is locally equiva- 
lent to the exterior differential system associated to a quasi-linear hyperbolic PDE 
system. 

Proof: We may find local functions x, y such that [~ is a non-zero multiple of dxAdy. 
If we then complete x, y to a local coordinate system x, y, u, v then each of the 
generators of the hyperbolic system will have no duAdv term. The result then 
follows from the discussion below EXAMPLE 2 in Section 1.1.3. [] 
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An important  special class of first order quasi-linear hyperbolic systems are 
the hyperbolic systems of conservation laws, which are PDE systems for functions 
u and v of x and y of the form 

Ox(F(x,y, u, v) ) + O~(G(x,y, u, v) ) = 0 (6) 

where F and G are R2-valued functions. We may equivalently express (6) by the 
s ta tement  that  the IR2-valued 2-form 

(a21)a) 2 = dFndy - dGAdx = d(F dy - G dx) 

vanishes on graphs ( x, y) --+ ( x, y, u( x, y), v( x, y) ). We clearly have 

dq~t = d~2 = 0 

so tha t  the exterior differential system associated to a hyperbolic system of conser- 
vation laws is generated by a pair of closed 2-forms. Using the above proposition 
we may prove a converse. 

PROPOSITION: A real analytic hyperbolic system (M,Z) of class s = 0 is locally 
equivalent to the exterior differential system associated to a hyperbolic system of 
conservation laws if, and only if, 5[ is generated by a pair of closed 2-for~s. 

Proof." Let ~ t  and ~2 be closed generators of Z. We want to show that  on a neigh- 
borhood of each point of M there are functions x and y together with N2-valued 
functions F, G such that  

( ~ t  ) = d(F dy - G 

Let x, y, u, v be coordinates as in the above corollary and ~5 C Z be any closed 
2-form. Since ~ is locally exact we have 

= aAdx +/3Ady + f ldxAdy = d~/ 

for some 1-fbrms a,/3 and % and a function f l .  Clearly, it suffices to show that  ~/ 
may be chosen so that  7 z 0mod  dx, dy. 

In the above expression for ~5 we may assume that  

a = adu + bdv 

fl = cdu + edv 

for suitable functions a, b, c and e. Looking at the coefficient of duAdvAdx in d~5 
gives 

av = bu 
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so that  
a = Au, 

for a suitable function A. Then 

b =  A~ 

(p - d(A dx) =/3Ady + f2 dxAdy 

for some possibly new function f2. Repeating the argument, gives the existence of 
functions B and f such that  

(P - d(A dx + t3 dy) = f dxAdy. 

Taking the exterior derivatives of both  sides gives 

df AdxAdy = 0 

and so f = f ( x ,  y). Then by modifying A and B appropriately we obtain 

¢5 = d(A dx + B dy) 

as desired. [] 

1.2 The characteristic variety and the initial value problem. The fundamental  fea- 
ture of hyperbolic (as opposed to, say, elliptic) PDE is the existence of the so-called 
"characteristics". In the classical theory of (determined) hyperbolic PDE in two in- 
dependent variables, one studies the initial value problem, which is usually posed 
as follows: Along a curve in the domain of the independent variables, one specifies 
initial data  (the values of the dependent variables and their partial derivatives) 
which satisfy the so-called "strip conditions". If this data  is "non-characteristic" 
in an appropriate  sense, then one hopes to prove that  there is a unique solution to 
the PDE on an open neighborhood of the initial curve which agrees with the given 
initial data  along tha t  curve. (See [CH] for a discussion of these ideas.) Then the 
notion of a :'characteristic" emerges as being a curve in the domain of a solution 
along which the initial value problem wouId not be well-posed. 

In this section, we will explore this concept in the context of hyperbolic exte- 
rior differential systems. 

1.2.1 Some linear algebra. Before turning to the details of hyperbolic systems, it 
is useful to briefly continue the linear algebra discussion on 4-dirnensional vector 
spaces that  we began in Section 1.1.2. We will keep the notation established there 
and let P = PV denote the projective space of lines through the origin in V. An 
isomorphism V ~ R 4 induces an identification P TM p 3  and all the statements 
below may be easily verified by choosing coordinates and making the appropriate  
calculations. 
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Let f~l, ~2 E A2V * be decomposable 2-forms satisfying ftlAft2 ¢ 0. The 2- 
planes ft~, ft~ in V then give a pair of lines L1, L2 in the projective space P, and 
the condition f~laf~2 # 0 translates into the condition that  L1 and L2 be skew 
lines. A 2-plane E c V gives a line LL: C P and for each c~ = 1, 2 the conditions 

(i) f~alE = 0 

(ii) La meets LE 

are equivalent. Thus, the 2-planes for which (i) holds for c~ = 1, 2 are given by the 
lines LE C P which meet each of L1 and L2. 

I 

= Lp 

Fig. 1 

Moreover, given any point P E P not on L1 or L2, there is a unique line Lp passing 
through P and meeting each of Lt  and L2 in points P1 and P2. This gives a fibration 

p3 \ (L1 U L2) 

L1 × L2 

with fibre IP I \ {2 points } ~ ]R*. In particular, the set of lines meeting each of L~. 
and L2 is bijective to L1 × L2. Back on V the statement is: The set of 2-planes 
E C V meeting each of the 2-planes ft~-, ft2 l in a line is a p1 × p1. 

1.2,2 The Characteristic Variety. Now, recall (see [BCG3]) that  an integral clement 
(of dimension q) of an exterior differential system (M, I )  is a q-plane E C T x M  
such that  all the forms in ;Z- restrict to zero on E; i.e., 

0(x)JE = 0, o z. 

Intuitively, the q-dimensional elements are the candidates for tangent planes to 
q-dimensional integral manifolds. 

Hyperbolic systems (which, as we have seen, satisfy Z q =: f~q(M) for all q _> 3) 
have integral elements of dimensions q = O, i, 2, which we now want to describe. Let 
Z == {01, ... ,OS; f~10, f~01} be a hyperbolic exterior differential system on M s+4 
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and let x E M. Then the subspace I~ C TxM, defined as the set of v E TzM so 
that 

e~(v) . . . . .  e~(v) = 0, 

is a vector space of dimension 4 and we denote by ~1, gt2 the restrictions of ~10, ~0z 
to I~. 

Integral elements of dimension one in TzM are simply lines in TzM which 
lie in I~  and are thus given by points P E YI~. By the linear algebra discussion 
above, integral elements of dimension two in TxM are 2-planes in I~  which meet 
each of the 2-planes t ~  and ft2 ~ and thus are given by lines L c P/~J- meeting 
each of the skew lines L1 = e(a ) and = e ( a t )  The condition that a point 
P E FI~  lies on a unique line meeting each of L1 and L2 is that  P not lie on either 
L1 or L2. 

We recall (again, see [BCG 3] for a more general discussion) that,  by definition, 
the charucteristic variety ~ of the exterior differential system Z consists of all 
integral elements of dimension one that  do not lie in a unique integral element 
of dimension 2. It follows from the above discussion that  the base point mapping 

--+ M (which sends each characteristic integral element to its base point) is a 
fibration with fibre p1 Up1. Informally, we say that  the characteristics of a hyperbolic 
exterior differential system, define a p1 U p1 over each point of M. 

This leads us to a very important definition for the subsequent theory. Recall 
our standing assumption from Section 1.1.2 that  I can be generated on M by the 
sections of I and two globally defined, non-vanishing, decomposable 2-forms ftl0 
and ~01. Clearly, we can choose a local adapted coframing (0; w) so that ~I0 ---- 
a ) iA~  2 and ~01 ~- ~3Aa24- 

DEFINITION: The (0 th) characteristic system ~I0 iS the Pfaffian system generated 
by {01 , . . . ,  0 ~, w 1, w 2 } while the (0 ~h) characteristic system ~ol is the Pfaffian sys- 
tem generated by {81,..., 0 s, w 3, w4}. 

Note that each of the characteristic systems is a Pfaffian system of rank s+2. 
The importance of the characteristic systems is that a l-dimensional integral el- 
ement E I of I is characteristic if and only if it lies in either the 2-plane EIA0 or 
the 2-plane £oAi. In fact, we immediately see that the characteristic variety bundle 

--+ M decomposes into two disjoint P1-bundles as 

s = u 

Now, since, by definition, each of ~oI and ~10 vanish on any integral surface 
f : S -+ zv/of I, it follows that each of the characteristic systems Z~0 and ~oI pulls 
back via such an f to be a Pfaffian system of rank I. In particular, there are two 
everywhere transverse foliations -7"i0 and )c01 of S by curves so that the leaves of 
5z0 map to integral curves of El0 and the leaves of .T'm map to integral curves of 
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E01. As will be seen, in the classical cases, these foliations are merely the fotiations 
of the domain of the solution by the so-called Monge characteristics. 

Now a transverse pair of curve-foliations of a surface has no local geometry. 
However, the exterior differential system perspective shows that  these are merely 
specializations to each solution surface of the "ambient" characteristic systems El0 
and Era. These Pfaffian systems do have local geometry and it is this geometry 
which strongly influences conservation laws. We shall explore it more deeply in the 
following sections. 

EXAMPLE 1: Consider the equation Z~y = f(x ,  y, z, z~, zy) which, as we showed in 
the last section, can be associated to the hyperbolic system Z of class s = 1 on ]R 5 

5[ = {dz - p d x  - q d y ,  ( d p -  f (x ,y , z ,p ,q)dy) idx ,  ( dq -  f (x ,y ,z ,p ,q)  dx)Ady}. 

Thus, the characteristic systems are given by 

= {dz-pdx-qdy  (dp- f(x,y,z,p,q)dy), dx} 

= {dz-pdx-qdy, (dq- f(x,y,z,p,q)dx), dy}. 

Of course, when we restrict to any solution of the above equation, ~10 (respectively, 
Era) pulls back to be the multiples of dx (respectively, dy). Thus the characteristic 
foliations in the xy-plane are simply the foliations by the x-lines and y-lines, just 
as we expected. 

EXAMPLE 2: Consider the Monge-Ampere equation z~xzyy - z ~ y  = - 1  which gives 
rise to the hyperbolic system Z of class s = 1 on R 5 

:Z = { dz - pdx - qdy, (dp - dy)A(dq + dx), (dp + dy)A(dq - dx) } 

The characteristic systems are given by 

~10 ~- { dz  - p d x  -- q dy, (dp - dy) ,  (dq -l- dx)  } 

Sol = { d z - p d x - q d y ,  (dp+ dy), ( dq -dx )  }. 

Thus, for example, on the solution surface 

(x,y,z,p,q) = (x, y, f (x)+xy,  f ' (x)÷y,  x) 

(where f is an arbitrary smooth function of one variable), the foliation 5r10 is just  
the foliation induced by the slices x = const while the foliation 9rOl is the foliation 
induced by the slices 2y + f ' (x) = const . 
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1.2.3 The initial value problem for hyperbolic systems. As ment ioned earlier, the 
notion of an integral  e lement  of an exter ior  differential sys tem was mean t  to cap- 
ture  the idea of an "infinitesimal" integral  manifold. Since a characteris t ic  integral  
e lement  is, by  definition, one for which the  extension to a higher dimensional  inte- 
gral  e lement  is not unique, it is the  infinitesimal version of the  usual P D E  notion 
of a characteris t ic .  

In  the  case of a hyperbol ic  exter ior  differential sys t em (M, :2), the  notion of 
"initial d a t a  sat isfying a s t r ip  condit ion" corresponds  exact ly  to  an integral  curve 
(i.e., one dimensional  integral  manifold)  ¢ : C ~ M of the  Pfatf ian sys tem L We 
say t h a t  ¢ is non-characteristic if the  tangent  line ¢'(t)(TtC) c T~(t)M is not  a 
character is t ic  integral  e lement  of Z fo r  any  t E C,  i.e., if ¢ ' ( t ) ( T t C )  ~ E for all 
t C C. As ought  to be  expected,  this reduces in the  classical cases to the  not ion of 
initial d a t a  being non-character is t ic .  

EXAMPLE 2 (continued):  A curve ¢ : (0, 1) --* R 5 of the  form 

¢(t)  = (~o(t) ,  vo(t),  ~o(t) ,po(t) ,  qo(t)) 

is an integral  curve of I (i.e., satisfies the s t r ip  conditions) if and only if z~(t) = 
po(t) X~o(t) + qo(t) y~(t). I t  is non-character is t ic  if and only if it is not t angent  to 

= ±  in other  words, if and only if, for all 0 < t < 1, ei ther of the  dis t r ibut ions E~0 or -01, 
we have 

(p'o(t) - v'o(t)) ~ + (q'o(t) + X'o(t)) ~ ~ o, 

(p'o(t) + y'o(t)) ~ + (q'o(t) - x'o(t)) ~ ~ o 

(Note tha t  the condit ion X~o(t) 2 + y~o(t) '2 ~ 0 is not required, which it would be if 
we were to th ink of ¢ as defining initial da t a  satisfying a str ip condit ion along a 
smooth  curve in the domain  of the independent  variables.)  Assuming tha t  these 
inequalities are satisfied, we can const ruct  an integral  surface f : (0, 1) x (0, 1) --+ R 5 
of Z which satisfies f ( t ,  t) = ¢(t)  for all 0 < t < 1 by set t ing 

1 (x0(s) + Xo(t) - qo(s) + qo(t)) 

(yo(s) + yo(t) + po(~) - po(t))  

p(~,~)  = ½ (po(~) + p o ( t )  + yo(~) - yo(t))  

q(~, t) : 1 (q0(~) + qo(t) - x0(s)  + x0(t) )  

and then  defining, for some chosen to E (0, 1), 

f 
(~,t) 

pdx  + qdy ~(~, t) = ~o(to) + J(~o,~o) 
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where the  line integral  is t aken  over any  curve in (0, l) x (0, 1) joining (to, to) to (s, t). 
T h e  reader  might  check t h a t  the  hypothes is  t ha t  the  curve ¢ be non-character is t ic  
forces f to  be  an immers ion  (on the  whole open  square) and  t ha t  the  character is t ic  
foliations are s imply the  foliations by  the  s- and t-slices in the  square.  We will 
c o m m e n t  fur ther  on the  m e t h o d  we used to cons t ruc t  this solution in Section 1.4. 

In  fact,  the  general  initial  value p rob lem for hyperbol ic  exter ior  differential 
sys tems  has been  s tudied quite extensively in the  l i terature,  see [Ka] and  [Ya]. 
In par t icular ,  an  e lementa ry  consequence of T h e o r e m  5.1 in [Ka] is the  following 
existence and  uniqueness result:  

THEOREM: Let (MS+4,2  -) be a smooth hyperbolic exterior differential system and 
let ¢ : (0, 1) --~ M be a non-characteristic smooth integral cur~;e of Z. Then there 
exists an open neighborhood U~ C (0, 1) x (0, 1) of the diagonal and a smooth map 
f¢ : U¢ -* M which is an integral surface of Z; satisfies f4( t , t )  = ¢(t) ,  and has 
the property that its characteristic foliation $1o is given by the slices t = const  
while its characteristic foliation 501 is given by the slices s = const . Moreover, 
if (U e, r e )  is any other pair with these properties, then f¢ and f¢ agree on any 
subsquare of the form (a, b) x (a, b) which lies in the intersection U¢ n U¢. 

Note  t ha t  the  condit ion of normaliz ing the  character is t ic  fbliations has the 
effect of removing  the  r epa ramet r i za t ion  ambigui ty  which normal ly  affects integral  
manifolds  of exter ior  differential systems.  Also, note  t ha t  while one would like to be  
able to  say t h a t  the  solution surface f is defined on the  entire oPen unit  square,  this 
will not  general ly be  the  case. A very  interest ing p rob lem is to  t r y  to character ize  in 
t e rms  of some sort  of  completeness ,  those sys tems  (M, Z) which have t h e  p rope r ty  
that. every  non-chm'acter is t ic  integral  curve ¢ : (0, 1) --~ M has an extension as 
above with  U 4 = (0, 1) x (0, 1). Example  2 above clearly does have this proper ty ,  
so it should be  thought  of as "character is t ical ly  complete" .  

However,  we caut ion the  reader  t ha t  the  integral  surtkce so cons t ruc ted  m a y  
not  be representable  as a g raph  of z as a funct ion of x and  y even if it is so 
representable  in a ne ighborhood of the  initial curve ¢.  Thus,  f rom the P D E  per- 
spective,  a given P D E  m a y  not have global existence for all initial da t a  even when 
the  corresponding hyperbol ic  exter ior  differential sys tem is complete.  

EXAMPLE 2 (continued): Suppose  tha t ,  for the  Monge-Ampere  equat ion  above,  we 
consider the  initial curve given by  the da ta  

x0 (t) = cos t - sin t 

Y0 (t) = cos t + sin t 

z0( t )  = 1 

P0 (t) = cos t - sin t 

q0 (t) = cos t + sin t, 

with solution 

x(s, t) = cos t - sin s 

y(s, t) = cos s + sin t 

z ( s ,  t )  = t - s + c o s ( t  - s )  

p(s , t )  = c o s s -  s in t  

q(s, t) = cos t + sin s. 
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Note that ,  as expected, this is an immersed surface in R 5. However, it cannot be 
represented globally as a graph of z as a function of x and y. In fact, we have 

dxAdy = cos(t - s) dtAds. 

Thus, for example, we cannot solve smoothly for s and t as functions of x and y 
in any region where cos(t - s) vanishes. In fact, restricting to the region where 
It - s I < 7c/2, we can solve for z as a function of z and y, getting 

z ( x , y ) = s i n - l ( 1  1 2 2 -~(x + y ) ) + c o s ( s i n - l ( 1  - I g ( x 2 + y 2 ) ) ) .  

Note that  this solution cannot be extended smoothly beyond the punctured disk 
O < x 2 + y  2 < 2 .  

EXAMPLE 3: Let k be a smooth positive function on R. Consider the non-linear 
equation 

Zyy - (k(zx))2 z =  = O, 

known as the Fermi-Pasta-Ulam equation, or F P U  equation, for short. The corre- 
sponding hyperbolic exterior differential system on R 5 with standard coordinates 
x, y, z, p, and q is 

z={ ~-pdx-q@, e>dx+dqA@, eqAdx+ (k(p))2d>ey} 
={ &-pdx-q@, (dq+k(p)@)~(ex+k(p)@), (dq-k(p)@)A(e~-k(p)d~) }. 

Let K(p) be an antiderivative of k(p), and note that  K is a strictly increasing 
function K : R --+ ~ which is a diffeomorphism of R onto its image. 

We are going to show that  if the range of K is all of R, then (R s, 27) is complete 
in the above sense, in spite of the well-known fact (which we shall discuss later) 
that  solutions to the FPU equation with compactly supported initial data  develop 
singularities in finite time. 

Now, the characteristic systems are 

E~o = { & - p a x - q @ ,  ( @ +  k(v)@),  (d~ + kC,)@) } 

~o~ = { e ~ - V d ~ - q @ ,  ( e q - k ( p ) @ ) ,  ( d ~ -  k (p )@)  }. 

Suppose that  ¢ : R --~ R 5 is a non-characteristic integral curve of 2-. Thus, 

¢(t) = (x0 (t), y0 (t), z0 (t), p0 (t), qo (t)) 

where z~(t) = po(t)X'o(t) + qo(t)y'o(t), but  where, also, for all t, we have 

(4o(t) ± k(vo(t))v'o(t)) ~ + (~'o(t) ± k(p0( t ) )~ ( t ) )  ~ > 0. 
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We want to show how to construct f : R 2 -~ R 5 as in the above Theorem. First, if 

there is a solution, then there will be functions A, B, C and D on ~2 so that 

dq + k(p) dp = 2 A(s, t) ds dq - k(p) dp = 2 C(s,  t) dt 
and 

dx + k(p) dy = 2 B(s, t) ds dx - k(p) dy = 2 D(s, t) dr. 

Since d(q + K ~ ) )  is a multiple of ds, it follows that  if there is to be a solution, 
then q + K(p)  will have to be a function of s alone. Thus 

q(s,t)  + K ( p ( s , t ) )  = + K(p(s ,  = q0( ) + 

By similar reasoning using the other characteristic system, we see that  

q(s, t) - K(p(s ,  t)) = q0(t) - K(p0(t)) .  

Solving these equations gives the only possibility for the functions p and q if there 
is to be a solution: 

l (qo ( s )+qo( t )+K(po(s ) ) -K(po( t ) ) )  and q(8,t) = 

K(p( s , t ) )  = ½(qo(s ) -qo( t )+K(po(s ) )+K(po( t ) ) ) .  

Note that  the assumption that  the range of K be all of ~ implies that  this does, 
indeed define a (unique) function p : R 2 --* R. Now, we also have 

dx = B(s,  t) ds + D(s ,  t) dt 

k(p) dy = B(s ,  t) ds - D(s,  t) dt 

so it follows that  B(s ,  t) = xs(s,  t) and D(s,  t) -= xt(s ,  t). Substituting this into the 
second equation gives 

dy = (k(p(s, t ) ) ) - i  (x~(s, t) ds - x t(s ,  t) dr). 

Set )~(s, t) = log(k(p(s, t))) ,  then differentiating this last equation and multiplying 
by e ~ gives the formula 

2x~  dsAdt + d,~A (xs ds - x ,  dr) = O. 

and this expands to the linear equation (for x(s,  t)) 

2Xst - )~t Xs +/~s x~ = O. 

Note also that  we have the initial conditions x(t ,  t) = xo(t) and x , ( t ,  t) - xt( t ,  t) = 
k(p0(,))  ' t  Yo(). Since A is known, this equation is a linear hyperbolic equation for x 
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in the st-plane, with initial conditions posed along the non-characteristic line s = t. 
By the usual existence and uniqueness theorems for linear equations, there exists 
a unique function x(s, t)  on the whole sf-ptane satisfying this equation and the 
given initial conditions. Once x is known, the fact that  it is a solution of the 

linear equation implies that  the 1-form (k(p(s, t ) ) ) - t  (x~(s, t) ds - xt(s, t) dt) is 
closed. Hence, it is the exterior derivative of a function y. By choosing the additive 
constant correctly, we can make sure that,  y(0, 0) = y0(0), and then the equations 
above easily imply" that  y(t,t) = yo(t) for all t E R. Finally, the function z(s,t)  is 
constructed in the obvious way: 

pdx + qdy z(~,t) = z0(0) + J(0,0) 

(the pa th  used for the line integral is immaterial  since, by construction, p dx+q dy 
is a closed 1-form) and the strip conditions then imply tha t  z(t, t) = zo(t). I t  is 
now an elementary mat te r  to check tha t  the map f : R 2 -* R 5 

f (s ,  t) : (x(s, t), y(s, t), z(s, t),p(s, t), q(s, t)) 

pulls back the forms in :Z- to be zero. It is not, however, obvious that  f is an 
immersion except along some open set containing the line s = t. 

1.3 Prolongation of hyperbolic systems and their  s t ructure  equations. In the theory 
of exterior differential systems, the operation of prolongation plays a central role. 
This operation is analagous to the process in classical PDE whereby one adjoins the 
derivatives of the unknown functions as new variables and then adjoins new partial  
differential equations to ensure that  the new unknowns do, in fact, behave like the 
derivatives of the original unknowns. As usual, for a more complete explanation of 
the process of prolongation, we refer the reader to [BCG'3]. 

1.3.1 Prolongations. We denote by G2(TM) the Grassmann bundle whose fibre over 
x E M consists of all 2-planes E C TxM. Sitting in G2(TM) is the set G2(Z) of 
integral 2-planes of the hyperbolic system 27. We then have the base point fibration 

c2(z) < a<rM) 
,Tr 

M 

where, by our discussion above, each fibre of ~r is a 1?1 x ps. 

Recall that  over G2(TM) there is a tautological Pfaffian system J whose 
integral manifolds are the canonical lifts (Gauss maps) of immersed surfaces in M, 
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as expressed by the diagram 

G2(TM) 

i 
i 

i 

, 7 r  

I 

," f 
S ~M 

where  : < r ( s ) ( f ( s ) ) .  

For a point (x, E) E G2 (TM) we have by definition 

3~, z) = ~*(E i) 

where E C TzM is a 2-plane and E ± C TgM its codimension 2 annihilator. The 
restriction to G2(Z) C G2(TM) of the canonical system f f  is, by definition, the 
(first) prolongation (M(n ,  Z(1)) of (M, 7.); thus 

M (1) = G2( I )  and Z(1) = ff]M(n. 

We want to elucidate the local structure of the ideal Z(1). To this end, we 
prove the following structure theorem. 

PROPOSITION: The prolongation of a hyperbolic system of class s is a hyperbolic 
system of class s+2.  

Proof." Suppose that ,  on an open set U of M, we have chosen an admissable local 
coframing (0;co) for Z as in Section 1.1.2. Thus, on U, we have 

:r = {0 ' , . . .  ,0% colAc~, 2, c~aAw4}. 

If E0 E G2(Z) is an integral element based in U, then, by changing basis in the co i, 
we can arrange that  co~ ACO a does not vanish on E0. Let W C M (1) denote the open 
subset of 2-dimensional integral elements of Z with base point in U and on which 
the 2-form wlAcoa does not vanish. This is, of course, an open neighborhood of E0 
in M (1). For any E E W, the space E ~- C T* E M is spanned by s+2  1-forms. ( 0  
Since co~(E) and w 3 ~(E) are linearly independent on E,  while all of the forms in 5[ 

must vanish on E,  it follows that  E ± has a unique basis of the form 

0 1 ( E ) ,  . . .  , S 2 __ h 2 0 ( E )  1 4 3 0~(~), w~(E) c~'~(E), cot(E) - ho2(E) coX(E). 
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The functions h20, h02 thus defined on W define coordinates on the fibers of W ( C  
U (1)) -~ U. Moreover,  inspection, combined with the  definition of 27 (1), shows tha t  
the 1-forms 

010 = w 2 - h 2 0 w  I 

001 = w  4 - h 0 2 a ;  3 

lie in the Pfafflan sys tem which generates ZO). 6 Thus,  on W C M (1), the first 
prolongat ion Z (i) is generated by the Pfafflan sys tem 

By construction 

i(1) = { 0 1 , . . . ,  0 ~, 010,001}. 

~lAa)2 ~_ t~lA010 

6g3AaJ 4 = ~d3A001 . 

It follows tha t  the algebraic ideal generated by the sections of I (1) contains all of 
the  forms in 27. tn  part icular ,  we have 

dO 1 - - . . .  =-dO s ~ 0 m o d { 0 1 , . . . , 0  ~, 0]o,0m}. 

Moreover, since c~ 2 - h 2 o w  t - a~ 4 - h o 2 ~  3 =- 0 m o d { 0 1 , . . .  ,0 s, 01o,001 } and since 
the 2-forms dw i are well-defined on U, it follows tha t  there  are (unique) fimctions A i 
so that 

dc~ / -----Aic~IAa~ 3 rood{01,... ,08, 010,001}. 

It follows that 

d01o =- - (dh2o + (A 2 - h2oA1)~a)Aa~ 1 - -~r20AJ } mod{01 , . . .  0s, 010,001} 

dO01 ~- - ( d h 0 2  - (A 4 ho2A3)~dl)Aa23 ~ --Tr02ACd 3 

where we have set ~r20 = dh20  + ( A  2 - h 2 0 A ] ) w  3 and ~c02 = dh02  - (A 4 - ho2A3)aJ  1. 

It  follows tha t  on W the ideal Z (1) has the  form 

:r (1) = {01 , . . .  ,0L  010,00t; 7r20A~ 1, ~02A~ 3 }. 

Thus,  Z (t) is a hyperbolic  exterior differential system, as desired. [] 

6) Here and elswhere, we adopt the common practice of writing simply ¢ instead of ~* (~) to 
denote the pullback via the submersion 7r : W --~ U whenever this abbreviation wilt not 
cause confusion, Since, in this case, W = U x I~ 2 with h20 and h02 forming the coordinates 
on the II~2-factor~ confusion is almost impossible. 
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We will let 7-/s denote  the set of hyperbolic  exterior differential systems of  
class s. Pro longat ion  then  gives a mapping  

~r) : '~S --> "~S+2" 

This process can be i terated,  leading to  the  successive higher  prolongat ions ,  

(M (k), 1: (k)) ~ ~6+2k. 

We now want to remark on the relationship between the integral manifolds of 
I and those of :2(1) Given any integral surface f : S -~ M of Z, we will denote by 
f(1) : S --~ M (1) the canonical lift of f defined by the rule 

f O ) ( s )  = f ' ( s ) ( T s S )  = T f ( s ) f ( S ) .  

Since f is an immersion, so is f ( 1 )  Moreover, this latter map  is clearly t rans-  
verse to the  fibers of the basepoint  f ibration 7~ : M (1) -~ M.  By  the  tautological  
propert ies of the canonical sys tem J on the Grassman bundle G 2 ( T M )  it also 
follows tha t  fO)  : S -~ M (1) is an integral surface of Z (1). 

Conversely, any integral surface 9 : S -~ M (1) of I (1) which is t ransverse to 
the  fibers of 7r : M (1) -+ M must  be of the  form g = f(1) for some unique integral 
surface f : S -~ M of I ;  in fact, f = ~rog. Thus,  the integral surfaces of Z in M are 
in one-to-one correspondence with the integral surfaces of Z (1) in M (1) which are 
transverse to the fibers of  7r. Obviously, this const ruct ion can be repeated,  yielding 
integral surfaces f ( k )  : S -~ M (k) of Z (k) for  all k > 0. 

1.3.2 Rela t ions  wi th  the ini t ial  value problem.  Regarding the initial value problem, 
it is impor tan t  to note t ha t  a non-characteris t ic  integral curve ¢ : C + M of Z also 
has a canonical  lifting to  a non-characteris t ic  integral curve ¢(1) : C -~ M (1). This 
lifting is defined by lett ing 0(1)(t) be the unique 1-dimensional integral element 
of  2 -which  contains ¢ ' ( t ) ( T I C ) .  Again,  every non-characteris t ic  integral curve V :  

C -~ M (1) of 2: (1) which is transverse to the fibers of 7r is of the form V = ¢(1) 
where ¢ = ~r o ~. As we shall see, this const ruct ion and its i terates ¢(k) : C -+ M (k) 
will play an  impor tan t  rote in Darboux '  me thod  of  integration.  

1.3.3 S o m e  examples .  To illustrate the  prolongat ion construct ion,  consider the  ex- 
terior differential sys tem associated in the  usual way to  a second order hyperbolic  
equat ion 7 as discussed in Example  7 in Section 1.1.3 

F ( x ,  y, z, p, q, r, s, t) = O. 

7) The general procedure for canonically associating an exterior differential system to a PDE 
system is explained in Chapter 1 of [ BCG 3]. In the first example here, (x, y, z, p, q, r, s, t) 
are coordinates in the jet space j2 (1R2 N) and in the second example (x, y, u, v, p, q, r, s) are 
coordinates in jI(]R2, R2). In both cases the PDE defines a submanifold M of the jet space 
and the exterior differential system is generated as a differential system by the restriction 
to M of the contact system. 
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Here, we are following the classical notation: p = zx, q = zy, r = z,x~, s = z~v, 

and t = Zyy. These are to be regarded as coordinates on the 2-jet space j2  (E{2 R) 
endowed with its canonical second order contact ideal J generated by the three 
l-forms 

0 ° = d z - p d x -  q d y  

01 = dp - r dx  - s dy  

02 = dq - s dx  - t dy. 

The pullback of this system to the 7-dimensional hypersurface M defined by the 
equation F = 0 will then be a hyperbolic exterior differential system (M, 2-) which 
lies in 7-{3. 

In case the equation F = 0 happens to be a Monge-Ampere equation 

E ( r t  - s 2) + A r  + 2 B s  + C t  + D = 0 (1) 

where A,  B ,  C, D ,  E are functions of (x~ y, z,  p, q), we  showed in the previous 
section how one may associate a hyperbolic exterior differential system (M0, So) E 
7{1 to the equation. It turns out, a.s the reader may check, that the first prolongation 
of (M0, 5[0) E ~1 contains (M, 2-) E 7-t3 as a dense open set. More precisely, (M, 5[) 

is the open subset of (M~ 1), 2-~1)) consisting of those integral elements on which 
dxAdy  # O. 

Similarly~ a first order hyperbolic system for two functions of two independent, 
variables 

F ( x ,  y, u, v~ p~ q, r, s) = 0 

where p = uz, q = Uy, r = v~, and s = vy can always be expressed as a hyperbolic 
exterior differemial system (M~ 2-) E ~2.  However, in case (2) is a quasi-linear 
system, we saw in Section 1.1.3 that  there is an associated hyperbolic exterior 
differential system (M0, 2-0) E 7-/0. Again~ it turns out that  the open subset of the 
first prolongation of this latter system consisting of the integral elements on which 
dxAdy  ~ 0 is the exterior differential system (M~ 2-) E ~ canonically associated 
to (2). 

1.3.4 Par t ia l  Prolongat ions .  Variations on the prolongation construction are possi- 
ble and are ocassionally encountered in the theory. Suppose given a hyperbolic exte- 
rior differential system (M, 2-) with the property that  the (Fa UP~)-bundle Z --+ M 
can be written as a disjoint union 

where each of M:~ ) --, M and M0(~ ) -+ M is a Pl-bundle. (This can always be 
arranged by passing to a double cover of M if necessary.) Now, every 2-dimensional 
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integral element E C T=M of 17 can be written uniquely in the form E = L~o (~ L01 
~/r(1) and L01 E M~I ). It follows that  there is a diagram of submersions with L~0 c -~0  

M (1) E 
/ \ / \ 

M}t ) M ~  ) corresponding to L10 L01. 

M x 

It is not difficult to show that  there exist canonically constructed hyperbolic exterior 
differential systems I ~  ) and I~11 ) on M ~  ) and M~I ) respectively so that  every 

integral surface f : S --~ M of Z has canonical liftings f~ )  : S -~ M ~  ) and 

f (~) :  S -~ ~'~01~/r(1) which are integral surfaces of/1(01) and Z~11 ) respectively. Thus, 
these partial prolongations are canonically defined and, for a system of class s, we 
have (J'vI}01) , Z} 1)) and (M~) , -~ol~r(t)'J in ~s+t-  

Thus, hyperbolic exterior differential systems of classes s = 0, 1, 2 , . . .  form a 
very natural and interrelated set of exterior differential systems. Although we are 
primarily interested in the cases s = 0 and s = 1, it is convenient to set these in a 
general context as we have done. 

1.3.5 The refined structure equations. We now want to derive more refined struc- 
ture equations for the higher prolongations which will be fundamental in our later 
calculation of the conservation laws of (MS+4,Z). In fact, we will now show that  
the k th prolongation satisfies a remarkable set of structure equations. 

PROPOSITION: Let (M, Z) be a hyperbolic exterior differential system of class s. 
Then on the manifold M (k) (of dimension s+4+2k) there is a cofruming 

01 ,  . . .  , Os , 010, . . .  ,OkO,  001,--.  ,00k, 7rk÷l,0, 9210, 7l-0,k-I-1, 9201 

such that Z (k) is generated as a differential ideal by O1,. . . , 0% 010, . . . ,  0~0, 002, . • •, 
Ook which satisfies the str~eture equations 

(i) dOko ~ --Trk t.1,0A9210 -I- rko9201AO01 rood{01,... ,08, 010,... ,0ko} 

(ii) dOok = --~o.k-+ 1A920t + To~ 9210a010 mod{01, . . . ,  0% 001,. . . ,  00k}. 
(3) 

We will discuss the meaning of these equations below. For now, we merely 
note that  they immediately imply the earlier proposition from Section 1.3.1 to the 
effect that  (M (~) , Z (k)) is a hyperbolic system; i.e., dOko and dOok are decomposable 
modulo all of the 0's. In fact, however, these structure equations go much fi~rther in 
that they give information on dOko modulo only 01 , . . . ,  08, 010, • . . ,  0ko; i.e., omitting 
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0Ol,. . . ,  0ok. In later sections this fact (as well as others derivable from the above 
structure equations) will play an important role. 

Proof." We are going to follow the notation of the earlier Proposition in Section 1.3.1. 
Recall that,  by the definition of a hyperbolic system, we have, using f~10 = wl0A01o 
and ~"~01 = 0201A001, that  

dO s - A~owloAOlo + A~I Wolt,0ol mod{0~}. (4) 

For k = 1, equation (i) is 

d01o =- --~r2oAwlo + Tlo c~Ola0Ol mod{0 t , . . . ,  0 s, 01o}. 

Now ftlo is defined on the original manifold M, and, since the 1-forms 01,. . .  ,0 ~, 
01o, WlO, 001, cOoL are a basis for the semi-basic forms for the projection M (1) - ,  M, 
it follows that  

dftlO E A3[01,... ,0 s, 0to, Wlo, 0ot, woi]. 

In fact, from the formula for d01o given above we have 

df~lo ~ -TlO Wl0aa~0Ia001 rood{01,. . . ,  0 s, 010}. 

Moreover, C~'lO is actually defined on M = M (°) (as opposed to 01o, which is only 
defined on M (1) even though it is semi-basic for the projection M (1) ~ M(°)). 
Thus we have 

dwlo E A2[01,... ,0 ~, 0~o, a~10, 0ol, CZol]. 

Now" using a similar argument for dw01 yields the formulae 

daJlo =-- StoaJmAOol mod{01,. . .  ,0 ~, 01o, a~lO} 
(5) 

daJot - Sol ~10A010 mod{0 t , . . . ,  0 ~, 0ol, aJ01}. 

From (5) and 
dftlo = dwloA01o - wloAd01o 

we may infer that  there exists a 1-form 7r2o on M (1) such that  

d01o - -r~2oACOlo modAU[01,.. . ,  W, 01o, COlo: 0ot, ¢001]. 

Thus 
d01o -- -rr2oAcOlo + r/AcVlo + Tio aaolA0ol rood{01,. . . ,  0 s, 01o} 

where r/ is a linear combination of 0ol and COoz. Replacing ~r2o by ~r2o - rl and 
relabeling we have 

d01o =-- -7r2OAWlO + Tlo 0201A001 rood{01,. . . ,  0 s, 01o}. 

This establishes (3) for the case k = 1. 
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Assuming by induction that (3) holds for some k _>- I, we shall establish it for 
k + l .  

On integral 2-planes E of Z (k) we have 

7r~+I,0AWl01E = 0 

031oju ¢ 0, 

so that  M (k+l) is locally M (k) x ]R 2 where IR 2 has coordinates (hk+2,0, ho,k+2) and 
where 

Ok+l,o = wk+l,o -- hk+2,0 o310 

O0,k+l = rc0,k+l -- ho,k+2 03Ol- 

In fact, the vanishing of 0k+l,o and 0o,k+i defines the 2-planes on which rrk+l,OAWlO 
and rro,k+lA03Ol restrict to zero but COlOAWOl ¢ 0. Prom (1.i) we have on M (k+l) 

dOko -- --0k+1,0A03i0 + Tko WOlA0Ol mod{01, • • •, 0 s, 01o,.. •, 0~o}. 

We shall write this as 

dOko = --0k+l,0A0310 + Tk0 f~0t mod{01,--- ,  0 *, 01o, . . . ,  0ko}. (6) 

Taking the exterior derivative of this equation and substituting (1.i) for dOjo for 
j = 1 , . . . ,  k - 1  together with (6) gives 

0 - -dOk+l,0a0310 + XAwOlA0Ol mod{01 , . . . ,  0 *, 01o,. • •, 0k+l,o}. (7) 

We want to say a word about X. It arises from the terms d2r'kOAf~01 and Tko drool 
and the coeflScients of 0301/\001 in dO], . . . ,  dO s, d01o,..., dOko. Since 

drool E 13101o, CO10, 001 , 030t ] mod{01 , . . . ,  0 s} 

we have 
drool =- a 031oA03ovxOo] mod{01 , . . . ,  0", 01o}. 

From (7) we deduce that  

X - 0 mod{01, --. , 0s, 01o, . . . ,  0k+l,o, Oo1,wlo,wol} 

and hence we infer the existence of a form rrk+2,o on M(k+l) such that  

d0k+l,O ~ --7ck+2,0ACOl0 + Tk+I,0W01A001 mod{01 , . . . , 0  s, 01o, . . . ,  0k+l,o}. 

This completes the induction step in the proof of (3). [] 
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1.3.6 I n t e rpre ta t i ons  - -  h igher  charac ter i s t i c  s y s t ems .  W e  would like to  discuss 
some of the  meaning  of the  s t ruc ture  equat ions (3). First ,  we give an impor t an t  
definition. 

DEFINITION: The  k th charac ter i s t i c  s y s t e m s  of a hyperbol ic  sys tem are the  Pfaffian 
sys tems s 

~(k) 01 - [ , 0 010, 0ko,  10] ~ 1 0  - -  " ' ' ~  " ' ' ,  

=(k) 01 - [ , 0% 0o , 0ok,  r0,k+> cooj .  ~ 0 1  - -  " ' "  ~ " ' ' ,  

As explained above, each integral  surface f : S --+ M of the  original hyperbol ic  
sys tem has its k th-prolongat ion f(k) : S -+ M (k) which is an integral  surface 
of Z (k) , the  hyperbol ic  exter ior  dif[~rential sys tem genera ted  as a differential sys tem 
by 0 ' , . . .  ,0 s, 010, . . .  , 0k0 ,001 , . . .  ,00k on M(k) (here k > l ) .  I t  follows from (3) t ha t  

7[k+l,0AcOl0 ---- 0 

on f ( k ) ( S ) ,  so tha t  -lO~(k) induces on f ( ~ ) ( S )  a Pfaffian sys tem of rank  one, and 

similarly for ~(k) Of course, these induce the  same two character is t ic  foliations on 
~ 0 1  " 

solution surfaces to the  hyperbol ic  exterior  differential sys tem as the 0 th character-  
istic systems.  We will see in Section 1.4 t ha t  the  geomet ry  - -  meaning  the derived 
flags, etc. - -  of the  character is t ic  sys tems  is an impor t an t  feature  of a hyperbol ic  
exter ior  differential sys tem.  

One in te rpre ta t ion  of the  s t ruc ture  equat ions (3) is tha t  the charac ter i s t i c  

s y s t e m s  7=~) and  E ~  ) are coupled only at the f i rs t  level. To explain this, we pass 
to the infinite prolongat ion M (°°) with coframing 9 

0 1 , , . . , 0 s : ,  010, 0 2 0 , . . . , "  001, 0 0 2 , . - - ;  C010, CO01 

and wri te  the s t ruc ture  equat ions  (3) as 

(i) dO.A;o =-- --0k+I,0AWl0 + T/~0 [201 mod{01, . , ,  ,0  s, 010,... ,Oko} 

(ii) dOo~ = --O0,k + I AW01 + Tok [21o mod{01, . . .  ,0 s, Ool , . . . , Ook }, 
(s) 

s) The  Pfaffian sys tem ~(k) and  --(1¢) defined on ?~/(k) W h e n  lifted to M (k+O for any ~1o ~01 are 
l => 1 they  are given by 

=(k) = [01 . . . .  ,0 ~, 01o, •. •, 0e+l.o, wso] ~10 

=(k)=[01 . . ,0 s,0ol,...,0o,k+l,cJol]. 

9) The  infinite prolonga.tion ( M  (c~), Z (°°)) of (M, Z) is discussed in Section 2 of [ BG 1]. 
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The characterist ic  systems are 

=(ec) 01 = [  , ,0 ~ ,01o,020, .  ,~10] ~ 1 0  . . . . .  

~o1=(~) = [ 01, . . . . .  ,0L 001, 00s,. ,a;ol], 

and (5) and (8) say tha t  the characterist ic systems ~10 , ~01 are Frobenius up to 
the coupling terms $1o f~ol, ,gin f~lo and Tko f~01, Tok f~10. It  will tu rn  out  tha t  the 
coetficients T~:o, Tok are the fundamenta l  relative inva~ants of hyperbolic  systems 
of class s = 0. 

In  the case s = 0 the  characterist ic systems are disjoint and span atl of the 
1-forms on M (°@ 

Moreover, as we shall see in Section 1.5 below, there are many  interesting cases 
where $10 = S01 = 0 (of. (5) above). In  this case, it follows that :  If all the Tko and 

To~ vanish, then each of S~o ) and S ~ l  ) are Frobenius systems. We point  this out  
here to emphasize the  impor tance  of  these relative invariants. 

1.3.7 Even further r'efinemev.ts. The s t ruc tu re  equations discussed above are ra ther  
general and apply to  hyperbolic  systems of any class s. For the  low" values of s and 
with more  information on the s t ructure  of the original ideal 2-, we can introduce 
fur ther  refinements, 

Beginning in Section t.5, we will concentra te  mainly on the case s = 0 and 
will in t roduce considerable refinements via  the method  of equivalence, tn  the rest 
of  this section, however, we want  to comment  On how they  may  also be refined 
when s = 1. Such a sys tem is given on a 5-manifold locally as Z = {0, ~10, f~0,}. 
Equat ion  (4) simplifies to 

dO - Azo f~lo + Aol f~0x mod{0}.  

If  A10 = A01 = 0, then  the  5-manifold M is foliated in codimension 1 by the leaves 
of the sys tem 0 = 0. Each integral manifold of Z lies in one of these leaves and 
the sys tem essentially reduces to a 1-parameter  family of hyperbolic  systems of 
class s = 0 (cf. Section 1.4 below). 

If, say, A10 = 0 but  A01 ¢; 0, then we may normalize so as to have the 
equat ion dO -- f~01mod{0}. In  this case, the non-characterist ic  initial value problem 
for the sys tem can be solved using only O D E  techniques. Here is how this goes. 
Since OAdO = 0Aft01 7 £ 0 but  OA(dO) 2 = 0, it follows from the Pfaff -Darboux 
theorem tha t  every point  of M lies in some open set U on which there exists a 
submersion f : U --* R 3 so tha t  0 restr icted to U is a multiple of f*(dz ......... y dz). 
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K ¢ : (0, 1) --~ U is a non-characteristic integral curve of Z, then in particular it 
follows that  f o ¢ :  (0, 1) ~ R 3 is an immersion and that  P = f -1  (foe((0, 1))) C 
U is a smooth 3-manifold which is an integral manifold of 0 and hence of ft01. 
Moreover, P clearly contains ¢((0, 1)). The 2-form ft~0 restricts to P to have a 
Cauchy characteristic and the assumption that  ¢ is non-characteristic implies that  
¢((0, 1)) is transverse to this characteristic line field. It follows that  the union of 
these Cauehy characteristics passing through ¢((0, 1)) is an integral surface of 2: 
passing through ¢((0, 1)). (Of course, by uniqueness, there is only one such integral 
surface.) 

Finally, if A t o A m  7 ~ O, we may normalize so as to have A10 = A01 = 1; i.e., 

dO =- ftlo + ~01 mod{0}. (9) 

It is easy to show that  such a system is locally equivalent to the exterior differen- 
tial system derived from a hyperbolic Monge-Ampere system as in Example 5 in 
Section 1.1.3 (cf. Appendix 2 to Section 2 in [ BG 2]). The k th prolongation then 
has a coframing 

0;  010 , . . .  ,OkO , 02t0 , 7/'/:4-1,0; 0 0 1 , . . .  ,O0/:, W01 , 7[0,/:4-1 

satisfying the structure equations (3,i-ii) and it may also be shown that  this cot~am- 
ing can be chosen so that, in addition to (9), we have 

dOko = -- 7rk + l,0AWto mod{0, 0~0,. . . ,  0/:0} 

dOo/: -- -too,k+1Awol mod{0,001,. . . ,  00/:}. 
(lO) 

Thus, all of the invariants T/:0 and T0/: vanish identically and the coupling between 
the characteristic sys tems only occurs at the 0 th level through equation (9). 

1.4 Integration by the method of Darboux. 

1.4.1 R i e m a n n  invariants. Let (M, I )  be a hyperbolic system of class s. We have 
discussed how to associate to such a system its prolongations (M(/:), I(/:)), which 
are hyperbolic systems of class s + 2k, and its characteristic systems 

=(/:) =(k) f~(M(k)), ~ 1 0  , ~ 0 1  C 

which are Pfaffian systems of rank s+2+k.  The solution surfaces of (M, Z) and the 
solution surfaces of ( M  (k), Z (k)) are in one-to-one correspondence (where the latter 
must satisfy a trmasversality condition), and the characteristic systems induce on 
each solution surface a pair of foliations by characteristic curves. 

As we mentioned in Section 1.2, the characteristic foliations on each solution 
surface carry no local geometry. However, the characteristic systems ~(/:) and w(/:) ~i0 ~01 
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do, indeed, carry local geometry. In fact the integrability properties of the charac- 
teristic systems in the ambient manifolds M (k) play a crucial role in the classical 
integration methods. In particular, the s tudy of integrable subsystems of the char- 
acteristic systems turns out to be very fruitful, and leads directly to the method of 
Darboux ([Go]), which we describe below. 

First, a brief historical perspective. In the early days - -  beginning over two 
centuries ago -,- a pr imary interest was finding explicit solutions of PDEs. Some- 
what  later the issue was to prove existence either by finding explicit solutions or 
by giving on algorithm, based on integration, for finding solutions (cf. the Poisson 
integral formula, etc.). Soon thereafter, this form of existence proof was extended 
to the nineteenth century concept of "integration of the equation", which meant  to 
reduce finding the solution to (at most) solving a sequence of ordinary difi~;rential 
equations. In this connection the fbllowing notion arose. 

DEFINITION: A (generalized) Riemann invariant of 5[ is a codimension one folia- 
tion )c on M (~) such that ,  for any function f constant on the leaves of/~" (we say 

that  f belongs to )r), its differential df lies in either =(k) =(k) ~10  o r  ~ 0 1 "  

The importance of Riemann invariants stems from the following fact. Let f 

~(k) and let ¢ : S  --~ M belong to a Riemann invariant 5 c of Z, with, say df C ~1o, 
be an integral surface of Z. Then the pull back function fo¢ (k ) :S  --~ R clearly 
has the property tha t  it is constant on each of the curves in the characteristic 
foliation -~10. Thus, f functions as a sort of "conservation law" for characteristic 
curves on solutions. The knowledge of such functions (when they exist) frequently 
yields important  information about  the behavior of solutions to the original system. 

We should perhaps say a word about  our choice of the fundamental  object in 
the notion of a Riemann invariant. One usually thinks of a Riemann invariant as 
a function of the variables and their derivatives which is constant on the leaves of 
one of the characteristic foliations on every solution of the equation. However, if f 
is a Riemann invariant in this more classical sense, then any- function of f ,  say g o f  
where g : R ~ R is arbitrary, is also a Riemann invariant, with essentially the same 
level sets as f .  However, it turns out that  it is the level sets of f rather  than the 
function f itself which is important  in applications. On the open set where df is 
non-vanishing, knowing these level sets is equivalent to knowing a codimension one 
foliation. For this reason, we have taken the foliation as the fundamental  object,  
preferring to identify Pdemann invariants which determine the same level sets. 

The above definition generalizes the classical situations in which the notion 
of a Riemann invariant is often discussed: a first order hyperbolic system for two 
unknown functions u(x, y) and v(x, y) and a second order hyperbolic equation for 
one unknown z(x, y). These give hyperbolic systems of classes s = 2 and s = 3 
respectively, and the classical Riemann invariants in these cases belong to the 
special case k = 0. Their use in producing integral formulas for solutions to certain 
hyperbolic equations is s tandard and well known [CH]. 
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Before proceeding, we should like to discuss the possibility tha t  a function f 
belonging to a Riemann invariant 5 might  be constant  on all solution surfaces. 
Recall tha t  a hyperbolic  sys tem 2. is given by a rank s P f a m a n  system I together  
with a pair  of 2-forms f~0 and fl01 tha t  are well defined and decomposable modulo 
{I}. The PfafSan system I induces a rank s Pfaffian system, still denoted by I ,  on 
each M (k). This abuse of notat ion is justified for our present purposes, since it is 
easy to see tha t  integrable subsystems of I on M (°) and I on M (k) are in one-to-one 
correspondence. ~0 

Recalling our nota t ion  I (i) for the i th derived system of the Pfaffian system 
I ,  let I<~/  = n I (i> be the largest integrable subsystem of I .  Since I (~1 is an 

integrable subsys tem of 2., locally M is a p roduc t  

M = N x U  

where U C R n (n = r a n k / ( ~ ) )  has coordinates t = ( t l , . . . , t ~ ) .  I t  is easy to 
see tha t  2- induces on each N x {t} a hyperbolic  sys tem 2-t such tha t  the solution 
surfaces of 2- are just  the solution surfaces of some 2-t for a fixed t. Thus,  if I (~) ~ 0 
we essentially have the si tuat ion of a family of hyperbolic systems depending on a 
parameter .  

For this reason we shall make the standing assumption that the infinite derived 
system I (~} is trivial. Since it is well known tha t  the infinite derived system I (~) 
contains any integrable subsys tem of I ,  it follows from our assumption tha t  I 
contains no integrable subsystems. Under  this assmnpt ion we have the result. 

PROPOSITION: The Pfaffian systems 2.(~) contain no integrable subsystems for 
k>_O. 

Proof." This follows immediately  since the s t ructure  equations in the last section 
clearly imply that ,  for all k _~ 0, 

2.(k)<I> = 2.(k 1). 

Note that 2.(o) : I and now we apply induction to conclude that 2. (k)(°°) : 0. 
[] 

10) The point is this: In a domain U C R n with coordinates x (x I ,..., xn), let 0 a = 0 a (x, dx) 
be a set of everywhere linearly independent one forms. Suppose that we have another 
connected domain V C ]~n with coordinates y = (yl,..., yn) and a linear combination 

o(x, y, dx) = y]f~(., y)e~(., dx), ~ C U, y C V 
c~ 

satisfying 
dO = O. 

Then the fo~(X, y) are constant in y. 
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This result implies that  no non-constant Riemann invariant can be constant 
on all integral surfaces of I .  To see this, note tha% if f is a Riemann invariant of 2- 
defined on M (k) and if dfx ~ 0, then d / i s  not a section of I (k) on a neighborhood 
of x, and hence that there must exist a nearby point y E M (~), so that dry 

~k) .  In particular, dry does not vanish on (Iy(k)) -L and hence there exists a 2- 

dimensional integral element E C (2-y(~)) j- of/7(k) on which G does not vanish. 
Now f will not be constant on any integral surface S of 2- which passes through y 
and satisfies I ~ S  = E.  (Such an integral surface always exists by the existence 
theorem in Section 1.2.3.) 

The classical theory of Riemann invariants, as well as the even more classical 
but less well-known theories of Ampere, Monge, Laplace, Darboux, Goursat, etc 
(cf. [Go]), tMs  focuses attention on integrable subsystems of the characteristic 
systems. We shall see that  studying the conservation laws does the same thing. 

1.4.2 The method of Darboux. We now introduce the main concept from the classical 
theory. 

DEFINITION: A hyperbolic system (M, Z) is integrable in the sense of Darboux at 
level k if there are rank 2 integrable subsystems 

=(k) 
A10 C ~io 

=(k) 
A01 C ~01 

which satisfy A10 N I (k) = A0i A I (k) = (0). 

We will now explain the method of Darboux fbr solving the initial value 
problem for hyperbolic systems which satisfy this hypothesis. 

THEOREM: Suppose that (M,2-) is integrable in the sense of Darboux at level k and 
that f : (0, 1) -~ M is a non-characte~istic integral curve of I .  Then there exists 
an open set U C ]i{2 which contains the diagonal interval A = {(t, t)  : 0 < t < 1} 
and an integral surface F : U ~ M of I so that F(t ,  t) = f ( t )  for  all 0 < t < 1. 
Moreover, F can be chosen so that the characteristic foliations induced on U are 
the coordinate slices and this makes F unique on some neighborhood of A .  Finally, 
F can be constructed from f by a procedure involving ordinary differential equations 
alone. 

Proof: Since f is non-characteristic, the tangent space Tf( t ) f  ((0, 1)) lies in a unique 
2-dimensional clement of I which we shall denote by fO)( t )  C M (1). Now, f(1) : 
(0, 1) -+ M (1) satisfies our hypothesis with respect to (MO),I(1)) ,  i.e., it is a non- 
characteristic integral immersion of I (1) . By repeating this process, we eventually 
arrive at f(k) : (0, 1) --~ M (k), which is a non-characteristic integral immersion of 
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Z (k). Clearly, it now suffices to prove the theorem for the case k = 0, and then 
apply it to the initial data f(k). 

Thus, let us suppose that  A10 c El0 and A01 C E01 are rank 2 integrable 
subsystems which satisfy Az0 N I = A10 N I = (0). Fix a to E (0, 1) and let x, y, 
u, and v be functions on a neighborhood V of f(to) which have the property that, 
on V, the system A10 is spanned by dx and dy while A01 is spanned by du and 
dv. It now follows from the structure equations and the very definitions of El0 and 
E01 that  I in V is generated by the sections of I and the two 2-forms dxAdy and 
duAdv. Note that,  also, by construction, for each p E V the space Ip z is transverse 
to the fibers of the the submersion (x, y, u, v) : V --* R 4. 

Now, there is a a 5 > 0 so that  0 < t 0 - 6  < to+6 < 1 and so that  

f ( ( t o - 5 , t 0 + 5 ) )  C V, 

By the assumption that  f is non-characteristic, f is transverse to the fibers of both 
of the mappings (x, y) : V -+ R 2 and (u, v) : V -+ IR 2. It follows that ,  by shrinking 
6, we may assume that  (x, y)o f and (u, v)o f are smooth embeddings of the interval 
(to-5, to+5) into ~2. Set 

FlO = (x, y)of  ((to-6, to+5)) and Fol = (u, v)of ((to-6, t0+6)) 

These are two smooth curves in the xy- and uv-planes respectively. Set 

MI. = (x,y,u,v)-l(FlO x Fo,) C V C M. 

Now Mr is a smooth manifold of dimension s + 2 which contains f ( ( to-6,  to+6)).  
Moreover, by constuction, since the image of Mr  under the (x, y) map and the 
(u, v) map is a curve, it follows that  dxAdy and duAdv both vanish identically on 
Mr.  In particular, it follows that the pull back of the system ff to Mr  is generated 
algebraically by the sections of I. In other words, I pulls back to be a rank s 
integrable system Ir on Mr. 

It follows that  there is a unique 2-dimensional leaf L r  of I r  which contains the 
curve f((to-6,to+6)).  (Note that  the construction of the leaves of an integrable 
Pfaffian system can be accomplished by solving ODE alone, PDE methods are 
not required.) This surface L r  is, by construction, an integral surface of 27 which 
c o n t a i n s / ( ( t o - 6 ,  to+f)). It is also transverse to the fibers of the submersion Mr  --* 
Flo × F01. As a result, by shrinking 6 once more, we may assume that  L r  maps 
diffeomorphically onto the open square 

(x, y ) o f  (( to-5,  to+5)) × (u, v )o f  (( to-5,  to+5)).  

We now define F on the open square (to-6, to+5) x (to-5, to+6) by letting F(s ,  t) 
be the point of L r  which maps to 

(x(f(s)), y(f(s)), u(f(t)),  v(f(t))) .  

Local uniqueness of this extension is easily established and then an elementary 
patching argument shows that F can be defined on an entire neighborhood of the 
"diagonal" interval. [] 
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It is important  to remark that  finding the integrable subsystems of the char- 
acteristic systems is a routine matter.  In fact, one merely computes the derived 

systems =(k)(j) and =(k){j) Since we clearly have, for some j and j ' ,  ~ 1 0  ~01  " 

~(k) =(k)(0) D =(k)<l) D =(k)(2) • D ~(k)(j} =(k)(j+l) =(k)(~} 
~ 1 0  = ~ 1 0  - - ~ 1 0  - - ~ 1 0  "" - - ~ 1 0  = ~ 1 0  = ~ 1 0  

~01=(k) = ~01~(k)(O> _D ~01=(k)<l} _D ~O]~(k)(2} "'" ~ E~kl)(J'} ---- ~Ol:(k)(J'+l} = ~01=(k)(°@ 

and since any integrable subsystem of a Pfafflan system lies inside its last derived 
system, the test for integrability by the method of Darboux can be carried out 
effectively, using only differentiations and algebraic manipulations. 

1.4.3 An example - -  the f -Gordon equation. Our main interest in Darboux inte- 
grability in this paper is its effect on the computation of conservation laws (to 
be defined in Section 2.1 below). However, classically, the importance of Darboux'  
method was that  it often lead to explicit formulas for solutions to important  PDEs. 
We will illustrate this by an example drawn from the classical literature. 

First, however, we would like to :remark that  the integration of the Monge- 
2 -i accomplished in Example 2 of Section 1.2 was Ampere equation Zxx Zyy - Zzy = 

done by the method of Darboux, for this equation happens to be integrahle by the 
method of Darboux at level 0, as can be seen immediately by the formulae 

"~10 : {dz  - - p d x  -- qdy, d(p - y), d(q + x) } 

"Zol : { d z - p d x - q d y ,  d(p + y), d ( q -  x) }. 

This is, of course, not surprising because, as we saw in Section 1.1, this system 
is (globally) equivalent to the hyperbolic system generated by the classical wave 
equation Zzy = O. 

VVe now turn to a more interesting example. Consider the so-called f -Gordon 
equation z=y = f ( z ) .  As this is an equation of Monge-Ampere type, we may con- 
struct a corresponding hyperbolic system of the form (N 5 , /0  E ~1 where, with the 
usual notation, 

Z = {dz - pdx  - qdy, (dp - f ( z )  dy)/\dx, (dq - f ( z )  dx)Ady}. 

The characteristic systems are 

~1o = { d z - p d x  - qdy, d p -  f ( z )dy , , dx  } 

='01 = { d z - p d x -  qdy, d q -  f ( z ) d x ,  dy }. 

We may now compute the derived flag for these characteristic systems. Assuming 
that  i f (z )  ¢ O, which we shall for the rest of this section, the only integrable subsys- 
tems of ElO and ~=ol are of rank one and are generated by dx and dy, respectively. 
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We will now determine the conditions on f that  the f -Gordon  equation be 
integrable by the method of Darboux at level one, As explained in Section 1.3, the 
first prolongation (M 0), 27 (1)) of the exterior differential system (M, 27) associated 
to the f -Gordon  equation is obtained locally by introducing new coordinates r 
(= h20) and t (= h02) and setting 

0~o = dp - f ( z )  dy - r dx 

0ol = dq - f ( z )  dx - t dy. 

From 

we infer that 

dOlo =- - ( d r  - f ' ( z )pdy)Adx ~ rood 0 

dOol -- - ( d t  - f ' ( z )q  dx)Ady J 

2(1) ....... [dx, d z -  qdy, dp-- f ( z )  dy, d r -  f ' (z)pdy] ~10 

=(1) 
- o l  =[dy, dq - pdx,  d q -  f ( z ) d x ,  d t -  f ' (z)qdx].  

First, we compute that  ~0~(1)<1> -- [dx, dp - f ( z )  dy, dr .- f ' ( z )pdy  I . Now it is 
not difficult to compute tha t  

d(dp - , f ( z )  dy) =- - f ' ( z )  dzAdy ~ rood-10=(1)(1> 

d(dr - f (z)p dy) =- - f " ( z ) p  dzAdy ] 
while of course d(dx) = O. Since we have assumed that  f '  is non-vanishing, we see 
that 

-io~(i)<2} : [dx, (dr - f ' ( z )pdy)  -- ( f " ( z ) / f f ( z ) )p  (dp -- f t z )  dy)] 

= [rim, dr"-  ( f ' ( z ) / f ' ( z ) ) p d p -  ( f ' (z)  2 - f " ( z ) f ( z ) ) p / f ' ( z ) d y ] .  

We can now compute that  in order for the third derived system to have rank two, 
it is necessary and sufficient that  f ' ( z )  2 - f ' ( z ) f ( z )  = 0. The general solution of 
this relation is 

f ( z )  = A e Bz 

for some constants A and B. Since we are assuming that  i f (z)  is non-zero, neither 
A nor B can vanish. By scaling z and z and y, we may then easily reduce to the 
ease 

In this case 

f ( z )  : e z. 

=(I)<2> =(1)<~> 
-oI -Ol -- [dy, d t - q d q ]  = [dy, d(t- 'q2~] : -- 2 )A" 
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This proves the classical result that  LiouvilIe's equation z~ v = e z is integrable by 
the method of Darbouz. 

In fact, it is a theorem of Lie [Li] that,  up to local equivalence, this equation 
and the wave equation z~ v = 0 are the only f -Gordon  equations integrable by the 
method of Darboux at any level. 

The explicit expressions above show that  on solution surfaces we have 

- ½ p 2 ) A d x  = 0 

- ½q2)Ad  = O. 

These relations may be used to show that  the general solution of the Liouville 
equation on any rectangle of the form 

T i = {  (x,y) E I R 2 l a < x < b ,  c < y < d }  

can be written in the form 

eZ = 2X'(x)Y'(y)  
(X(x) -[- y-(y))2 (1) 

where X : (a, b) --+ IR and Y : (c, d) --~ R are arbi trary smooth maps subject to the 
open conditions that  X'(z)Y ' (y)  > 0 and X(x)+Y(y)  > 0 for all (x,y) E T~. The 
calculation is a little complicated, perhaps because the more fundamental  equation 
is the s = 0 Liouville system 

Uy = e v 

V x ~-  e u "  

As we shall show in the Section 1.5, this latter system is more easily integrated by 
the method of Darboux, giving (1) above as an immediate consequence. 

Finally, we would like to mention an example, (cf. Chapter  3 of Darboux IDa]), 
of an equation integrable by the method of Darboux at level k but not at level k - 1. 
This is the linear equation 

k(k + 1) 
z ~ -  ( x - y ) 2  z 

defined on the half-plane x > y. For k not an integer, it turns out that  this equation 
cannot be integrated by the method of Darboux, but for k 2 0 an integer, it turns 
out that  applying the method of Darboux yields the general solution in the form 

z(x,y) = (x _ y)k+l Ox ~ 02k OY k ( X ( 9 ~ -  Y(y)  ) 

where X and Y are arbi t rary functions of one variable. 
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1.4.4 Semi-integrability by Darbouz' method. In closing this section, we want to 
remark that  there is actuatly a generalization of the method of Darboux which 
only depends on there being a transverse rank 2 integrable subsystem in one of the 
characteristic systems in order to solve tile initial value problem via ODE methods. 
Since this will not play an important  role in this paper, we only give a sketch of 
the method. 

Let us say that  a hyperbolic system (M,Z) is scmi-integrable in the sense of 
Darbouo= if there exists an integrable rank 2 subsystem A C El0 which satisfies 
El0 = A ® I. In this case, it easily follows that  any point of M lies in an open set 
U on which Z can be generated in the form 

27 = { 0 1 , . . .  ,0~; dxAd~J, COaAC04}. 

Suppose, now that  we are given a non-characteristic integral curve q5 : (0, 1) -+ U 
of 27. The hypothesis that  6 be non-chax'acteristic implies that the map (x, y) o q5 : 
(0, 1) -+ R 2 is an immersion. By shrinking dornains appropriately, we can assume 
that  this map is an embedding, which we shall. Set F = (x, y)o  6((0, 1)) C R 2, and 
let 

Then Mr is a smooth hypersurfaee in M which contains 6((0, 1)). Let 2-r denote 
the induced exterior differential system on Mr.  If we let an overbar denote the pull 
back of forms from M to t~irr, then we see that  

27F = {01,. . . ,0s;Cd3ACd4}. 

It follows that  there exists a non-zero vector field X on Mr  (unique up to scalar 
multiples) which satisfies 

01(X)  . . . . .  0 s ( x )  = c7~3(X) • 024(2) = 0. 

(The reader familiar with the theory of exterior differential systems will recognize 
X as spanning the Cauchy characteristic distribution on Zr.) Note that,  by our 
assumption that  ¢ be non-characteristic, the 1-forms ¢*(co a) and ¢*(co 4) do not 
vanish simultaneously" at any point of (0, 1). Thus, it follows that  for every t, the 
vectors X (05(t)) and 6' (t)(O/Ot) are linearly independent. It then follows that  there 
is aa~ open neighborhood T4 of (0, 1) × {0} in (0, 1) x ( -1 ,  1) so that  the mapping 
f : T¢ --+ M defined by 

f ( t ,  s) = exp sx  (05(t)), (t, s) G 

is well-defined and an immersion. By its very construction, f is an integral surface 
of 27 which solves the initial value problem for 6- 
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Clearly, this method can be generalized to the case where, for some k > 0, 
the ideal (M(k) ,Z (k)) is semi-integrable by the method of Darboux. Thus, in all of 
these cases, the initial value problem can be solved by ODE methods. 

1.5 Structure  equations for hyperbolic systems of class s = 0. Prom the general 
theory of conservation laws for exterior differential systems (ef. [ BG 1]), it is known 
that  the symbol of an exterior differential system Z determines an algebraic nor- 
mal form for its conservation laws. The space C of conservation laws of Z is then 
isomorphic to the space of closed forms in this algebraic normal form. In Chapter  2 
of this paper,  we shall need to do some rather  explicit computat ions for hyperbolic 
systems of class s = 0 using this normal form. In this section, as preparat ion for 
those computations,  we are going to use the extra  assumption s = 0 to refine the 
general s tructure equations derived in Section 1.3 above. 

1.5.1 Symmetry and non-degeneracy. Recall that ,  according to our definitions, a 
hyperbolic system 5[ of class s = 0 on a 4-manifold M is locally generated by a 
pair of decomposable 2-forms f~10 and ft01 on M which are defined up to non-zero 
multiples and with the property that  ftl0Af~0t 5 ~ 0. As usual, we shall let $10 and 
S01 denote the characteristic systems. 

We first want to say a word about the "generality" of hyperbolic systems 
with s = 0. Working locally, we can imagine a hyperbolic system with s = 0 
as a pair of 2-plane distributions on a neighborhood of the origin in ]~4 Since the 
bundle G2(TR 4) of 2-planes in the tangent spaces at points o f N  4 is a smooth bundle 
of fiber dimension 4, it follows that ,  locally, a choice of a hyperbolic system with s = 
0 depends on the choice of 4+4  = 8 functions of four variables, these functions being 
subject only to some open conditions which ensure that  the two distributions are 
transverse. On the other hand, we want to identify two such hyperbolic systems 
if they differ only by some diffeomorphism of R 4. Since a local diffeomorphism 
of R 4 depends on a choice of 4 functions of four variables, it seems reasonable to 
guess that  the "moduli space" of equivalence classes of local hyperbolic systems 
with s = 0 modulo diffeomorphisms "depends" on 8 - 4 = 4 arbi t rary  functions 
of four variables. In particular, we should expect there to be differential invariants 
at tached to a hyperbolic system with s = 0 just as the Riemaamian curvature 
tensor is at tached to a Riemannian metric. In the next subsection, we will develop 
a mechanism for computing these invariants, analogous to the construction of the 
Levi-Civita connection and its curvature in Riernannian geometry. 

The simplest hyperbolic exterior differential system of class s = 0 occurs when 
both =10 and ~0I are integrable, and we will henceforth refer to this case as the 
trivial case. In tile trivial case, we may choose local coordinates (x, y, u, v) such 
that  the system Z is generated by 

~'~10 ---- d~,tAdx a n d  ~'~01 = dvAdy. 
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This is the exterior differential sys tem arising from the (trivial) P D E  system Uy = 
v~ = 0, whose solutions are n = u(z)  and v = v(y). This is essentially the  s = 0 
version of the classical wave equat ion in characterist ic coordinates.  

Before going on to s tudy  the non-trivial  cases, we want  to first remark  on a 
general hypothesis  tha t  we will be assuming in order to simplify the exposition. 
Strictly speaking, we are considering a s t ructure  which has slightly more informa- 
tion than  a hyperbolic  sys tem with s = 0. In  fact, we are also imposing a choice 
of which of the two characterist ic systems we want  to call El0 and which we want 
to call E01- Thus,  we might  th ink of the s t ruc ture  we are s tudying  primari ly as a 
pair ~ = (Z10, E01) of transverse rank 2 Pfaffian systems on M 4. In  some sense, 
the pair *E = (E01, E10) should be thought  of as the "opposite" s tructure,  the 
opera t ion E ~-+ *E defining an involution on the  space of  s t ructures  tha t  we are 
studying. 

From the s t ructure  equat ions below, we will extract  certain so-called "relative 
invariants" of the pair G. In  modern  terminology, a relative invariant is a "natural" 
section crz of a "natural" line bundle  LF. associated to  G where "natural" means 
that ,  whenever  one has a diffeomorphism f : 2kll --~ M2 which induces an isomor- 
phism f*(G2) = ~1 of hyperbolic  systems with s = 0, there is also canonically 
determined an isomorphism f*Lz~ = L=~ which satisfies f*~z2 = c~--~. (We will 
give examples of such invariants in the next subsection.) 

In  the  present, case, the involution E ~-~ *~ clearly exchanges each relative 
invariant with an 'opposi te '  relative invariant *~. Thus,  the relative invariants are 
natural ly  grouped into pairs (or, ocassionally, singlets when a relative invariant 
happens  to be its own opposite).  

DEFINITION: A hyperbolic  exterior differential sys tem of class s == 0 is symmetric 
in case the relative invariants in each pair (a, *a) are either bo th  zero or bo th  
non-zero. 

For example, for a symmetr ic  system, the integrability properties of the two 
characterist ic systems will be the same (in particular,  the derived flags will have 
the same ranks).  For simplicity, we shall concentra te  on symmetr ic  systems in this 
paper. Thus,  henceforth,  we shall assume tha t  all of our systems are symmetr ic  in 
this sense. 

In the non-trivial  case, our general assumpt ion tha t  the system be symmetr ic  
implies t ha t  each of El0 and Eol will be non-integrable. 11 We shall say tha t  a 
hyperbolic  sys tem with s = 0 is non-degenerate if this condit ion is satisfied. For 
the rest of this section, we shall assume tha t  all of our hyperbolic  systems are 
non-degenerate.  

n) In any case, if one of the systems is integrabie, then the system is semi-integrable in the 
sense of Darboux and, as we pointed out in Section 1.4, the initial value problem be solved 
by ODE methods anyway. 
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1.5.2 A G-structure for the non-degenerate case and its invariants. Let us now 
assume that  we have a non-degenerate hyperbolic system (M,Z) of class s = 0. 
The first derived system of each characteristic system then has rank 1. This suggests 
that  we consider local coframings (@, r/2, r/a, @) on M satisfying the conditions 

= { r / ,  = { (1)  

and 
dr/i _ 0modr /1  r/~ dr/3 ==_ 0modr/3, /]4 (2) 

Thus, r/1 and @ span the first derived systems of the characteristic systems ~10 and 
E0,, respectively. If (@, ~/2, #/a, #/4) is another eoframing on the same domain with 
properties (1) and (2), then the formula for transition between the two coframings 
takes the form 

= 4 0 0 ¢ 
~ 2 )  ~00 0 a3 0 r/3 

0 a~ a 4 ?]4 

where the a} are arbitrary subject to the obvious condition that  a~ ~ 0 (or else the 
transition matrix would not be invertible). 

Now, for any coframing which satisfies (1) and (2), there must exist functions 
A and C so that  

dr/2 = A r/3Ar/4 rood r/1 , r/2 dr/4 = C@Ar/2 modr/3,  r/4. (3) 

By our assumptions, E]o and E01 are non-integrable. It follows from this and (2) 
that  neither A nor C can vanish. Using this, we can construct a coframing, say 
(~]1 7]2 7]3, 7?4) = (C~12 r/2 At/a, r/4) which satisfies properties (1) and (2) and 
also the equations A = C = 1. We shall say that  a coframing is 1-adapted to Z if it 
satisfies the conditions (1), (2), and (3) with A = C = 1. 

If r / =  (r/1, r/2, r/a, @) is a 1-adapted coffaming on a domain U C M, then 
any other coframing on U, say 7] = (711, f/2, 7]3, 7]4) is seen to be 1-adapted to 27 if 

2 4 2 and only if there exist functions %, a3, a 2 • 0, and %4 ¢ 0 on U so that  

711 / 4 2 
a4/a2 7]2 I a21 

7]3 = 0 
7]4 0 

a~ 0 r] 2 
0 2 4 7]3 • a2/a4 
0 a~ a 4 r/4 

Such "transition matrices" take values in a certain &dimensional lower triangular 
subgroup of GL (4, R) which we shall henceforth denote G. Thus, tile local cofram- 
ings which are 1-adapted to Z are the local sections of a principal G-bundle B --+ M 
which is a subbundle of the bundle of all coframes of M. In other words, t3 is a G- 
structure on M in the usual sense. We will refer to B as the G-structure associated 



74 R,. BRYANT, P. GRIFFITHS AND L. HSU 

to (or determined by) the non-degenerate  hyperbolic  exterior differential system 27. 
Moreover, one can clearly recover Z from a knowledge of B. 

Now we shall apply the equivalence method  12 to  the G-s t ruc ture  B in order 
to unders tand  its invariants. Accordingly, we write the  s t ruc ture  equations on B in 
the form 

d 
02 2 

023 ~ - - -  

02 4 

¢21 ¢22 0 co 2 T 2 
0 0 ¢ 2 2 - - ¢ 4 4  A 023 + T 3 
0 0 ¢43 ¢44 a)4 T4  

(4) 

where, in the terminology of the equivalence method,  the @j are the pseudo- 
connection forms and the T i are the torsion terms (which are semi-basic13). These 
forms are not  mfiquely determined by these equations,  and, following the  usual 
me thod  of  equivalence, we now want  to  unders tand  how modifications of  the 
pseudo-connect ion forms can be employed to simplify the torsion terms. 

Now, by the defining properties of the G-s t ruc ture  B,  we have 

da) 1 ~ 0 modwl ,02  2 T 1 -- 0 mod021,02 2 

d02 2 _= 023Aaj4 mod02~,02 2 T 2 = 023A024 mod021 cj 2 
SO 

d02 3 = 0 mod023,02 4 T 3 --= 0 modcj3,aJ 4 

dw4 = 021A022 modw3,w4 T 4 ~ 021/\022 mod023,024. 

I t  follows tha t  there exist 1-forms X1, X2, X3, and X4 which are linear combinat ions 
of the a~ so tha t  

T 2 : 023A024 @ X1A02 1 @ X2A02 2, 

T 4 = cziAcj 2 + Xsp, C~ ,z + X4AcJ 4. 

The equations for d02 2 and dw 4 can therefore be written in the form 

d02 2 = - ( ¢ 2 ,  - x ~ ) A 0 2  i - ( e 2 2  - X 2 ) A 0 2  2 + aaA024 

d024 = - ( ~ 4 3  - X3) A023 - (~44 --  X4) A024 @ 021A(M2" 

It follows that we may assume that the @j ha~'e been chosen so that 

T 2 = 023A~4 and T 4 = 021A022, 

12) The generM equivalence method is explained in Appendix 1 to Section 2 of [ BG 2]- For- 
tunately, however, the full complexity of the method will not be needed in this simple 
Case. 

13) I.e., these  te rms  have the  form T i -- ~ = -- ~/jk wJ Awt: for some functions Tat: -T~j on B. 
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so we assume this f rom now on. This condit ion still does not  determine the ¢ij 
since making the replacements  

¢ 2 2 /  ~> /¢22 + a 2  5dl + a3 c02 

¢44 / \ ¢44 + c4 ~3 + cl ~4 

in the above equat ions will clearly not  affect T 2 or T 4. However, the  above congru- 
ences on T 1 and T 3 imply tha t  

T 1 ~ T13 wlAw 3 + T24 wlAw 4 modcz 2 

T 3 ~ T331 w3Aco I + T332 w3Aw 2 mod  w 4 

and the above replacements  can be chosen so tha t  Tla = T14 = Tal = T~2 = 0. Note 
tha t  the only replacements  of the  above form which preserve these lat ter  condit ions 
are ones with a2 = aa = c4 = cl = 0. 

The  upshot  of this discussion is that ,  for the G-s t ruc ture  we have associated 
to a non-degenerate  hyperbolic  sys tem with s = 0, there is a choice of pseudo- 
connect ion so tha t  the s t ruc ture  equat ions take the form 

d~ 4 0 ¢43 ¢44 ~4 (5) 
/w2A(Pl wl+p3 w3+p4 co 4) \ 

Cd3Aa) 4 ) + ~w4/,(q3w3+qlwl+q2w2 ) " 
\ 0 ,1 Aa2 2 

Moreover, with the  s t ruc ture  equations in this form, the 1-Ibrms ¢22 and (~44 are 
unique, the  form ¢21 is de termined up to the addi t ion of a multiple of co 1, and the 
form ¢43 is de termined up to  the  addi t ion of a multiple of w 3. As we shall see in 
the next  subsection, no fur ther  reduct ion of this G-s t ruc ture  can be  made  wi thout  
making some non-vanishing assumptions on the invariants. 

To complete the discussion of the s t ruc ture  equations,  it will be necessary 
to compu te  their "Bianchi identities" by differentiating the  equat ions in (5). 14 We 
will not  give the  details of  the calculations (which are s traightforward,  if tedious), 
bu t  shall describe the results. First  of all, differentiation of the  equations (5) and 

14) The reader may want to skip the remainder of this subsection on first reading, instead going 
on directly to Section 1.5.3. These "Bianchi" calculations are somewhat technical and will 
be more meaningful once the reader can see that they are needed. 
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reduction of the results modulo various combinations of the co i shows that  there 
are relations of the form 

@ 1  ~ P l  ¢22 --  q2 44a 

dp3 - p3 (3022-2¢44) + P4 ¢43 

dp4 =~ P4 (2¢22) 

dq3 = q3 ¢44 --  P4 ¢21 

dql = ql (3¢44-2¢22) + q2 ¢21 

dq2 = q2 (2~b44) 

mod w 1, w2 w3, w4 (6) 

We shall use the notation Vp4 to m e a n  @4 - 2p4 022, i.e., the semi-basic part of 
the exterior derivative of P4, and similarly for the other quantities. 

If we now introduce "curvature" 2-forms ~22, ~544, ~21, and ¢543 by the equa- 
tions 

d~22 -~ -(~21A (P3 C03 -4- P4 a24) + q3 CO1 A022 ,~- Ipaqt Cd2A~4 "4- ~22 

d*44 : - ¢ 4 3 A  (ql  cdl + q2 a)2) @ P l  CO3ACd4 - -  1q lP3  C04ACO2 @ (I)44 
(7) 

d¢43 = -¢4aA(¢2  - 2444 - q3 w4)  +  43, 

the exterior derivatives of the equations (5) become 

0 = ((I)22 --  (~44)AC01 --  (VplAC01 - -  Vp3ACO 3 "W Vp4AC04 --  q3P3 c03A~,04)Ac02 

0 ... . . . .  (I)21Aa) I - -  (]}22ACd 2 --  0-~IAo22AW 3 

0 = (~a44 -- a)22)aco 3 --  (Vq3/',CO 3 + VqlAW '1 + Vq2A0) 2 --  P l q l  co1/\W2)/\co4 

0 = --(I)43AC03 --  ~44ACd 4 --  CO3ACO4ACO 1. 

(s) 

(Note that  because 0521 and ¢543 are not canonical, the expression Vp3 is actually 
only well-defined modulo aa 3. However, since this term only occurs wedged with co 3, 
the resulting term is well defined. A similar comment applies to the other ambi- 
guities caused by the ambiguity in the pseudo-connection.) The identities (8) now 
give relations among the coefficients of the derivatives of the primary invariants 
(i.e., the torsion coefficients) and the curvature coefficients. It is not useful to write 
these out here; the form (8) will suttee for our purposes. 

A little exterior algebra shows that the relations (8) imply that ~522 and ~44 
are semi-basic 2-forms, i.e., they are quadratic expressions in the co i. In fact, 

~22 = - ~ t A a  1 - ~2Aa 2 and ~44 = -~aA~ 3 - ~4Aa 4 (9) 
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where 
~ = k i jw  j 

for functions [~ij, suitably skew-symmetrized so as to be well-defined. Using this 
plus some more exterior algebra, it follows tha t  there are 1-forms ¢211 and ¢433 so 
tha t  

¢21 = --(N1 -- a J3) A022 -- ~211A021 
(lO) 

~43 = --(K'3 - -  C01)/'~'4 - -  ~433 A~'3- 

1.5.3 Relative invariants .  In order to interpret the coefficients in the torsion terms, 
it is important  to understand how the quantities Pl, P3, P4 and ql, q2, q3 vary on 
the fibres of B ~ M. This information can be read off from the relations (6). 

It  follows from (6) that  P4 and q2 are what is known in the classical li terature 
as relative i n v a r i a n t s - i . e . ,  they are well-defined as sections of suitable line bundles 
over M.  For example, the expression a = P4 (C~'aAW4) 2 is a well-defined section of 
the square of the determinant bundle of the characteristic system E01. Its opposite 
(in the sense of the involution discussed in Section 1.5.1) is *a = q2 (aJ1Aw2) 2, a 
section of the 'opposite '  bundle, i.e., the square of the determinant  bundle of the 
characteristic system Zlo. Moreover, calculation using (6) shows that ,  for example, 
r = (P4ql+q2q3) (c~lAw2) 3 is a well-defined section of the cube of the determinant  
bundle of Elo with 'opposite '  invariant *r = (q2P3+P4Pl) (w3Aa-'4) 3. 

Thus, even though p4 and q2 are not well-defined on M, their zero loci make 
sense on M. Note also that  if P4 (resp. q2) vanishes identically, then P3 and q3 
(resp. ql and Pl) become relative invariants, a fact to which we shall re turn later. 

1.5.4 Structure  reduction in the generic case. According to (6), on the open set 
M* C M which is the complement of the zero loci of the relative invariants P4 and 
q2, there exists a Gl-subst ructure  B~ C B defined by the equations 

(p4) 2 = 1, (q2) 2 = 1, P3 == O, ql = 0 

where G~ is the group consisting of the diagonal matrices in G whose diagonal 
entries are each -f-1. Thus, up to a finite group ambiguity (of order 4), this G1- 
structure defines a canonical eoframing on M*. The invariants of this eoframing 
are then invariants of the original hyperbolic system. Note tha t  any symmet ry  of 
the hyperbolic system 2- must  preserve the open set M* and, on this open set, must 
preserve the Gl-s t ructure  B1. Since preserving this latter structure is essentially 
equivalent to preserving a coframing on M*, it follows that  the group of symmetries 
of ff on M* is of dimension at most 4. 

Conversely, it is not hard to show that  hyperbolic systems satisfying these 
conditions with a 4-parameter  symmetry  group do exist: Let H be a Lie group of 
dimension 4 and choose any basis ( r ] l , . . . ,  @) of its left-invariant 1-forms. Form 
the ideal 2- = {rllAw 2, rlaA@}. This will yield a hyperbolic system which clearly 
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does have (at least) a 4-parameter symmetry group. If the group H is sufficiently 
"generic" among 4-dimensional Lie groups and the basis (7]i) is chosen sufficiently 
generically, it can be shown that  the resulting system will have its relative invari- 
ants P4 and q2 be non-zero, so that  its group of symmetries is exactly of dimension 4. 

What  the corresponding PDE look like is a very interesting question. Also 
particularly interesting is the problem of knowing whether the ideals (H,Z)  are 
complete for the initial value problem in the sense of Section 1.2.3. 

1.5.5 Normal forms. We now want to interpret the vanishing of the torsion coef- 
ficients in (5) in terms of integrability of various bundles intrinsically associated 
to the original hyperbolic system :2 and use this to derive (local) normal forms in 
various special cases. We will then use the structure equations to develop a test 
for 'linearizability' and to classify the systems which are, in some sense, the most 
"homogeneous" among non-degenerate hyperbolic systems with s --- 0. 

We begin our first interpretation by noting that  the rank 2 Pfaffian system 
@ = {a~ 1, aJ a} spanned by the first derived systems of ;=10 and E01 is well-defined. 
Indeed, from the structure equations, the 2-form 

= bd i A~.J 3 

itself is well-defined, since the scalings of 02 1 and w 3 cancel. Of course, ft is a relative 
invariant, being a section of the determinant bundle of @ and having the property 
that  *f~ = - f t .  The integrability of f~ has the following interpretation: 

PROPOSITION: For any non-degenerate hyperbolic system with s = O, the system 
O = {w 1, w 3} is Frobenius if and only ifp4 = q2 = O. Moreover, Z has the property 
that P4 and q2 vanish identically if  and only if every point of M has a neighbor- 
hood U on which there exists a coordinate system (x, y, u, v) : U --~ R 4 and functions 
A, B,  C, and D on U satisfying A B  ¢ 1, Cv ¢ 0, D~ ¢ 0 as well as Av = B~ = 0 
so that, on U, 

Z = { (du - C dy)A(dx - A dy), (dv - D dx)A(dy - B dx) }. 

Proof." The fact that the system O is differentially closed if and only if P4 and q2 
vanish is immediate from the structure equations (5). It remains to verify that  
the promised coordinate system exists and has the properties claimed for it. First, 
since (-) is Frobenius, it follows that every point of M has a neighborhood U on 
which there exist functions x and y so that  O = {dx, dy}. Thus, for a 1-adpa.ted 
eoframing on this neighborhood, we must have 7] 1 and 7]3 be linear combinations 
of dx and dy. By making a linear change of variables in z and y, we can assume 
that  @Ady and r]aAdx are non-zero. It follows that  there are functions A and B so 
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that  ~I is a multiple of dx - A d y  and ~13 is a multiple of dy - B d x .  Since ~1A~3 is 
non-zero, it follows that A B  ~ 1. 

Next, the systems {r] 1, ~72, r]3} and {~1, V3 ~4} are clearly Frobenius on U, so 
there must be functions u and v so that  

{r/1,~2,~ 3 } = {dx, dy, du} and {~1,~3,U4 } -- {dx, dy, dv}. 

It follows that there are functions C and D so that  

~10 : {?~1, ?~2} ~- { d x  - A dy, du - C dy} 

E01 = {r] 3, ~4} = {dy - B dx, dv - D dx}. 

Now, by (2), it ibllows that  A~ = B~ = 0, and the non-degeneracy assumption 
implies that  neither Cv nor D~ can vanish. 

Finally, any hyperbolic system which locally can be put in the form we have 
just derived is clearly a non-degenerate hyperbolic system (with s = 0) for which 
O is Frobenius. [] 

As we remarked before, in the case where P4 and q2 vanish identically, so that  
(9 is integrable, then/)3 and ql become relative invariants. If we have information 
about their vanishing or non-vanishing, we can refine the normal form given above: 

PROPOSITION: Suppose that (M4 , I )  is a non-degenerate hyperbolic system satis- 
fying the condition that P4 and q2 vanish identically. Any point in the open set in 
M where P3 and ql are non-zero lies in a neighborhood on which there exists a 
coordinate system (x, y, u, v) : U --+ Ft 4 and two functions C and D with Cv and 
D~, non-zero so that, on U, 

Z :  { ( d u - C d y ) A ( d x  - udy) ,  (dv - Ddx)A(dy  - vdx)  }. 

On the other hand, P3 and ql vanish identically on a neighborhood of a point in M 
if and only if  that point lies in a neighborhood U with coordinates and functions C 
and D as above so that, on U 

I = { (du - C dy)Adx, (dv - D dx)Ady }. 

Proof: Construct a local coordinate system of the type guaranteed by the first 
proposition. Because P4 = q2 = 0, the structure equations imply 

021Adw1 ~ P3 b21A~d2A&3 and w3/ ' ,d~3 = ql  (-d3A~d4/\~dl- 

Suppose first, that P3 and ql are non-zero at a point in M (and hence on a neighbor- 
hood of this point), then using the fact that co I = A (dx -Ady) for some non-zero 
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function /~, we compute  tha t  wlAdw I = ~2 dxAdyAdA = p3WlAW2AW 3. It  follows 
tha t  {cJ 1, c~ ,2, cv 3 } : {dx, dy, dA} and hence tha t  we ma y  take u = A. Applying the 
same argument  to cz a, and using the assumpt ion  tha t  ql ¢ 0, we see tha t  we may  
take v = B. This is the first s ta tement  we wanted to prove. 

On the other  hand, if P3 and ql vanish identically on a neighborhood of the 
point in question, then these s t ructure  equations imply tha t  {cJ 1} and {w a} are 
each integrable separately. I t  then  follows tha t  we can choose our initial functions 
x and y so tha t  w 1 is a multiple of  dx and w a is a Inultiple of dy. The  rest of the 
construct ion proceeds as before. [:] 

The  coordinate  systems const ructed  in the course of the proofs of the above 
two proposit ions are not canonical. However, an examinat ion of the proofs shows 
tha t  the ambigui ty  in the choice of coordinates is, first, the choice of x and y 
subject  to tile condit ion tha t  ft = A dxAdy, which involves a choice of 2 arbi t rary  
functions of two variables, and  then  a choice of u and v subject  to conditions which 
determine each of  these two functions up to a choice of  an arb i t rary  function of 
three variables. Thus,  the  "coordinate ambiguity" (sometimes known as the "gauge 
group")  in the above normal  forms depends only on flmctions of three variables. 
Since the normal  forms involve 2 arbi t rary  functions of four variables (namely, 
C and D),  it is reasonable to say tha t  the "moduli  space" of hyperbolic systems 
with P4 = q2 = 0 "depends" on 2 arb i t rary  functions of four variables. This is 
not  entirely unexpected,  of course, because the  condit ions/)4 = q2 = 0 represent 
two conditions on the  4 a rb i ta ry  functions of four variables on which the "moduli  
space" of general hyperbolic  systems with s = 0 "depends".  W h a t  is, perhaps,  
surprising is tha t  imposing the further  conditions P3 = ql = 0 does not lower this 
"generality". The  space of such structures  still "depends" on 2 arb i t rary  functions 
of four variables. 

We would also like to  note tha t  the normal  form of the first proposi t ion is 
quite useful tbr doing calculations. For example, it is easy to  calculate that ,  in an 
open set U with local coordinates  as in tha t  proposition, the coframing 

@ = D~ (dx - A dy) 

V 2 = ( d u -  Cdy )  

r] 3 = C,  (dy - B dx) 

~74 := (dv - D dx) 

is 1-adpated to Z. Thus,  for example, we have the following simple formula: 

ft = (1 - AB)D~,C,  dxAdy. 

In particular,  ~ will be closed, a condit ion equivalent to the conditions P4 = q2 = 
Pl = q3 = 0, if and only if 

((1 - AB)DuC~,)u = ((1 - AB)DuCv)  v = O. 
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In other words (1 - AB)D~Cv must be a (non-zero) function of x and y only. Note 
that  this condition still leaves 1 arbi t rary function of four variables free (either D 
or C can still be chosen arbitrarily subject only to the condition that  D~Cv ¢ 0), 
another suprising "function count", given tha t  the closure of f~ is four conditions 
on the invariants. Even imposing the further condition tha t  P3 = ql = 0, so that  
we can take A = B = 0 in the normal form, still leaves C and D subject only to 
the single condition that  D~C~ should be a function of x and y only. 

1.5.6 Linear' systems. As another example of the use of the invariants of B to 
understand normal forms, we want to give a characterization of linear systems of 
P D E  in terms of these invariants. Before stating the characterization, it is useful 
to first get an idea of what  we might Want to prove by computing the invariants for 
the general linear first order hyperbolic system for two functions of two variables. 

Consider the general such PDE system 

(:)(°0) + C  = , \vx /  \v :y /  

where A, B and C are 2-by-2 matrices with entries which are functions of x and y. 
The assumption that  this system is hyperbolic is equivalent to the condition that  A 
and B be everywhere linearly independent matrices which are simultaneously diag- 
ona]izable, i.e., there should exist invertibIe matrices P and Q (with entries which 
are functions of x and y) so that 

(of course, alb2 - a2bl 7 ~ 0). This implies that  we can make a change of dependent 
variables u and v, writing 

(:)=.(:) 
and then tile above equations reduce to the form 

(a l zx+blzy~  ( ; )  
a2wx+b2wy/ ÷ P  tCQ - -0 .  

Now, every point of the xy-plane has a neighborhood on which there exist coordi- 
nates s and t so that  

0 0 0 0 b 0 =bO_ 
al  0~  q- bl ~yy = a ~-~ and a20xx -}- 2 ~yy ~)s 

for some non-zero functions a and b )  5 Making this change of coordinates, the above 
equation takes the form 

( ; L s )  ~-~ ( ¢ 1 1  C12~ ( ; )  
\ e2t c22 / 

15) Jus t  choose s wi th  ds 7£ 0 to  be cons tan t  on the  flow lines of the  first vector  field and  t w i th  
dt 7 £ 0 to  be  cons tan t  on the  flow lines of the  second vector  field. 
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where the cij are functions of 8 and t. Now sett ing c l l =  - f s  and c22 = - g t  and 
then defining u = e / z  and v = egw, the sys tem reduces to the form 

ut = P v  and v~ = Qu 

for some functions P and Q of s and t. 

The  corresponding exterior differential sys tem on M = N 4 with coordinates 
s, t, u, and v is generated by 

Z = {(du - P v  dr)Ads, (dv - Quds )Ad t } .  

It  is easy to see tha t  this is a non-degenerate  sys tem if and only if P(s ,  t) and 
Q(s,  t) are non-zero. By  reversing s and t if necessary, we may  even assume tha t  P 
and Q are positive, which we shM1 do from now on. 

In order to unders tand  the form of the invariants for the general first order 
linear hyperbolic  sys tem fbr two functions of two variables, it is therefore enough to  
unders tand  the  form of the  invariants for this latter system. Note tha t  the second 
proposi t ion above implies tha t  such a system must  have all of its p r imary  invariants 
equal to zero: P4 = q2 = pa = ql = p l  = q3 = 0. Let  B --~ M be the G-s t ruc ture  
associated to the  above Z. Consider the  1-adapted coframing r] with components  

71 = Q ds 

r] 2 = ( d u -  P v d t )  

7] 3 - -  P d t  

rl 4 = (dv - Q u d s )  

as a (global) section of B. Of course, we have ~*(a~ i) = ~?'~ by the tautological  
propert ies of the forms w i. Let us use ~ij  to  denote r/* (¢#) .  The  first, and third  
s t ructure  equations give 

((P22 - 9944)AQ ds == (¢fl22 - ~44) At] 1 = d@ = Qt dtAds 

( 44 - -  > , P  a t  = ( 44 -  22) = = d s   ,dt 

while the second and four th  coupled with the above formulae give 

- - ~ 2 2 A ~  2 = d'r] 2 + ~:)21A?~ 1 --  ?~3A714 ~ 0 m o d @  

--~44AT] 4 ~--- d u  4 A- ~43Ar] 3 - @/xT] 2 = 0 m o d  r~ 3 

which, in particular,  imply  tha t  ~22 = f2mN 1 + f2~2~? 2 and ~44 = f44ar/a + f3aa~ 4 
for some functions f i i j .  Subst i tut ing these formulae into the  preceding formulae 
and then  solving yields 

~22 = - ( P J P )  ds and ~ = - ( @ / Q )  at. 
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From this, we get the formulae 

~?*((I)22) : (log P)~t dsAdt and r/* ((I)44) = - ( l o g  Q)~t dsAdt. 

In  particular,  it follows tha t  in (9), we must  have kij = 0 for a l l / j -pa i r s  except  pos- 
sibly 13 and  31. I t  is this last observat ion which provides the  key to characterizing 
linear systems. 

PROPOSITION: A non-degenerate hyperbolic sys t em (M4,5[) satisfies P4 = q2 = 
P3 = ql = Pl = (t3 = 0 and (P22+(I)44 = F afl Aw 3 fo r  some func t ion  F i f  and only 
i f  Z is locally the hyperbolic sys t em associated to a linear f irst  order hyperbolic sys- 
t em fo r  two .functions of  two variables. In  particular, i f  Z satisfies these hypotheses, 
then every point  of  M lies in a coordinate chart (x, y,  u, v) : U --~ ]R 4 in which Z 
has generators of  the f o r m  

for  some funct ions  A and # of  x and y alone. 

Proof." We have already shown tha t  a hyperbolic  sys tem which arises from a lin- 
ear first order hyperbolic  P D E  sys tem for two functions of two variables satisfies 
these invariant conditions. I t  remains to prove the converse. Consider the s t ructure  
equations (5-10), subst i tu t ing the identities P4 = q2 = P3 = ql = p l  = q 3  = 0. The  
equat ions (8) reduce to 

0 = ( ~ 2 2  - ~44)A~ 1 

0 ~--- --~I)21Ao21 - -  (I)22A02 2 - -  021A022A02 3 

0 = (~4a - ~22)A~ 3 

0 = - - ( I ) 4 3 A ~  3 - -  (I)44A024 - -  (a)3AC04A~ 1 . 

The first and third of these equations together imply that (I)22-(1)44 is a multiple of 
both co I and a; 3 and hence of wiAw 3. On the other hand, by hypothesis, ~22÷~544 = 
F a;iAw 3, thus implying 

d¢22 = k13 ~IA~a 

d444 = hi aa~,~l. 

We are now going to  show tha t  every point  of  M ties in a local coordinate  
sys tem as in the s ta tement  of  the Proposi t ion.  To w o d u c e  this coordinate  system, 
we proceed as follows: First ,  note tha t  because the p r imary  invariants are zero, 
it follows tha t  co t and  c~ a are separately integrabte. Now fix a point  of B and 
choose functions x and y on a ne ighborhood V of  the  point  so tha t  co t is a multiple 
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of dx and  w 3 is a mul t ip le  of dy. By su i t ab ly  res t r i c t ing  the  domain  V, we can  
assume that the map (x, y) : V -~ li{ 2 is a submersion onto a rectangle of the form 

7~ = (xo, xl) × (Yo, Yl) in the xy-plane and that the fibers of this map are connected 
and contractible. 

By construction, the 2-forms d¢22 and (/¢44 are closed multiples of dxAdy and 

hence are  of  the  form d¢22 = L(x ,  y) dxAdy and  d044 = M ( x ,  y) dxAdy  for some 
funct ions L and  M on p~.16 Now, there  c lear ly  exis t  funct ions A and  p on 7~ so 
t ha t  L = 2A~y and  M = - 2 p ~ y .  I t  follows then  t h a t  

d ( ¢ 2 2  + d x  - = - , x  d x  + = 0 .  

Thus, there exist functions s and t on V so that 

¢22 = ds -- Ax dx  + ,~y dy 

( b 4 4  == dt + p~ dx  - #v dy. 

Now, using the  s t ruc tu re  equa t ions  and the  fact t h a t  a~tAdx = 0, we compu te  

d ( e t - s - # - A o 2 1 )  = e t - s - " - A  ( - -044  Jr- 022 + d t  - -  d 8  - -  d ~  - da)A021 

= - 2 e t - S  " - x ( p x  + A~) dxaw 1 = O. 

Thus,  the  non-vanish ing  1-form e t s - ; ~  xwl is closed and  a mul t ip le  of dx. Thus,  
e t - s - • - x w l  = X ~ ( x ) d x  = d X  7 ~ 0 for some funct ion  X on 7~. Replac ing  x by  X ,  
we can assume t h a t  X = x,  so we do this.  Using  a s imi lar  a r g u m e n t  app l i ed  to  w 3 
and  rep lac ing  y by  a funct ion Y if necessary  we can  a r range  

ca 1 = e s-t+~+~" dx  

02 3 := e t - s + # + ) '  dy. 

In pa r t i cu la r ,  we now have f~ = e2()'+~)dxAdy. (Note t ha t  th is  change of var iables  
in x and  y will l ikely change the  bounda r i e s  of the  rec tangle  7~, bu t  this  is not  
impor t an t . )  Now we can c o m p u t e  t h a t  

: - = o .  

It follows that there is a. function u, unique up to addition of an arbitrary function 

of x and y so that 
es-FA(.U1A023A032 : flAdu. 

16) For convenience, for the  rest of the  proof, we will simplify our no ta t ion  by simply wri t ing F 
ins tead of F ( x ,  y)  or (x, y)* (F)  as nota t ion  for the  pullback via (x, y) of a funct ion F on ~ .  
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Thus, there exists a function P on V so that 

co 2 -- e - * -~  (du - P dy) rood dx. 

Similarly, there exist functions v and Q so that  

Now, using the structure equations, we compute that 

0 = ~ * ~ ( d ~  ~ + ~ 2 ~  - ~ )  = e - ~ + ~  d x ~ d > d ( P  - ~ )  
It follows that P = e2Xv + P0 where Po is a function of x and y alone. Similarly, 
we see that Q = e2~u + Q0 where (2o is a function of x and y alone. Now, by the 
existence theory for linear hyperbolic PDE, there exist functions u0 and v0 on R~ 
which satisfy the equations 

(Uo)y = e2)'Vo + Po and (v0)~ = e2XUo + Qo. 

Replacing u and v by u + uo and v + v0, we get a new coordinate system where 
P0 = Q0 = O. Now the functions x, y, u, and v are constant on the fibers of 
the submersion V --+ M and furnish the desired coordinate system on an open 
neighborhood of the base point in M of the point in B that  we initially fixed. But, 
by construction, 

as we wanted to show. [] 

EXAMPLE. Let us illustrate this result by applying it to the FPU equation 

z y y  - ( k ( z x ) ) 2  ~ x x  = 0 

introduced as Example 3 in Section 1.2.3. Recall that  k is assumed to be a smooth 
positive function on R. Since there is no explicit z-dependence in this equation, we 
can associate to it the s = 0 exterior differential system I on xypq-space defined 
by 

Z = { (dq + k(p) dp)A(dx + k(p) dy), (dq - k(p) dp)A(dx - k(p) dy) }. 

(Since x and y appear linearly in the generating forms, it is not surprising that 
this system should turn out to be linear.) The condition that  this system be non- 
degenerate is easily seen to be that U(p) ¢ O, so we assume this from now on. It is 
then easy to compute that  the coframing 

~/~ = ~'(p)/(nk(p) ~) (k(p) dp + dq) 

~2 __ (~(p) ~v + dx) 

rl ~ = k' (p) / ( 4k(p) 2) (k(p) dp - dq) 

,¢ : (k(p) dv - dx) 
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is 1-adapted. Since ~/1 and r/3 are clearly integrabie and since ft = rllA~7 a is clearly 
closed, we must have P4 = q2  = P 3  = q l  = P l  = q3 = 0. Further computation then 
reveals that  

dq~22 = KrIIAr/3 

where 

d¢44 = Kr/aA@ 

K = 4 ( U " ~ ) k ' ( P ) k ( P ) 2  - 3 U ' ( P ) U ( P ) 2 k ( P )  - U ' (P)2k(P)2  + 4k'(P)4) 
k'(V? 

In particular, ~52u + ~544 = 0, so all the conditions for linearity are fulfilled. 

Before ending this subsection, we would like to comment on the geometric 
meaning of the invariants in the linear ease. As the structure equations derived in 
the course of the proof make clear, the quantities 

f} ==~ a.'lAcd 3 -~- e 2)'+2/* d x A d y  = --*~ 

~] = C01 O W 3 = e 2"x+2/~ dx o dy = *g 

-1( ~ 2 2 2  --(]}44) = KC01ACO3 = ('~ q- l~)xydXAdy 

5(1 ~ 2 s +  ¢~44) = F w l a w  a = (A - P ) zy  dx / , dy  

are invariants of the system 

Z = {(gu - e2~'v d y )Ad x ,  (dv  - e2"u d z ) A d y } .  

Note, in particular, that  K is the curvature of the pseudo-Riemannian metric g. 

The cases where K and F are constant are particularly interesting since these 
are precisely the cases where the (pseudo-)group of local automorphisms of the 
structure acts transitiveIy on B. Depending on the signum of K, there are three 
models tbr complete pseudo-Riemannian metrics of constant curwature: 

d x  o dy 

eo~(c(x + y)) 
gK = dx  o dy  

dx  o dy 

cos~ ( e ( x -  y)) 

For each allowable value of K,  there is a 1-parameter family of inequivalent homo- 
geneous linear hyperbolic systems corresponding to tile value of F.  For example, 
when K = 0, we get the systems 

z0,~, = { (d,~ - es~*'v @ ) A & ,  (~v - ~ - F ~ , ~  d,),,@}, 

where lc(x + Y)I < ~ / 2  and ~ = ~2 > 0, 

if K = 0, 

where lc(x - Y)t < re/2 and K = - c  2 < 0, 
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while when K = c 2 > 0 and F = K/3, we get the systems 

cosl-,(c(x + y)) dx Ady 

The case of K < 0 is similar. (Note, by the way, that  the geometric difference 
between the K > 0 and K < 0 cases is that ,  in the former, a "time-like" curve (i.e., 
one on which the metric restricts to be negative) can cross all of the null curves 
while a "spaceqike" one cannot. In the latter, the reverse is true.) 

The corresponding linear PDE,  in various coordinate systems and in the s = 1 
version as well, were studied extensively by Euler and Poisson. 17 

As our final remark about  these linear systems with K and F constant,  we 
note these systems are precisely the ones for which the group of symmetries acts 
transitively on B. In particular, in these eases, there can be no canonical subbundle 
of B which is preserved under all symmetries.  Hence, there cannot be any canonical 
structure reduction in these cases. This shows that ,  without making some assump- 
tions about  the torsion terms in (5) or the curvature terms in (9) or (10), there 
will be no canonical reduction of the G-structure. 

1.5.7 The first prolongation. We are now going to apply the structure equations 
derived so far to s tudy the first prolongation of (M, 27). Our goal in this subsection is 
to prove that  a w  non-degenerate hyperbolic system with s = 0 which is integrable 
by the method of Darboux at level 1 is locally equivalent to one of two possible 
hyperbolic systems. 

First, we want to describe a natural  submersion B -+ M (1) which will be used 
to express the characteristic systems on M 0 )  in terms of the structure equations 
on B. First, we give an invariant description: Let E C TB be the codimension 2 
distribution defined by the equations w 2 = co 4 = 0. By its very construction, for 
each b c B, the image subspace 

is a 2-dimensional integral element of Z and hence is an element of M (l). Thus, 
we have defined a mapping rc (1) : B --+ M (1). As we shall see, this is a submersion 

t7) For example, see Chap. 3 of Livre 4 of IDa], where Darboux  studies the equation 

Zxy == ~ Z~ (x - y) (~ _ y) z~, 

for z as a function of x and y in the  half-plane x - y > O. As this  is a second order equation 
with no explicit z dependence, the methods  of Section 1.1 show how to associate to it a 
hyperbolic sys tem of class s = 0. This  sys tem wilt clearly be linear and one easily sees tha~, 
as ]3 and ~ '  ~ r y ,  this  gives a two paramete r  family of liaearizable sys tems with K and F 
eonstant~ 
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onto the open set of integral  e lements  of 27 on which the 2-form f~ = CU1ACU 3 is non- 
zero and  the  rc(1)-pullbaek of the  Pfaffian sys tem 27 (1) is jus t  the  Pfa i~an  sys tem 
genera ted  by the  1-forms w 2 and w 4. 

Explicitly, one can see this as follows: If  r] = (r /)  is a 1-adapted  coframing on 
an open set  U C M,  then  on Bu = rc-l(U) C B, there  exist unique functions s2, 
*4, r2 # O, and r4 5 g O, so that 

w 2 -*2/r2 1/r2 0 7] 2 
co 3 = 0 0 r4/r2 rl 3 
w 4 0 0 -*4/r4 1/r4 rl 4 

(In fact, the  m a p  (Tr, r2, r4, s2, *4) : Bu --+ U x R *  ×R* ×IR×IR is a diffeomorphism.)  
Subst i tu t ing  these formulae into the  s t ruc ture  equat ions (4) and expanding  shows 
tha t  there  are congruences 

¢22 = (1/r2)dr2 ] 

¢44 ~ (1 / r4 )d r4  } ,nod ~1 ~2, ~3  ~4. 

¢21- 

I f  (el ,  e2, e3, e4) is the f rame field on U dual  to the coframing r/, then  one computes  
tha t ,  for x = re(b), 

rc(1)(b) = span { e l (x  ) @ 82(b ) e2(x), e3(x ) @ 84(5)e4(22 ) }, 

which is clearly an integral  e lement  of 27. Moreover,  it follows tha t  

(7l_(1))*(27(1)) = { 7 ] 2  82711 ?74 84~3} = {CO2 Cj4}, 

as we wanted  to show. 

Now, f rom (5), and the  definitions given in Section 1.3.6, the  s t ruc ture  equa- 
tions 

do.' 2 ~ --@21AC~, 1 ~- ~,aj3A0.y 4 rnodco 2 

dco4 -- __¢43AC03 m r- colAc0 2 m o d w  4 

yield these formulae tbr the  character is t ic  systems:  

~(1) {co2,c01 

-o1=(1) _- ¢43}. 
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By the s t ruc ture  equations (5), (7), and (10), we see tha t  

dco 2 -co3aco4 -= dco I =- d¢21 =- 0modco2,col ,¢21 

dco 4 --COlAco2 ~ dw 3 ~ d¢43 = Omodw4 w3,¢43 

so it follows that 

89 

and 
dcoa ~ - ( q l c u 1  + q2 co2)Aa¢4 / 

d¢43 --~ - (~;3  - a)l) ACO4 ) mo  alcoa, 043. 

Thus,  it follows tha t  the systems = 0 ) 0 )  and =0)(1} ~10 ~0z are completely integrable if 
and only if 

P3 = P4 = ql = q2 = 0 and (kla - 1) = (k3~ - 1) =/g14 = 1g32 = O, 

We are now going to show that ,  up to  diffeomorphism, there are essentially 
only two systems satisfying these conditions. To do this, we assume tha t  the above 
equat ions hold and set, according to (6), 

dpl = Pl ¢22 + Vpl  = Pl ¢22 + Pl l  COl @ ])12 CO2 + 1913 033 JI-/914 cO 4 

dqa = qa ¢44 + Vqa = q3 ¢44 + qa3 w3 + q34 co4 + q31 col + qa2 w2. 

Now, on account  of the  above vanishing assumptions,  equat ions (7) and (8) simplify 
dramatically.  In  fact, (8) becomes 

0 = (~22 - ~44)Aco 1 - VP]AcolAw 2 

0 : --(I)22AC02 -- COlA(M2AC03 

0 = (~44 - ~22)/,co 3 - VqaAcoa/,co ~ 

0 = --(1)44ACO 4 -- CO3ACO4ACOl. 

=(;.)(1) 
-10 = {co1,¢21}, 

-o1=(1)<I> = {coa ¢4a}. 

Now, if Darboux '  me thod  is to succeed at level 1 (i.e., if bo th  the level 1 character-  
istic systems are to contain completely integrable subsystems of rank 2), then bo th  
of these lat ter  systems must  be completely integrable. However, by  the  s t ructure  
equat ions (5), (7), and (10) we see tha t  

dco I = - (pa coa + p~ co4) A.} ] 

d¢21 (~1 - co 3) Aw 2 ] mod  co', ¢21 
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These  equat ions  can now be  solved for (I)22 and  ( I ) 4 4  , yie ld ing  the  iden t i ty  P14 = q32 

and  the  formulae  

~22 = w laws + P13W 2Aw3 + (b + f )  w2Aw 4 

~)n4 = ~ 3Aal  + q3~ ~ 4 A a l  + (b - f )  a4Aa2 

where we have written 2b for the common value of q32 and P14 and f is a yet to 
be determined function. Now, a straightforward differentiation using the structure 

equations so far yields 

0 -~- d(d((~22 - (~44)) ~ -(P13 ¢21 Jr q31 (~43) Aid1 A023 mod°22, ~M4, 

so it follows t ha t  we mus t  have P13 = q31 = 0. We can now compute  

o = d ( d , : : )  - - ( f  + b ) ¢ : ~ , ~ , ~  ~ m o d ~ . ~  ~. 
0 -~ d(d¢44) - ( f  - b)¢21AWlAt~ 4 J 

Thus,  b = f = 0. We now compu te  

0 = d(dq3) =- q34wlAw 2 m o d a 3 , w  4 

0 = d(@l)  =- p12~%~ 4 m o d ~ L ~  2 

which impl ies  q34 = 0 and  P12 = 0. Final ly ,  we c o m p u t e  

0 = d(d¢2~) = (q33 - p l )WtA~2A~3 

0 = d(d¢44) = (P11 - q3)w IAw3Aw4 

which yields  q33 = Pl and  P l l  = q3. 

At this point, we have structure equations 

~2 1 ¢22 0 0 
~3 = -  0 ¢22-¢44  0 
~4 0 ¢43 ¢44 

with  

and 

d¢22 = wl Aw 3 q- q3 wlAw2 

d(~44 --~ 0JSAwl -~ Pl  WaAW4 

dpl -~- Pl ¢22 + q3 ~ vl 

dq3 ~- q3 ~b44 + Pl  a)3- 

f 
(M 
~d 2 
~3 
a; 4 

--Pt t~IALj2 1 -}- / a23 A~M4 

~ --q3 W3A~4 
\ a21A092 

(1~) 

(12) 

(13) 
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From these equations, we see that  the 2-forms 910 = q3 zvlAw2 and/I/01 : Pl W3Aa)4 

are well-defined on M. From the equations (13), we see that  if there is a point x0 E 
M where both of these 2-forms vanish, then both q3 and Pl vanish on the fiber 
above x0 and hence on all the connected components of B which intersect this 
fiber. In particular, 910 and 90~ must vanish identically on the entire connected 
component of M which contains x0. 

Now, the equations (11-13) contain, in particular, the equations 

dw 1 = --  ( ¢ 4 4  --  ¢ 2 2 )  A021 --  Pl a21Aa)2 

3 = - ( ¢ 2 2  - ¢ 4 4 ) A a  3 - q3 a 3 A a 4  

and 
d ( ¢ 4 4  - ¢22)  = - 2  ~.)1A023 - -  q3 0dl AOJ2 ÷ P l  0d3A0d4" 

The significance of these equations is that  they imply that  there is a canonical 
]R*-bundle F -+ M with connection form 0 = ¢44-¢22 with the following property: 
To every integral manifold S C M of the exterior differential system with inde- 
pendence condition (if, :zlAaJ3), the bundle F restricts to be the coframe bundle of 
the "characteristic Lorentzian metric" g = 0210923 and its connection form restricts 
to be the Levi-Civita connection form of this metric. Moreover, this characteristic 
metric has constant curvature and is locally isometric to the complete metric of 
this curvature, namely 

dx o dy 
g0 - cos2 (x + y) 

Let us first dispose of the connected components of M where 910 and 901 
vanish identically. Over such a component, the above structure equations simplify 
considerably. Since all of the primary invariants (even q3 and Pl) are now zero, 
and since, by inspection, we have ~22 + ~44 = 0, it follows by our linearization 
result that  the system 2- represents a linearizable system of PDE. Moreover, F = 0 
and K = 1. Thus, the system is locally equivalent to the constant curvature linear 
example 

V U 

defined in the domain in xyuv-space given by the inequality ix + y[ < ~r/2. 

Applying the method of Darboux and going through the calculations then 
shows that  every solution of the system 

Uy(X,y) = sec(x + y )v (x ,y )  Vx(X,y) = sec(x + y )u (x ,y )  

can be written in the form 

u(x, y) = g(y) sec(x + y)+/(x)  tan(x + y)+f'(x) 

v(x,y) = f(x)  sec(x -4- y)+g(y) tan(x + y)+g'(y) 
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for some functions of one variable f and g and that  these are unique up to a 
replacement of the form 

( f (x) ,  9(y)) ~ ( f ( x )  + a sin(x) + b cos(x), g(y) + a cos(y) + b sin(y)) 

where a and b are constants. We leave to the reader the task of showing how to 
determine the functions f aad g from non-characteristic initial data. 

EXAMPLE (continued): Before going on to consider the non-linear possibility, let us 
consider the FPU equation that  we earlier saw was linear. We computed that  

K = 4 ( iv" ' (P ) iv ' (P ) iv (P )~  - 3 iv" (P) iv ' (P)~ iv(P)  - Iv , , (p)~iv(p)2 + 4 i v , ( ; ) ~ )  
Iv,(;)4 

and now know that  K = 1 is the necessary a~ad suffmient condition that  this 
equation be integrable by the method of Darboux at level 1. Now, the equation 
K = 1 is a third order differential equation for Iv(p). Inspection shows that  if Iv(p) is 
a positive solution to this equation, then so is c2 Iv(clp + co) for any three constants 
co, c~ ¢ 0, and c2 > 0. The transformations Iv(p) ~ c2 k(c lp  + co) with c~ ~ 0 and 
c2 > 0 form a 3-parameter  group F which acts effectively on the space of positive 
solutions of this third order equation. Up to equivalence under this group action, 
only two of these solutions have a positive dimensional stabilizer, namely 

2 
k(p) = p-2  and Iv(p) = p -  ~, 

both only defined for p ¢ 0. I t  is not hard to show that ,  aside from these two so- 
called "singular solutions", up to the action of F there are only two other solutions. 
The first is the unique function IV : R --~ (0, 1) defined implicitly by the equation 

2 
p - ~ + log 

,/~(p) 

and the second is the unique function k : 
the equation 

2 
p - - -  + log 

1- 
1+4 ] 

( - o c ,  0) --+ (1, oc) defined implicitly by 

 71) 
Thus, this gives the complete list of F P U  equations which are integrable by the 
method of Darboux at the first level. 

As an explicit example of the use of the method of Darboux in this case, let 
us consider the case Iv(p) = p-2.  Consider the differential system 27 defined in the 
region p > 0 in xypq-spaee by the 2-forms 

z = { (dq + ; - 2  dp)A(dx + ;-'~ dy), (dq - p-2 d;)A(dx - ; - 2  dy) } 
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which is the differential system associated to tile equations 

Pv - q~ = 0 

qv + ( p - 3 / 3 ) x  = 0 

which model the dynamics of a polytropic perfect gas [FX]. The initial conditions 
are specified along y = 0 in the form 

p(~,  o) = po(x)  > o 

q(~, o) = qo(~).  

Applying the method of Darboux then leaAs to the following recipe for solving this 
initial value problem. Define a new function s by setting 

J0 x s (x)  = 1 ~p0 (~) d~. 

Note that, because P0 > 0, the function s is strictly increasing. If we now reparamet- 
rize the initial curve (x, y, p, q) = (x, O, po(x), qo(x)) in terms of s, we can write 

(x, y, p, q) = (2o~,(s), o, 1 /~ ' ( s ) ,  ~ ' ( s ) )  

for some functions a and /3 defined on the range of s. Then the integral surface 
of Z containing this curve is given by 

1 ~(s ,  t) = c~(~) + ~( t )  + 9( t )  - 9 ( s )  + ~(s  - ~ ) ( S ( s )  + 9 ' ( t )  + c~'(t) - ~ ' ( s ) )  

v ( s , t )  = 2(s - t ) / (~ ' ( s )  + ~'(t) + S ( t )  - ;y(s))  

v(s ,  t) = 2 / (o , ' ( s )  + ~ ' ( t )  + S ( t )  - ~ ' ( s ) )  

q(~, t) = ½ (9 ' ( s )  + ;~'(t) + ,~'(t) - ~ ' ( s ) )  

where the four functions are defined in the region in the st-plane defined by the 
inequality 

(~ ' ( s )  + ~,'(t) + 9 ' ( t )  - ~ ' ( s ) )  > o. 

Note that  this certainly includes the line s = t which corresponds to the original 
initial curve. 

Now, it is well-known that, under suitable hypotheses on the initial data, 
solutions of an FPU equation will develop "shocks". In our terminology, this corre- 
sponds to the failure of the solution surface constructed above to be representable 
as a graph, i.e., in the form p = P(x, y) and q = Q(x, y) for some functions P and 
Q defined on the whole xy-plane. Of course, this will generally happen when the 
map (s, t) ~ (x(s, t), y(s, t)) fails to be a diffeomorphism from the st-plane to the 
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xy-plane. In order to understand this behavior, it is helpful to simplify the above 
formulae by introducing new functions a and b by a =/3 ÷ a and b --/3 - c~ so that 
the above formulae become 

x ( s ,  t )  = - b(s) + ½(8 - t ) ( d ( t )  + b'(s) )  

y ( s ,  t) = 2(8 - t ) / ( a ' ( t )  - b ' (s ) )  

p(s ,  t) = - b' (s) )  

' b ' (s ) ) .  q(s,  t) = (t) + 

The condit ion for characterist ic completeness is then tha t  we have a' ( t )  > b'(s)  
for all s and t in the range of definition. In other  words, the graph  of a ~ must  tie 
str ict ly above the graph  of b ~. One easily computes  tha t  

d x A d y  = - 2  (a ' ( t )  - b'(s)  - (t - s ) a " ( t ) ) ( a ' ( t )  - b '(s)  - (~ - s ) b " ( s ) )  dsAdt .  
(a ' ( t )  - b'(s)) 2 

It follows that, in order that dxAdy not vanish (so that the mapping (s, t) ~-~ 
( x ( s , t ) , y ( s , t ) )  is at least a local diffeomorphisrn), we must  have a ' ( t )  > b'(s)  ÷ 
(t - s)b1'(s) for all s and t in the range of definition, i.e., the graph of a' must lie 
above all the tangent lines to the graph of b ~, as well as a~(t) + (8 - t)a~(t) > b~(s) 
for all s and t in the range of definition, i.e., tile graph of b ~ must lie below all 
the tangent lines to the graph of a ~. These conditions clearly cannot be met for 
any non-constant functions a and b which satisfy the conditions a~(t) - ao and 
b~(s) =- bo for all s and t satisfying Isl, It] > M, in other words, for initial data 
which are compactly supported perturbations of constant initial data. Thus, this 
analysis recovers the well-known fact (see, for instance, [La]) that solutions of this 
FPU equation with initial condition which m'e "small" perturbations of constant 
initial data must develop shocks. 

Now let us turn to the analysis of the components of M on which ff210 and ~01 
do not vanish simultaneously. Thus, restricting our attention to one such component 
and calling it M for convenience, we see that q3 and pl do not vanish simultaneously 
at any point of B. Now, it follows from (13) that at any point of/3 where q3 
vanishes, its differential dq3 is a non-zero multiple of w 3. In particular, the locus 
q3 = 0 is a smooth hypersurfaee in B which contains all of the fibers of B --~ M 
which it intersects. Moreover, since dq3 --- Pl w3 along this locus, it follows that 
this hypersurface is a union of leaves of the foliation of B defined by w 3 = 0. 
In particular the image of this hypersurface in M, which is the locus where ~i0 
vanishes, is a countable union of closed leaves of the characteristic foliation defined 
by w 3 = 0. A similar picture prevails for the locus where ~01 vanishes. It is a 
countable union of closed leaves of the characteristic foliation defined by w i = 0. 
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Suppose, first of all, that  we are at a point z of M where neither ~10 nor 
~01 vanish. Then, by the structure equations, we can choose a coframing ?) = 
(rtl,r]2,r~3,@) on a neighborhood of z which is a section of B and also satisfies 
Pl = q3 = 1. This coframing then satisfies the following equations (which are 
clearly specializations of (11-13)). 

1 ~22 

@ 0 

with 

and 

0 
0 0 ?~2 ?)3 A?)4 / 

(/922 -- (¢944 0 A ?~3 ~- _?]3A?)4 ] 
¢fl43 ~44 ?)4 ?)1A?)2 / 

d~22 = ?]IAT]3 -l- ?)1A?)2 

dq044 = ?]357)1 + ?)3A?)4 

0 = ~922 @ ~1 

0 = ~'44 + ?)3 
and the ideal Z is generated by {@A?) 2, ?)aAr]4}. 

Since ?)1 and ~]3 are integrabte but d?) 1 ~ 0 and dr] 3 }A 0, we may introduce 
coordinates (x, y, p, q) with p and q positive, such that 

?]1 dx  and ?]a dy 

P q 

From the structure equations, we have 

= dY)A x 
f t lo  = ?)1/x?]2 - d @  - ?)1Aria = ( + 

q P 

and similarly 

~01 ~--- ?]3 A?)4 = _d?)3 _ ?]3A711 = (dq  -t- d x  )A f l y  
q P q 

Setting p : e - u  and q = e - v  gives 

~1o  : - ( d u  - e v d y ) A e  ~' dx  

~tol = - ( d v  - e ~ d x ) A C  dy 

and theretbre the system models the s = 0 Liouville system 

~y :. •v 

Vx z e u . 
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Now, although the coordinate chart on a neighborhood of z that we have 
constructed is not canonical, the 1-forms 711 and 713 are actually well-defined. Any 
two local coordinate chm%s (x, y, p, q) and (x, Y, fi, q) with p, q, ig, and q all positive 
and satisfying 

711 _ dx _ d~ and r/3 _ dy _ dy 
P P q q 

must  be related on some (possibly smaller)  ne ighborhood of z by relations of the 
f o r m  

(x, y ,p ,  q) = (X(~) ,  Y(9),  X'(~)/~, Y'(Y)0) 

where X and Y are functions of one var iable  wi th  posit ive derivative.  Thus,  on 
the open set in M which is the complement  of the loci @i0 = 0 and ~0i  = 0, the 
hyperbol ic  s t ruc ture  is actual ly  locally homogeneous  and induces a special at las of 
charts  which car ry  the sys tem 2- into the  s = 0 Liouville system. 

Now let us consider the  case where  z E M lies in the  locus where  v~i0 vanishes. 
Let  y be any funct ion on a ne ighborhood of z satisfying y(z)  = 0 but  (dy)z # 0 and 
with  the  p rope r ty  t h a t  dyAw 3 = 0. T h e n  we m a y  restr ict  to smaller  ne ighborhood V 
of z with the p rope r ty  t ha t  y = 0 defines the zero locus of ffJl0 in V. Regard ing  y 
as a funct ion on B v  by  pull-back,  we see t ha t  q3 and  y have the  same zero locus 
in B v  and have non-vanishing differentials there.  I t  follows t h a t  the rat io  r = q3/Y 
is a smoo th  non-vanishing funct ion on B v  and calculation shows tha t  

dr =- r ¢44 mod  ~3. 

It follows that we can choose a section (711,712,713,714) of Bv -+ V which lies in the 
locus Pi = r = I. In other words, this section will have Pl = 1 and q3 = Y. Thus, 
we will have structure equations 

712 / ! 1 ~22 0 712 
d 713 "-  - 0 9 2 2  - ~944 A 713 

714 0 (D43 9/944 714 

/ -71IA71 2 \ 
| 713/,714 / 

q- [--Y713A71 4 / 
\ V 1 AV e / 

with 

and 

dgP22 = 711A713 q-Y711A712 

d~944 = r/aA71 1 + 713A714 

0= ~o22+y711 
dy == y ~44 q- 713 

and the ideal 27 is genera ted  by {711A712, 713A714}. Now, since 711 is integrable,  bu t  
@1 ~ 0, it is easy to  see that. there  exist functions x and p > 0 on a possibly 
smaller  ne ighborhood of z so t ha t  711 = p dx, and by construct ion,  there  exists 
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a function Q on this neighborhood so that z] 3 = Q dy. However, looking at the 
equation dy = y ~44 + @ on the locus y = 0 shows that we must have Q = 1 on 
this locus. Thus, we may write Q = 1 + y q, where q is some smooth function on a 
neighborhood of z. Substituting this into the equations just above shows that  

~22 = - Y P dx  and ~44 = - q  dx.  

Substituting these relations into the formulae for dq022 and d~44 and then solving 
tbr @Ar] 2 and @A@ yields the expressions 

?]lAr]2=dxA(dp--pqdy) a n d  r l 3 A r l 4 = d y n ( d q - p ( 1  + y q ) d z )  

It follows that  the four functions z, y, p, and q form a coordinate system on a 
neighborhood of z. Moreover, the system in z y p q - s p a c e  defined by 

f l =  { d x A ( d p - p q d y ) , d y A ( d q -  p(1 + yq) dx)  } 

is easily seen to be a non-degenerate hyperbolic system away from the hypersurfaces 
defined by p = 0 and 1 + yq = 0. 

There is a similar normal form for this non-linear system in a neighborhood 
of a point on the locus where ~01 vanishes. Details will be left to the reader. 

In conclusion, we have shown that  there are essentially only two types of non- 
degenerate hyperbolic systems with s = 0 which are integrable by the method of 
Darboux at level one. The first type is linear and the second is non-linear, being 
locally equivalent to the s = 0 Liouville system away from a hypersurfaee. We 
shall refer to it henceforth as the ez tended s = 0 Liouville system. It would be an 
interesting project to classify the global systems (if any) of the latter type which 
are characteristically complete in the sense of Section 1.2.3. 

Now from our results so far, we see that the method of Darboux can be used 
to integrate the s = 0 Liouville system. In fact we may explicitly carry out the 
integration, as fbllows. 

On M we use the coframing 

co 1 = dx ,  a~ 2 = du - eVdy, 0.;3 = d:y, w 4 = dv - e'~dx. 

Then on M0)  we have the coframing 

0210 =~d  1, 010 =c9 -- h20 a) 1, aJOl =a)3~ 001 =CO 4 - - h 0 2  w3 

and 
7c2o = dh2o - e~'+~dy 

~ro2 = dho2 - e~+Vdx. 



98 

Different ia t ing,  we ob t a in  

and  
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d01o = --T[20ACJ10 -]- eVwo1AO01 

dO01 = --7~02AC001 -t- euCVlOAOIO 

dTr2o = eU+V wol /~(01o + 0ol) m o d w l 0  

dTro2 =- eU+v WlOA( 01o + 0 o l ) m o d w o l .  

By  def ini t ion the  charac te r i s t i c  sys tems  are 

--10~'(1) = [W10,010,7i-20] 

=(1) [W01 ' 001,7t.02], ~01 

and  clear ly  

dOzo =-e v aJ01A001~ modE~o ) 

d7c2o =- eU+V woi AOol J 

with  s imi lar  formulas  holding for the  o ther  charac te r i s t i c  sys tem.  I t  follows t ha t  
the  first der ived sys tems  are  

--10=(1)<1} = [(M10, 71"20 -- eu010] 

= [ e ~ , d ( h 2 o  - ~)] 

and  s imi lar ly  

-o1=(1)(~> - -  [dy ,  d ( h o 2  - ~v ) ] .  

Using this  resul t  we m a y  in tegra te  the  s = 0 Liouvil le  sys tem,  as follows: Since 

d(h2o - e~)Adx = dyAd(ho2 - e ~) = 0 

on solut ions  we m a y  set  
h20 - e ~ = c~'(x) 

h02 - e v = / 3 ' ( y )  

for funct ions  a(x )  and /3 (y ) .  The  equat ions  

then  y ie ld  

010 = 0ol ---- 0 

d~ = (o/(x) + e ~) dx + e~dy 

dv = (9' (V) + ~v) dv + ~ d x  
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and so we must solve the ODEs 

For th is  we set 

u ~  = a ' ( x )  + e ~ 

v~ = Z ' ( v )  + ~ 

U = u -  a (x )  = l o g f  

v = v - Z ( y )  = l o g g  

and  consider  funct ions a(x) ,  b(x) which sa t is fy  

a ' ( x )  = - e  ~(x) 

b' (y) - e  ~(y). 

T h e n  the  above  O D E  sys t em is 

Ux = ea(X)e U 

Vy = e~(~) e V 

or, equivalent ly,  

These  m a y  be  i n t eg ra t ed  to  give 

fx 
f-Z = - a ' ( x )  

9--~Y = - b '  (y). 
g2 

1 
eUe - a  = f - 

a(x)  + b(y) 

1 
e V e - ' =  g -  5(x)  + b(y)" 

S u b s t i t u t i n g  in t h e  express ions  for du and  dv allows us to  set  ~ = a, b = b and  
f inal ly 

~ _ - a ' ( ~ )  

a ( ~ )  + b ( v )  

~v _ - b ' ( y )  

a(x)  + b(y) 

for the  genera l  so lu t ion  to  the  s = 0 Liouvi l le  sys tem.  We note  t h a t  a(x) ,  b(y) are  
a r b i t r a r y  sub jec t  to  a'(x)  < 0 and  b'(y) < O. 
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REMARK: To close the loop with the previous discussion at the end of Section 1.4 
of the s = 1 Liouville equation, we may differentiate the first equation with respect 
to y to obtain 

+ b(v)) 

which since 
(u + v)~y = 2e ~+" 

gives the general solution to the s : 1 Liouville equation mentioned in Section 1.4.3. 

1.6 Hyperbol ic  Euler-Lagrange s y s t e m s  of  class s = 0. 

1.6.1 Bi-symplectic str~tctures. Among the hyperbolic exterior differential systems 
of class s = 0 are the Euler-Lagrange systems that  we introduced as EXAMPLE 4 in 
Section 1.1.3. In this section, we shall develop some of the special properties of these 
systems, culminating in a variant of Noether 's  Theorem, which will describe the 
relationship between symmetries and classical conservation laws for these Euler- 
Lagrange systems. (The notion of conservation laws for general hyperbolic exterior 
differential systems will be developed more fully in Section 2.1.) 

We begin by recalling the construction of hyperbolic Euler-Lagrange systems 
of class .s = 0. Let M be a 4-manifold and let • be a symplectic 2-form on M. 
Associated to any other 2-Ibrm A on M, we want to consider the functional FA on 
immersed ~-Lagrangian surfaces S C M which are oriented and compact (possibly 
with boundary) which is defined by the rule 

FA(S) = .fs A. (1) 

In Example 4 in Section 1.1.3, we saw that  the critical points S of this functional 
relative to variations that  leave fixed the boundary of S are the integral surfaces 
of the exterior differential system 

~=9=0. 

Here, 9 = d~¢, where ~ is defined to be the (unique) i -form satisfying dA = ~a~b. We 
shall call g(A) = {(b, ¢}  the Euler-Lagrange system associated to the functional FA. 

Note that  if A = A + dff + f ~  for some 1-form 7 and some function f ,  then 
for any compact,  oriented ~-Lagrangian surface S, we will have 

Fx(s) : Fa(s) + los 

It follows that  S is critical fbr F i with respect to variations through (I)-Lagrangian 
surfaces fixing the boundary if and only if it is critical for FA with respect to the 
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same variations. Thus, it would not be surprising if A and ~- gave rise to the same 
Euler-Lagrange system. 

In fact, this is precisely what happens. Let Ze be the differential ideal gener- 
a,ted by the sympleetic form 4, and recall that  the characteristic eohomology group 
H2 (M, Z e) is by definition H2(a*(M)/Z~) where the differential on the quotient 

complex ft* (M)/Ze is induced by d. Note that  A and A determine the same coho- 
mology class in H2(M,27e) if and only if there exist a 1-form 7 and a function f 

so that  .~ = A + d7 + f ~ .  In this case, we will have 

d[k = dA + df A~ = (~ + df)A~, 

so we., can take ~ = ~b + df, implying ~ = d~ = &b = ~. In particular, ~ depends 
only on the characteristic cohomology class [A]¢ e /~r2(IV/,Z¢) defined by A. In 
fact, this construction can be carried further to show that,  on any open set U C M 
satisfying H2(U, IR) = Ha(u, ~R) = O, there is actually an isomorphism 

defined by the obvious assignment [4] H ~. 

Throughout this section we shall make the assumption that  the exterior dif- 
ferential system g(A) is non-degenerate in the sense that  the 2-form • satisfies the 
condition that  ~At9 is nowhere vanishing. This is equivalent to the assumption that 
the associated PDE system have non-degenerate symbol. 

Indeed, taking the exterior derivative of the equation dA = ~/,4b yields 

~A~ = 0. 

Hence, in order that  {#P, tp} span a hyperbolic pencil at each point one must have 

~AI~ : __f20A(I  ) 

for some non-vanishing function f (which we may take to be positive), while the 
condition that  {4, ~} span an elliptic pencil at, each point is that  

~AqJ = f2 ~A~ 

for some non-vanishing function f (which we could also take to be positive). 

The properties of these pairs ((I), g~) are of sufficient interest to warrant giving 
the separate 

DEFINITION: A bi-symplectic structure (M;~ ,  ~) on a 4-manifold M is a pair 
(~, tp) of everywhere linearly independent symplectic forms. The bi-symplectic 
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structure is said to be special in case qSA02 = 0 and is said to be hyperbolic (re- 
spectively, elliptic) if the pencil generated by 4) and 02 is everywhere hyperbolic 
(respectively, elliptic). 

EXAMPLE 1: Prescribed Gauss curvature. In an open set M C R 4, consider the 
s tandard symplectic form 

q~ = dpAdx + dqAdy. 

If f and g are any non-vanishing (smooth) functions of two variables, then the 
2-form 

02 = f (p, q) dpAdq - g(x, y) dxAdy 

is closed, non-degenerate, and satisfies 

~A02 = 0. 

On solution surfaces to 4) = 02 = 0 of the form 

(x, y) (x, y, p(x, y), q(x, y)) 

we obviously have p = zx and q = Zy for some function z(x,  y) which satisfies the 
PDE 

f (Zx,  Zy)(ZzzZyy - z~y) = g(x,  y). (2) 

A special case is when 

1 
f = (1 + + q2) - 

Then we may think of (x, y, z(x,  y)) as the graph of a piece of surface E in Euclidean 
space E 3, and the left hand side of (2) is the Gauss curvature of E. 

Note that  this defines an elliptic bi-symplectic structure if g is positive and 
a hyperbolic bi-symptectic structure if g is negative. Especially noteworthy is the 
case when g = - c  2 < 0 for some constant c. Then this system models the equation 
for constant negative curvature surfaces. In this case, the decomposable 2-forms in 
the pencil generated by 4) and 02 are 

dp + c dy A 
f~ l o = 1 +  p2 + q2 1+  p2 + q2 

dp c dy A 1 +  p2 + q2 + c dx f~ol = l + p2 + q2 

I t  may be checked tha t  the characteristic curves on integral surfaces are the usual 
asymptotic curves of elementary differential geometry. 
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1.6.2 A structural symmetry. For a special bi-symplectic structure the roles of 
and • are obviously symmetric, which suggests that  hyperbolic Euler-Lagrange 
systems of class s = 0 might have a corresponding structural symmetry. We shall 
now see that this is indeed the case. 

PROPOSITION: Suppose that (M; ~, ~)  is a special bi-symplectic st~cture on a 
manifold M satisfying H2(M) = H3(M) = 0. Then there exist 2-fo~ns A and 
on M so that the exterior differential system generated by the equations 

4) = ~9 = 0  

is the Euler-Lagrange system both of the functional FA defined on ~-Lagrangian 
surfaces and of the functional F q defined on •-Lagrangian surfaces. 

Proof." Since H 2 (M) = 0, there are 1-forms ~ and ¢ such that 

{ ~5= dqo 

from which it follows that 
= 0 

since ~A~ = 0. Thus, since Ha(M)  = 0, there is a 2-form A so that  

aSA~ = dA, 

and we conclude that  
= • = 0 (3) 

is the Euler-Lagrange system for the functional 

F A ( S )  = A 

on ~-Lagrangian surfaces S. 

Symmetrically, since d(~A~) = 0 and H3(M) = 0, there exists a 2-form ~ so 
that 

• A~ = d~t. 

Then (3) is also the Euler-Lagrange system for the functional 

F (R) = a 

on ~-Lagrangian surfaces R. [] 
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The importance of this proposition is that it gives a sufficient criterion for 
an exterior differential system :Z- generated by a pencil of 2-forms on a 4-manifold 
to be expressible as a (non-degenerate) Euler-Lagrange system; namely it must be 
generated by a bi-symplectic structure. 

EXAMPLE 2: Systems defined by conservation taws. We want to illustrate this sit- 
uation. To put this example in context, recall that ,  by the last proposition in Sec- 
tion 1.1.4, a (real-analytic) hyperbolic Euler-Lagrange system is (at least, locally) 
the exterior differential system associated to a hyperbolic system of conservation 
laws. In this example, we want to look at the converse situation. We witl determine 
conditions that  a translation-invariant hyperbolic system of conservation laws 

ut + ( f ( u , v ) ) ~  = 0 

~ + (g(~, v) )~ = 0 

might satisfy in order to be an Euler-Lagrange system. Using the notation from 
Section 1.1, we can express this pair of PDE as the exterior differentia[ system 

= - d u A d x  + dfAdt = d ( - u d x  + f d t ) ,  

V = -dvAdx + @Adt = d ( - v d x  + gdt) 

The conditions 
asA¢ # 0, qA~  ¢ 0, 

are, respectively, 

f~#0, g~¢0, 

By the last of these relations we have 

(X)A~I / ::: 0 

f =Fv, g=F~ 

for a function F(u, v), and the first two inequalities give 

To determine the functional/sk,  we set 

¢ =  - v d x  + F~dt 

so that  d~ = • and seek to determine a 2-form A so that  

dA = l/;i@. 
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T h e  r ight  h a n d  side is 

v dF~AdxAdt - F,~ duAdxAdt = v dF~AdxAdt - dFAdxAdt  + Fv dvAdxAdt 

= d((vF~ - F )dxAd t ) .  

To b e t t e r  u n d e r s t a n d  this  we m a y  local ly in t roduce  new coord ina tes  U and  V by 
the  re la t ions  

V=F~ 

so t h a t  u = - U  and  v = H(U,  V) .  Then  we have 

= dUAdx + dVAdt  

A = ( V  H(U,  V )  - F ( - U ,  t t (U,  V) ) )dxAd t .  

T h e n  aP-Lagrangian surfaces which are local ly g raphs  over x t - space  are given by  
U = Wx,  V = Wt  for a funct ion  W ( x ,  t), and  

A = (Wt  H ( W x ,  Wt )  - F ( - W ~ ,  H ( W z ,  Wt ) ) )  dzAdt  = L ( W x ,  Wt)  dxAdt  

defines a first o rder  func t iona l  on W ( x ,  t). 

For  a famil iar  specific case we m a y  take  

F 1 2 5(~ + v 2) 

in which case U : -u, V = v and the Lagrangian is 

L=I 2 ~(v~ - vf). 

T h e  hyperbo l i c  P D E  is, not  surpris ingly,  the  s = 0 wave equa t ion  

ut + vz = 0 

vt + Us = O. 

More in te res t ing  is the  genera l  case when 

F = ~(u~ +v~), ~#0 ,<2 .  

Then  the  funct ional  is a cons tan t  t imes  

/ ( H / : ' ~ -  (~--1)~?/A--1) dxAdf;. 
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The hyperbolic PDE system is 

ut + (A - 1)v~-2v~ = 0 

v~ + (A - 1)u~-2u,~ = O. 

For A = 3, this is a pair of coupled Burgers ' - type equations that,  after adjusting 
constants, becomes 

U~ + Vvx = 0 

Vt n c Uux = O. 

In these specific examples, the symmet ry  between ~5 and ~ is accomplished 
by exchanging tile roles of u and v and carrying out the same computations. 

Special case: The Fermi-Pasta-Ulam equation gives rise to the s = 0 hyperbolic 
system generated by 

= dpAdx + dqAdy 

= dqAdx - dhAdy  

where h(p)  = k2(p)  in the notation of EXAMPLE 3 in Section 1.2. This system is 
special bi-symplectie and can be expressed as an Euler-Lagraa~ge system by taking 
in the above formulae. 

F(p,  q) = q - H(p)  

where H ' ( p )  = h(p) .  Working through the above recipe, we see that  the FPU 
equation is the equation tbr critical points of the functional 

1.6.3 A n  analog o f  Noe ther ' s  Theorem.  We will now- explore the relationship between 
symmetries and conservation laws for (hyperbolic) Euler-Lagrange systems 2;. (As 
will be explained in Section 2.1, a 'conservation law' for 2; can be thought of as 
a closed 2-form which lies in the ideal 5[ and thus we will make this identification 
without further comment.)  

The usual s tatement  of this relationship is some version of the classical theo- 
rem of E. Noether which asserts tha t  there is an isomorphism 

{ symmctres °f } / c°nscrv ti°n l ws } 
a variational _~ for the variational . 

problem equations 

The result we shall give below is of this general type but differs from this particular 
s tatement  in a number of important  specifics. 
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Let (qb 9 )  define a hyperbolic, special bi-symplectic structure on a 4-manifbld 
M. We have seen that  ~5 = 9 = 0 gives the Euler-Lagrange system for a pair of 
funetionals 

defined, respectively, on ~- and ~-Lagrangian surfaces. Thus our formulation of 
Noether's Theorem will need to treat  ~5 and 9 symmetrically. In addition, because 
the hyperbolic system generated by • and 9 always has at least these two 2- 
forms as independent conservation laws while there is no a priori reason that  it 
should have symmetries, we may suspect that  the correct version of the above 
isomorphism should instead be with a quotient space of all conservation laws. With 
these observations in mind, we set 

¢~ = { Lie algebra of vector fields v on M that  preserve each of ~ and 9 } 

(~, 9} = { constant linear combinations of • and ~ } 

Co = { closed 2-fbrms which are linear combinations of q~ and 9 } 

C0 = 9) .  

To relate the definition of q5 to symmetries of a variational problem, let us 
suppose that  we have found 2-forms A and ft as described in the Proposition of 
the previous subsection. We denote by (M,~, [Ale ) the data  consisting of the 
symplectic manifold (M, ~) together with the equivalence class [A]e E H2 (M, 27,). 
We make the corresponding interpretation of (M, 9,  [fll ). Then the following 
proposition should be expected, in view of the explicit identification of H 2 (M, Z , )  
made in Section 1.6.1. 

PROPOSITION: I f  V E fS, then v is an infinitesimal symmetry  of each of the data 
(M,~ ,  [A].) and (M, 9 ,  [~]~). Conversely, i f  a vector field v is an infinitesimal 
symmetry  of either of the data (M, ~, [A].) or (M, 9 ,  [~]~), then v E ¢5. 

Proof." Let v E ¢5. From dA = ¢Aq) and d¢  = 9 we infer that  

£ . ¢  = dh 

for some function h, and then a short calculation gives 

= 0 .  

It follows that  
£~,A = h~ + d;~ 

for some 1-form 7~, which is the same as 

£~ ([A].) = 0 .  

Applying a similar argument to Z;~ ,  the proposition now follows. [] 
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We can now state and prove our version of Noether's Theorem. 

PROPOSITION: There is a natural isomorphism. 

r/:  @ -+ d0. (,) 

Proof." To define ~, we write locally, as was done above, 

for t - forms %o and ¢ ,  wMch are well-defined up to t ransformat ions  

¢ - + ~ = ¢ ÷ d H  

for functions G and H.  For v E ~5 we have 

12~5 = Z ; ~  = 0 

from which it follows that 

(4)  

and 

which gives 

= h +  £ v H  

( v ~ e  - g ) ~  = ( v ~  + ; ~ c  - g - £ ~ 0 ) ~  

= ( ~  - g ) ~ ,  

showing tha t  ~l is well-defined. 

~v~ = dg 
(5) 

£v~ = d h  

for suitable functions 9 and h. We set 

First, we show tha t  r~ is well-defined: The  functions g and h are well-defined 
up to constants by (5). Thus, rl is well-defined modulo (~, ~)  once we know %o and 

~. These are in turn well-defined up to a substitution (4). Then 

£ . ~  = ; . ( ¢  + dH) = d(h ÷ £~,g)  
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Second, we show that  rj(v) = 0 is closed: We have 

d[ (vJ~-  9)tP + ( v ~ ¢ -  h)~] = ( d ( v - ~ -  9))A~ + ( d ( v ~ b -  h))A~5 

= - ( ~ ) A ~  - (~  J ~ ) A ~  

= 0 - v J ( ~ A ~ )  

= 0  

since ~A~ = 0. 

Third, we show" that  r/is injective: If r/(v) = 0 then 

v = ~ - h = b  

for constants a and b. The exterior derivative of the first equation gives 

0 = £ ~ -  v ~ -  dg 

which implies that. v = 0. 

Fourth and finally, we show that  r/is surjective: We may choose a local coframe 
021:032, 033~ t~ 4 SO that  

(25 ~ 021A~ 2 ~- 023Aa2 4 

kI/ ~ w l A ~ 2  --  ag3A02 4. 

For any function F we set 
4 

dF = E Fi wi. 
i = l  

A conservation law of level zero is a closed 2-form 

From 

we infer that  

A ~ + C ~ .  

dAAq) + dCA~ = 0 

A1 - C 1  =--0 
Ag. - C 2  = 0  
Aa + C3 = 0 
A4+C4 = 0 .  

We want to find a vector field v such that  if we define g and h by 

{ A = v J ¢ - h  
vJV~ g 

(7) 

(s) 
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then (5) holds. In fact (5) and (8) imply 

d A  = v - ~  
d B  v~02, (9) 

and the exterior derivatives of these equation give 

0 = d ( v ~ )  = £ v ' ~  

0 = d(v-~02) = £~02 

as required. 

We note that  for g and h defined by (8), equations (9) imply equations (5). 
Now there are unique vector fields VA and vB satisfying 

d A  = VA -~ g~ 

d B  = vB -~ 02. 

We then have to show that  v A = VB, and this is just a restatement of (7). [] 

EXAMPLE 3: Suppose that  

02 = dpAdx + dqAdy 

and that we have a translation-invariant Lagrangian 

A = L(p ,  q) dxAdy  

as in Section 1.1 above. Then the Euler-Lagrange form is given by 

q2 = Lpp dpAdy + Lpq (dqAdy + dxAdp) + Lqq dxAdq 

and we may work through the mapping (*) to obtain 

~](D/Ox) = p ~  - Lq02 

r](O/Oy) = q ~  - Lp02. 

These conservation laws are similar to linear momenta. 

EXAMPLE 2 (continued): Consider the hyperbolic Euler-Lagrange system generated 
by 

02 = - d u A d x  + d F ,  Adt 

q~ = - d w ,  dx  + dFuAd~ 
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where F(u,  v) is a function satisfying F ~ F v v  ~ O. This system admits translation 
symmetries and therefore has conservation laws corresponding to linear momenta. 
These are 

~(O/Ox) = Z = u ( - d w . d x  + dFuAdt) ÷ v ( - d u A d x  ÷ dFvAdt) 

rl(O/Ot) = A = - F v ( - d v A d x  + dFu/\dt) - F~( -duAdx  ÷ dFvAdt). 

Suppose we assume that F is homogeneous of degree p, i.e., that 

F( u, = v). 

Then F~, and F~ are homogeneous of degree p - 1 and the 1-parameter group of 
dilation symmetries 

(u~ v~x, y) -~ ctu, ctv, --, - 
O~ OZ # - 1  

preserves both • and ~. The corresponding conservation law is 

r = (ux - (# - 1) tF , ) ( -dvAdx  + dF~Adt) ÷ (vx - (# - 1) tF~)( -duAdx + dF~Adt). 
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