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Hyperbolic Exterior Differential Systems and their
Conservation Laws*, Part I**

R. BryanT, P. GRIFFITHS AND L. Hsu

Introduction

This paper falls under the general subject of the geometric theory of differential
equations. The theory, founded in the last century by Lie and Darboux and exten-
sively developed by Goursat, Cartan, and others, seeks to understand differential
equations through the study of their invariants under suitable groups of coordinate
transformations (such as contact, point or gauge transformations). The goals of the
theory are, first, to understand interesting special equations through explicit solu-
tions or algorithms for solutions, or other properties such as conservation laws or
estimates; and, second, to study the geometry of differential equations as a subject
of interest in its own right (like Riemannian or CR geometry).

Much of the classical theory is centered on the attempt to describe the gen-
eral solution of a given system of partial differential equations in some reasonably
explicit way. The method of Darboux (a generalization of the method of charac-
teristics which is so familiar in the study of hyperbolic systems) is perhaps the
most successtul of these techniques developed in the classical theory. However, the
geometric methods developed during this period have significance even when no
explicit general solution can be found. The application of these methods is in its
infancy as regards modern issues in differential equations, such as inference of prop-
erties of solutions (especially global ones) rather than the explicit construction of
solutions.

The variety of phenomena studied in the theory of partial differential equa-
tions is, of course, very great. To get to the deeper aspects of the subject, it is
necessary to specialize to some extent. Thus, for example, while hyperbolic and
elliptic systems share some very basic features, the sorts of interesting problems
that one poses for these two classes of equations are very different. Naturally, this
happens in geometry as well, with Euclidean and Lorentzian geometries bearing
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superficial resemblances, but having quite different deeper behaviors. It would be
unrealistic to expect that the geometric method applied to the study of partial
differential equations would not exhibit the same sort of divisions. For this reason,
we have opted in this paper to specialize the class of equations to be studied.

In fact, we shall introduce the concept of a hyperbolic exterior differential
system, a proper generalization of the classical case of second order hyperbolic
PDE in the plane, and shall begin the study of the conservation laws and other
geometric properties of such systems. The conservation laws provide an interesting
intrinsic invariant of the hyperbolic system and are of use in understanding its
solutions. We expect the class of hyperbolic exterior differential systems to provide
a good case study within the general program.

Hyperbolic exterior differential systems are divided into the sets H of systems
of class s where s may be any non-negative integer. The classes s =1 and s = 3
include hyperbolic Monge-Ampere systems and second order hyperbolic equations
for one unknown function z(z,y), respectively. The class s = 2 includes the case
of a hyperbolic pair of first order equations for unknowns u(z,y) and v(z,y). The
various classes are inter-related by the constructions of prolongation and (more
subtly) integrable extensions.!

A hyperbolic system of class s = 0 is given by a transverse pair of decompos-
able 2-forms Q4,3 on a 4-manifold M — thus we have

{Ql/\Ql = = QQAQQ
Q182 #£ 0.

This simple structure turns out to have a very rich geometry and appears in sev-
eral guises in the course of this paper. Moreover, the application of the geometric
method leads to some very special and interesting PDE systems, such as (1), (2),
and (3) below.

In general, a hyperbolic exterior differential system (M,Z) of class s is given
by a differential ideal 7 on a manifold M of dimension s -4 where 7 is generated
algebraically by a rank s Pfaffian system [ and a transverse pair of 2-forms that
are decomposable modulo I. The k" prolongation of (M,Z) € H, is a hyperbolic
system (M®) T()) € H,, . In order to understand the most interesting systems,
which are those of classes s = 0,1,2 and 3, it seems to be advantageous to consider
the whole set of hyperbolic exterior differential systems and its inter-relationships.

The most important objects associated to a hyperbolic system are the charac-
teristic systems Z1, =9 and their prolongations Egk),Eék). Fach of Egk) and Eék) is

1} A system of partial differential equations canonically gives rise to an exterior differential
system. Differentiation of the PDE system then corresponds to prolongation of the exterior
differential system. An integrable extension roughly corresponds to adjoining the primitive
of a conservation law as a new variable — in the setting of exterior differential systems this
may be done in a canonical way.
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a Pfaffian system of rank s+ 2+ & on the (s+ 4+ 2k)-dimensional manifold A (%)
and their geometry — especially their integrable subsystems — is the dominant
geometric feature of the hyperbolic system. Classically the characteristic systems
arose in attempting to find explicit solutions of hyperbolic PDEs of Monge-Ampere
type. Later they were used by Riemann to produce explicit integral formulas for
certain special hyperbolic systems. The synthesizing concept of Darbouz integrabil-
ity was introduced by Darboux in 1870. A hyperbolic system is Darbouz integrable
at level k if there are rank 2 integrable systems

Ay C Egk), Ao C Egg}
which are transverse to the ideal Z(). The solution to the Cauchy problem for
such systems may be reduced to ODEs. Many interesting equations are Darboux
integrable and first integrals may be found explicitly, leading to explicit forms for

the general solution of the equation (well-known examples are the Liouville equation
and the Weierstrass formulas for minimal surfaces).

An integral surface of a hyperbolic system (M , I) is an immersed surface S C
M such that all the forms in 7 pull-back to be zero on 5. The characteristic systems
induce on any integral surface a pair of foliations by curves. The initial value
problem for such a system is the problem of how to extend a given integral curve of 7
to an integral surface of 7. We show that if the integral curve is ‘non-characteristic’
in the appropriate sense, then local solutions to the initial value problem always
exist. More interestingly, the geometry of the characteristic curves allows us to
intrinsically define & condition (which we call characteristic completeness) that
is equivalent to the existence of global solutions to the initial value problem. The
exterior differential system associated to many non-linear PDEs, such as the famous
Fermi-Pasta-Ulam equation

2
zyy — (k(2)) 242 = 0
where k : R — R is a diffeomorphism, are shown to admit unique global integral
surfaces even though singularities necessarily develop for solutions to the PDE.

In this paper we are especially interested in the space C of conservation laws
for a hyperbolic exterior differential system. From the general theory [BGy] we
know that (i) conservation laws have a normal form derived from the symbol of
the exterior differential system, (ii) C is naturally given as the kernel of a linear
differential operator (thus, we eliminate the trivial conservation laws), and (iii) C
is filtered by subspaces C; where & € C; means that &, assumed in normal form,
is defined on M) .2 One of the principal objectives of this paper is the study of
conservation laws of hyperbolic systems of class s = 0.

2) Traditionally, a conservation law is given by a 1-form ¢ involving the unknown function
z together with its derivatives 2y, 2y, 2z, ... up to some finite order such that dp = 0
whenever we substitute in a solution to the equation. For us conservation laws are given by
closed 2-form @ € T; writing locally ® = dy gives the usual conservation law. In Section 2.1
we have included an introduction to the theory of conservation laws so that this paper can
be read independently of [BGq].
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Our main general results on conservation laws are:
(i)  Cog = Cok_1, thus new conservation laws can be added only at odd levels;

(i) @ € Cax41 has a highest order part B = (B, By) with the properties that B
uniquely determines @ modulo Coi_1 and that for a pair &, @ € Copqq

d(Bay/Bs) € EP

5 =(k
{aBJBge:P
=k

Thus, there is a direct relationship between conservation laws and integrable sub-
systems of the characteristic systems. This relationship has several consequences.

At one extreme, we can add (at least) two functions of two variables worth
of new conservation laws when we pass from Cyr_1 to Copy1, and this many are
added if the hyperbolic system is Darboux integrable at this (or possibly a lower)
level. The converse to this statement is quite plausible but we have not attempted
to formulate and prove it in this paper. At the other extreme, if there are no
integrable subsystems of the characteristic systems at level 2k + 1, then

dim Cogr1/Cor—1 = 2.
On the other hand, the s = 0 sine-Gordon system

Uy = Sinv

(1)

Uy = s u

has rank one integrable subsystems of the characteristic systems and is shown to
have the property that dimCy = 1 while dimC; /Cy = 3. Perhaps most interesting
will be those hyperbolic systems which satisfy dimC = oo but dimC, < oo for all
k. The study of such systems will be the obhjective of a future paper in this series.

In this paper we shall work primarily with systems that are symmetric in that
they exhibit symmetric behavior in the characteristic systems (the precise definition
is given in Section 1.5). For these systems we shall determine those hyperbolic
systems of class s = 0 for which the space Cy of level zero conservation laws
or as we shall say classical conservation laws — has infinite dimension.® The word
“determine” here has two meanings: First, we shall find the conditions imposed on
the tnwariants of the system in order that dimCy = oco. In practice, this gives an
algorithm for checking whether or not a given PDE system has an infinite number of
classical conservation laws. Secondly, we shall derive a normal form for hyperbolic
systems having dim Cy = oo. Among the corollaries of our analysis is the result:

If dimCy 2 7, then dimCy = co. There is exactly one non-linear symmetric hyper-
bolic exterior differential system having an infinite number of classical conservation

3) We should remark that unsymmetric systems for which dimCo = oo have also been char-
acterized. The results will be presented elsewhere.
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laws; namely, the exterior differential system associated to the s = 0 Liouville sys-
tem

. @)

Among hyperbolic exterior differential systems of class s = 0 especially inter-
esting are those of Euler-Lagrange type. Given a symplectic 4-manifold (M, ®) and
a 2-form A, the critical points of the functional

S——>/A
5

defined on $-Lagrangian surfaces are solutions to an exterior differential system
S="0=0
where ¥ is a closed 2-form constructed from A. It turns out that this theory has

a striking internal symmetry which exchanges the roles of @ and ¥. The s = 0
Goursat systems
cy/uv

T @ty .
evan ceR (3)
Tty

are ‘half’ of a certain one-parameter family of systems which may be uniquely
characterized as being Euler-Lagrange in a two parameter family of geometrically
distinet ways — the maximum possible for hyperbolic systems of class s = 0. A
variant of Noether’s theorem gives an isomorphism between the symmetries and
conservation laws module @, ¥ of Euler-Lagrange systems, and we show that in
this case Cp is infinite dimensional if, and only if, the system is linearizable.*

The study of Euler-Lagrange systems and other considerations suggests the
importance of symplectic hyperbolic systems (M, ®, 1), this being a hyperbolic
system (M, Z) together with a symplectic form ® such that & € Z. Automorphisms
of such systems must preserve both 7 and ®. We show that there are three classes
of (symmetric) symplectic hyperbolic systems having an infinite number of classical
conservation laws. These are:

4) One of the unexpected discoveries of our study is the seeming ubiquity of linear hyperbolic
systems. Of course, a highly non-linear PDE may be linearizable as an exterior differential
system, as is the case for the system (3); moreover, an integrable extension of a non-linear
PDE may linearize it, as is the case for (2). The fact that many interesting PDEs may be
linearized in a variety of ways (hodographic transformation, Legendre transformations) is
of course classical [CH]. The setting of exterior differential systems appears to synthesize
and extend these classical methods.
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Class A: consisting of systems that may be symplectically linearized,;

Class B: consisting of symplectic hyperbolic systems that become Darboux inte-
grable at level one (such as the system modeled on (2) above); and

Class C: counsisting of symplectic hyperbolic systems modeled on the non-linear

PDE system
Uy = F(z,y)vuv
v, = F(z,y}/uv.

Note that when F(z,y) = ¢/(z+y) we recover the s = 0 Goursat systems
above.

Our technique of proof is to use the equivalence method of E. Cartan to in-
troduce a canonical G-structure and class of pseudo-connections intrinsically asso-
ciated to the hyperbolic system. This describes the intrinsic “geometry” associated
to a PDE system up to contact equivalence, and associated to this geometry are
the invariants or “curvatures” of the system. The condition that Cy have a certain
structure — e.g., that there be infinitely many classical conservation laws — then
imposes constraints on these invariants. Some of these constraints have direct ge-
ometric meaning —— for example, if the characteristic systems do not each have an
integrable subsystem then dim Cy £ 5. Others are expressed by algebraic conditions
imposed on the various “curvatures”. As an application, using the general theory
we may easily write down the explicit form of the conservation laws for explicitly
given systems such as (1), (2), or (3). For example, for (2) the conservation laws
are

¢ = f(z){du — e'dy — e“dx) + g(y){dv — e*dx — e'dy) {4)

where f and g are arbitrary functions, each of one variable.

A very interesting issue is the extent to which these intrinsic invariants relate
to the more traditional estimates in PDE theory. The ultimate objective of each is,
of course, to provide a means to understand the “solutions” of the system. As an
illustration, we use the conservation laws (4) to infer that singularities of solutions
to {2) are essentially of the form

u(€,t) = —clog £ + (regular terins)
v(€,t) = clogé+ (regular terms)

for some constant ¢ > 0, in space-time coordinates (£,t) as £ | 0.

We also use the method of equivalence to answer a number of natural geomet-
ric questions concerning hyperbolic systems of class s = 0. Thus, in Section 1.5,
we give necessary and sufficient conditions, expressed in terms of the torsion and
curvature of the system, that it be linearizable. For example, this general result
tells us that (3) is linearizable. This should be compared with the usual Goursat

equation
Cy/Zz 2y
z+y

Zgy =
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which is obtained from the linearized form of (3) by a non-linear integrable exten-
sion; it is well-known that the usual Goursat equation is not linearizable within
the class Hi. A linearizable system has a pair of intrinsic curvatures K and F and
those for which K and F are constant, say K = ¢ > 0 and F = K3 are locally
equivalent to the exterior differential system associated to the PDE system

v
Yo = st tP (clz +1)) 5)
vy, = 4

cost =8 (c(z +y))

Another natural question is: When is a hyperbolic exterior differential system
Darboug integrable ot level one? Both the systems (2) and (3) (with ¢ = 2) satisly
these conditions and once the general result is known, the explicit integration may
be carried out. (In fact, guided by the general theory, the explicit linearization
and/or integration of examples such as the above may seem more straightforward
than some of the calculations in the classical theory (cf. [Gol).) We show that there
are, in fact, only two equivalence classes of hyperbolic systems of class s = 0 that
are Darboux integrable at level one, namely that corresponding to (2) and linear
equations with constant curvature.

We also want to remark that this may be related to the interesting recent
paper of Anderson and Kamran [AK] which studies the conditions that & hyperbolic
system of class s = 3 (e.g., a scalar second order hyperbolic equation for one
function of two independent variables) be Darboux integrable at any level.

This paper is part of the general subject of the “geometry” associated to a
differential equation. By geometry, we mean a G-structure together with an intrinsic
class of pseudo-connections. The structure given by & 4-manifold together with a
pair of transverse, non-integrable 2-plane fields is sufficiently simple that we are
able to study it in an essentially self-contained manner using the general theory as
a guide. It is, on the other hand, a very rich structure and the study in this paper is
incomplete in two major aspects. The first is the analysis of systems that admit an
infinite number of conservation laws of all levels. The second is the relation of the
geometry of the unique global smooth integral surfaces “upstairs” with given non-
characteristic initial data to the existence and uniqueness of global shock solutions
to hyperbolic PDE systems of conservation laws with that same initial data. Both
of these topics have been introduced and illustrated in the present work, but their
satisfactory understanding is far from complete at this time.
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81 Hyperbolic Exterior Differential Systems

1.1 Basic definition and examples.

1.1.1 Some terminology. First, for convenience of the reader, we will recall some of
the basic ideas of the theory of exterior differential systems. A much more extensive
treatment of these concepts can be found in [BCG3).

An exterior differential system is given by a manifold M and a differential
ideal T C Q*(M) in the algebra of smooth differential forms on M. We denocte
the exterior differential system by (M, 7). Recall that by definition the differential
ideal 7 is homogeneous in the sense that

T = ®gz0l7,

where 79 = T N Q4(M) is the space of ¢-forms in Z, and that 7 is closed under
exterior differentiation d:7 — 7.

A symmetry of an exterior differential system (M I) is a diffeomorphism
f : M — M which satisfies f*7 = Z. An exterior differential system (M, 7) is
said to be equivalent to an exterior differential system (M, Z) in case there is a
diffeomorphism of M with M which takes 7 to 7.

Given a set 1, 0z, . .. of forms of degrees q1, ga, ..., we denote by {1, 02,...}
the algebraic ideal they generate in Q*(M). The differential ideal generated by
1, 05, ... is then denoted

I = {61, 92,...; d@l, d627}

In practice, differential ideals are locally generated by a finite set of forms in this
way. In case all the forms 01, 05, ... have degree one, 7 is called a Pfaffian system.

An integral manifold of an exterior differential system (M, T) is an immersed
submanifold f : N — M which satisfies f*0 = 0 for all § € 7. When written
out in local coordinates, this condition is a system of partial differential equations
for the mapping f. Conversely, a sufficiently regular PDE system gives rise, in a
canonical way, to an exterior differential system such that the solutions to the PDE
system and the integral manifolds of the exterior differential system which satisfy
a transversality condition are locally in one-to-one correspondence.

However, the notion of equivalence of exterior differential systems is different
from that for partial differential equations. In particular, the symmetry group of
an exterior differential system can be strictly larger than that of the PDE system
from which it arises. This important point is explained and illustrated in Section 1.2
of [ BG 4]; a consequence is that an exterior differential system has fewer invariants
than the generating PDE system. Conforming to classical terminology, we shall call
the symmetries of an exterior differential system contact transformations.

As always in the theory of exterior differential systems, we shall, without fur-
ther mention, make suitable constant rank assumptions. For example, if 64, 85,...
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are 1-forms generating a Pfaffian system, then for each point z € M the values
#1{x), B2{z),... span a linear subspace I, C T;M. We shall assume that dim I,
is constant (i.e., independent of z) and shall denote by I either the corresponding
sub-bundle of T*M or the sub-module of (M) generated by 01, 0a,...; the con-
text should make clear which of these interpretations to use. We shall generally use
the notation

I=1[6y,0s,...]

in either of the above two senses. (In general, the square bracket [0y, 6s,...] will
denote the linear span over the functions of a set 8y, 6,. .. of differential forms.)

As another illustration of implicit constant rank assumptions, suppose we are
given a Pfaffian system generated by I C QY(M). Then the exterior derivative
induces a C°°(M)-linear mapping

§: 1 — Q*(M)/{I},

where we recall our convention that {I} is the algebraic ideal generated by I (since
the meaning is clear, we do not use the more correct but clumsy notation {I} N
Q?(M) in the denominator above). We shall assume without further mention that
8 has pointwise constant rank. Then ker § = I‘!) generates another Pfaffian system
called the first derived system of I. Setting

and so forth leads to the derived flag
I5I% 5712~ ...

of I. We shall think of the I®) as either sub-bundles of T*M or sub-modules of
Q' (M). This construction will play a central role below.

1.1.2 Hyperbolic systems. We will now define the main object of study of this paper,
this being a hyperbolic exterior differential system —— or briefly a hyperbolic system.
This is a special type of exterior differential system which is meant to capture the
essential features of the classical theory of hyperbolic (systems of) PDE in the
plane. We shall give a more intrinsic definition below, but, informally stated, a
hyperbolic system is an exterior differential system (M, Z) where M is a manifold
of dimension s+4 and 7 is a differential ideal with the property that every point
of M lies in a neighborhood U on which there exists a coframing (i.e., a basis of
1-forms)
(B;w) = (61,...,6% o', w?, WP wh)

so that, on U, the ideal 7 is generated algebraically in the form

T ={0", ...,0% w'ru?, WPaw?}.
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Such a coframing (#;w) will be referred to as an admissable local coframing for 7.
The condition that Z be locally generated in the stated fashion implies that, for
any admissable local coframing, there are relations of the form

do* = A% wlaw? + B® Wi aw* mod{6°}

about which we will have more to say in Section 1.5.

It is not immediately apparent what a hyperbolic system in this sense has
to do with hyperbolic PDE. However, as we will show by examples later in this
section, many classical or well-known hyperbolic PDE systems for functions of two
independent variables can be reformulated as hyperbolic systems in our sense.

From now on, 7 will denote a hyperbolic system on M. We will call s the class
of the hyperbolic system under discussion. Note that s may be any non-negative
integer. It is easy to see that our assumptions imply that 79 = Q4(M) for all ¢ > 3.
In particular, it follows that the dimension of an integral manifold of 7 is at most 2.
Integral surfaces of 7 will generally be referred to as solution surfaces of 7.

We can give a more “intrinsic” description of what a hyperbolic system is,
but first we want to make two remarks.

The first remark concerns the ambiguity in the choice of an admissable local
coframing for 7. If (0; w) and (é; LD} are two admissable local coframings on the same
domain in M, then, by inspection, we see that the span of the 1-forms #% and that
of the 1-forms #® must be equal. Thus there must exist a globally defined Pfaffian
system I C 1™ M of rank s of which the 6% in any local admissable coframing are
local sections. Moreover, as is easy to see, there must exist non-zero functions A
and p so that either

=1, ~2 1 1, =2

STAG? = ) wlaw? Gta? = A wiaw?
mod 8% or mod 6%,

PPt = i w3Aw et = i whaw

Qur second remark is about linear algebra. Let V be any vector space of
dimension four. A non-zero 2-form Q € A?V* is by definition decomposable if it
can be written in the form Q = w'aw? for some w!, w? € V*. For a non-zero
Q, decomposability is equivalent to the condition QA = 0. Because we are in

dimension 4, a non-zero decomposable 2-form 2 = w'Aw? determines a 2-plane
Qt = {v e V:w'(v) = w?(v) = 0}.

We will say that a pair of non-zero decomposable 2-forms {Q1, ) is transverse if
the corresponding 2-planes are transverse: i.e., 1 N Q3 is a point. It is easy to see
that this is equivalent to the condition £2;A£); 5 0. In this case, there always exists
a basis (w!,w?,w®, w?) of V* so that 1 = wlrw? and Qy = wiaw.



EXTERIOR DIFFERENTIAL SYSTEMS 31

A pencil of 2-forms is, by definition, given by a line L C P(A?V*). If @1, & €
A?V* are independent 2-forms that generate the pencil, then elements of L may be
represented as 2-forms ®(u) = pu3®1+us®s where o = [uy, pg| are homogeneous
coordinates in I =2 P!. The decomposable elements of the pencil are given by
solutions to the exterior equation

P(p)nd(p) = 0.

Assuming that this equation is not identically satisfied for all g, it is a homogeneous
quadratic equation in iy, ue. We will say that the pencil L is hyperbolic in case
this equation has distinct, real roots. In this case, it is not hard to see that there
exists a transverse decomposable pair of generators for the pencil.

We now give the promised more intrinsic definition of a hyperbolic system.

DEFINITION: A hyperbolic system of class s is given by an exterior differential
system (M,T) where M is a manifold of dimension s + 4 and 7 = @450Z% is a
differential ideal satisfying

(i) 7' =1 is a Pfaffian system of rank s;
(i) Z?/{I} is a hyperbolic pencil at each point.

More explicitly, for each = € M, the subspace I;- C T, M is a 4-dimensional vector
space V with dual V* == T /I,. The values

@(z) € A*(T; /1), @ T? {1}

are well-defined. Condition (ii} then means that the 2-forms ®{x} should then give
a hyperbolic pencil.

Note that this condition has the effect of defining a P bundle LCP(A%(T™ /1)),
each fiber of which contains two special points, the decomposable elements of the
pencil. These points fit together to form a smooth double cover of M. We are going
to assume that this double cover is trivial, mainly for ease of exposition, though,
in fact, this condition is satisfied in all of the interesting examples anyway.

In fact, by passing to a finite cover of M (with index at most 8), we can and
shall assume that there exists a pair of non-vanishing, decomposable 2-forms (14
and Q1 on M so that 7 is generated algebraically by the sections of I together with
10 and Qgg. This necessarily implies that 1gAQ; # 0, since these 2-forms must
restrict to each I to be a transverse pair. (The reason for the peculiar indexing
of the Vs will be explained below.)

1.1.3 Some examples. We will now give some examples of hyperbolic systems,
starting with those of class s = 0. Such a syster 7 is defined on a 4-manifold M
by a pair £49, {21 of everywhere transverse decomposable 2-forms.
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EXAMPLE 1: Over a domain U C R? with coordinates (z, y) we consider a quasi-
linear first order hyperbolic PDE system for two unknown functions u, v. Such a
system is usually written in the form

Uz

Az, y,u,v) (
v

Uy

) 4 B(z,y,u,0) (U ) + Oz, y,u,v) = 0 (1)

z Yy

where A and B are 2-by-2 matrices and C is a 2-by-1 column, with entries which
are functions of (z, y, u, v) defined on some open set M C R*.

The usual condition that a solution (u,v) = (f(z,¥),9(x,%)) be hyperbolic
(or, more properly speaking, that (1) be hyperbolic at the solution (u,v) =
(f(z,y),9(z,y))) is that the quadratic form

Q(f;g)<§17£2> = det(gl A(x,y, f:g) + 52 B(x7ya f’g) )
= Q%}sg) &g+ 2Q%JZ°,9) G&2+ Q?%g) &

have real, distinct linear factors, ie., its discriminant Ag; ) = Qf} %)% —
(Q%j% g))Q should be negative.

To write (1) as an exterior differential system in the open set M C R*, we
consider the pair of 2-forms ® and ®2 defined by the matrix equation

! dundy dundz
—A Bz, ) dandy.
(i) = A (o) = Blo o) (Gt ) + Ol o) dondy

The graph in M of a solution to (1) is easily seen to be an integral surface of the
exterior differential system 7 generated by ®' and ®2. Conversely, integral surfaces
of 7 on which dzady is non-zero are locally graphs of solutions to (1). Thus, locally
the solutions to the former are in one-to-one correspondence with those integral
surfaces of the latter which satisfy a transversality condition.

Now,
(M @' 4 22 82)% = P(A\1, Ao) dundundzady.

where P = P )2 +2P12 )\ A + P22 )% is a quadratic form whose coefficients are
functions of z, y, u, and v. Moreover, computation shows that its discriminant
D =plp2_ (P12)2 has the property that, on the graph of a solution to (1), we
have

D(z,y, f(z,9),9(x.9)) = Asg).

Tt follows that the pair of 2-forms ®', ®? span a hyperbolic pencil (and thus define
a hyperbolic exterior differential system of class s = 0) on the open subset of M
which has the property that it contains the graphs of the hyperbolic solutions of (1).
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ExampLE 2: Consider the general hyperbolic exterior differential system 7 with
s = 0 generated by a hyperbolic pencil of 2-forms {®', ®2}. In any local coordinate
system (z,y,u,v), there are expressions

®! = A dundy + B! dendu + C* doady + D! dzadv + E* dundv + F* dzady
®? = A? dundy + B? deadu + C? duady + D? dznadv + E? dundv + F? dzady

where the coefficient functions A', etc., can be essentially arbitrary functions of x,
y, u, and v (subject only to the conditions that the forms ®' and ®2 generate a
hyperbolic pencil). Then the integral surfaces of Z to which, say, z and y restrict
to be independent functions are locally graphs of the form (m,y,u(m,y),v(x,y))
where u and v satisfy the pair of first order equations

0=A'wu, + B! Uy +Cly, + D! Uy + E (uzvy — vzuy) + F!
0= A%u, + B? Uy + C? v, + D? vy + E? (Uuzvy — Vyuy) + F2.

Note that if the functions E! and E? vanish identically in this coordinate
system, this reduces to a quasi-linear first order hyperbolic PDE system as studied
in Example 1. In fact, in Section 1.1.4 below we shall show that if the system 7 is
real analytic in some local coordinate system, then each point of M lies in a neigh-
borhood on which there exists a local coordinate system in which the generating
2-forms ®', ®? have no dusdv terms. Thus, at least in the real-analytic category
(and, presumably in the smooth category as well, though we do not know this) the
general hyperbolic system with s = 0 is locally equivalent to a hyperbolic pair of
first-order quasi-linear PDE.

ExampLE 3: Not all hyperbolic systems with s = 0 come directly from a first order
system. Other natural constructions also yield these systems. Consider the second
order Monge-Ampere equation

E (zpp2yy — zgy) + A2y +2B 2y + Czyy + D =0

where A, B, C, D, and E are functions of z, y, p = z;, and ¢ = 2, only, ie., they
have no explicit dependence on z. In this case, the exterior differential system Z
generated in xypg-space M by

D = dpndx + dgady

¥ = Edprdg + Adpady + B (dgady + dxadp) + C dzadg + D dznady
has the following property: Integral surfaces on which dzady is non-zero are locally
graphs

(z,9) = (z, 9, p(z, 9), 9(z, v)),
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and ® = 0 implies that there is (at least locally) a function z so that
P= 2y and q = 2y .

Then ¥ vanishes on this graph exactly when z(xz,y) is a solution to the Monge-
Ampere equation above. The condition that this solution be hyperbolic in the
classical sense (see [CH]) is easily found to be equivalent to the condition that the
graph lie in the open set where ® and ¥ generate a hyperbolic pencil.

We shall study several explicit examples in later sections. However, this might
be a good place to illustrate the notion of equivalence that we alluded to earlier.
According to the general procedure that we have just outlined, the classical wave
equation 2z, — zy; = 0 corresponds to the ideal Z; on R* defined by

Iy = { dprdz + dgndy, dzndg — dpndy }

while the Monge-Ampere equation 2z, 2y, — zgy = —1 corresponds to the ideal Z
on R* defined by

Ty = { dpadzx + dgrdy, dprdg + dzrdy }.

Even though there is no change of variables in xyz-space which will convert one of
these equations into the other, the ideals Z; are diffeomorphic: the diffeomorphism
f:R* — R* defined by the formula

f(xa Y, p, q) = (—pa yvxaq)

clearly has the property that f "‘(Il) = 1o and f* (1'2) = 7. Thus, the two systems
are (globally) equivalent.

This example points out the importance of understanding when two systems
are equivalent. Later sections of this paper will be directed at understanding how
one can develop invariants which distinguish hyperbolic systems. The study of
these invariants will then point out that several classically studied systems can be
characterized by invariant properties. For example, in later sections our study will
uncover, among-others, the system

Ug — Vp = sin{u + v)

Uy + vy = sin(u — v)

which generates the famous Bécklund transformation for the sine-Gordon equation
Zyy = sin z, the system
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which is important in the study of the classical Liouville equation z;, = e*, and
the system

v
Up —

u
Vo =

which turns out to be a ‘linearization’ of Goursat’s equation 2, = 2,/Zz Z,/(x +y).

The invariants to be discussed also influence the space of conservation laws of
the systems in question, and other special systems will turn up in that context.

ExXAMPLE 4: Among the most interesting and important exterior differential sys-
tems are those that arise from critical points of functionals. In the present setting
we consider a symplectic manifold (M, ®) where dim M = 4 and & is a symplectic
form on M. Recall that an immersed surface

f:85—-M

is said to be Lagrangian if f*® = 0. Let A be another 2-form. Consider the func-
tional on Lagrangian surfaces

L(f) = [5 ). @)

We will now construct an exterior differential system, called the Fuler-Lagrange
system E(A) associated to A, whose integral surfaces are the critical points of the
functional (2).

To do this, we first write dA = ®ay for some (unique) 1-form 1. (This form
exists and is unique since ®a : T*M — A3T*M is an isomorphism.) We will say
that {2) is non-degenerate in case the 2-form ¥ = dv) is a symplectic form on M,
i.e., YAV is nowhere vanishing.

We now define £(A) to be the ideal generated by ® and ¥. We are now going to
show that a Lagrangian immersion f : § — M is critical for the functional (2) with
respect to (compactly supported) variations of f through ®-Lagrangian immersions
if and only if it is an integral manifold of £(A).

To see this let f; : § — M be a compactly supported variation through &®-
Lagrangian surfaces. Assuming for simplicity of notation that the f; are imbeddings
and setting Sy = f¢(S), a standard calculation gives

i (L)
— A - ’I)JdA
dt( Sy t==0 5
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where v is the variational vector field along S = Sy. Now, restricted to 5 we have

V(@A) = (v D)ryp
= dhnyp

for a suitable function A that depends linearly on v. The first equation follows from
®|g = 0, and the relation
vo®lg =dh

follows from the fact that the S; are ®-Lagrangian surfaces. By Stokes’ theorem

%(/St./x)t_oz~/sh\1/.

If this vanishes for all ®-Lagrangian variations, then ¥|g = 0, as we wanted to
show.

In case ® and ¥ span a hyperbolic pencil, it follows that the Euler-Lagrange
system E{A) is a hyperbolic exterior differential system of class s = 0.

We shall now give some examples of hyperbolic systems with s > 0.

EXAMPLE 5: A general Monge-Ampere equation
E (zmzyy - ziy) FAzpy +2B 25y + Czyy + D=0

as mentioned above, except where, now, the coefficients A, B, €, D, and F are
functions of all five variables z, y, z, 2;, and z,, may be written as an exterior
differential system (M, 7) on a 5-manifold. In fact, M is a suitable open set in
the jet space J'(R?, R) with coordinates (z, y, z, p, ¢) and 7 is generated as a
differential ideal by the contact 1-form

8 =dz—-pdr—qdy
and the 2-form
V = Fdpadg + Adpady + B(dgrdy + dzadp) + C dzadg + D dzady.

Algebraically 7 is generated by the 1-form ¢ and the 2-forms © = d# and ¥. As
expected, the Monge-Ampere equation turns out to be hyperbolic in the usual sense
if and only if © and ¥ generate a hyperbolic pencil modulo 6.

The relation between this example and the hyperbolic system (M, Z) of class
s = 0 constructed above is that, in the case the coefficients A, B,...,E do not
depend on z, the system (M, Z) is an integrable extension of (M, ) in the sense
of Section 6 in [ BG o).
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Explicitly, following the notation in Example 3, we note that ¢ = pdr +gdy
satisfies dp = ® € Z. Thus, ¢ is closed modulo Z. It follows that, on M?® = M x R
with coordinate function z on the R-factor, we may introduce a 1-form

0=dz—pdx—qdy

on M. The exterior differential system generated by ¢ and ¥ (same notation in both
examples) is then 7 as introduced above. We may think of the fibration M — M
as being given by the primitive of the 1-form giving a conservation law for Z.

EXAMPLE 6: Suppose that we consider the general first-order system for two func-
tions of two unknowns:

1
F(l‘yy,%v,%,uy,%vy):()
2
F (xfysuvvyuxvuy,@mvy):O'

We shall naturally assume that these equations are non-degenerate in the sense
that it is always possible to solve them locally for two of the partials. On R® with
coordinates z, y, u, v, p, q, 7, and s, consider the differential ideal generated by

the two 1-forms
0! = du — pdz — qdy

0? = dv —rdx — sdy.
Pull these forms back to the submanifold M% C R® defined by the equations
Fl(:c7 y’u7 U?p’ q’r’ S) = F2(x’ y7 u’”’p) qu, S) = 0'

Then they generate a rank 2 Pfaffian system 7. Let 7 denote the ideal generated
by {6,62,d6*,d6°}.

Tt is not difficult to show that a solution (u,v) = (f(a:, y), g(z,y)) of the PDE
system is hyperbolic in the usual PDE sense if and only if its 1-graph

(z,9) = (2,4, (2, 1), 9(x,9), fo (z,9), Fy(2,9), 92 (z,9), 9y (2, )
{which is clearly an integral manifold of 7) lies in the open subset of M on which

7 is a hyperbolic exterior differential system of class s = 2.

ExaMPLE 7: Now consider a single second-order hyperbolic equation

F(:E}y7z} Zwazyaz:cxyza:ya Zyy) = 0

which we assume to be non-degenerate, i.e., one can, at least locally, always solve
this equation for one of the second order partials.
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On R?® with coordinates z, y, 2, p (= 2z), ¢(= 2y), 7 (= 2Zuz), (= 2gy), and
t (= zyy), we consider the Pfaffian system generated by the three 1-forms

80 =dz —pdx — qdy
6t =dp —rdx — sdy
6? = dg — sdx — tdy.
We pull these 1-forms back to the hypersurface M7 in R® defined by the equation
F(z,y,z,p,q,7,8,t) =0

and let 7 denote the differential ideal generated by these forms. Now, df° =
Omod 6°, 01,62 as is easily verified, so it follows that 7 is generated algebraically by
the forms {6°,0%,62,d6, d8%}. Tt is not difficult to show that the above equation
is hyperbolic at a solution z = f(z,y) if and only if its 2-graph

(z,y) = (2,5, F(@,9), fo (@, 1), Fy (2. 0), Fou (T, 9), oy (2,9), fyy (2, 9))

(which is clearly an integral manifold of the system T) lies in the open subset of M
on which Z is a hyperbolic exterior differential system. Thus, (M,Z) is hyperbolic
of class s = 3.

ExaMpPLE 8: In the previous examples, we have shown how several classical hy-
perbolic PDEs can be recast as hyperbolic exterior differential systems. In fact, in
geometry, this is frequently the reverse of the natural order. One generally encoun-
ters problems cast naturally in the form of a differential system and the “reduction”
to an equation or system of equations can only be done after a somewhat arbitrary
choice of coordinates. (One of the motives of studying exterior differential systems
is to avoid having to make these choices of coordinates.) In this example, we want
to show how a hyperbolic system arises naturally in differential geometry. We will
assume some familiarity with the language of moving frames.

Let (N3,g) be an oriented Riemannian 3-manifold. Let # : F — N be
its oriented orthonormal frame bundle. Thus, an element f € F is a quadruple
f = (x;e1,e2,e3) where z = w(f) is a point of N and (e1,es,e3) is an oriented
orthonormal basis of T, N. There are canonical 1-forms w; defined on F' by the rule

wi(v) = e; - ' (v), for all v € Ty F .

It is easy to show that 7*(g) = w? + w2 + w2. By the Fundamental Lemma of Rie-
mannian geometry, there exist unique 1-forms w;; = —w;; (the connection forms)
so that the following so-called structure egquations hold:

dwi = Wi M -
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The 1-forms (wq,ws, w3, w3, ws1,w12) then form a global coframing of F (which has
dimension 6). One proves that the connection forms satisfy structure equations of
the form

dwij = —wip wi; + 5 Rijr winwy

where Rijx = —Rjin = —Rijik, represent the components of the Riemann curva-
ture tensor.

Now let M® < TN be the unit sphere bundle in the tangent bundle of N.
There is a canonical map ¢ : F — M given by o(z;e;) = (z;e3) and this map is
a submersion. Looking at the definition of wg on F, it is clear that there exists a
unique 1-form 6 on M so that o*(#) = w3. Since

o (9/\d62) = W3A(dﬂd3)2 = —2 W1 AW AW AW A3 % O,

it follows that 8 defines a contact structure on M. Moreover, because the fibers
of o are the leaves of the Pfaffian system generated by {w;,ws,ws, w31, w32}, the
structure equations imply that there exist well-defined 2-forms Qq, Q, Q5 on M
so that

0*(90) = Wi AWs2

o™ () = warrwz + wirwsg

0" () = warrwsa.

In order to understand the geometric meaning of these forms, we consider
the geometry of the integral surfaces of {6,df#}. For any immersed oriented surface
f: 5 — N, there is a canonical lifting f : S — M defined by

F(s) = (f(s),v(s))

where v(s) € Ty(s)V is the oriented normal to the oriented 2-plane f'(s)(T,S) C
Tss)N. It is easy to see that f*(6) = 0, so that f : § — M is an integral surface
of {8,d6}. Conversely, any integral surface g : S — M of # which satisfies the
condition that g* () # 0 is easily seen to be of the form g = f for some immersion
f:8—N.

Moreover, a simple calculation shows that, first, F*(9%) = dA is the area form
induced on § by its immersion into N, second, f*(£1) = 2H dA, where H is the
mean curvature of the oriented immersion, and, third, f*(Q%2) = K d4 where K is
the product of the principal curvatures of the immersion.?

Now let Ag, A1, and Ay be constants (not all zero) and let

Q=X+ A1 Q1 + A2 Qo

5) Note that, unless the metric g is flat, this function K will not generally be the Gauss
curvature of the induced metric f*(g) on S.
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Consider the ideal 7 on M generated by {0, d8,Q}. It follows from the above dis-
cussion that the integral surfaces of 7 on which £}y is non-zero are exactly the
canonical lifts of immersions into N which satisfy the relation

A K420 H4 X =0.

This will be a hyperbolic system of class s = 1 exactly when the pair {d§,Q}
generates a hyperbolic pencil modulo 8. A straightforward computation gives

(610 +d0)” = (X — Aod2) €2+ &3) ().
Tt follows that Z will be hyperbolic if and only if A7 — AgAy < 0.
Thus, for example, when (N, g} is flat Euclidean 3-space, setting (Ao, A1, Aa) =
(1,0, 1) gives the system whose integral manifolds are the surfaces in 3-space of con-
stant Gauss curvature K = —1. Even in flat 3-space, however, there is no natural
coordinate system for reducing this hyperbolic system to a partial differential equa-
tion. The introduction of the Tschebycheff coordinates usually associated with this
problem {which are crucial in the proof of Hilbert’s theorem that there are no com-
plete surfaces of constant negative curvature in Euclidean 3-space) depend, as we
shall see, on understanding the conservation laws of this system in a coordinate-
free manner. The relation of this system with the Béacklund transformation for the
sine-Gordon equation is well-known and will appear later in the paper.

In later sections, we will see further examples of hyperbolic systems with
class s > 0 and will explore some of the relationships among systems of different
classes. Although we are primarily interested in equations of class s =0 ors =1, it
turns out that considering the more general case simplifies our study considerably.

1.1.4 A local normal form for hyperbolic systems of class s = 0. Let (M,7) be a
hyperbolic system of class s = 0. We will show that in the real analytic case such
a system is locally equivalent to the system associated to a quasi-linear first order
hyperbolic PDE system exhibited in EXAMPLE 1 in Section 1.1.3 above. We begin
by proving the following

PROPOSITION: Let (M, T) be a real analytic hyperbolic system of class s = 0. Then
given any point p € M there is a neighborhood U of p and a non-zero 2-form §}
defined on U satisfying

(i) QQ=0;
(i) QAD =0 for all 2-forms ® € I;
(117) §) is integrable, i.e., d) =0 mod Q2.

Proof: We begin with a brief linear algebra discussion. Let V' be a vector space of
dimension 4 and P = P(A?V*) the projective space associated to the vector space
of 2-forms on V. Then dimP =5 and in P the equation

QA =0, Qe A?V*
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defines the Grassmannian G of decomposable 2-planes. (More precisely, a point in
P is the line [2] spanned by a non-zero 2 € A?V*, and the validity of the above
equation is independent of which point on the line we choose. We shall follow similar
conventions for the remainder of this argument.) Let L C P be a hyperbolic pencil
with intersection

LG = {[], [}

where € and (g are the two decomposable elements of the pencil, each of which
is defined up to non-zero scalars. For a point [Q] € G the equation

Q/\Ql =0

is equivalent to the condition that 2 and {1y have a common non-zero linear factor.
Since the projectivized tangent space

P(Tin,G) = {[®] € P: ®a0y =0},
we see that the above equation exactly defines
P(Tiq,G) NG.
Thus the double intersection
§ = P(Tia, 6) N P(Tja, €) NG

is a smooth surface that defines the set of points [ € G such that Q has a
common linear factor with each of €; and Q. For any such Q we may choose a
basis w!,w?, w?,w* for V* such that

Ql = wl/\w2
0y = wiaw? 3)
3

0 =whio?.

For each point p € M we may apply this construction to V' = T, M and obtain
a surface S, C P(A?T* M). In fact, there is an obvious 6-manifold ¥ C P(A?T* M)

given by UpearSp. To give local coordinates on ¥ we choose a point (pg, [(]) of &
and a basis w',w?, w?*,w* in T M for which (3) holds. We may extend the ' to a

coframe near po, and then for (p, [Q]) a point of ¥ close to (po, [2]) we will have
Q= (W' +uw?)a(w? +vw?) (4)

for unique (u,v) € R?. These u,v together with local coordinates near pg on M
will give a local coordinate systerm on X.
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On 3 we have a tautological 2-form 2, defined up to non-zero factors, and
the exterior differential system that we want to consider is

dQ =0mod Q (5
subject to the condition
whaw?aw? aw* # 0.
An integral manifold of this system is then locally given by a section f: M — X
such that f*{) satisfies the conditions of the proposition. Locally we write

Q = M1 A3

where 71 = w! + uw? and 73 = W + vw? are the linear factors appearing in (4).
Equation (5) above then implies

driamiang =0
dmgamgamy = 0.

If we write ]
du = u; W'

dv = v; W
then solutions of the exterior differential system are given by solutions to the PDE

system
Uy = f(U», v, Uy, U2, Uz, V1,3, U4)

Vg = g(u,v,U1,U2,u,3,'Ul7'l}3,'U4)

where f = g = 0 whenever v = v = 0. This is a determined PDE system for 2
unknown functions on an open set in R*, and by the Cauchy-Kowaleska Theorem
it will have local solutions in the real analytic case. |

REMARK: The above PDE system is in fact hyperbolic with characteristic variety
given by the union of the two hyperplanes w? = 0 and w* = 0 in the tangent space
at (po, [Qo]). Even though this characteristic variety is singular, it is possible that
the methods of [Ya] might apply to give a C result.

As an application of the proposition we have the

COROLLARY: Any real analytic hyperbolic system of class s = 0 is locally equiva-
lent to the exterior differential system associated to a quasi-linear hyperbolic PDE
system.

Proof: We may find local functions x, y such that € is a non-zero multiple of dzady.
If we then complete z,y to a local coordinate system z,y,u,v then each of the
generators of the hyperbolic system will have no duadv term. The result then
follows from the discussion below EXAMPLE 2 in Section 1.1.3. O
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An important special class of first order quasi-linear hyperbolic systems are
the hyperbolic systems of conservation laws, which are PDE systems for functions
u and v of z and y of the form

Oy (F(a:,y,u,v)) + 0y (G(z,y,u,v)) = (6)

where F and G are R%-valued functions. We may equivalently express (6) by the
statement that the R2-valued 2-form

o
( @1) = dFrdy — dGade = d(F dy — G dz)
2

vanishes on graphs (z,y) — (z,y,u(z,y),v(z,y)). We clearly have
d®, = dby =0

so that the exterior differential system associated to a hyperbolic system of conser-
vation laws is generated by a pair of closed 2-forms. Using the above proposition
We may prove a converse.

PROPOSITION: A real analytic hyperbolic system (M,I) of class s = 0 is locally
equivalent to the exterior differential system associated to a hyperbolic system of
conservation laws if, and only if, T is generated by a pair of closed 2-forms.

Proof: Let @1 and ®4 be closed generators of 7. We want to show that on a neigh-
borhood of each point of M there are functions z and ¥ together with R2-valued
functions F, G such that

@;) = d(F dy — G dx).

Let z,y,u, v be coordinates as in the above corollary and ® € 7 be any closed
2-form. Since @ is locally exact we have

b = andr + fady + frdzady = dry

for some 1-forms «, f and ~, and a function f;. Clearly, it suffices to show that ~
may be chosen so that v = Omod dz, dy.

In the above expression for ® we may assume that
a=adu+bdv
0= cdu+edv
for suitable functions a,b,c and e. Looking at the coefficient of dusdvnadz in d®

gives
Ay = bu
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so that

for a suitable function A. Then
& — d(Adz) = Grdy + faderdy

for some possibly new function fa. Repeating the argument gives the existence of
functions B and f such that

D — d(Adz + Bdy) = fdzady.
Taking the exterior derivatives of both sides gives
df adzady =0
and so f = f(x,y). Then by modifying A and B appropriately we obtain
® = d{Adz + Bdy)

as desired. a

1.2 The characteristic variety and the initial value problem. The fundamental fea-
ture of hyperbolic {as opposed to, say, elliptic) PDE is the existence of the so-called
“characteristics”. In the classical theory of (determined) hyperbolic PDE in two in-
dependent variables, one studies the initial value problem, which is usually posed
as follows: Along a curve in the domain of the independent variables, one specifies
initial data (the values of the dependent variables and their partial derivatives)
which satisfy the so-called “strip conditions”. If this data is “non-characteristic”
in an appropriate sense, then one hopes to prove that there is a unique solution to
the PDE on an open neighborhood of the initial curve which agrees with the given
initial data along that curve. (See [CH] for a discussion of these ideas.) Then the
notion of a “characteristic” emerges as being a curve in the domain of a solution
along which the initial value problem would not be well-posed.

In this section, we will explore this concept in the context of hyperbolic exte-
rior differential systems.

1.2.1 Some linear algebra. Before turning to the details of hyperbolic systems, it
is useful to briefly continue the linear algebra discussion on 4-dimensional vector
spaces that we began in Section 1.1.2. We will keep the notation established there
and let P = PV denote the projective space of lines through the origin in V. An
isomorphism V = R* induces an identification P = P3 and all the statements
below may be easily verified by choosing coordinates and making the appropriate
calculations.
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Let Q1, Q2 € A2V* be decomposable 2-forms satisfying €;2Qs # 0. The 2-
planes Qf, Q3 in V then give a pair of lines L1, Lz in the projective space P, and
the condition 0748y # 0 translates into the condition that L; and Lo be skew
lines. A 2-plane £ C V gives a line Ly C P and for each o = 1, 2 the conditions
(i) QQEE =0
(ii}) Lo meets Lg
are equivalent. Thus, the 2-planes for which (i) holds for « = 1, 2 are given by the
lines Lr € P which meet each of L and L.

Fig. 1

Moreover, given any point P € P not on Ly or Lo, there is a unique line Lp passing
through P and meeting each of Ly and Ls in points Py and P. This gives a fibration

IP)3 \ (Ll U LQ)

!
L1><L2

with fibre IP* \ {2 points } 22 R*. In particular, the set of lines meeting each of L,
and Lo is bijective to L; x L. Back on V the statement is: The set of 2-planes
E C V meeting each of the 2-planes Qi , Q5 in a line is a P! x PL,

1.2.2 The Characteristic Variety. Now, recall (see [BCG?]) that an integral element
(of dimension ¢) of an exterior differential system (M, T) is a ¢-plane E C T, M
such that all the forms in Z restrict to zero on E; i.e.,

9(.’5)'5}20, gel.

Intuitively, the ¢-dimensional elements are the candidates for tangent planes to
g-dimensional integral manifolds.

Hyperbolic systems (which, as we have seen, satisfy 79 = Q¢(M) for all ¢ > 3)
have integral elements of dimensions ¢ = 0, 1, 2, which we now want to describe. Let
T = {0, ...,6% Qiq, Qo1} be a hyperbolic exterior differential system on M*+*
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and let € M. Then the subspace I;- C T, M, defined as the set of v € T, M so
that
Oh(o) = = 8:(0) =0,

is a vector space of dimension 4 and we denocte by 4, Qs the restrictions of Qy¢, Qo1
to I-.

Integral elements of dimension one in T, M are simply lines in T, M which
lie in I} and are thus given by points P € PI}. By the linear algebra discussion
above, integral elements of dimension two in T, M are 2-planes in I~ which meet
each of the 2-planes Qi and Q3 and thus are given by lines I C PI} meeting
each of the skew lines L; = P(Q{) and Ly = P(Q). The condition that a point
P € PI lies on a unigue line meeting each of L; and Lo is that P not lie on either
L1 or LQ.

We recall (again, see [BCG3] for a more general discussion) that, by definition,
the characteristic variety = of the exterior differential system 7 consists of all
integral elements of dimension one that do not lie in a unique integral element
of dimension 2. It follows from the above discussion that the base point mapping
= — M (which sends each characteristic integral element to its base point) is a
fibration with fibre P*UPL. Informally, we say that the characteristics of a hyperbolic
exterior differential system define a P UP! over each point of M.

This leads us to a very important definition for the subsequent theory. Recall
our standing assumption from Section 1.1.2 that Z can be generated on M by the
sections of I and two globally defined, non-vanishing, decomposable 2-forms 2
and Qg;. Clearly, we can choose a local adapted coframing (6;w) so that Q9 =

whaw? and Q1 = wiaw?.

DEFINITION: The (0%") characteristic system =1 is the Pfaffian system generated
by {6',...,0% w',w?} while the (0**) characteristic system Zo; is the Pfaffian sys-
tem generated by {#,...,0% w3, wil.

Note that each of the characteristic systems is & Pfaffian system of rank s+2.
The importance of the characteristic systems is that a 1-dimensional integral el-
ement E; of 7 is characteristic if and only if it lies in either the 2-plane Zi; or
the 2-plane Z3;. In fact, we immediately see that the characteristic variety bundle
= — M decomposes into two disjoint P*-bundles as

E = P(Efp) UP(E5)-

Now, since, by definition, each of Qg1 and Q40 vanish on any integral surface
f 1S — M of 7, it follows that each of the characteristic systems Z;4 and Zy; pulls
back via such an f to be a Pfaffian system of rank 1. In particular, there are two
everywhere transverse foliations Fip and Fg; of S by curves so that the leaves of
Fio map to integral curves of E1g and the leaves of Fo1 map to integral curves of
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Zo1. As will be seen, in the classical cases, these foliations are merely the foliations
of the domain of the solution by the so-called Monge characteristics.

Now a transverse pair of curve-foliations of a surface has no local geometry.
However, the exterior differential system perspective shows that these are merely
specializations to each solution surface of the “ambient” characteristic systems Zig
and Zgy. These Pfaffian systems do have local geometry and it is this geometry
which strongly influences conservation laws. We shall explore it more deeply in the
following sections.

ExAMPLE 1: Consider the equation z,, = f(z,y, 2, 2z, zy) which, as we showed in
the last section, can be associated to the hyperbolic system T of class s = 1 on R®

1= {dZ “‘pd.Z’ - qdy; (dp - f(wv Y, 2, D q) dy) /\df).?, (dq - f(l',y, 2, Dy q) d','E) /\dy}
Thus, the characteristic systems are given by
Eig = {dz — pdz — qdy, (dp — f(z,y,2,p,9) dy), dz}
Zo1 = {dz — pdz — qdy, (dg — f(z,y,2,p,9) dz), dy}.

Of course, when we restrict to any solution of the above equation, Zjq (respectively,
Eo1) pulls back to be the multiples of dz (respectively, dy). Thus the characteristic
foliations in the zy-plane are simply the foliations by the z-lines and y-lines, just
as we expected.

ExAMPLE 2: Consider the Monge-Ampere equation 2,2,y — 22, = —

1 which gives
zy
rise to the hyperbolic system 7 of class s = 1 on R®

1 = {dz — pdz — qdy, (dp — dy)n(dq + dz), (dp + dy)r(dgq — dz)}
The characteristic systems are given by
S = {dz ~pde — qdy, (dp — dy}, {dg + dx) }
Zo1 = {dz — pdz — qdy, (dp+ dy), (dg —dz) }.
Thus, for example, on the solution surface
(@,9,2,0,9) = (z, y, f(&)+zy, f'(z)+y, )
{where f is an arbitrary smooth function of one variable), the foliation Fyg is just

the foliation induced by the slices £ = const while the foliation Fg; is the foliation
induced by the slices 2y + f/(z) = const .
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1.2.3 The initial value problem for hyperbolic systems. As mentioned earlier, the
notion of an integral element of an exterior differential system was meant to cap-
ture the idea of an “infinitesimal” integral manifold. Since a characteristic integral
element is, by definition, one for which the extension to a higher dimensional inte-
gral element is not unique, it is the infinitesimal version of the usual PDE notion
of a characteristic.

In the case of a hyperbolic exterior differential system (M, 7}, the notion of
“initial data satisfying a strip condition” corresponds exactly to an integral curve
(i.e., one dimensional integral manifold) ¢ : C — M of the Pfaffian system I. We
say that ¢ is non-characteristic if the tangent line ¢ (t)(T:C) C Ty)M is not a
characteristic integral element of Z for any ¢ € C, ie., if ¢'(t)(T3C) ¢ E for all
t € C. As ought to be expected, this reduces in the classical cases to the notion of
initial data being non-characteristic.

EXAMPLE 2 (continued): A curve ¢ : (0,1) — R® of the form

o(t) = (zo(t), yo (1), 20(t), po(t), a0 (1))

is an integral curve of I (i.e., satisfies the strip conditions) if and only if z{(t) =
po(t) 2o(t) + qo(t) yo(t). Tt is non—characterlbtlc if and only if it is not tangent to
either of the distributions 21, or =g, in other words, if and only if, for all 0 < ¢ < 1,

we have
(b (t) —wh(®)” + (gh(t) + 25 (1)) # 0,
(B (1) + o () + (ab(2) — 2 (1)) #0.

(Note that the condition x{(t)2 + y}()? # 0 is not required, which it would be if
we were to think of ¢ as defining initial data satisfying a strip condition along a
smooth curve in the domain of the independent variables.) Assuming that these
inequalities are satisfied, we can construct an integral surface f : (0,1)x(0,1) — R5
of 7 which satisfies f(¢,t) = ¢(¢) for all 0 <t < 1 by setting

z(s,t) = 3 (zo(s) + zo(t) — go(s) + qo(t))
y(s,t) = L (yo(s) + yo(t) + po(s) — po(t))
p(s:t) = 3 (po(s) +po(t) +yo(s) — w0 ())
q(s,t) = 5 (q0(s) + qo(t) — mo(s) + zo(t))

and then defining, for some chosen tg € (0,1},

(s,0)
z(s,t) =zo(to)+/ pdx + qdy

to,to)
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where the line integral is taken over any curve in (0,1)x(0, 1) joining (to,%0) to (s, 1).
The reader might check that the hypothesis that the curve ¢ be non-characteristic
forces f to be an immersion (on the whole open square) and that the characteristic
foliations are simply the foliations by the s- and {-slices in the square. We will
comment further on the method we used to construct this solution in Section 1.4.

In fact, the general initial value problem for hyperbolic exterior differential
systems has been studied quite extensively in the literature, see [Ka] and [Yal.
In particular, an elementary consequence of Theorem 5.1 in [Ka] is the following
existence and uniqueness result:

THEOREM: Let (M***,T) be a smooth hyperbolic exterior differential system and
let ¢ : (0,1) — M be a non-characteristic smooth integral curve of I. Then there
exists an open neighborhood Uy C (0,1) x (0,1) of the diagonal and a smooth map
fo : Uy — M which is an integral surface of I, satisfies f4(t,t) = ¢(t), and has
the property that its characteristic foliation Fip is given by the slices t = const
while its characteristic foliation Foy is given by the slices s = const . Moreover,
if (U¢, f(t,) is any other pair with these properties, then fy and fy agree on any
subsquare of the form (a,b) x (a,b) which lies in the intersection Uy N Us.

Note that the condition of normalizing the characteristic foliations has the
effect of removing the reparametrization ambiguity which normally affects integral
manifolds of exterior differential systems. Also, note that while one would like to be
able to say that the solution surface f is defined on the entire open unit square, this
will not generally be the case. A very interesting problem is to try to characterize in
terms of some sort of completeness, those systems (Z%, 7 ) which have the property
that every non-characteristic integral curve ¢ : (0,1) — M has an extension as
above with Uy = (0,1) x (0,1). Example 2 above clearly does have this property,
so it should be thought of as “characteristically complete”.

However, we caution the reader that the integral surface so constructed may
not be representable as 4 graph of z as a function of z and y even if it is so
representable in a neighborhood of the initial curve ¢. Thus, from the PDE per-
spective, a given PDE may not have global existence for all initial data even when
the corresponding hyperbolic exterior differential system is complete.

EXAMPLE 2 (continued): Suppose that, for the Monge- Ampere equation above, we
consider the initial curve given by the data

Zo(t) = cost — sint x(8,t) = cost —sin s
yo(t) = cost +sint y(s,t) = cos s + sint
20(t) = with solution z(s,t) =t — s+ cos(t — s)
po{t) =cost —sint p(s,t) = coss —sint
go(t) = cost +sint, q(s,t) = cost -+sin s.
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Note that, as expected, this is an immersed surface in R®. However, it cannot be
represented globally as a graph of z as a function of z and y. In fact, we have

drady = cos(t — s) dtads.

Thus, for example, we cannot solve smoothly for ¢ and ¢ as functions of « and y
in any region where cos(t — s) vanishes. In fact, restricting to the region where
[t — s| < 7/2, we can solve for z as a function of z and y, getting

2(z,y) =sin~ (1 - 1(z® +9%)) + cos(sin™ (1 — 1(z% +%))).
Note that this solution cannot be extended smoothly beyond the punctured disk
0<z?+y? <2

ExaMPLE 3: Let k be a smooth positive function on R. Consider the non-linear
equation

Zyy — (ls(zgc))2 Zpx = 0,

known as the Fermi-Pasta-Ulam equation, or FPU equation, for short. The corre-
sponding hyperbolic exterior differential system on R® with standard coordinates
z, Yy, %, p, and ¢ is

I:{ dz—pdx—qdy, dprdz+dgndy, dgrdz+ (k’(p))zdp/\dy}
={ dz—pdz—qdy, (dg+k(p)dp)(dz+k(p)dy), (dg—k(p)dp)a(dz—k(p)dy) }.

Let K{p) be an antiderivative of k(p), and note that K is a strictly increasing
function K : R — R which is a diffeomorphism of R onto its image.

We are going to show that if the range of K is all of R, then (R®, T} is complete
in the above sense, in spite of the well-known fact (which we shall discuss later)
that solutions to the FPU equation with compactly supported initial data develop
singularities in finite time.

Now, the characteristic systems are

Bip = { dz ~ pdx — qdy, (dg+ k(p)dp), (dz +k(p)dy) }
Eo1 = { dz — pdz — qdy, (dq — k(p)dp), (dz — k(p)dy) }.

Suppose that ¢ : R — R is a non-characteristic integral curve of Z. Thus,

o(t) = (zo(t), yo(t), 20(t), po(t), g0 (1))

where 2§(t) = po(t) zh(t) + qo(t) ¥ (t), but where, also, for all {, we have

(@b (1) % k(po()) P (1)) + () £ E(po (1)) 5 (t))” > 0.
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We want to show how to construct f : R? — R® as in the above Theorem. First, if
there is a solution, then there will be functions A, B, C and D on R? so that

dg+k(p)dp =2A(s,t)ds 4 dg — k(p)dp =2C(s,1t)dt
an
de + k(p)dy = 2 B(s,t)ds dz — k(p)dy = 2 D{(s, 1) dt.

Since d(g + K (p)) is a multiple of ds, it follows that if there is to be a solution,
then ¢ + K(p) will have to be a function of s alone. Thus

q(s,t) + K(p(s,t)) = als,s) + K (p(s,9)) = ao(s) + K (po(s)).
By similar reasoning using the other characteristic system, we see that
Q(57 t) - K(p(sa t)) = QO(t) - K(p()(t))

Solving these equations gives the only possibility for the functions p and ¢ if there
is to be a solution:

q(s,t) = 3 (go(s)+q0(t)+K (po(s)) K (po(t))) and
K(p(s,1)) = 2 (qo(s)—aqo(t)+K (po(s))+K (po(t))).

Note that the assumption that the range of K be all of R implies that this does,
indeed define a (unique) function p : R? — R. Now, we also have

dz = B(s,t)ds + D(s,t)dt
k(p)dy = B(s,t)ds — D(s,t) dt

so it follows that B(s,t) = z5(s,t) and D(s,t) = z¢(s,t). Substituting this into the
second equation gives

dy = (k(p(s,t))) - (z(s,t) ds — z4(s,t) dt).

Set A(s,t) = log(k(p(s,t))), then differentiating this last equation and multiplying
by e* gives the formula

225 dsndt + dAn(z, ds — ¢ dt) = 0.
and this expands to the linear equation (for z(s,})
23—':st - At T+ )\5 Iy = 0.

Note also that we have the initial conditions z(t,t) = zo(t) and zs(t, ) — z,(¢, 1) =
k(po(t)) yh(t). Since X is known, this equation is a linear hyperbolic equation for z
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in the st-plane, with initial conditions posed along the non-characteristic line s = ¢.
By the usual existence and uniqueness theorems for linear equations, there exists
a unique funection z(s,t) on the whole st-plane satisfying this equation and the
given initial conditions. Once z is known, the fact that it is a solution of the
linear equation implies that the 1-form (k(p(s,t)))_l(;rs(s,t) ds — zu(s,t)dt) is
closed. Hence, it is the exterior derivative of a function y. By choosing the additive
constant correctly, we can make sure that, y(0,0) = y5(0), and then the equations
above easily imply that y(¢,1) = yo(¢) for all ¢ € R. Finally, the function z(s,t) is
constructed in the obvious way:

(s:4)
z(s,t) = 20(0) + / pdz +qdy

s

(the path used for the line integral is immaterial since, by construction, p dr+qdy
is a closed 1-form) and the strip conditions then imply that z(¢,t) = z{(t). It is
now an elementary matter to check that the map f:R? — R®

F(s,) = (a(s, 1), y(s,1), 2(s, 1), p(s, ), 4(s, 1))

pulls back the forms in Z to be zero. It is not, however, obvious that f is an
immersion except along some open set containing the line s = ¢.

1.3 Prolongation of hyperbolic systems and their structure equations. In the theory
of exterior differential systems, the operation of prolongation plays a central role.
This operation is analagous to the process in classical PDE whereby one adjoins the
derivatives of the unknown functions as new variables and then adjoins new partial
differential equations to ensure that the new unknowns do, in fact, behave like the
derivatives of the original unknowns. As usual, for a more complete explanation of
the process of prolongation, we refer the reader to [BCG?].

1.3.1 Prolongations. We denote by Ga2(TM) the Grassmann bundle whose fibre over
x € M consists of all 2-planes E C T, M. Sitting in Go(T'M) is the set G»(Z) of
integral 2-planes of the hyperbolic system Z. We then have the base point fibration

G2(T) C Go(TM)
L
M

where, by our discussion above, each fibre of 7 is a P! x PL.

Recall that over Go(TM) there is a tautological Pfaffian system J whose
integral manifolds are the canonical lifts (Gauss maps) of immersed surfaces in M,
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as expressed by the diagram

G2(TM)

where f,(s) = T (£(5)).
For a point (z, E) € Go(T'M) we have by definition

T, ) =" (B*)

where E C T; M is a 2-plane and E* C T M its codimension 2 annihilator. The
restriction to Go(Z) C Go(TM) of the canonical system J is, by definition, the
(first) prolongation (MM, T(D) of (M, T); thus

MY = Gy(T) and I = Tlpra.

We want to elucidate the local structure of the ideal Z(!). To this end, we
prove the following structure theorem.

PROPOSITION: The prolongation of a hyperbolic system of class s is a hyperbolic
system of class s-+2.

Proof: Suppose that, on an open set U of M, we have chosen an admissable local
coframing (f;w) for 7 as in Section 1.1.2. Thus, on U, we have

I={6...,6% w'ri? Wirwtl).

If By € Go(Z) is an integral element based in U, then, by changing basis in the w?,
we can arrange that w'aw® does not vanish on Fy. Let W < MY denote the open
subset of 2-dimensional integral elements of Z with base point in U and on which
the 2-form w'rw? does not vanish. This is, of course, an open neighborhood of Eq
in MY, For any E € W, the space E+ C T myM is spanned by s+2 1-forms.
Since w,, gy and w3 1) are linearly independent on E, while all of the forms in 7
must vanish on E, it follows that E' has a unique basis of the form

971r(E) R 797Sr(E)? wi(E) — hoo(E) w}r(E) ) Wi(E) — ho2(E) Wfr(E) .
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The functions hgg, hog thus defined on W define coordinates on the fibers of W(cC
UM) — U. Moreover, inspection, combined with the definition of Z(1), shows that
the 1-forms

910 = w2 e hzo wl

fo1 = w* — hoa w®
liec in the Pfaffian system which generates Z(1).8 Thus, on W C M1, the first
prolongation ZT(}) is generated by the Pfaffian system
IO = {9, ... 6° 610,601 ).

By construction

wirw? = whabg

Wiwt = whbor.

It follows that the algebraic ideal generated by the sections of () contains all of
the forms in 7. In particular, we have

do' = ... = df° = 0mod{f*,...,0°, 619,00}

Moreover, since w? — hggw! = w? — hogw® = 0mod{#?,...,6%, 610,601} and since
the 2-forms dw® are well-defined on U, it follows that there are (unique) functions A*
so that

dwt = A*wlal® mod{é)l, oo 8, 610,001 )
It follows that

d@lo = —(dhgo + (A2 - hgoAl)wS)/\wl = *"7(20/\(4)1

mod{()l, e ,087 010, 901}
dfo1 = —(dhog — (A* — he A*)w' ) aw® = —mognw’ }

where we have set g = dhag + (A% — hog AV )w? and moe = dhgy — (A* — hoa A%)w?.
It follows that on W the ideal 7Y has the form

I(l) = {01, e ,95, 010,901; 7r20/\w1, 71'02/\1.{)3 }

Thus, Z(V is a hyperbolic exterior differential system, as desired. [J

6) Here and elswhere, we adopt the comman practice of writing simply ¢ instead of 7*(¢) to
denote the pullback via the submersion « : W — U whenever this abbreviation will not
cause confusion. Since, in this case, W = U x R? with hgo and hog forming the coordinates
on the R2-factor, confusion is almost impossible.
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We will let H, denote the set of hyperbolic exterior differential systems of
class s. Prolongation then gives a mapping

P:iHs — Hera-
This process can be iterated, leading to the successive higher prolongations,

(M®, T®)) € Hypo.

We now want to remark on the relationship between the integral manifolds of
7 and those of (M. Given any integral surface f : § — M of T, we will denote by
f 8 — MO the canonical lift of f defined by the rule

FO(s) = £'(s)(TS) = Tps) F(S).

Since f is an immersion, so is f(!). Moreover, this latter map is clearly trans-
verse to the fibers of the basepoint fibration = : M) — M. By the tautological
properties of the canonical system J on the Grassman bundle Go(TM) it also
follows that £ : § — M is an integral surface of Z(1).

Conversely, any integral surface g : S — M® of T(Y) which is transverse to
the fibers of 7 : M) — M must be of the form g = f(U for some unique integral
surface f : S — M of Z, in fact, f = wog. Thus, the integral surfaces of 7 in M are
in one-to-one correspondence with the integral surfaces of Z() in M1 which are
transverse to the fibers of 7. Obviously, this construction can be repeated, yielding
integral surfaces f(&) 1 § — M®) of T for all k > 0.

1.3.2 Relations with the initial value problem. Regarding the initial value problem,
it is important to note that a non-characteristic integral curve ¢ : C' — M of 7 also
has a canonical lifting to a non-characteristic integral curve ¢t : ¢ — M. This
lifting is defined by letting gb(l)(t} be the unique 1-dimensional integral element
of 7 which contains ¢/(t) (Z}O} Again, every non-characteristic integral curve = :
C — MW of TN which is transverse to the fibers of 7 is of the form v = ¢(1)
where ¢ = wo+. As we shall see, this construction and its iterates ¢*) : ¢ — M&)
will play an important role in Darboux’ method of integration.

1.3.3 Some examples. To illustrate the prolongation construction, consider the ex-
terior differential system associated in the usual way to a second order hyperbolic
equation’ as discussed in Example 7 in Section 1.1.3

F(ZIZ’, Y, 2, p, 478, t) =0

7 The general procedure for canonically associating an exterior differential system to a PDE
system is explained in Chapter 1 of [ BCG 3]. In the first example here, (x,y,2,p,4,7,$,t)
are coordinates in the jet space J2(R?, R) and in the second example (x,y, u,v,p, g, 7, 5) are
coordinates in J!(R?, R?). In both cases the PDE defines a submanifold M of the jet space
and the exterior differential system is generated as a differential system by the restriction
to M of the contact system.
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Here, we are following the classical notation: p = 2z, ¢ = 2y, T = 2ga, § = Zgy,
and ¢ = zy,. These are to be regarded as coordinates on the 2-jet space J 2(R?,R)
endowed with its canonical second order contact ideal J generated by the three

1-forms
0° =dz —pdx — qdy

' =dp —rdr—sdy
6% = dg — sdx —tdy.

The pullback of this system to the 7-dimensional hypersurface M defined by the
equation F' = 0 will then be a hyperbolic exterior differential system (M, 7) which
lies in Hs.

In case the equation F' = 0 happens to be a Monge-Ampere equation
E(rt — %)+ Ar+2Bs+Ct+D =0 (1)

where A, B, C, D, E are functions of (z, y, 2, p, ), we showed in the previous
section how one may associate a hyperbolic exterior differential system (Mo, Zp) €
'H; to the equation. It turns out, as the reader may check, that the first prolongation
of (Mg, Zy) € Hy contains (M, T) € Hs as a dense open set. More precisely, (M, T)
is the open subset of (Z“/[(gl)7 I(()l)) consisting of those integral elements on which
dxady # 0.

Similarly, a first order hyperbolic system for two functions of two independent

variables
{F(:‘E7 y7 u? /Ui p7 q7 T? 8) :O

1
Gz, y,u, 0,0, ¢, 7,8) =0 @

where p = uy, ¢ = Uy, r = vz, and s = v, can always be expressed as a hyperbolic
exterior differential system (M, I) € Hy. However, in case (2) is a quasi-linear
system, we saw in Section 1.1.3 that there is an associated hyperbolic exterior
differential system (My, Zo) € Hp. Again, it turns out that the open subset of the
first prolongation of this latter system consisting of the integral elements on which
dxady # 0 is the exterior differential system (M, T) € Hy canonically associated
to (2).

1.3.4 Partial Prolongations. Variations on the prolongation construction are possi-
ble and are ocassionally encountered in the theory. Suppose given a hyperbolic exte-
rior differential system (M, T) with the property that the (P'UP')-bundle 2 — M
can be written as a disjoint union

= =M oM

where each of Ml(é) — M and M(gi) — M is a P'-bundle. (This can always be
arranged by passing to a double cover of M if necessary.) Now, every 2-dimensional
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integral element £ C T, M of 7 can be written uniquely in the form E = Ly Ly
with Lig € Ml(é) and Loy € Méi)A It follows that there is a diagram of submersions

M E
/ N\
M 1%) Méi ) corresponding to Ly Loy .
N /
M x

It is not difficult to show that there exist canonically constructed hyperbolic exterior

differential systems I{é) and Z(gi) on Ml(é) and MD(P respectively so that every

integral surface f : 8 — M of 7 has canonical liftings fl(éj S - M]%’) and

é%) : 58— Mép which are integral surfaces of Ig)) and I((é) respectively. Thus,
these partial prolongations are canonically defined and, for a system of class s, we
have (M, 7)) and (MY, 78 in Hyp.

Thus, hyperbolic exterior differential systems of classes s =0, 1, 2,... form a
very natural and interrelated set of exterior differential systems. Although we are
primarily interested in the cases s = 0 and s = 1, it is convenient to set these in a
general context as we have done.

1.3.5 The refined structure equations. We now want to derive more refined struc-
ture equations for the higher prolongations which will be fundamental in our later
calculation of the conservation laws of (M*™,7). In fact, we will now show that
the k" prolongation satisfies a remarkable set of structure equations.

PROPOSITION: Let (M, I) be a hyperbolic exterior differential system of class s.
Then on the manifold M*) (of dimension s+4+2k) there is a coframing

1 8
0°,...,0°, 010,...,0k0, 01,-.. .00k, Tk+1,05 W10 5 70,k+1, Wo1

such that T%) is generated as a differential ideal by 0, ... ,0%, 610, ..., 0k, 901, . .-,
B which satisfies the structure equations

{i) d@ko = ~7rk+1,0/\w10 -+ Tg,o wglx\Qm mod{é‘l, PN ,35, 610, ey 9;.30}

)

(’1)’&) dfg, = -0, k17001 + Lok wiorbig mod{@lg o8, 000, ., Bok}.

We will discuss the meaning of these equations below. For now, we merely
note that they immediately imply the earlier proposition from Section 1.3.1 to the
effect that (M) T(k)} is a hyperbolic system; i.e., dfyo and dfyy are decomposable
modulo all of the &#’s. In fact, however, these structure equations go much further in
that they give information on dfxo modulo only 8%, ... 6% 61q, ... ,0k0; i.c., omitting
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Oo1, ..., 0% In later sections this fact (as well as others derivable from the above
structure equations) will play an important role.

Proof: We are going to follow the notation of the earlier Proposition in Section 1.3.1.
Recall that, by the definition of a hyperbolic system, we have, using {21y = wigrb10
and Q()l = WQ1A€01, that

de® = A?O wignrbig + A& woinrbp1 mod{@“}. (4)
For k = 1, equation (i) is
dglo = —TogAWig + T10 (A)Ql/\gol mod{é’}, SN ,93, 610}.

Now 29 is defined on the original manifold M, and, since the 1-forms 8*,...,6°,
610, w10, 801, wor are a basis for the semi-basic forms for the projection M) — M,
it follows that

do € A%[0Y,...,6°, 610, wig, Bo1, worl.

In fact, from the formula for dfy4 given above we have
dQyo = —Tio wioAwpi Abpr mod{f, ... 6% 610}

Moreover, wyg is actually defined on M = M© (as opposed to 819, which is only
defined on M) even though it is semi-basic for the projection M®) — M(®).
Thus we have

dwyg € AQ{QI, oo, 0%, By, wig, fp1, wm}‘

Now using a similar argument for dwq yields the formulae
dwm = 510 w01A901 mod{f)l? e ,(98, 910, (.4)10}
dw01 = 501 wlo/\910 mOd{Gl, . ,98, 901, wm}.

From (5) and
dfd10 = dwionbig — wioadbyo

we may infer that there exists a 1-form moq on MV such that
dt910 = W90 NW10 mod A2[01, - ,93, 010, W10, 901, uJ()l].

Thus
dbi1g = —Toprwis + NAwrg + Lo waiabor mod{é'l, . (910}

where 7 is a linear combination of €5; and wqi. Replacing wgg by 7o — 1 and
relabeling we have

dl1g = —moprwig + T woinbor H]Od{@l, o, 0, 010}.

This establishes (3) for the case k = 1.



EXTERIOR DIFFERENTIAL SYSTEMS 59

Assuming by induction that (3) holds for some k 2 1, we shall establish it for
k+1.

On integral 2-planes E of Z(®) we have

Te+1,0 wiole =0
wiole # 0,
so that M *+1) is locally M{(¥) x R? where R? has coordinates (hgy2.0, ho ki2) and

where
Or+1,0 = Tht+1,0 — Pr+2,0 Wio

00,k+1 = T0,k+1 — Fo k+2 Wo1-

In fact, the vanishing of 8j.11,0 and 8y ;11 defines the 2-planes on which 7,11 prwig
and mo k+1Awo1 restrict to zero but wigawer # 0. From (1.1) we have on Mk+1)

dBrg = —Qk.}.l,g/\wlo + Tho wor~Fo1 mod{el, e, 0%, 040, ... ,9130}‘
‘We shall write this as
dOro = —O11,0nw10 + Tho Qo1 mod {8, ..., 0° 010, ..., 0k} (6)

Taking the exterior derivative of this equation and substituting (1.i) for df;, for
j=1,...,k—1 together with (6) gives

0= —d6k+1,0/\w10 + xAwg1A801 mod{@l, e, 0%, 0419, :9k+1,0}~ (7)

We want to say a word about . It arises from the terms dTygAQp1 and Tyg dQoq
and the coefficients of wg1Afgy in df',...,d0°%, dfig,...,dO. Since

dQOl S A3[919, W10, 901, w01} mod{@l, ceoh 98}

we have
dQ{)l = aww/\wm;\%l mod{@l} ey 98, 919}.

From (7) we deduce that
x = 0mod{#',...,6° 610, ..,0k+1,0,001,w10,wo1}
and hence we infer the existence of a form mg 490 on M*+1) such that
Abr41,0 = —Thp2,0Aw10 + Tht1,0 wo1 2001 mod{6',...,6%, 6y,... HBrr10}

This completes the induction step in the proof of (3). O
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1.3.6 Interpretations — higher characteristic systems. We would like to discuss
some of the meaning of the structure equations (3). First, we give an important
definition.

DEFINITION: The k' characteristic systems of a hyperbolic system are the Pfaffian
systems®

=(k) _ rpt s
Eig =107,.-,8°, 10, -, Oko, Trt1,0, wio)
—=(k) _ rp1 s
—01 — {8 3 ’9 ) 6013"' 7{90%:: o, k+15 ("”01}'

As explained above, each integral surface f : S — M of the original hyperbolic
system has its &*-prolongation f*) : § — M) which is an integral surface
of Z(¥) | the hyperbolic exterior differential system generated as a differential system
by 8%,...,6% 610,...,0k0, Oo1,...,00, on M¥) (here k=1). It follows from (3) that

Tgt1,0’wig = 0

on f)(S), so that Egg) induces on f(¥)(S) a Pfaffian system of rank one, and
similarly for E(()’i) Of course, these induce the same two characteristic foliations on
solution surfaces to the hyperbolic exterior differential system as the 0" character-
istic systems. We will see in Section 1.4 that the geometry — meaning the derived
flags, etc. — of the characteristic systems is an important feature of a hyperbolic

exterior differential system.

One interpretation of the structure equations (3) is that the characteristic

systems EE? and Eé’;) are coupled only at the first level. To explain this, we pass

to the infinite prolongation M(°®) with coframing®
8',...,6% 610, Oa0,. .5 Oo1, Ooz, - - 5 Wi, Wor
and write the structure equations (3) as

(i) dbro = —Okt1.0/wi0 + Tho Qo1 mod{H', ..., 0%, O1o,... 0k}
(11) dbox, = —907k+1/\w01 + Tor Q10 mod{@l, o, 0%, 00, ... 790k}-

Il

8) The Pfaffian system E%) and Eg;) are defined on M%), When lifted to M*+D for any
121 they are given by

28 = 10',...,6% 610, ..., 41,0, wi0)
3(()?) = [6%,...,0% 601, . .., 00 ki1, woll.

9) The infinite prolongation (M{%), T(o9)Y of (M, T) is discussed in Section 2 of [ BG 1].
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The characteristic systems are

Eg?) = [617'“ 3957 6107 920>"' >W10]

E(()OIO) = [017 s 7685 001: 9027 s 7(“}01]»

and (5) and (8) say that the characteristic systems z(c) ,:(OO) are Frobenius up to
10 =01

the couphng terms S10 QOI, 501 Qu) and Tkg le, T()k QIO- It will turn out that the
coefficients Tq, Ty are the fundamental relative invarianis of hyperbolic systems
of class 5 = 0.

In the case s = 0 the characteristic systems are disjoint and span all of the
1-forms on M ()
Egzo) :(00) QI(M(OO))
=) nERY = ().
Moreover, as we shall see in Section 1.5 below, there are many interesting cases
where S5 = Sg; = 0 {cf. (5) above). In this case, it follows that: If all the Tyxo and

Tor vanish, then each of = _(oo} and = ”(Oo) are Frobenius systems. We point this out
here to emphasize the importance of these relative invariants.

1.3.7 Even further refinements. The structure equations discussed above are rather
general and apply to hyperbolic systems of any class s. For the low values of s and
with more information on the structure of the original ideal 7, we can introduce
further refinements.

Beginning in Section 1.5, we will concentrate mainly on the case s = 0 and
will introduce considerable refinements via the method of equivalence. In the rest
of this section, however, we want to comment on how they may also be refined
when s = 1. Such a system is given on a 5-manifold locally as Z = {8, Q40, Q01 }-
Equation {4) simplifies to

df = AlO QIO -+ A01 Q()l mod{@}

If A1p = Ao1 = 0, then the 5-manifold M is foliated in codimension 1 by the leaves
of the system 6 = 0. Each integral manifold of 7 lies in one of these leaves and
the system essentially reduces to a l-parameter family of hyperbolic systems of
class s = 0 (cf. Section 1.4 below).

If, say, A1p = 0 but Ap; # 0, then we may normalize so as to have the
equation df = Qgymod{6}. In this case, the non-characteristic initial value problem
for the system can be solved using only ODE techniques. Here is how this goes.
Since 9add = 071 # O but Oa(dF)? = 0, it follows from the Pfaff-Darboux
theorem that every point of M lies in some open set U on which there exists a
submersion f : U — R3 so that 8 restricted to U is a multiple of f*(dz — ydzx).
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If ¢ : (0,1) — U is a non-characteristic integral curve of Z, then in particular it
follows that fo ¢ : (0,1) — R® is an immersion and that P = f~!(fo¢((0,1))) C
U is a smooth 3-manifold which is an integral manifold of # and hence of Q.
Moreover, P clearly contains ¢((O, l)) The 2-form 2y restricts to P to have a
Cauchy characteristic and the assumption that ¢ is non-characteristic implies that
#((0,1)) is transverse to this characteristic line field. It follows that the union of
these Cauchy characteristics passing through ¢((0, 1)) is an integral surface of 7
passing through ¢((0,1)). (Of course, by uniqueness, there is only one such integral
surface.)

Finally, if Ajgdo; # 0, we may normalize so as to have Ay = Ag; = 1; ie.,
df = Qqp + Qo1 mod{@} (9)

It is easy to show that such a system is locally equivalent to the exterior differen-
tial system derived from a hyperbolic Monge-Ampere system as in Example 5 in
Section 1.1.3 {cf. Appendix 2 to Section 2 in [ BG 2]). The k*® prolongation then
has a coframing

8; 010, .-, Ok0, W10, Trr1,05 Bo1,- -+ 5 B0k, Wo1, Mo k+1

satisfying the structure equations (3,i-i) and it may also be shown that this cofram-
ing can be chosen so that, in addition to (9), we have

dek:O = —7rk+1,0/\w10 mod{ﬂ, 910, - ,ng} (10)
d@gk = —TQ,k+1/ W01 mod{{?, 6(}1, ey ﬁgk}.

Thus, all of the invariants Tio and Ty vanish identically and the coupling between
the characteristic systems only occurs at the 0*" level through equation (9).

1.4 Integration by the method of Darboux.
1.4.1 Riemann invariants. Let (M, Z) be a hyperbolic system of class s. We have

discussed how to associate to such a system its prolongations (M ) T (k)), which
are hyperbolic systems of class s + 2k, and its characteristic systems

- i
=0, =l c ol(m®),

which are Pfaffian systems of rank s+2-+k. The solution surfaces of (M, 7) and the
solution surfaces of (M(®) Z(k)) are in one-to-one correspondence (where the latter
must satisfy a transversality condition), and the characteristic systems induce on
each solution surface a pair of foliations by characteristic curves.

As we mentioned in Section 1.2, the characteristic foliations on each solution

surface carry no local geometry. However, the characteristic systems Egg) and Eé’;)
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do, indeed, carry local geometry. In fact the integrability properties of the charac-
teristic systems in the ambient manifolds M®) play a crucial role in the classical
integration methods. In particular, the study of integrable subsystems of the char-
acteristic systems turns out to be very fruitful, and leads directly to the method of
Darboux ([Gol), which we describe below.

First, a brief historical perspective. In the early days — beginning over two
centuries ago — a primary interest was finding explicit solutions of PDEs. Some-
what later the issue was to prove existence either by finding explicit solutions or
by giving on algorithm, based on integration, for finding solutions (cf. the Poisson
integral formula, efc.). Soon thereafter, this form of existence proof was extended
to the nineteenth century concept of “integration of the equation”, which meant to
reduce finding the solution to (at most) solving a sequence of ordinary differential
equations. In this connection the following notion arose.

DEFINITION: A (generalized) Riemann invariant of Z is a codimension one folia-
tion F on M) such that, for any function f constant on the leaves of F (we say

that f belongs to F), its differential df lies in either Egﬁ) or Eg;).

The importance of Riemann invariants stems from the following fact. Let f
belong to a Riemann invariant F of Z, with, say df € EYB), and let ¢:§ — M
be an integral surface of Z. Then the pull back function fo¢®:S — R clearly
has the property that it is constant on each of the curves in the characteristic
foliation Fip. Thus, f functions as a sort of “conservation law” for characteristic
curves on solutions. The knowledge of such functions (when they exist) frequently

yields important information about the behavior of solutions to the original system.

We should perhaps say a word about our choice of the fundamental object in
the notion of a Riemann invariant. One usually thinks of a Riemann invariant as
a function of the variables and their derivatives which is constant on the leaves of
one of the characteristic foliations on every solution of the equation. However, if f
is a Riemann invariant in this more classical sense, then any function of f, say go f
where g : R — R is arbitrary, is also a Riemann invariant, with essentially the same
level sets as f. However, it turns out that it is the level sets of f rather than the
function f itself which is important in applications. On the open set where df is
non-vanishing, knowing these level sets is equivalent to knowing a codimension one
foliation. For this reason, we have taken the foliation as the fundamental object,
preferring to identify Riemann invariants which determine the same level sets.

The above definition generalizes the classical situations in which the notion
of a Riemann invariant is often discussed: a first order hyperbolic system for two
unknown functions u(z,y) and v(z,y) and a second order hyperbolic equation for
one unknown z(z,y). These give hyperbolic systems of classes s = 2 and s == 3
respectively, and the classical Riemann invariants in these cases belong to the
special case k = 0. Their use in producing integral formulas for solutions to certain
hyperbolic equations is standard and well known [CH].
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Before proceeding, we should like to discuss the possibility that a function f
belonging to a Riemann invariant F might be constant on all solution surfaces.
Recall that a hyperbolic system Z is given by a rank s Pfaffian system I together
with a pair of 2-forms 249 and g7 that are well defined and decomposable modulo
{I}. The Pfaffian system [ induces a rank s Pfaffian system, still denoted by I, on
each M), This abuse of notation is justified for our present purposes, since it is
easy to see that integrable subsystems of I on M (9 and I on M™*) are in one-to-one
correspondence.?

Recalling our notation I for the 7" derived system of the Pfaffian system
I, let I} = NI® be the largest integrable subsystem of I. Since I(*) is an

integrable subsystem of Z, locally M is a product
M=NxU

where U C R™ (n = rankI¢°) has coordinates t = (t!,...,t"). It is easy to
see that 7 induces on each N x {t} a hyperbolic system Z; such that the solution
surfaces of 7 are just the solution surfaces of some Z; for a fixed t. Thus, if 1> £ 0
we essentially have the situation of a family of hyperbolic systems depending on a
parameter.

For this reason we shall make the standing assumption that the infinite derived
system I'®) 4s trivial. Since it is well known that the infinite derived system I {00}
contains any integrable subsystem of I, it follows from our assumption that 7
contains no integrable subsystems. Under this assumption we have the result.

PROPOSITION: The Pfaffian systems T") contain no integrable subsystems for
k>0.

Proof: This follows immediately since the structure equations in the last section
clearly imply that, for all £ > 0,

70 _ 7).

(k) _ .
O

Note that Z(© = I and now we apply induction to conclude that T

10)  The point is this: In a domain U C R™ with coordinates z = (z!,...,z"™), let 6% = 0%(x, dz)
be a set of everywhere linearly independent one forms. Suppose that we have another
connected domain V C R™ with coordinates y = (y',...,%™) and a linear combination

Oz, y, dr) = Zfa(z, Y0¥ (x, dz), zelUyeV

satisfying
df = 0.

Then the fo(z, y) are constant in y.
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This result implies that no non-constant Riemann invariant can be constant
on all integral surfaces of Z. To see this, note that, if f is a Riemann invariant of 7
defined on M) and if df,, # 0, then df is not a section of Z*) on a neighborhood
of z, and hence that there must exist a nearby point ¥ € M®*) so that dfy ¢

Iék). In particular, df, does not vanish on (Ig,(,k})i and hence there exists a 2-

dimensional integral element E C (I@(,k))L of (%) on which df,, does not vanish.
Now f will not be constant on any integral surface § of 7 which passes through y
and satisfies T,,§ = E. (Such an integral surface always exists by the existence
theorem in Section 1.2.3.)

The classical theory of Riemann invariants, as well as the even more classical
but less well-known theories of Ampere, Monge, Laplace, Darboux, Goursat, etc
(ef. [Go]), thus focuses attention on integrable subsystems of the characteristic
systems. We shall see that studying the conservation laws does the same thing.

1.4.2 The method of Darbouz. We now introduce the main concept from the classical
theory.

DEeFINITION: A hyperbolic system (M, T) is integrable in the sense of Darbouz at
level k if there are rank 2 integrable subsystems

Am C 5(1’8)
Am C Eg;&_)

which satisfy A1g NZH) = Agy NZH) = (0).

We will now explain the method of Darboux for solving the initial value
problem for hyperbolic systems which satisfy this hypothesis.

THEOREM: Suppose that (M,T) is integrable in the sense of Darbouzx at level k and
that f : (0,1) — M is a non-characteristic integral curve of . Then there exists
an open set U C R? which contains the diagonal interval A = {(t,t) : 0 < t < 1}
and an integral surface F : U — M of T so that F(t,t) = f(t) for all 0 <t < 1.
Moreover, F' can be chosen so that the characteristic foliations induced on U are
the coordinate slices and this makes F' unique on some neighborhood of A. Finally,
F can be constructed from f by a procedure involving ordinary differential equations
alone.

Proof: Since [ is non-characteristic, the tangent space T,y f ((0, 1)) lies in a unique
2-dimensional element of Z which we shall denote by f(V(t) € M), Now, fV) .
(0,1) — MW satisfies our hypothesis with respect to (M), 7(1) e, it is a non-
characteristic integral immersion of Z(!). By repeating this process, we eventually
arrive at f*) : (0,1) — M™®_ which is a non-characteristic integral immersion of
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Z&) | Clearly, it now suffices to prove the theorem for the case k = 0, and then
apply it to the initial data f(*).

Thus, let us suppose that Ajg C E1g and Agy C Zoy are rank 2 integrable
subsystems which satisfy Ay NI = A NI =(0). Fixaty € (0,1) and let z, y,
u, and v be functions on a neighborhood V' of f(ty) which have the property that,
on V, the system Ajq is spanned by dx and dy while Ay is spanned by du and
dv. It now follows from the structure equations and the very definitions of Z;( and
Hoy that 7 in V is generated by the sections of I and the two 2-forms dxady and
dunsdv. Note that, also, by construction, for each p € V the space Ijl;L is transverse
to the fibers of the the submersion (z,y,u,v) : V — R%.

Now, there is a a 6 > 0 so that 0 < tp—8 < {y+6 < 1 and so that
f((to—(s, to+(5)) cV.

By the assumption that f is non-characteristic, f is transverse to the fibers of both
of the mappings (z,7) : V — R? and (u,v) : V — R?. It follows that, by shrinking
8, we may assume that {z,y)o f and (u,v)o f are smooth embeddings of the interval
(ta—8,to+6) into RZ. Set

T = (2, y)of((tg-é, to+5)) and To1 = (u, v)of((tg—é, £0+6))
These are two smooth curves in the zy- and uv-planes respectively. Set
.MI‘ = (.’,?Z,y,’l,b,’U)_1 (Fl() X F()l) cVcM.

Now M is a smooth manifold of dimension s + 2 which contains f((to—8,t+86)).
Moreover, by constuction, since the image of Mt under the (z,y) map and the
(u,v) map is a curve, it follows that deady and duadv both vanish identically on
Mr. In particular, it follows that the pull back of the system Z to Mt is generated
algebraically by the sections of I. In other words, I pulls back to be a rank s
integrable system Ip on Mp.

It follows that there is a unique 2-dimensional leaf Ly of Ir which contains the
curve f((to—8, t0+5)). (Note that the construction of the leaves of an integrable
Pfaffian system can be accoraplished by solving ODE alone, PDE methods are
not required.) This surface Ly is, by construction, an integral surface of 7 which
contains f ((towé, to+6)). It is also transverse to the fibers of the submersion My —
T'10 x T'g1. As a result, by shrinking § once more, we may assume that Ly maps
diffeomorphically onto the open square

(z,1)0f ((to—6,t0+6)) x (u,v)of ((to—6,t0+8)).
We now define F on the open square (fg—6,tp+6) X (to—86, to+8) by letting F(s,t)
be the point of Ly which maps to

(@(f (), w(f (), ulf (1), v(F(2)))-

Local uniqueness of this extension is easily established and then an elementary
patching argument shows that F' can be defined on an entire neighborhood of the
“diagonal” interval. 0



EXTERIOR DIFFERENTIAL SYSTEMS 67

It is important to remark that finding the integrable subsystems of the char-
acteristic systems is a routine matter. In fact, one merely computes the derived

systems Eg’g){j ’ and Eg;) 9 Since we clearly have, for some j and j/,
(k) o (R0) o (R (1) - m(k)(2 =BG _ R} _ (k) {ca
:g(} _ :§0)< ) :§O}< ) o) zgox YD ;§O)<J> — zgo)(x ) :§0)< )

=(B) _ = (RHO) — m(B){(1) — =(k)(2) =B _ =R+ _ =k

:(()1> _ ‘:él)< ) :élx ) - u(()})( ) u(()})(]) - _(gl)(j ) _ H&)(OO)
and since any integrable subsystem of a Pfaffian system lies inside its last derived
system, the test for integrability by the method of Darboux can be carried out
effectively, using only differentiations and algebraic manipulations.

1.4.3 An example — the f-Gordon equation. Our main interest in Darboux inte-
grability in this paper is its effect on the computation of conservation laws (to
be defined in Section 2.1 below). However, classically, the importance of Darboux’
method was that it often lead to explicit formulas for solutions to important PDEs.
We will illustrate this by an example drawn from the classical literature.

First, however, we would like to remark that the integration of the Monge-
Ampere equation 2. zy, — zgy = —1 accomplished in Example 2 of Section 1.2 was
done by the method of Darboux, for this equation happens to be integrable by the
method of Darboux at level 0, as can be seen immediately by the formulae

Ei0 = {dz —pdz —qdy, d(p — y), d(g+ =) }
Eoy = {dz —pdz —qdy, d(p +y), dg — =) }.
This is, of course, not surprising because, as we saw in Section 1.1, this system

is (globally) equivalent to the hyperbolic system generated by the classical wave
equation 2., = 0.

‘We now turn to a more interesting example. Consider the so-called f-Gordon
equation zp,, = f(z). As this is an equation of Monge-Ampere type, we may con-
struct a corresponding hyperbolic system of the form (R5,Z) € H; where, with the
usual notation,

I = {dz —pdx — qdy, (dp — f(z)dy)rdz, (dg — f(z)dz)rdy}.
The characteristic systems are
E10 = {dz — pdx — qdy, dp — f(2)dy, dz }
Eo1 = {dz —pdx — qdy, dg— f(z)dz, dy }.

We may now compute the derived flag for these characteristic systems. Assuming
that f'(z) # 0, which we shall for the rest of this section, the only integrable subsys-
tems of Z;09 and Ep; are of rank one and are generated by dx and dy, respectively.
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We will now determine the conditions on f that the f-Gordon equation be
integrable by the method of Darboux at level one. As explained in Section 1.3, the
first prolongation (M), T of the exterior differential system (M, T) associated
to the f-Gordon equation is obtained locally by introducing new coordinates r
(= hgg) and ¢ (= ho2) and setting

O1o=dp— f(z)dy —rdx
fo1 =dg — f(z)dx —tdy.

From
dbo = —(dr — f'(z)pdy)rdz
mod 6

dgr = —(dt — f'(z)qdz)ndy
we infer that
=5 =ld, dz — qdy, dp — f(2) dy, dr — {'(2)pdy]
=Y =ldy, dq — pdz, dg — f(2)d, dt — f'(2)q dz].

First, we compute that E%)m = [dz, dp — f(2) dy, dr — ['(2)p dy]. Now it is
not difficult to compute that

— ol
d(dp — f(2)dy) = —f'(2) dzady mod S0
d{dr — f'(z)pdy) = —f"(2)pdzndy

while of course d(dz) = 0. Since we have assumed that f’ is non-vanishing, we see
that

=0 = [da, (dr = f(2Ipdy) — (1)) () (dp = £(=) dy)]

= [dz, dr = (f"(2)/F'(2))pdp — (F'(2)* = f"(2) f(2))p/ ' (2) dy].

We can now compute that in order for the third derived system to have rank two,
it is necessary and sufficient that f/(2)? — f”(z)f(z) = 0. The general solution of

this relation is
flz) = AeP”

for some constants A and B. Since we are assuming that f'(z) is non-zero, neither
A nor B can vanish. By scaling z and z and y, we may then easily reduce to the
case

f(z) = €.

In this case
E%m) =gl |dz, dr — pdp] = [dz,d(r — 1p*)]

=4 = 560 = [dy, di — qdg] = [dy,d(t — 1*)].
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This proves the classical result that Liouville’s equation 25, = €* is integrable by
the method of Darbout.

In fact, it is a theorem of Lie [Li] that, up to local equivalence, this equation
and the wave equation z,, = 0 are the only f-Gordon equations integrable by the
method of Darboux at any level.

The explicit expressions above show that on solution surfaces we have
d(r — %pQ)/\da: ={)
d(t — 1¢*)ady = 0.

These relations may be used to show that the general solution of the Liouville
equation on any rectangle of the form

R={(z,y)eR?®|a<z<b c<y<d}

can be written in the form

o X @Y'(y) O
(X(2) +Y(y)*

where X : (a,b) — R and Y : (¢,d) — R are arbitrary smooth maps subject to the
open conditions that X'(z)Y”(y) > 0 and X (2)+Y (y) > 0 for all (z,y) € R. The
calculation is a little complicated, perhaps because the more fundamental equation
is the s = 0 Liouville system

Uy =€

vy = e”.
As we shall show in the Section 1.5, this latter system is more easily integrated by
the method of Darboux, giving (1) above as an immediate consequence.

Finally, we would like to mention an example, (cf. Chapter 3 of Darboux [Dal),
of an equation integrable by the method of Darboux at level k but not at level k—1.
This is the linear equation
. kk+1) p
T w—y)?
defined on the half-plane x > y. For k not an integer, it turns out that this equation

cannot be integrated by the method of Darboux, but for £ > 0 an integer, it turns
out that applying the method of Darboux yields the general solution in the form

1 o X(z)-Y(y)
" dzk Oy* ( -y )

2(z,y) = (z~vy

where X and Y are arbitrary functions of one variable.
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1.4.4 Semi-integrability by Darbouz’ method. In closing this section, we want to
remark that there is actually a generalization of the method of Darboux which
only depends on there being a transverse rank 2 integrable subsystem in one of the
characteristic systems in order to solve the initial value problem via ODE methods.
Since this will not play an important role in this paper, we only give a sketch of
the method.

Let us say that a hyperbolic system (M , I) is semi-integrable in the sense of
Darbouz if there exists an integrable rank 2 subsystem A C Z;q which satisfies
Z10 = A @ I. In this case, it easily follows that any point of M lies in an open set
U on which T can be generated in the form

7= {91,...,95; dxAdy,ngw4}.

Suppose, now that we are given a non-characteristic integral curve ¢ : (0,1) — U
of Z. The hypothesis that ¢ be non-characteristic implies that the map (z,y) o ¢ :
(0,1) — R? is an immersion. By shrinking domains appropriately, we can assume
that this map is an embedding, which we shall. Set I' = (z,y)0¢((0,1)) C R?, and
let

Mr = (z,y)"(T).

Then Mr is a smooth hypersurface in M which contains qu((O, 1)) Let Zr denote
the induced exterior differential system on Mr. If we let an overbar denote the pull
back of forms from M to My, then we see that

Ip = {0, 0%, 0%t}

It follows that there exists a non-zero vector field X on Mr (unique up to scalar
multiples) which satisfies

' (X)=---=6(X) =*(X) =0*X) =0.

(The reader familiar with the theory of exterior differential systems will recognize
X as spanning the Cauchy characteristic distribution on Zr.) Note that, by our
assumption that ¢ be non-characteristic, the 1-forms ¢*(w?®) and ¢*(w*) do not
vanish simultaneously at any point of (0,1). Thus, it follows that for every ¢, the
vectors X (¢(t)) and ¢/(t)(0/0t) are linearly independent. It then follows that there
is an open neighborhood R of (0,1) x {0} in (0,1) x (—1,1) so that the mapping
f:R — M defined by

flts) = exp x(8(1),  (t,s) €R

is well-defined and an immersion. By its very construction, f is an integral surface
of Z which solves the initial value problem for ¢.
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Clearly, this method can be generalized to the case where, for some k£ > 0,
the ideal (M ONA (k)) is semi-integrable by the method of Darboux. Thus, in all of
these cases, the initial value problem can be solved by ODE methods.

1.5 Structure equations for hyperbolic systems of class s = 0. From the general
theory of conservation laws for exterior differential systems (cf. [ BG 1]), it is known
that the symbol of an exterior differential system 7 determines an algebraic nor-
mal form for its conservation laws. The space C of conservation laws of 7 is then
isomorphic to the space of closed forms in this algebraic normal form. In Chapter 2
of this paper, we shall need to do some rather explicit computations for hyperbolic
systems of class s = 0 using this normal form. In this section, as preparation for
those computations, we are going to use the extra assumption s = 0 to refine the
general structure equations derived in Section 1.3 above.

1.5.1 Symmetry and non-degeneracy. Recall that, according to our definitions, a
hyperbolic system Z of class s = 0 on a 4-manifold M is locally generated by a
pair of decomposable 2-forms 219 and 2y on M which are defined up to non-zero
multiples and with the property that QygaQg; # 0. As usual, we shall let 25y and
Zg1 denote the characteristic systems.

We first want to say a word about the “generality” of hyperbolic systems
with ¢ = 0. Working locally, we can imagine a hyperbolic system with s = 0
as a pair of 2-plane distributions on a neighborhood of the origin in R*. Since the
bundle Go(TR?) of 2-planes in the tangent spaces at points of R* is a smooth bundle
of fiber dimension 4, it follows that, locally, a choice of a hyperbolic system with s =
0 depends on the choice of 444 = 8 functions of four variables, these functions being
subject only to some open conditions which ensure that the two distributions are
transverse. On the other hand, we want to identify two such hyperbolic systems
if they differ only by some diffeomorphism of R*. Since a local diffeomorphism
of R* depends on a choice of 4 functions of four variables, it seems reasonable to
guess that the “moduli space” of equivalence classes of local hyperbolic systems
with s = 0 modulo diffeomorphisms “depends” on 8 — 4 = 4 arbitrary functions
of four variables. In particular, we should expect there to be differential invariants
attached to a hyperbolic system with s = 0 just as the Riemannian curvature
tensor is attached to a Riemannian metric. In the next subsection, we will develop
a mechanism for computing these invariants, analogous to the construction of the
Levi-Civita connection and its curvature in Riemannian geometry.

The simplest hyperbolic exterior differential system of class s = 0 occurs when
both =1¢ and Zp; are integrable, and we will henceforth refer to this case as the
trivial case. In the trivial case, we may choose local coordinates (z, y, u, v) such
that the system 7 is generated by

Qo = dundz and Qo1 = dundy.
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This is the exterior differential system arising from the (trivial) PDE system u,, =
vy = 0, whose solutions are u = u(z) and v = v»(y). This is essentially the s = 0
version of the classical wave equation in characteristic coordinates.

Before going on to study the non-trivial cases, we want to first remark on a
general hypothesis that we will be assuming in order to simplify the exposition.
Strictly speaking, we are considering a structure which has slightly more informa-
tion than a hyperbolic system with s = 0. In fact, we are also imposing a choice
of which of the two characteristic systems we want to call ;¢ and which we want
to call Zg1. Thus, we might think of the structure we are studying primarily as a
pair B = (219, Z01) of transverse rank 2 Pfaffian systems on M*. In some sense,
the pair *E = (Eg1,Z10) should be thought of as the “opposite” structure, the
operation Z +— *Z defining an involution on the space of structures that we are
studying.

From the structure equations below, we will extract certain so-called “relative
invariants” of the pair Z. In modern terminology, a relative invariant is a “natural”
section o=z of a “natural” line bundle Lz associated to E where “natural” means
that, whenever one has a diffeomorphism f : M; — M, which induces an isomor-
phism f*(E3) = Z; of hyperbolic systems with s = 0, there is also canonically
determined an isomorphism f*Lz, = L=, which satisfies f*o=, = oz,. (We will
give examples of such invariants in the next subsection.)

In the present case, the involution = =~ *Z clearly exchanges each relative
invariant with an ‘opposite’ relative invariant *o. Thus, the relative invariants are
naturally grouped into pairs (or, ocassionally, singlets when a relative invariant
happens to be its own opposite).

DEFINITION: A hyperbolic exterior differential system of class s = 0 is symmetric
in case the relative invariants in each pair (o, *o) are either both zero or both
non-zero,

For example, for a symmetric system, the integrability properties of the two
characteristic systems will be the same (in particular, the derived flags will have
the same ranks). For simplicity, we shall concentrate on symmetric systems in this
paper. Thus, henceforth, we shall assume that all of our systems are symmetric in
this sense.

In the non-trivial case, our general assumption that the system be symmetric
implies that each of 219 and Z¢; will be non-integrable.'! We shall say that a
hyperbolic system with s = 0 is non-degenerate if this condition is satisfied. For
the rest of this section, we shall assume that all of our hyperbolic systems are
non-degenerate.

11) In any case, if one of the systems is integrable, then the system is semi-integrable in the
sense of Darboux and, as we pointed out in Section 1.4, the initial value problem be solved
by ODE methods anyway.
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1.5.2 A G-structure for the non-degenerate case and its invariants. Let us now
assume that we have a non-degenerate hyperbolic system (M , I) of class s = 0.
The first derived system of each characteristic system then has rank 1. This suggests
that we consider local coframings (', %, 77°, #*) on M satisfying the conditions

S ={7" 7"} o= {7, n*} (1

and
dn' = 0modn', * dn® = 0mod n®, . (2)

Thus, ' and i span the first derived systems of the characteristic systems =, and
Eo1, respectively. If (7', 7%, 7%, 7*) is another coframing on the same domain with
properties (1) and (2}, then the formula for transition between the two coframings
takes the form

7k ai 0 0 0 nt
) _|af &3 0 0 n*
Pl 1o 0 & o n®
it 0 0 a§ ai/ \n*

where the a§ are arbitrary subject to the obvious condition that af # 0 (or else the
transition matrix would not be invertible).

Now, for any coframing which satisfies (1) and (2), there must exist functions
A and C so that

dn? = An®antmod nt, n? dn* = Cntan? mod 7?, . (3)

By our assumptions, =g and Zp; are non-integrable. It follows from this and (2)
that neither A nor C can vanish. Using this, we can construct a coframing, say
(7, 72, 7%, 7*) = (Cn', v*, An®, n*) which satisfies properties (1) and (2) and
also the equations A = C' = 1. We shall say that a coframing is 1-adapted to 7 if it
satisfies the conditions (1), (2), and (3) with A = C = 1.

If n = (n*, 7%, n*, n*) is a l-adapted coframing on a domain U C M, then
any other coframing on U, say 7j = (7', 7%, 7°, 71*) is seen to be l-adapted to 7 if
and only if there exist functions a2, a3, a2 # 0, and a} # 0 on U so that

7 ai/ai 0 0 0 nt
7l_| & a 0 0] 7
7 0 0 a3/a; O 7
it 0 0 ai af nt

Such “transition matrices” take values in a certain 4-dimensional lower triangular
subgroup of GL (4,R) which we shall henceforth denote G. Thus, the local cofram-
ings which are 1-adapted to 7 are the local sections of a principal G-bundle B — M
which is a subbundle of the bundle of all coframes of M. In other words, B is a G-
structure on M in the usual sense. We will refer to B as the G-structure associated
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to (or determined by) the non-degenerate hyperbolic exterior differential system Z.
Moreover, one can clearly recover Z from a knowledge of B.

Now we shall apply the equivalence method!? to the G-structure B in order
to understand its invariants. Accordingly, we write the structure equations on B in
the form

w! Qaa—P22 0 0 0 Wt Tt
w? P21 b2 0 0 w? T2

df | = 0 0 oot 0 | |t | |10 @
w? 0 0 P43 P4 wt T

where, in the terminology of the equivalence method, the ¢;; are the pseudo-
connection forms and the T are the torsion terms (which are semi-basic'®). These
forms are not uniquely determined by these equations, and, following the usual
method of equivalence, we now want to understand how modifications of the
pseudo-connection forms can be employed to simplify the torsion terms.

Now, by the defining properties of the G-structure B, we have

dot= 0 modw?, w? Th= 0 mod w!, w?
dw? = w?rw?  modw?,w? T? = wirw? modw?!, w?
S0
do®= 0 mod w?, w* T3 = 0 mod w?, w?
dwt = w'aw? modw?, w? T* = wrrw? modw?, w?.

It follows that there exist 1-forms x1, X2, X3, and x4 which are linear combinations

of the w* so that

2 3, 4 1 2
T% = wAw® + x1Aw™ + Xarw™,

T = whaw? + x3a0® + xarw
The equations for dw? and dw? can therefore be written in the form
q

dw? = (a1 — x1)rw — (P22 — x2)Aw? + Wiaw?

dw4 = —(¢43 — )(3)/\(,JJ3 — (¢44 - X4)/\w4 -+ wl/\wQ.
It follows that we may assume that the ¢;; have been chosen so that

T? = Wwiaw? and T* = wlaw?,

12) The general equivalence method is explained in Appendix 1 to Section 2 of | BG g]. For-
tunately, however, the full complexity of the method will not be needed in this simple
case.

13) lLe., these terms have the form 7% = T;k w’ aw for some functions Tjik = —T{éj on B.
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so we assume this from now on. This condition still does not determine the ¢;;
since making the replacements

én $21 + arw? + azw?
baz | | b2ta wh + azw?
®43 ¢a3 + c3w® + cgw?
Gaq Gas + caw® + oy w?

in the above equations will clearly not affect T2 or T%. However, the above congru-
ences on 7" and T° imply that

T = Th w'aw® + T}, wlaw® mod w?

T3 = T3 w’rwt + T w* aw? mod w

and the above replacements can be chosen so that Ty = T, = T3, = T, = 0. Note
that the only replacements of the above form which preserve these latter conditions
are ones with ap = a3 = ¢4 =¢; = 0.

The upshot of this discussion is that, for the G-structure we have associated
to a non-degenerate hyperbolic system with s = 0, there is a choice of pseudo-
connection so that the structure equations take the form

dw? daa—@oa 0 0 0 wl
dw? | _ P21 P2 0 0 w?
dw | T 0 0 ¢oo—tpaa 0 || B
dwt 0 0 P43 ba4 w?
2 1 3 4 (5)
w?A(py whHps w’Hpgw?)
wiaw?
* wha(gs w+q1 wl4go w?)
wli\wz

Moreover, with the structure equations in this form, the 1-forms ¢o9 and ¢4y are
unique, the form ¢y, is determined up to the addition of a multiple of w!, and the
form ¢43 is determined up to the addition of a multiple of w®. As we shall see in
the next subsection, no further reduction of this G-structure can be made without
making some non-vanishing assumptions on the invariants.

To complete the discussion of the structure equations, it will be necessary
to compute their “Bianchi identities” by differentiating the equations in (5).}* We
will not give the details of the calculations (which are straightforward, if tedious),
but shall describe the results. First of all, differentiation of the equations (5) and

14)  The reader may want to skip the remainder of this subsection on first reading, instead going
on directly to Section 1.5.3. These “Bianchi” calculations are somewhat technical and will
be more meaningful once the reader can see that they are needed.
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reduction of the results modulo various combinations of the w® shows that there
are relations of the form

dp1 = p1 $22 — G2 Pa3

dps = p3 (322 —2da4) + Ps a3

dps = ps (2¢22)

mod w!, w?, w?, wi. (6)

dgs = q3 Gas — a1
dgy = q1 (3¢44—2d22) + g2 P21

dqy = G2 (2¢44)

We shall use the notation Vypy to mean dpy — 2p4 oz, i.e., the semi-basic part of
the exterior derivative of py, and similarly for the other quantities.

If we now introduce “curvature” 2-forms ®o9, Pys, P21, and Py3 by the equa-
tions

oz = —do1n (p3w® + paw?) + gsw'rw® + Epsqr w?rw® + By
dpay = —</>43A((J1 w' + g0 WQ) +prw’rw’ + %Q1p3 whrw? + Byy )
dpor = —p1A(Paa — 2022 — pr1w”) + By
dpus = —pazn(Baz — 2044 — 3 w*) + Pus,
the exterior derivatives of the equations (5) become
0= (Paz — Pas)rw' — (Vpraw' + Vpgaw® + Vparw? — gaps w® rw®) aw?
0= By rwt — Pogrw? — wlrw?aw? ®)

0 = (gg — Po)rw® — (Vagzrw® + Varnw! + Vagorw® — prgs w'aw?) s

0 = —By5n0® — Dpunw? — wiawiawl.

(Note that because ¢g1 and ¢43 are not canonical, the expression Vps is actually
only well-defined modulo w?®. However, since this term only occurs wedged with w3,
the resulting term is well defined. A similar comment applies to the other ambi-
guities caused by the ambiguity in the pseudo-connection.) The identities (8) now
give relations among the coefficients of the derivatives of the primary invariants
(i.e., the torsion coefficients) and the curvature coefficients. It is not useful to write
these out here; the form (8) will suffice for our purposes.

A little exterior algebra shows that the relations (8) imply that @35 and P4
are semi-basic 2-forms, i.e., they are quadratic expressions in the w?. In fact,

By = —r1Aw! — KoAw? and By = —kgrw® — rarw? (9)
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where
Ky = k,‘ij w’

for functions k;;, suitably skew-symmetrized so as to be well-defined. Using this
plus some more exterior algebra, it follows that there are 1-forms ¢911 and ¢433 so
that . ) .
by = ——(I‘il — w“)/\w — (]5211/\(4.) (10)
@43 = -—(F&g - wl)/\w4 - ¢>433;\w3.

1.5.3 Relative invariants. In order to interpret the coefficients in the torsion terms,
it is important to understand how the quantities py, ps, p4 and g1, ¢2,¢3 vary on
the fibres of B — M. This information can be read off from the relations (8).

It follows from (6) that py and go are what is known in the classical literature
as relative invariants— i.e., they are well-defined as sections of suitable line bundles
over M. For example, the expression o = py (w¥Arw?)? is a well-defined section of
the square of the determinant bundle of the characteristic system Zq;. Its opposite
(in the sense of the involution discussed in Section 1.5.1) is *o = g (w'Arw?)?, a
section of the ‘opposite’ bundle, i.e., the square of the determinant bundle of the
characteristic system =4. Moreover, calculation using (6) shows that, for example,
T = (psg1+q2q3) (W rw?)? is a well-defined section of the cube of the determinant

bundle of ;¢ with ‘opposite’ invariant *r = (gaps+pap1) (W3rw)3.

Thus, even though p, and g are not well-defined on M, their zero loci make
sense on M. Note also that if py (resp. go) vanishes identically, then p3 and ¢3
(resp. ¢; and py) become relative invariants, a fact to which we shall return later.

1.5.4 Structure reduction in the generic case. According to (6), on the open set
M* € M which is the complement of the zero loci of the relative invariants py and
g2, there exists a Gi-substructure B; C B defined by the equations

(P4)2 = ]-7 (Q2)2 - 19 p3 = Oa q = 0

where (G7 is the group consisting of the diagonal matrices in G whose diagonal
entries are each 1. Thus, up to a finite group ambiguity (of order 4), this G-
structure defines a canonical coframing on M*. The invariants of this coframing
are then invariants of the original hyperbolic system. Note that any symmetry of
the hyperbolic system 7 must preserve the open set M* and, on this open set, must
preserve the Gi-structure B;. Since preserving this latter structure is essentially
equivalent to preserving a coframing on M*, it follows that the group of symmetries
of 7 on M* is of dimension at most 4.

Conversely, it is not hard to show that hyperbolic systems satisfying these
conditions with a 4-parameter symmetry group do exist: Let H be a Lie group of
dimension 4 and choose any basis (7',...,7?) of its left-invariant 1-forms. Form

the ideal Z = {n'An?, n®an*}. This will yield a hyperbolic system which clearly
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does have (at least) a 4-parameter symmetry group. If the group H is sufficiently
“generic” among 4-dimensional Lie groups and the basis (7") is chosen sufficiently
generically, it can be shown that the resulting system will have its relative invari-
ants py and gz be non-zero, so that its group of symmetries is exactly of dimension 4.

What the corresponding PDE lock like is a very interesting question. Also
particularly interesting is the problem of knowing whether the ideals (H , I) are
complete for the initial value problem in the sense of Section 1.2.3.

1.5.5 Normal forms. We now want to interpret the vanishing of the torsion coef-
ficients in (5) in terms of integrability of various bundles intrinsically associated
to the original hyperbolic system 7 and use this to derive (local) normal forms in
various special cases. We will then use the structure equations to develop a test
for ‘linearizability’ and to classify the systems which are, in some sense, the most
“homogeneous” among non-degenerate hyperbolic systems with s = 0.

We begin our first interpretation by noting that the rank 2 Pfaffian system
© = {w!, w3} spanned by the first derived systems of =1y and Zg; is well-defined.
Indeed, from the structure equations, the 2-form

Q = wlr?

itself is well-defined, since the scalings of w! and w® cancel. Of course, () is a relative
invariant, being a section of the determinant bundle of © and having the property
that "2 = —Q. The integrability of £ has the following interpretation:

PROPOSITION: For any non-degenerate hyperbolic system with s = 0, the system
O = {w!, w?} is Frobenius if and only if py = go = 0. Moreover, T has the property
that py and gs vanish identically if and only if every point of M has a neighbor-
hood U on which there exists a coordinate system (z,y,u,v) : U — R* and functions
A, B, C, and D on U satisfying AB # 1, C, # 0, Dy #0 as well as Ay, = By, =0
so that, on U,

T = {(du -~ Cdy)n(dz — Ady), (dv — Ddz)a(dy — Bdz) }.

Proof: The fact that the system O is differentially closed if and only if ps and g9
vanish is immediate from the structure equations (5). It remains to verify that
the promised coordinate system exists and has the properties claimed for it. First,
since © is Frobenius, it follows that every point of M has a neighborhood U on
which there exist functions z and y so that © = {dz,dy}. Thus, for a 1-adpated
coframing on this neighborhood, we must have ' and 7® be linear combinations
of dz and dy. By making a linear change of variables in = and y, we can assume
that n'ady and n°Adz are non-zero. It follows that there are functions 4 and B so
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that n' is a multiple of dz — A dy and 7® is a multiple of dy — B dx. Since n'an® is
non-zero, it follows that AB # 1.

Next, the systems {n',n? 7%} and {n*,n® n*} are clearly Frobenius on U, so
there must be functions v and v so that

{7713 772:773} = {da:,dy, du} and {77177737774} = {dm,dy,dv}.
It follows that there are functions C' and D so that
Eig = {771,772} = {da: — Ady, du — C'dy}
So1 = {773,774} = {dy - Bdz, dv — D dz}.

Now, by (2), it follows that 4, = B, = 0, and the non-degeneracy assumption
implies that neither C, nor D, can vanish.

Finally, any hyperbolic system which locally can be put in the form we have
just derived is clearly a non-degenerate -hyperbolic system (with s = 0} for which
© is Frobenius. O

As we remarked before, in the case where ps and ¢o vanish identically, so that
O is integrable, then ps and ¢; become relative invariants. If we have information
about their vanishing or non-vanishing, we can refine the normal form given above:

PRrROPOSITION: Suppose that (M4,I) is a non-degenerate hyperbolic system satis-
fuing the condition that py and go vanish identically. Any point in the open set in
M where ps and ¢q1 are non-zero lies in o neighborhood on which there exists a
coordinate system (z,y,u,v) : U — R* and two functions C and D with C, and
D, non-zero so that, on U,

T = {(du— Cdy)a(dz — udy), (dv— Ddz)a(dy ~vdz) }.

On the other hand, ps and ¢ vanish identically on a neighborhood of o point in M
if and only if that point lies in a neighborhood U with coordinates and functions C
and D as above so that, on U

I = { (du—~ Cdy)rdz, (dv— Ddx)rdy }.

Proof: Construct a local coordinate system of the type guaranteed by the first
proposition. Because pg = ¢o = 0, the structure equations imply

windw! = pswirw?rw®  and  wiadw® = ¢ WPat At

Suppose first, that ps and g are non-zero at a point in M (and hence on a neighbor-
hood of this point), then using the fact that w! = A (dz — Ady) for some non-zero
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function A\, we compute that wladw? = X2 dzadyrdA = pzw'rw?aw®. Tt follows
that {w!,w? w3} = {dz,dy,dA} and hence that we may take u = A. Applying the
same argument to w”, and using the assumption that g; # 0, we see that we may
take v = B. This is the first statement we wanted to prove.

On the other hand, if ps and gy vanish identically on a neighborhood of the
point in question, then these structure equations imply that {w!} and {w®} are
each integrable separately. It then follows that we can choose our initial functions
z and y so that w! is a multiple of dz and w?® is a multiple of dy. The rest of the
construction proceeds as before. O

The coordinate systems constructed in the course of the proofs of the above
two propositions are not canonical. However, an examination of the proofs shows
that the ambiguity in the choice of coordinates is, first, the choice of z and y
subject to the condition that @ = Adzady, which involves a choice of 2 arbitrary
functions of two variables, and then a choice of u and v subject to conditions which
determine each of these two functions up to a choice of an arbitrary function of
three variables. Thus, the “coordinate ambiguity” (sometimes known as the “gauge
group”) in the above normal forms depends only on functions of three variables.
Since the normal forms involve 2 arbitrary functions of four variables (namely,
C and D), it is reasonable to say that the “moduli space” of hyperbolic systems
with py = g9 = 0 “depends” on 2 arbitrary functions of four variables. This is
not entirely unexpected, of course, because the conditions ps = ¢2 = 0 represent
two conditions on the 4 arbitary functions of four variables on which the “moduli
space” of general hyperbolic systems with s = 0 “depends”. What is, perhaps,
surprising is that imposing the further conditions ps = ¢; = 0 does not lower this
“generality”. The space of such structures still “depends” on 2 arbitrary functions
of four variables.

We would also like to note that the normal form of the first proposition is
quite useful for doing calculations. For example, it is easy to calculate that, in an
open set U with local coordinates as in that proposition, the coframing

nt = D, (dx — Ady)
7° = (du — Cdy)
n’ = C, (dy — Bdz)
n* = (dv — Ddx)
is 1-adpated to Z. Thus, for example, we have the following simple formula:
Q= (1-AB)D,C, dzrdy.

In particular, 2 will be closed, a condition equivalent to the conditions py = gz =
p1 = g3 = 0, if and only if

((1-AB)D,C,), = ((1— AB)D,G,), = 0.
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In other words (1 — AB)D,C, must be a (non-zero) function of z and y only. Note
that this condition still leaves 1 arbitrary function of four variables free (either D
or C can still be chosen arbitrarily subject only to the condition that D,C, # 0},
another suprising “function count”, given that the closure of £ is four conditions
on the invariants. Even imposing the further condition that ps = ¢; = 0, so that
we can take A = B = 0 in the normal form, still leaves C and D subject only to
the single condition that D, C, should be a function of x and y only.

1.5.6 Linear systems. As another example of the use of the invariants of B to
understand normal forms, we want to give a characterization of linear systems of
PDE in terms of these invariants. Before stating the characterization, it is useful
to first get an idea of what we might want to prove by computing the invariants for
the general linear first order hyperbolic system for two functions of two variables.

Consider the general such PDE system

()2 () ()= ()

Vg vy v 0

where A, B and C are 2-by-2 matrices with entries which are functions of z and v.
The assumption that this system is hyperbolic is equivalent to the condition that A
and B be everywhere linearly independent matrices which are simultaneously diag-

onalizable, i.e., there should exist invertible matrices P and Q (with entries which
are functions of z and y) so that

PAQ:(%l £2> and PBQ:(%1 52)

(of course, ai1by — azby # 0). This implies that we can make a change of dependent

variables v and v, writing
U z
(2)-4()

and then the above equations reduce to the form

Mz bz pagg(®) 2o
an Wy + bowy w
Now, every point of the zy-plane has a neighborhood on which there exist coordi-

nates s and t so that

aQ~+ba~~a?~ and 8_+b8__b8_
Yor T Moy T "ot “2or T 8y T %8s

for some non-zero functions a and .'> Making this change of coordinates, the above

equation takes the form
(%) _ [ 2 z
W Co1  Caz w

15)  Just choose s with ds # 0 to be constant on the flow lines of the first vector field and ¢ with
dt # 0 to be constant on the flow lines of the second vector field.




82 R. BryanT, P. GRIFFITHS AND L. Hsu

where the ¢;; are functions of s and ¢. Now setting c;; = ~f; and ¢33 = —g; and
then defining u = efz and v = e9w, the system reduces to the form

ug = Pv and v, = Qu

for some functions P and @ of s and t.

The corresponding exterior differential system on M = R* with coordinates
s, t, u, and v is generated by

T = {(du — Puvdt)ads, (dv — Quds)adt}.

It is easy to see that this is a non-degenerate system if and only if P(s,t) and
Q(s,t) are non-zero. By reversing s and ¢ if necessary, we may even assume that P
and @ are positive, which we shall do from now on.

In order to understand the form of the invariants for the general first order
linear hyperbolic system for two functions of two variables, it is therefore enough to
understand the form of the invariants for this latter system. Note that the second
proposition above implies that such a system must have all of its primary invariants
equal to zero: py = go = p3 = ¢y = p1 = g3 = 0. Let B — M be the G-structure
associated to the above Z. Consider the 1-adapted coframing 1 with components

nt= Qds
7 = (du — Puvdt)
= Pdt
7t = (dv— Quds)

as a (global) section of B. Of course, we have n*(w*) = 7 by the tautological
properties of the forms w'. Let us use ¢;; to denote 7*{¢;;). The first and third
structure equations give

(22 — aa) AQ ds = (22 — aa) An" = dn' = Qy dinds
(a4 — po2) AP dt = (paq — p22) A0 = dn® = Py dsdt
while the second and fourth coupled with the above formulae give
*9022/\7)2 = d772 + </9;>1/\771 — 173/\774 = 0mod nl
— gt = dn* + <p43m73 —n'an? = 0mod 13

which, in particular, imply that @22 = fao1n* + fazen® and s = faasn® + fazan®
for some functions f;;;. Substituting these formulae into the preceding formulae
and then solving yields

022 = —(P,/P)ds and pas = —(Q¢/Q) dt.
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From this, we get the formulae
N (Pa2) = (log P)st dsadt and 7" (Pag) = —(log Q) st dsadt.

In particular, it follows that in (9), we must have k;; = 0 for all 4j-pairs except pos-
sibly 13 and 31. It is this last observation which provides the key to characterizing
linear systems.

PROPOSITION: A non-degenerate hyperbolic system (M*,T) satisfies py = qo =
ps =g =p1 = qs =0 and Ppa+Pyy = Fuwlaw® for some function F if and only
if Z is locally the hyperbolic system associated to a linear first order hyperbolic sys-
tem for two functions of two variables. In particular, if T satisfies these hypotheses,
then every point of M lies in a coordinate chart (z,y,u,v) : U — R* in which T
has generators of the form

I = {{du — e?vdy)adz, (dv — e**udz)rdy}
for some functions A and p of x and y alone.

Proof: We have already shown that a hyperbolic system which arises from a lin-
ear first order hyperbolic PDE system for two functions of two variables satisfies
these invariant conditions. It remains to prove the converse. Consider the structure
equations (5-10), substituting the identities py = g9 = p3 = ¢1 = p1 = ¢3 =0. The
equations (8) reduce to

0= (@22 — @44)/\(4)1

0= —Bo rw’ — Bognw? — wraw?aw?
3

0= (@44 — @22)/\(4)

0= —Byarw® — Byyrw* — wrwawl.

The first and third of these equations together imply that ®os—P 4y is a multiple of
both w! and w? and hence of w!Aw®. On the other hand, by hypothesis, ®ga+P 4y =
Fw'aw?, thus implying
dbgs = kizwlaw?®
dbas = kgy w®awt.

We are now going to show that every point of M lies in a local coordinate
system as in the statement of the Proposition. To produce this coordinate system,
we proceed as follows: First, note that because the primary invariants are zero,
it follows that w' and w’ are separately integrable. Now fix a point of B and
choose functions x and y on a neighborhood V of the point so that w' is a multiple
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of dz and w? is a multiple of dy. By suitably restricting the domain V, we can
assume that the map (z,y) : V — R? is a submersion onto a rectangle of the form
R == (@0, 1) % {yo,¥1) in the zy-plane and that the fibers of this map are connected
and contractible.

By construction, the 2-forms d¢gs and d¢yy are closed multiples of deady and
hence are of the form dgor = L{z,y)dzady and doyy = M(z,y)dzady for some
functions L and M on R.!® Now, there clearly exist functions A\ and p on R so
that L = 2X;y and M = —2p,,. It follows then that

d(¢22 + Az dr — My dy) = d(¢44 — g dx + 1y, dy) = (.
Thus, there exist functions s and ¢ on V so that

o9 = ds — Ay dxr + /\y dy
Pyq = dt + pip dx — pyy dy.

Now, using the structure equations and the fact that w'adz = 0, we compute

d(et's“"”wl) = etﬁsg”'”\(—@u‘ + oo + dt — ds — dy — d}\)/\wl
= 2" E My + Ny) dzaw! = 0.

Thus, the non-vanishing 1-form et~ *~#~*w! is closed and a multiple of dz. Thus,
et~ AWt = X'(z)dz = dX # 0 for some function X on R. Replacing = by X,
we can assume that X =z, so we do this. Using a similar argument applied to w®
and replacing y by a function Y if necessary we can arrange

wh = et gy

w?» — 6t—s+u+>\ dy.

In particular, we now have Q = 21 dgady. (Note that this change of variables
in z and y will likely change the boundaries of the rectangle R, but this is not
important.) Now we can compute that

d(€f+)‘w1Aw3Aw2) = (ds — @22)’\0‘)1/‘”3/\‘02 =0.

It follows that there is a function u, unique up to addition of an arbitrary function

of z and y so that

es+>\ 3

whrw? aw? = Qadu.

18)  For convenience, for the rest of the proof, we will simplify our notation by simply writing I
instead of F(z,y) or (z,y)*(F) as notation for the pullback via (z, y) of a function F on R.
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Thus, there exists a function P on V so that
w? = e (du — P dy) mod dz.
Similarly, there exist functions v and @ so that
w! = e7"#(dv — Q dz) mod dy.
Now, using the structure equations, we compute that
0 =w'A(dw’® + daonw? — wPrwt) = e " dandyad(P — e**v).
It follows that P = e**v + Py where Py is a function of z and y alone. Similarly,
we see that Q = e*u + Qg where Qg is a function of = and y alone. Now, by the

existence theory for linear hyperbolic PDE, there exist functions uy and vy on R
which satisfy the equations

(uﬂ)y = 62/\1)0 + Py and (UO)a: = 62/\1140 -+ Q()

Replacing v and v by u + ug and v + vy, we get a new coordinate system where
Py = @y = 0. Now the functions z, y, u, and v are constant on the fibers of
the submersion V — M and furnish the desired coordinate system on an open
neighborhood of the base point in M of the point in B that we initially fixed. But,
by construction,

T ={w'a?, ?rw? } = { (du—e*vdy)ade, (dv — e udz)ady },
as we wanted to show. O

ExXAMPLE. Let us illustrate this result by applying it to the FPU equation
2
Zyy — (k(zz)) Zgz =0

introduced as Example 3 in Section 1.2.3. Recall that k is assumed to be a smooth
positive function on R. Since there is no explicit z-dependence in this equation, we

can associate to it the s = 0 exterior differential system 7 on zypg-space defined
by

T = { (dg + k(p) dp)n(dz + k(p) dy), (dg — k(p) dp)(dz — k(p) dy) }.

{Since z and y appear linearly in the generating forms, it is not surprising that
this system should turn out to be linear.) The condition that this system be non-
degenerate is easily seen to be that k'(p) # 0, so we assume this from now on. It is
then easy to compute that the coframing

n' =k (p)/ (4k(p)*) (k(p) dp -+ dg)
7* = (k(p) dy + dx)
1’ = K (p)/(4k(p)*) (k(p) dp — dq)
n* = (k(p) dy — d)
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is 1-adapted. Since n' and 7® are clearly integrable and since = n*An® is clearly
closed, we must have py = ¢» = p3 = q; = p1 = ¢3 = 0. Further computation then

reveals that
dpos = Knan®

doas = Kn*nn'

where

_ AR (p)K (p)k(p)® — K" (p)K' (p)*k(p) — K" (p)*k(p)” + 4K'(p)*)
K (p)*

In particular, &35 + g4 = 0, so all the conditions for linearity are fulfilled.

K

Before ending this subsection, we would like to comment on the geometric
meaning of the invariants in the linear case. As the structure equations derived in
the course of the proof make clear, the quantities

O =whr’ = P deady = -0
g=wowd= e drody= %
3(®og — Bug) = Kw'nw® = (A + p)gy doady
%(@‘22 + @44) = Fuwlrw® =\ - ey dzady
are invariants of the system

T = {{du — e* v dy)adz, (dv — e**u dz)ady}.

Note, in particular, that K is the curvature of the pseudo-Riemannian metric g.

The cases where K and F' are constant are particularly interesting since these
are precisely the cases where the (pseudo-)group of local automorphisms of the
structure acts transitively on B. Depending on the signum of K, there are three
models for complete pseudo-Riemannian metrics of constant curvature:

dz o dy ’ 5
m where Ic(x—ky)‘ <n/2and K= ¢ >0,
JK = dx ody if K =0,
dez o dy

__dwody o .
cos?(c(z — 1)) where |e(z — y)| < 7/2 and K = —c2 < 0

For each allowable value of K, there is a 1-parameter family of inequivalent homo-
geneous linear hyperbolic systems corresponding to the value of F. For example,
when K = 0, we get the systems

To.r = { (du — e™Yvdy)adz, (dv — e~ "Yudz)rdy},
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while when K = ¢? > 0 and F = K3, we get the systems

Ik p= { (du - cosl+/9(c(g; n y)) dy) adx, (dv - cosl—ﬁ(c(x +y)) dx> /\dy} .

The case of K < 0 is similar. (Note, by the way, that the geometric difference
between the K > 0 and K < 0 cases is that, in the former, a “time-like” curve (i.e.,
one on which the metric restricts to be negative) can cross all of the null curves
while a “space-like” one cannot. In the latter, the reverse is true.)

The corresponding linear PDE, in various coordinate systems and in the s = 1
version as well, were studied extensively by Euler and Poisson.!”

As our final remark about these linear systems with K and F constant, we
note these systems are precisely the ones for which the group of symmetries acts
transitively on B. In particular, in these cases, there can be no canonical subbundle
of B which is preserved under all symmetries. Hence, there cannot be any canonical
structure reduction in these cases. This shows that, without making some assump-
tions about the torsion terms in (5) or the curvature terms in (9) or (10), there
will be no canonical reduction of the G-structure.

1.5.7 The first prolongation. We are now going to apply the structure equations
derived so far to study the first prolongation of (M ,Z ) Our goal in this subsection is
to prove that any non-degenerate hyperbolic system with s = 0 which is integrable
by the method of Darboux at level 1 is locally equivalent to one of two possible
hyperbolic systems.

First, we want to describe a natural submersion B — M) which will be used
to express the characteristic systems on M® in terms of the structure equations
on B. First, we give an invariant description: Let £ € T B be the codimension 2
distribution defined by the equations w? = w?* = 0. By its very construction, for
each b € B, the image subspace

700 = 7, (By) € TeyM

is a 2-dimensional integral element of Z and hence is an element of MY, Thus,
we have defined a mapping 7(1) : B — MY, As we shall see, this is a submersion

17)  For example, see Chap. 3 of Livre 4 of [Da], where Darboux studies the equation

B 8

ey ey Y

for z as a function of # and y in the half-plane x — y > 0. As this is a second order equation
with no explicit z dependence, the methods of Section 1.1 show how to associate to it a
hyperbolic system of ¢class s == 0. This system will clearly be linear and one easily sees that,
as B and B’ vary, this gives a two parameter family of linearizable systems with K and F
constant.
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onto the open set of integral elements of Z on which the 2-form Q = w'aw? is non-
zero and the 7(U-pullback of the Pfaffian system Z(Y is just the Pfaffian system
generated by the 1-forms w? and w?.

Explicitly, one can see this as follows: If = (n’) is a 1-adapted coframing on
an open set U C M, then on By = 7 1(U) C B, there exist unique functions s3,
84, 72 # 0, and r4 # 0, so that

wl 7"2/7‘4 0 0 0 ’I’]1
w2 | | —safra 1/ro 0 0 n?
Wil 0 0 ra/Ta 0 n°
wh 0 0  —syfry 1/ry n?

(In fact, the map {(m, 79,74, 82,84) : By — UxR*xR*xRxR is a diffeomorphism.)
Substituting these formulae into the structure equations (4) and expanding shows
that there are congruences

$22 = (1/ra)dre
daa = (1/r4)dry
po1 = (ra/r3)dsy
paz = (ra/r3)dsy

modn', 7%, 7°, 7*.

If (e1,e2,€3,e4) is the frame field on U dual to the coframing 7, then one computes
that, for z = n(b),

W(l)(b) = span {el(a:) + 52(b) ex(z), es(z) + 34(b) ey(x) },
which is clearly an integral element of Z. Moreover, it follows that
(#)(@ZW) = {n* = san' .0t — s’} = {00},

as we wanted to show.

Now, from (5), and the definitions given in Section 1.3.6, the structure equa-

tions

1 3

dw? = —¢oy ' + Wi aw® mod w?
dw? = —py3rw® + wlaw? mod w?

yield these formulae for the characteristic systems:

Eg.lO) = {w27w17 (}521}7

Eéli) = {w47 w3, ¢43}-
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By the structure equations (5), (7), and (10), we see that

dw? — P rw* = dw' = dgor = 0mod w?, W, gon
dw* — W rw? = dw® = dus = 0modw?, w?, dug
so it follows that
~(1)<1> {w ’0521}
~01 = {w®, du3}.

Now, if Darboux’ method is to succeed at level 1 (i.e., if both the level 1 character-
istic systems are to contain completely integrable subsystems of rank 2), then both
of these latter systems must be completely integrable. However, by the structure
equations (5), (7), and (10) we see that

dw' = —(p3w® + pyw?) rw?
. modw!, ¢g1
d¢21 = —(Hl b (.‘L)B)/\(,L)2
and .
dw® = ~(qrw* + g2 w?)
mod LL)S, ¢43 .
d¢43 == —(K,g e wl)Aw4
Thus, it follows that the systems E(lé)m and Egll)m are completely integrable if
and only if

ps=pa=q=¢=0 and (kiz—1)= (kg1 —1) =k =ks=0.

We are now going to show that, up to diffeomorphism, there are essentially
only two systems satisfying these conditions. To do this, we assume that the above
equations hold and set, according to (6),

dp1 = p1doa+ Vp1 = p1dos+priw' +praw? + pr3w® + prgwt
dgs = g3 das + Va3 = g3 bas + @asw® + gaaw? + gzrw' + gz

Now, on account of the above vanishing assumptions, equations (7) and (8) simplify
dramatically. In fact, (8) becomes

0= ((I)QQ s @44)/\0.)1 - Vp] /\wl/\w2

0 = —Poonw? — whrw?rw?

0= (Pgg — (I)QQ)/\LUS — Vggrw® aw?

0= —®yrwt — wirwtrwl.
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These equations can now be solved for 49 and P44, yielding the identity p14 = ga2
and the formulae

Doy = wrw® + praw?aw® + (b + f) w2 aw?

Byg = wPrwt + gz wiawt + (b= f) wiaw?

where we have written 2b for the common value of ¢s2 and p14 and f is a yet to
be determined function. Now, a straightforward differentiation using the structure
equations so far yields

0 = d(d(¢22 — pas)) = — (P13 d21 + ga1 Pus) rw' n’® mod w?, w*,
so it follows that we must have pi3 == 31 = 0. We can now compute

0 = d(ddaz) = —(f + b) parrw'sw?
L4 mod w?, w?.
0= d(d¢44) = w(f - b) ¢21/\w AN
Thus, b= f = 0. We now compute
0 = d(dgs) = gza wiaw? mod w3, wl

0 = d(dp;) = praw’rw* mod w!, w?

which implies ¢34 = 0 and p;2 = 0. Finally, we compute

0 = d(dga2) = (g33 ~ p1) waw?aw®

0 = d(dgs) = (P11 — g3) whrw® aw?
which yields ¢33 = p1 and p11 = ¢s.

At this point, we have structure equations

w! Paqa — P22 0 0 0 w! —pr whaw?
d w2 — ¢21 ¢22 0 0 A w2 + w3Aw4
w? 0 0 ¢oa—¢gga O w? —g3 Wi rw?
w4 0 0 ¢43 ¢44 w4 u)l/\(,c)2
(1)
with .
dpog = wire® + ggwlaw?
3 1 3 4 (12)
dpgq = W rw 4+ p1waw
and ‘ L
dp1 =p1 ¢+ @aw
(13)

dgz = g3 dua + prw’.
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From these equations, we see that the 2-forms U1 = g3 w*Aw? and ¥g; = p; wirw?
are well-defined on M. From the equations (13), we see that if there is a point zo €
M where both of these 2-forms vanish, then both g3 and p; vanish on the fiber
above zg and hence on all the connected components of B which intersect this
fiber. In particular, ¥1q and ¥g; must vanish identically on the entire connected
component of M which contains xg.

Now, the equations (11-13) contain, in particular, the equations

dw' = —(¢4a — pa2)rw’ — p1 whaw?
dw® = —(¢22 - ¢44)Aw3 — g3 wirw?
and
d(¢44 — ¢22) = 2whw® — zwlaw? + pywiawt.

The significance of these equations is that they imply that there is a canonical
R*-bundle F' — M with connection form 6 = ¢44—d9o with the following property:
To every integral manifold S C M of the exterior differential system with inde-
pendence condition (Z, w!Aw?), the bundle F restricts to be the coframe bundle of
the “characteristic Lorentzian metric” g = wlow?® and its connection form restricts
to be the Levi-Civita connection form of this metric. Moreover, this characteristic
metric has constant curvature and is locally isometric to the complete metric of
this curvature, namely
dx o dy

g0 = cos?(z +y)’

Let us first dispose of the connected components of M where g and Tq;
vanish identically. Over such a component, the above structure equations simplify
considerably. Since all of the primary invariants (even g3 and p;) are now zero,
and since, by inspection, we have ®g5 + $yy = 0, it follows by our linearization
result that the system 7 represents a linearizable system of PDE. Moreover, F =0
and K = 1. Thus, the system is locally equivalent to the constant curvature linear
example

v u
Tio=1 (du— —2—dy) ndz, (dv— — 2
{(“ ooz 7 7) y)( cos<x+y>d””>”y}’

defined in the domain in zyuv-space given by the inequality |z + y| < 7/2.

Applying the method of Darboux and going through the calculations then
shows that every solution of the system

uy(z,y) = sec(z +y) v(z,y) vg(,y) = sec(z + y) u(z,y)
can be written in the form
u(z,y) = g(y) sec(z + y)+f(z) tan(z + y)+f'(z)
v(z,y) = f(z) sec(z +y)+g(y) tan(z + y)+g'(y

~—
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for some functions of one variable f and g and that these are unique up to a
replacement of the form

(f(z),9()) — (f(®) + a sin(z) + b cos(z), g(y) + a cos(y) + b sin(y))

where a and b are constants. We leave to the reader the task of showing how to
determine the functions f and g from non-characteristic initial data.

ExXAMPLE (continued): Before going on to consider the non-linear possibility, let us
consider the FPU equation that we earlier saw was linear. We computed that

_ AR OF (0)() — 3K () 0k (p) — K (p)* k() + 4 ()")
- F(p)*

and now know that K = 1 is the necessary and sufficient condition that this
equation be integrable by the method of Darboux at level 1. Now, the equation
K = 1is a third order differential equation for k(p). Inspection shows that if k(p) is
a positive solution to this equation, then so is ¢p k{c1p—+ o) for any three constants
g, ¢1 # 0, and ¢ > 0. The transformations k(p) v co k(c1p + ¢o) with ¢; # 0 and
¢z > 0 form a 3-parameter group I' which acts effectively on the space of positive
solutions of this third order equation. Up to equivalence under this group action,
only two of these solutions have a positive dimensional stabilizer, namely

K

k(p)=p™2  and  k(p)=p"%,

both only defined for p # 0. It is not hard to show that, aside from these two so-
called “singular solutions”, up to the action of I" there are only two other solutions.
The first is the unique function k : R — (0, 1) defined implicitly by the equation

2 +log L :__k(p)
p= —
VE(p) 1+ k(p)
and the second is the unique function & : (—00,0) — (1,00) defined implicitly by
the equation
VE(p) — 1)

2
P= R o8 (\/k(p) +1

Thus, this gives the complete list of FPU equations which are integrable by the
method of Darboux at the first level.

As an explicit example of the use of the method of Darboux in this case, let
us consider the case k(p) = p~2. Consider the differential system 7 defined in the
region p > 0 in xzypg-space by the 2-forms

T =1 (dg+p ?dp)a(dz +p 2 dy), (dg—p > dp)a(dz —p~* dy) }
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which is the differential system associated to the equations

Py —q:=0
qy + (p—g/?’)x =0
which model the dynamics of a polytropic perfect gas [FX]. The initial conditions
are specified along y = 0 in the form
p(z,0) = po(z) >0
q(z,0) = go(z).

Applying the method of Darboux then leads to the following recipe for solving this
initial value problem. Define a new function s by setting

s(x) = / " Lpo(e) de.

Note that, because pp > 0, the function s is strictly increasing. If we now reparamet-
rize the initial curve (z, y, p, q) = (;z:, 0, polz), qo(gs)) in terms of s, we can write

(, v, p, @) = (2a(s), 0, 1/a/(s), B'(s))

for some functions o and F defined on the range of s. Then the integral surface
of T containing this curve is given by

z(s,t) = als) + alt) + B(t) — B(s) + 5(s = t)(F'(s) + F'(t) + &/ (t) — ()
y(s,t) = 2(s — 1)/ (o (s) + o'(t) + /() — 5'(s))

p(s,t) =2/(c/(s) + o/ (t) + B (t) — F'(s))

q(s,t) = 3(B'(s) + 8'(t) + /() — o' (s))

where the four functions are defined in the region in the st-plane defined by the
inequality

(of(s) + o/ (t) + F'(t) — B'(s)) > 0.

Note that this certainly includes the line s = ¢ which corresponds to the original
initial curve.

Now, it is well-known that, under suitable hypotheses on the initial data,
solutions of an FPU equation will develop “shocks”. In our terminology, this corre-
sponds to the failure of the solution surface constructed above to be representable
as a graph, i.e., in the form p = P(z,y) and ¢ = Q(z,y) for some functions P and
() defined on the whole zy-plane. Of course, this will generally happen when the
map (s,1) — (a:(s,t), y(s,t)) fails to be a diffeomorphism from the st-plane to the
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zy-plane. In order to understand this behavior, it is helpful to simplify the ahove
formulae by introducing new functions a and b by a = g+« and b = # — « so that
the above formulae become

z(s,t) = a(t) — b(s) + $(s — ) (' (t) + V/(s))
y(s,t) = 2(s — 1)/ (d'(t) = V' (s))

p(s,t) =2/(a'(t) - ¥'(s))

q(s,t) = 3(d'(¢) + V'(s)).

The condition for characteristic completeness is then that we have a'(t) > b'(s)
for all s and ¢ in the range of definition. In other words, the graph of ¢/ must lie
strictly above the graph of ¥'. One easily computes that

(a'(t) = b/(s) — (t — 8)a" (1) (a/(2) — ¥ (5) — (¢ — 5)b"(s))
(@ () —b(s)”

Tt follows that, in order that dzady not vanish (so that the mapping (s,t) —
(z(s,t),y(s,t)) is at least a local diffeomorphism), we must have a/(t) > ¥'(s) +
(t — s)b’(s) for all s and ¢ in the range of definition, i.e., the graph of &’ must lie
above all the tangent lines to the graph of V', as well as a’(t) + (s — t)a” (¢) > b/(s)
for all s and t in the range of definition, i.e., the graph of ¥ must lie below all
the tangent lines to the graph of a’. These conditions clearly cannot be met for
any non-constant functions ¢ and b which satisfy the conditions /() = ap and
V(s) = by for all s and ¢t satisfying |s|, |t| > M, in other words, for initial data
which are compactly supported perturbations of constant initial data. Thus, this
analysis recovers the well-known fact (see, for instance, [La]) that solutions of this
FPU equation with initial condition which are “small” perturbations of constant
initial data must develop shocks.

deady = —2 dsndt.

Now let us turn to the analysis of the components of M on which ¥, and ¥y,
do not vanish simultaneously. Thus, restricting our attention to one such component
and calling it M for convenience, we see that ¢3 and p; do not vanish simultaneously
at any point of B. Now, it follows from (13) that at any point of B where g3
vanishes, its differential dgs is a non-zero multiple of w>. In particular, the locus
gz = 0 is a smooth hypersurface in B which contains all of the fibers of B — M
which it intersects. Moreover, since dgs = p; w® along this locus, it follows that
this hypersurface is a union of leaves of the foliation of B defined by w® = 0.
In particular the image of this hypersurface in M, which is the locus where ¥yp
vanishes, is a countable union of closed leaves of the characteristic foliation defined
by w® = 0. A similar picture prevails for the locus where ¥g; vanishes. It is a
countable union of closed leaves of the characteristic foliation defined by w! = 0.
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Suppose, first of all, that we are at a point z of M where neither ¥y nor
Wy vanish. Then, by the structure equations, we can choose a coframing n =
(n*,7%,17%,m*) on a neighborhood of z which is a section of B and also satisfies
p1 = g3 = 1. This coframing then satisfies the following equations (which are
clearly specializations of {11-13)).

77; Cas—paz O 0 0 n; ~n;mz
0 0 7 N> AN
dl T} =_ P21 P22 A +
N 0 0 @pao—pu O 73 —n3an?
7t 0 0 ©43 P44 n* n'an?
with
dpzs = n'an® + n'an?
dss = n°nn* + Pt
and
0= a2 + 7)1
0= +7°

and the ideal T is generated by {n*an?, nan*}.

Since n! and 5 are integrable but dn* # 0 and dn® # 0, we may introduce
coordinates (z,y,p,q) with p and ¢ positive, such that
‘ d d
= bl and = _52‘
¥4 q

From the structure equations, we have

. dp dy, dz
Qlo___nl/\Qz_dl_ 1/\3:___‘___/\_
n =AY (p . ) ’
and similarly
d dr. d
Qo1 = 7P = —dn® —gPant = (2 + Z 2
q P q

Setting p = e™™ and ¢ = eV gives
Q10 = —(du — €” dy)ae* dz
Qo1 = —(dv — e dzx)re” dy
and therefore the system models the s = 0 Liouville system

Uy = €

vy = e,
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Now, although the coordinate chart on a neighborhood of z that we have
constructed is not canonical, the 1-forms n' and 7° are actually well-defined. Any
two local coordinate charts (z,y,p,q) and (i, 4, P, q) with p, q, p, and g all positive
and satisfying

d dz d diy
1’]1::-——{13:—_1:— and ’[’]3:-—y—:v——y—
p P q q
must be related on some (possibly smaller) neighborhood of z by relations of the
form

(z,y,p,9) = (X(2), Y(@), X'(2)p, Y (1)])

where X and Y are functions of one variable with positive derivative. Thus, on
the open set in M which is the complement of the loci g = 0 and Wy = 0, the
hyperbolic structure is actually locally homogeneous and induces a special atlas of
charts which carry the system Z into the s = 0 Liouville system.

Now let us consider the case where z € M lies in the locus where W1; vanishes.
Let y be any function on a neighborhood of z satisfying y(z) = 0 but (dy), % 0 and
with the property that dyaw® = 0. Then we may restrict to smaller neighborhood V
of z with the property that y = 0 defines the zero locus of ¥y in V. Regarding y
as a function on By by pull-back, we see that ¢3 and y have the same zero locus
in By and have non-vanishing differentials there. It follows that the ratio r = g3 /y
is a smooth non-vanishing function on By and calculation shows that

dr = r ¢yq mod Wi
It follows that we can choose a section (n*, 7%, 7%, 7*) of By — V which lies in the

locus p; = r = 1. In other words, this section will have p; = 1 and g3 = y. Thus,
we will have structure equations

7t P~z O 0 0 nt —ntan?
a7y - ©a1 P22 0 o) [ e an?
7 0 0 @oo—aa O n? ~ynPant
n* 0 0 P43 P44 n* ntan?
with )
dipos = n'an® +yn' an?
dess =0t + nPan?
and

0= @o+yn'
dy =ypu+ 1°

and the ideal 7 is generated by {n'an% n®sn*}. Now, since n' is integrable, but
dnt # 0, it is easy to see that there exist functions z and p > 0 on a possibly
smaller neighborhood of z so that n' = pdz, and by construction, there exists
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a function @ on this neighborhood so that 7 = @ dy. However, looking at the
equation dy = y 4 + n° on the locus y = 0 shows that we must have @ = 1 on
this locus. Thus, we may write () = 1 + y ¢, where ¢ is some smooth function on a
neighborhood of z. Substituting this into the equations just above shows that

P22 = —ypdzx and p4a = —qdz.

Substituting these relations into the formulae for dwes and dyys and then solving
for n' an? and n®An? yields the expressions

ntan? = dza (dp — pq dy) and 7 ant = dya (dg ~ p(1 + yq) dz)

It follows that the four functions z, y, p, and ¢ form a coordinate system on a
neighborhood of z. Moreover, the system in zypg-space defined by

J = {dzr(dp - pqdy),dya(dg — p(1 + yq) dz) }

is easily seen to be a non-degenerate hyperbolic system away from the hypersurfaces
defined by p=0and 1 +y¢g=0.

There ig a similar normal form for this non-linear system in a neighborhood
of a point on the locus where Wy, vanishes. Details will be left to the reader.

In conclusion, we have shown that there are essentially only two types of non-
degenerate hyperbolic systems with s = 0 which are integrable by the method of
Darboux at level one. The first type is linear and the second is non-linear, being
locally equivalent to the s = 0 Liouville system away from a hypersurface. We
shall refer to it henceforth as the extended s = 0 Liouville system. It would be an
interesting project to classify the global systems (if any) of the latter type which
are characteristically complete in the sense of Section 1.2.3.

Now from our results so far, we see that the method of Darboux can be used
to integrate the s = 0 Liouville system. In fact we may explicitly carry out the
integration, as follows.

On M we use the coframing
wh=dz, W=du—e'dy, wP=dy, w*=dv-—edz.
Then on MY we have the coframing
wig = wl, t10 = w2 — hag wl, wo1 = w3, to1 = Wt~ hgs >

and
Ty = dhoo — e*dy

o2 = dhog — €u+vdﬂ§.
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Differentiating, we obtain

dfip = —mogrwig + €'woinbpt
dflg; = —mpgawg + e wipafig

and
dmag = 6u+va1/\(910 + 901) mod wyg

dmos = €*TPwioa(B10 + Go1) mod wyy .

By definition the characteristic systems are

5(13 = [wm; 010, m20)

5811) = [wm, 601, To2),

and clearly

dbyg = e’ 6
w=e . WoiN Ol}modE%)

d’/(zo =" vw01/\901

with similar formulas holding for the other characteristic system. It follows that
the first derived systems are

=0 = [wio, m20 ~ €610

= [dﬂ:,d(hgo — €u)]

and similarly
250 = [dy, d(hoz — ).

Using this result we may integrate the s = 0 Liouville system, as follows: Since
d(flgg - e”)/\dz = dy/\d(hgz - e”) =0

on solutions we may set
hg() —e¥ = O/(.’L‘)
hog — e’ = G'(y)
for functions a(z) and f(y). The equations

f10 =051 =90

then yield
du = (¢! (z) + e*) dz + e”dy

dv = (B'(y) + ") dy + e"dz
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and so we must solve the ODEs
ug =o' (z) + e*
Uy = .B, (y) +e”

For this we set
U=u-alz)=Ilogf

V=v-08(y) =logg

and consider functions a(z), b(z) which satisfy

{a’(:c) = —e(®)

V(y) = —efW,
Then the above ODE system is

U, = e?@)eV

Vv, = PV
or, equivalently,
Lo i@
g
§=~wm
These may be integrated to give
1
euema = f B
a(z) + b(y)
1
VB — g o=
eV =g= ————.
7 @) + o)

Substituting in the expressions for du and dv allows us to set @ = a,b = b and
finally

v —a' (Q)
a(z) + b(y)
v —¥'(y)

© 7 a@) +b(y)

for the general solution to the s = 0 Liouville system. We note that a(z), b(y) are
arbitrary subject to a'(z) < 0 and ¥ (y) < 0.
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REMARK: To close the loop with the previous discussion at the end of Section 1.4
of the s = 1 Liouville equation, we may differentiate the first equation with respect

to y to obtain
eu—i—v — a}(x}b!(y)
(a(z) +b(y))?
which since
(U +v)gy = 26"

gives the general solution to the s = 1 Liouville equation mentioned in Section 1.4.3.

1.6 Hyperbolic Euler-Lagrange systems of class s = 0.

1.6.1 Bi-symplectic structures. Among the hyperbolic exterior differential systems
of class s = 0 are the Euler-Lagrange systems that we introduced as EXAMPLE 4 in
Section 1.1.3. In this section, we shall develop some of the special properties of these
systems, culminating in a variant of Noether’s Theorem, which will describe the
relationship between symmetries and classical conservation laws for these Euler-
Lagrange systems. (The notion of conservation laws for general hyperbolic exterior
differential systems will be developed more fully in Section 2.1.)

We begin by recalling the construction of hyperbolic Euler-Lagrange systems
of class s = 0. Let M be a 4-manifold and let ® be a symplectic 2-form on M.
Associated to any other 2-form A on M, we want to consider the functional F on
immersed ®-Lagrangian surfaces S C M which are oriented and compact (possibly
with boundary) which is defined by the rule

Fy(S) = /SA. (1)

In Example 4 in Section 1.1.3, we saw that the critical points S of this functional
relative to variations that leave fixed the boundary of S are the integral surfaces
of the exterior differential system

e=9=0.

Here, ¥ = dtp where ¢ is defined to be the (unique) 1-form satisfying dA = $rp. We
shall call £(A) = {®, ¥} the Fuler-Lagrange system associated to the functional Fy.

Note that if A = A + dy + f® for some 1-form « and some function f, then
for any compact, oriented ®-Lagrangian surface S, we will have

Fi(S) = Fa(S) + /a o

It follows that S is critical for Ff; with respect to variations through ®-Lagrangian
surfaces fixing the boundary if and only if it is critical for F with respect to the
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same variations. Thus, it would not be surprising if A and A gave rise to the same
Euler-Lagrange system.

In fact, this is precisely what happens. Let Zg be the differential ideal gener-
ated by the symplectic form @, and recall that the characteristic cohomology group
H?(M,Iy) is by definition H2(2*(M)/Zs) where the differential on the quotient

complex *(M)/Zs is induced by d. Note that A and A determine the same coho-
mology class in H?(M,Zg) if and only if there exist a 1-form ~ and a function f

so that A = A +dvy + f®. In this case, we will have
dA = dA + dfrd = (¢ + df ) D,

so we can take Q,E = o + df, implying U = d@g = dyp = ¥. In particular, ¥ depends
only on the characteristic cohomology class [Ale € H*(M,Zs) defined by A. In
fact, this construction can be carried further to show that, on any openset U C M
satisfying H2(U,R) = H?(U,R) = 0, there is actually an isomorphism

B (U, Ze) ~ { Y € Q*(U) | @AY =0, d¥ =0 }

defined by the obvious assignment [®] — @.

Throughout this section we shall make the assumption that the exterior dif-
ferential system £(A) is non-degenerate in the sense that the 2-form U satisfies the
condition that WAW is nowhere vanishing. This is equivalent to the assumption that
the associated PDE system have non-degenerate symbol.

Indeed, taking the exterior derivative of the equation dA = $at) yields
dAT = 0.
Hence, in order that {®, ¥} span a hyperbolic pencil at each point one must have
AT = —f2PAD

for some non-vanishing function f (which we may take to be positive), while the
condition that {®, ¥} span an elliptic pencil at each point is that

VAT = f2PAD

for some non-vanishing function f (which we could also take to be positive).

The properties of these pairs (<I>, \I/) are of sufficient interest to warrant giving
the separate

DEFINITION: A bi-symplectic structure (M;®,¥) on a 4-manifold M is a pair
(<I>,\If) of everywhere linearly independent symplectic forms. The bi-symplectic
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structure is said to be special in case PA¥ = 0 and is said to be hyperbolic (re-
spectively, elliptic) if the pencil generated by ® and ¥ is everywhere hyperbolic
(respectively, elliptic).

EXAMPLE 1: Prescribed Gauss curvature. In an open set M C R*, consider the
standard symplectic form
P = dpnadz + dgrdy.

If f and g are any non-vanishing (smooth) functions of two variables, then the
2-form

U = f(p,q) dpadg — g(z,y) dzndy

is closed, non-degenerate, and satisfies
¥ =0.

On solution surfaces to ® = ¥ = 0 of the form

(z,y) — (z,9,p(z,9), 9(z, 1))

we obviously have p = z, and ¢ = z, for some function z(z,y) which satisfies the
PDE

F(zas 2y ) (2w 2y — Z§y> = g(z,y). (2)

A special case is when

e 1
BT ToR

Then we may think of (z,y, z(z,y)) as the graph of a piece of surface ¥ in Euclidean

space E?, and the left hand side of (2) is the Gauss curvature of X.

Note that this defines an elliptic bi-symplectic structure if ¢ is positive and
a hyperbolic bi-symplectic structure if g is negative. Especially noteworthy is the
case when g = —c? < 0 for some constant ¢. Then this system models the equation
for constant negative curvature surfaces. In this case, the decomposable 2-forms in
the pencil generated by ® and ¥ are

dp dg
=(—2 1.4 S S
tho <1+p2+q2+c y>A(1+p2+q2 Cx)

dp dq
— - de ).
Qo1 <1+p2+q2 Cdy>A<1+p2+q2 +c a:)

It may be checked that the characteristic curves on integral surfaces are the usual
asymptotic curves of elementary differential geometry.
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1.6.2 A structural symmetry. For a special bi-symplectic structure the roles of ®
and ¥ are obviously symmetric, which suggests that hyperbolic Euler-Lagrange
systems of class s = 0 might have a corresponding structural symmetry. We shall
now see that this is indeed the case.

PROPOSITION: Suppose that (M;®,V) is a special bi-symplectic structure on a
manifold M satisfying H*(M) = H3(M) = 0. Then there exist 2-forms A and Q
on M so that the exterior differential system generated by the equations

P=0=90

is the Buler-Lagrange system both of the functional Fy defined on ®-Lagrangian
surfaces and of the functional Fo defined on ¥ -Lagrangian surfaces.

Proof: Since H2(M) = 0, there are 1-forms ¢ and % such that

b =dy
U = dip

from which it follows that
d(®ay) =0

since ®A¥ = 0. Thus, since H>(M) = 0, there is a 2-form A so that
Py = dA,

and we conclude that
=T =0 (3)

is the Euler-Lagrange system for the functional

ﬂ@:LA

on ®-Lagrangian surfaces S.

Symmetrically, since d(¥ap) = 0 and H3(M) = 0, there exists a 2-form  so
that
Ynp = dfd.

Then (3) is also the Euler-Lagrange system for the functional

%@xéﬂ

on W-Lagrangian surfaces R. O
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The importance of this proposition is that it gives a sufficient criterion for
an exterior differential system I generated by a pencil of 2-forms on a 4-manifold
to be expressible as a {non-degenerate) Euler-Lagrange system; namely it must be
generated by a bi-symplectic structure.

EXAMPLE 2: Systems defined by conservation laws. We want to illustrate this sit-
uation. To put this example in context, recall that, by the last proposition in Sec-
tion 1.1.4, a (real-analytic) hyperbolic Euler-Lagrange system is (at least, locally)
the exterior differential system associated to a hyperbolic system of conservation
laws. In this example, we want to look at the converse situation. We will determine
conditions that a translation-invariant hyperbolic system of conservation laws

up -+ (flu,v))y =0
v+ (g(u,v))e =0

might satisfy in order to be an Euler-Lagrange system. Using the notation from
Section 1.1, we can express this pair of PDE as the exterior differential system

& = —dundz + df adt = d(~u dr + fdt),
U = —dvndz + dgndt = d(—vdz + g dt).

The conditions
DD £ 0, WAW £ 0, PAY =0

are, respectively,

fo #0, 9u # 0, fu= 9o

By the last of these relations we have
f=F, g=F
for a function F(u,v), and the first two inequalities give
F,, # 0, Fo, #0.
To determine the functional Fj, we set
W= —vdr+ F,di
so that di» = ¥ and seek to determine a 2-form A so that

dA = ya®.
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The right hand side is

vdFE,rdeadt — F, dundznadt = v dE,rdxndt — dF adzadt + F, duadzadt
= d((vF, — F)dzndt).

To better understand this we may locally introduce new coordinates U and V by

the relations
U=-~u

V=F,
so that u = —U and v = H(U, V). Then we have

& = dUndz + dV adt
A= (VHU,V) - F(=U,HU,V)))dzrdt.

Then ®-Lagrangian surfaces which are locally graphs over xt-space are given by
U=W,,V =W, for a function W{z, 1), and

A= (Wy HW,, Wy) — F(=Wy, H(W,, W,))) dendt = L(W,, W) dzadt

defines a first order functional on W{z,t).

For a familiar specific case we may take
F=1(u?+%
in which case U = —u, V = v and the Lagrangian is
2
L= %(‘/152 - Vx ) .
The hyperbolic PDE is, not surprisingly, the s = 0 wave equation

'LLt,"—’Ux:O

vy + u, = 0.
More interesting is the general case when
F= %(u’\ + o), A#£0,1,2.
Then the functional is a constant times

/ (WQ + =W *‘1) dzndt.
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The hyperbolic PDE system is

w+ (A=) 20, =0
v+ (A — l)uAhzum = 0.

For A = 3, this is a pair of coupled Burgers’-type equations that, after adjusting
constants, becomes
U 4+ vv, =0

g + uuy = 0.

In these specific examples, the symmetry between ® and ¥ is accomplished
by exchanging the roles of u and v and carrying out the same computations.

Special case: The Fermi-Pasta-Ulam equation gives rise to the s = 0 hyperbolic
system generated by
® = dpadz + dgady

¥ = dgadzx — dhnady

where h(p) = k%(p) in the notation of EXAMPLE 3 in Section 1.2. This system is
special bi-symplectic and can be expressed as an Euler-Lagrange system by taking
in the above formulae.

F(p,q) = q¢— H{p)

where H'(p) = h{p). Working through the above recipe, we see that the FPU
equation is the equation for critical points of the functional

2z, y) — /(H(z,;) + 127 dzndy.

1.6.3 An analog of Noether’s Theorem. We will now explore the relationship between
symmetries and conservation laws for (hyperbolic) Euler-Lagrange systems Z. (As
will be explained in Section 2.1, a ‘conservation law’ for 7 can be thought of as
a closed 2-form which lies in the ideal 7 and thus we will make this identification
without further comment.)

The usual statement of this relationship is some version of the classical theo-
rem of E. Noether which asserts that there is an isomorphism

symmetries of conservation laws
a variational =~ { for the variational
problem equations

The result we shall give below is of this general type but differs from this particular
statement in a number of important specifics.
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Let (@, \Il) define a hyperbolic, special bi-symplectic structure on a 4-manifold
M. We have seen that & = ¥ = 0 gives the Euler-Lagrange system for a pair of

f C. ]
/A3 /

defined, respectively, on ®- and ¥-Lagrangian surfaces. Thus our formulation of
Noether’s Theorem will need to treat @ and ¥ symmetrically. In addition, because
the hyperbolic system generated by ® and ¥ always has at least these two 2-
forms as independent conservation laws while there is no a priori reason that it
should have symmetries, we may suspect that the correct version of the above
isomorphism should instead be with a quotient space of all conservation laws. With
these observations in mind, we set

& = { Lie algebra of vector fields v on M that preserve each of  and ¥ }
(®,¥) = { constant linear combinations of ® and ¥ }

Co = { closed 2-forms which are linear combinations of ® and ¥ }

Co =Co/(®,¥).

To relate the definition of & to symmetries of a variational problem, let us
suppose that we have found 2-forms A and Q as described in the Proposition of
the previous subsection. We denote by (M, ®, {A]@) the data consisting of the
symplectic manifold (M, ®) together with the equivalence class [A]s € H? (M , Iq)).

We make the corresponding interpretation of (M , U, [Q]\y) Then the following

proposition should be expected, in view of the explicit identification of H? (M , I@)
made in Section 1.6.1.

PropoSITION: If v € &, then v is an infinitesimal symmetry of each of the data
(M,®,[Als) and (M, ¥,[Qw). Conversely, if a vector field v is an infinitesimal
symmetry of either of the data (M,®,[Ale) or (M, ¥,[Qg), thenv € .

Proof: Let v € &. From dA = 9¥a® and dy = ¥ we infer that
L, =dh
for some function A, and then a short calculation gives
d(Ev(A - h@)) =0
It follows that

L,A=h® +dA
for some 1-form A, which is the same as
L,{[Als) = 0.

Applying a similar argument to £, ¢, the proposition now follows. 0
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We can now state and prove our version of Noether’s Theorem.

PROPOSITION: There is a natural isomorphism

n:® — Co. {(x)

Proof: To define 77, we write locally, as was done above,
D =dp
¥ =dy
for 1-forms ¢ and v, which are well-defined up to transformations

{(p-ﬁ(ﬁ:(pﬁ—dG
Y —p =1+ dH

for functions G and H. For v € & we have

L,o=L, =0
from which it follows that ’
v =dg
(5)
L,y =dh

for suitable functions g and h. We set
n(w) = (v-9)¥ + (v-9)® ~ (g¥ + h®). (6)

First, we show that 7 is well-defined: The functions g and h are well-defined
up to constants by (5). Thus, n is well-defined modulo (®, ¥) once we know ¢ and
. These are in turn well-defined up to a substitution (4). Then

Lyp = Ev(‘p —+ dG) = d(g + [/vG)
Lot = Lo(+ dF) = d(h + Lo H)

which gives

and v
(va@ — gV = (Vo + LG — g~ L,G)¥

= (vap—g)¥,
showing that 5 is well-defined.
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Second, we show that n(v) = 0 is closed: We have

d[(vop — @)V + (vatp — R)B] = (d(v-p — g))A¥ + (d(v-tp — h))Ad
=~V PIAE — (v T)AD
=0—v4{PrT)
=0
since ®AV = 0.
Third, we show that n is injective: If n{v) = 0 then

{ vap—g=a
voth—h=20
for constants a and b. The exterior derivative of the first equation gives

O=Lyp~vo®—dg
:'U—‘®

which implies that v = 0.

Fourth and finally, we show that 7 is surjective: We may choose a local coframe

w!, w?, W, w* so that

® = wrw? +Paw?

U = wlaw? — Wit

For any function F we set
4
dF = > Fu'.
i=1
A conservation law of level zero is a closed 2-form

Ad+CV.

From
dAAD + dCAT =0

we infer that

Al—C’lzo

AQ““OQ:O ,
Az +Cq=0 (7)
Ay +Cy=0.

We want to find a vector field v such that if we define g and h by

A=voth—h
B=vsp—g
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then (5) holds. In fact {(5) and (8) imply

dA=v_¥
{dB:’U«Jq), (9)

and the exterior derivatives of these equation give
0= d(U—J\I/) = ﬁU\If
0=d(v.®)=L,D

as required.

We note that for g and h defined by (8), equations (9) imply equations (5).
Now there are unique vector fields v4 and vp satisfying

dA = VA Y
dB = vp .
We then have to show that v4 = v, and this is just a restatement of (7). O

EXAMPLE 3: Suppose that
$ = dpadx + dgndy
and that we have a translation-invariant Lagrangian
A = L{p, q) dzrdy
as in Section 1.1 above. Then the Euler-Lagrange form is given by
U = Ly, dpady + Lyg (dgady + dandp) + Lag dzadg
and we may work through the mapping (*) to obtain

1(0/0z) = p¥ — L,P
n(0/0y) = q¥ — L,®.

These conservation laws are similar to linear momenta.

EXAMPLE 2 (continued): Consider the hyperbolic Euler-Lagrange system generated
by
D = —dundzx + dF,Adt
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where Fu,v) is a function satisfying F,, Fy, # 0. This system admits translation
symmetries and therefore has conservation laws corresponding to linear momenta.
These are

1(8/0z) = E = u{—dvnrdx + dF adt) + v(—dunrdz + dF,Adt)
7(0/8t) = A = —Fy(—dvndz + dFyadt) — Fy(—dundz + dF,adt).

il

Suppose we assume that I is homogeneous of degree p, i.e., that
F(au,av) = o’ F(u,v).

Then F,, and F, are homogeneous of degree 4 — 1 and the l-parameter group of
dilation symmetries

( ) r ot
U, UV, T — | au, ov, —
y U, L, Y ) NS Ry

preserves both ® and V. The corresponding conservation law is

I = (ux — (p — )tF,){(—dvndz + dFyadt) + (v — (p — 1)tF, ) (—dundz + dF,Adt).
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