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Hyperbolic Exterior Differential Systems and their
Conservation Laws *, Part IT **

R. BrvanT, P. GrIFFITHS AND L. Hsu

Part II Introduction

In Part I of this paper we have introduced the concept of a hyperbolic exterior dif-
ferential system of class s. For s = 0 these are essentially a geometric formulation
of a first order quasi-linear hyperbolic PDE system in two independent and two
dependent variables, with the group of contact transformations providing the allow-
able changes of variables. We then studied several geometric and analytic aspects
of hyperbolic exterior differential systems of class s = 0. Recall that such a system
is given by the data consisting of a 4-manifold together with a pair of transverse
2-plane fields. The properties studied included the characteristic variety and initial
value problem and systems which are integrable by the method of Darboux. We
refer to the introduction of the paper for a more detailed definition and statement
of results, together with illustrative examples.

Finally, we analyzed the geometry of hyperbolic systems of class s = 0. Recall
that a geometry means a G-structure together with a distinguished class of pseudo-
connections (frequently, the pseudo connection is unique). In the second part of
the paper we shall use the geometry as a basis for studying the conversation laws
of hyperbolic of class s = 0. The main point is to determine restrictions on the
intrinsic invariants (curvatures) associated to the geometry which are equivalent
to the condition that the system has a conservation law. Again we refer to the
introduction to Part I for further explanations and illustrations of the results given
below.

* This research was supported in part by NSF Grant DMS 9205222 (Bryant), an NSERC
Postdoctoral Fellowship (Hsu), and the Institute for Advanced Study (Griffiths and Hsu).
TAS Preprint: 1/25/94.
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§2. Conservation Laws for Hyperbolic Systems of Class s =0

2.1 General form of the conservation laws for hyperbolic systems of class s = 0.
2.1.1 Conservation laws. In the standard literature on evolution equations, a con-
servation law for a given evolution equation is a function on the configuration space
of the problem which is constant under the specified evolution of states.

For example, when the configuration space is a (finite dimensional) manifold M
and the evolution equation is represented by a vector field X on M, a conservation
law for X is simply a function f € C°°{M) which is constant on the flow lines of X,
i.e., which satisfies X f = 0. Of course, one wants to ignore “trivial” conservation
laws, i.e., functions f which are locally constant, so one might represent the space
of conservation laws in this case as a quotient

{fece(M)|df(X)=0}
C M) = e G [ = 0)

If the dimension of M is n and one can find n—1 independent conservation laws, say,
fi, ..., fn_1 with independent differentials, then the integral curve of X through a
given point zp € M can be described implicitly by the n—1 equations

filz) = fi(zo)-

Thus, knowing “enough” independent conservation laws for X describes the integral
curves of X completely.

In exterior differential systems, this notion of conservation law generalizes nat-
urally. Given an exterior differential system Z on a manifold M, we are interested
in studying the (p+1)-dimensional integral manifolds of Z which contain a given
“initial” p-dimensional integral manifold v : L — M. A “conservation law” of de-
gree p should then be a functional on the space of (compact} p-dimensional integral
manifolds v : L — M which gives the same value for any two integral manifolds
Yo,71 : L — M that bound a (p+1)-dimensional integral manifold I" : Lx[0, 1] — M
of 7.

Now, one source of functionals on the space of compact, oriented p-dimensional
integral manifolds is the space (M) of p-forms on M. For any ¢ € QP(M) and
any immersion v : L — M with L compact, we can define the functional

&wzﬁf@.

By Stokes’ Theorem, we have

Folm) = Fo) = [ 1(do).

Lx[0,1]
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Thus, in particular, if I'*(d¢) = 0 for all integral manifolds I" : L x [0,1] — M of
Z, then Fy will be a conservation law in our intended sense. Of course, this will
necessarily be true if d¢ lies in Z. On the other hand, if ¢ itself lies in Z, then the
functional Fy will be identically zero. Moreover, if ¢ = dy modZ for some (p—1)-
form 1, then the functional Fy will, by Stokes’ Theorem, take the same value on
any two integral manifolds vg,v: : L — M of Z which are homologous, whether the
homology is via an integral manifold of Z or not. Clearly, we will want to regard
such functionals as trivial conservation laws. (Compare this with the case of the
trivial conservation laws as described above for vector fields.) This discussion leads
us to make a definition of the form

" _{per(M)|dp e TP+ }
G(T) = {dy|yp e Qr—1(M)} +Ir°

In other words, C (M , I) is the cohomology of the quotient complex (Q* (M,1I),d )
where O*(M,7) = *(M)/T and d = dmod Z. (The subscript “0” is meant to warn
the reader that this is our starting point for the definition of conservation laws. The
real definition will be given below.)

While this definition of conservation laws properly generalizes the notion of
conservation laws for ordinary differential equations, i.e., the case discussed above
of a vector fleld X on a manifold M, it has serious shortcomings as a definition for
partial differential equations. To see why, consider the exterior differential system
associated to the classical wave equation

Ugg — Uyy = 0.

As a Monge-Ampére system, this is usually set up as an exterior differential system
on M = R® with coordinates (z,y,u,p,q), an ideal Z generated by § = du —pdz —
g dy and the 2-form

T = dpady + dgndz.

The 1-form
o =1(p"+¢%) dz + pedy

satisfies dy = —pdf + g1 € Z, and hence is closed on all integral surfaces of 7. It
corresponds to the classical law of conservation of energy for the wave equation:

B(u) = / L 4+ 2) da.
R
However, other expressions which are also known to be conserved, for example

E(ug) = /R %(uiw + &iy) dz,
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cannot be represented by an element of C3 (Z, M). This is because the manifold M
has no coordinates which represent the second derivatives of u.

To get around this problem, we pass to the first prolongation. Now, as dis-
cussed in Section 1.3, the underlying manifold M) on which the first prolongation
is defined is a P! UP' bundle over M. However, the dense open subset W ¢ M
consisting of those integral elements on which dzady is non-vanishing is more easily
parametrized: W is simply M x R? = R” with coordinates (z,y,u,p, q,7, s) and the
prolonged ideal Z(") is generated in W by three 1-forms

fp = du — pdx — qdy,
0y = dp —rdx — sdy,
Oy = dqg — sdx — rdy.

On W, the conservation law F(u,) is then represented by the 1-form
¢ =5(r’ + %) da+ rsdy,

which satisfies d¢’ = —rdf; — sdbs € Z.

This example points up two problems which must be addressed. First, while
this construction captures E(u,), it clearly cannot capture E(u..), which is also
a conservation law. In order to capture all of what are classically known as the
“local” conservation laws, one must pass to the infinite prolongation (2% () T (”)).
Second, it can be verified that the class [¢'] € C§ (W, Z")) is not the restriction of a
class in C} (M W,z (1)). This latter problem is not serious if one is only interested in
the integral manifolds of 7 which represent classical solutions of the wave equation
since the lift of such an integral manifold clearly lies in W anyway. However, it does
point out that one must be careful about domains of definition when one discusses
conservation laws for exterior differential systems.

With these preliminary cautions, we are now ready to define the main object
of study for the rest of the paper. Let (M , I) be an exterior differential system and
let (M® T(®)} be its sequence of prolongations (for integral manifolds of dimen-
sion n). We will assume, as usual, that these are all smooth manifolds and that each
of the natural maps M*+D — A*) is a smooth, surjective submersion. Also, as
usual, we will let M (%) denote the inverse limit of this tower of submersions

M=MD ¢ MO M. ph) oo pgleed

and regard it as a sort of infinite dimensional manifold, whose smooth forms are
defined as the direct limit of the inclusions

Q* (M) =" (MY) — o (MW) — o (MP) ...
—r (MP) — - — (M),
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Frequently, it will be necessary to consider forms and other objects defined on “open
subsets” W) ¢ M) where, by definition, an open subset of M (%) is a sequence
of open subsets W) < M®*) with the property that the restrictions of the natural
submersions M*+1) — M) to the various W*+1) define a sequence of surjective
submersions W*+1) — W) To save on notation, we will generally just use Z(°°)
to den())te the differential ideal generated on W(™) by the restriction of the forms
in Z(°),

The characteristic cohomology of T on W) is the cohomology
(W), T) = H* (0 (W), d)
of the quotient complex
OF (W(OO)) = (W(OO))/I(OO),

where d = d mod Z(>),

In [BG4] it was proved that, when Z is involutive for integral manifolds of
dimension n, the characteristic cohomology satisfies a local vanishing result

HI(W®), 1) =0, 0<gq<n-L

Here, [ is an easily computed integer measuring what might be called the degree of
“over-determination” of Z and should be thought of intuitively as the codimension
in an integral n-manifold of the appropriate “initial condition” submanifolds. (In
most applications, [ = 1.) Thus, in the absence of topological complications, the first
(potentially) non-vanishing group is A" (W(OO),Z), and it is generally defined to
be the space C (W(O"),I) of conservation laws of the exterior differential system Z.'®

In cases where the exterior differential system 7 arises from a determined PDE
system, it is known that this definition (with an appropriate choice of W("o)) recap-
tures the usual notion of the local conservation laws of the system. An important
consequence of this fact and the above definition is that the local conservation laws
of a PDE system form a group which is nearly invariant under contact transfor-
mations, the only dependence coming from the choice of independence conditions
imposed by a choice of independent variables.

Another consequence of the definition is that C(W (), T), being the first non-
vanishing group and therefore occupying a special place in the spectral sequence of
the filbered complex F 3T‘Q*(VV(OO)), is given canonically as the kernel of a certain
linear differential operator

D & (W) — & (W),

18)  Although we will not use any of the attendant machinery or ideas, it would be remiss of us
not to point out that what is actually going on is that the quotient complex (Q*,d) is a sheaf
of differential complexes and that our cohomology theory is actually a sheaf cohomology.
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where &; (W("O)) is the space of sections of a certain vector bundle F; over W (o)
defined in terms of the crude structure equations of the exterior differential system.

In fact, what happens is this: When W () has trivial topology, the short exact
sequence of complexes

0 — I — Q* (W) — Q* (W) — 0
gives rise 1o an isomorphism
E—n—l (W(oo)’l') _d_) Hn—l~|~1 (W(OO) ’I(OO))

which sends the class [¢] € A (W) Z) to the class [dg] € H"H1(W(=),
A (0")). Now the vanishing theorem described above actually allows us to find a sub-
bundle Ey ¢ (T62))" " with the properties that, first, £ (W) nd((1¢)"™") =
0 and, second, there is a containment

gn—l+1 (I(oo)) c& (W(oo)) ©d ((Z(‘X’))n"l) .
It then follows directly that
A (W), 1) o (W), 1600) = { 0 € & (W) a2 =0 }.

In specific examples, this gives a method of avoiding the traditional problem of
factoring out trivial conservation laws, yielding a canonical representative (albeit a
differential form of degree n—I41) for each conservation law of degree n—I.1%

Thus, this approach suggests a systematic approach to computing the space of
conservation laws, beginning with a normal form which depends only on the symbol
of the system. The first step in this computation is to determine this normal form
for conservation laws, i.e., the bundle Fy, and that is what we shall turn to now in
the case of hyperbolic systems of class s = 0.

2.1.2 A normal form for conservation laws. Let (M, I) be a hyperbolic exterior
differential system of class s = 0 which is non-degenerate in the sense of Section 1.5.
Let (M), 7(=°)) be the infinite prolongation of (3M,Z). Our calculations will take
place in the domain U C M of a l-adapted coframing 7 = (n*,7?,7°,7n*}. For
simplicity, we shall assume that U is connected and that its deRham cohomology
vanishes in positive degrees. Let us fix such a coframing 7 and let U®) ¢ M (k)

19)  In this paper, we will refer to this canonical representative (n—I+1)-form as the differentiated
form of the conservation law that it represents and refer to a representing (n—I)-form as
the undifferentiated form of the conservation law.
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denote the (open) subset of integral elements of Z(*~1) on which Q = 5* A® is non-
zero and whose projection to M lies in U.2° Recall that the assumption that the
coframing n be l-adapted implies

dt= 0 modnt, 7%, dn® 0 mod n°, 7%,

i

dn* =n°a*  modnt,n?, dn* =n'an®  modn® .

Recall now that, in Section 1.3, we showed that there exist (unique) functions hag
and hoz on UW so that the ideal (1) on U®) was generated by {n? — haon', n* —
ho2 773}. Conforming to the notation established in that section, let us set

wio =1, f10 =" — hao 1", wor = 17°, fo1 =n* — hoa n°.
Of course, this immediately gives equations of the form

dwip = 0mod{w1g, 10}

(1a)
dwm = Omod{wm, 901}.

Moreover, there clearly exist 1-forms moq and mgs satisfying

Tap = dhzo
mod wig, f10, wo1, fo1
oz = dhoo
so that
dbio = —maprwio -+ woiAber mod by
d901 = -T2 AWeL + w10/\910 mod 901.

Note that these equations determine g uniquely modulo {wm, 010} and mgg unique-
ly modulo {w01, 001}. Let us fix choices for these two 1-forms. Now, again by the
argument in Section 1.3, we know that there exist unique functions hzp and hgs
on U® go that T® on U® is generated by {610, bo1, 020, G2 } where

20 = 20 — hzo wio, bo2 = mo2 — hos woz-
Moreaover, there are structure equations of the form

dlxo = —m3orwig + Tao worAbpr mod{0ig, 020}

dBsy = —mozrwor + Too wioAbor mod{bp1, 602}

20) In most applications, one can find a 1-adapted coframing  whose domain is all of M anyway.
Then U*) is actually open and dense in M(®), consisting exactly of the integral elements
tangent to integral manifolds which satisfy the “natural” independence condition 2 # 0.
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for some 1-forms w3 and 73g, congruent to dhsg and dhgs, respectively, modulo
terms semi-basic for UM, Using 029 — Tog 610 and 6ys —Tho Opz, respectively, instead
of our original 0oy and 6y2, we can arrange, as we shall, that Tog = Tps = 0.

Continuing on in this way, we can show that, for every £ > 1, there exist
functions hgy1,0 and hg z41 defined on U (k) which restrict to each fiber of U%) —
U%=1) to give a coordinate system and 1-forms o and 6, well-defined on U (k)
with the following properties:

First, the ideal Z*) on U®) is generated by the 1-forms {610, ey Bro, 661, .-,
Hgk}; second, the following structure equations hold

dOro = —Ok41,0/w10 + Tho warAbor mod{bio, ..., 0k} (1b)
dbor = —00,k4+1/wo1 + Tor wionbio mod{bo1, ..., 00k}

with T19 = To1 = 1 and Tyg = Tpr = 0 for k > 1; and, third, for all & > 1,

9;@0 = dhkg

} mod terms semi-basic to U*~1
Bor. = dhok

Note that any 1-form well-defined on U®) is a linear combination of the forms

{w10, 0105 - - - > Ok1,0, w01, 001, - - -, Do k41 }

as these are a basis for the 1-forms semi-basic to U%*).

In this section, we shall use these equations to deduce general properties about
the space C(U("o),I), which we will henceforth denote simply by C when there is
no danger of confusion. We begin with the following

PROPOSITION: The space C is isomorphic to the space of closed 2-forms on U
of the form
@ = Ajowionbhio + Aoy wor b1 + Big + C+ Boy (2)

where

Big = Z Bijo 9@0/\9j0 s C= Z Cij ez‘OAan s By = Z B(l)Jl 00i/\00:f .

i< 2 <

Proof: The proof is similar to — but much simpler than — the analogous Proposition
in [BGa]. The relevant Spencer-type complex is

v o
A*[@10, 610, b20,---,@01, Bo1, Ooz, - -]
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with boundary operators
diw1g = 0wg1 = 0, 60k,0 = —Or41,0A810 , 680,k = —00,+1/Do1 -
A simple computation shows that H? of this complex has dimension 2 with basis
Qo = @192bs0, Qo1 = @01780;1.
Now, from the general theory, C = H' is isomorphic to
kerd, : B — E>!

where (EP?, d,) is the spectral sequence of the filtered complex FPQ*(M(>)). More-
over, again from the general theory E’% ¥ =0 and Ei’l is itself the abutment of the
weight spectral sequence E¥? whose E;-term is given by sections of a vector bundle
whose fibers are cohomology groups of the above complex. Unwinding the definitions
leads to (2). O

Note that, regarding the general description of normal forms we gave earlier,
the above proposition serves to identify the vector bundle E; over U ag

By =1&A*(11),

where I C A?(T*U) is the rank 2 subbundle whose sections are the 2-forms in Z and
1)« T*U(*) is the subbundle (of infinite rank) whose sections generate Z(>°),
Thus the above proposition is just the statement that C consists of the closed 2-forms

We shall refer to the expression (2) as the normal form for a conservation
law. Recalling that C was originally defined as a cohomology group (and hence as a
quotient space), the import of the above proposition is that each cohomology class
has a unique representative 2-form in the above normal form. In fact, without any
danger of confusion, we may clearly identify C with the space of closed 2-forms in
normal form and we shall do this from now on. We shall write ® € C as

® = Aygwionbi0 + Aoi worrbo1 + Big + C + Byy

and shall refer to the sum

as the quadratic terms in ® (quadratic refers to quadratic in the ideal Z(°)). It is
not difficult to see that the condition

dé =0

implies, first of all, that the coefficients B%, c4, Bé{ are expressible as certain lin-
ear differential expressions in Ajg and Ag; and, secondly, that d® = 0 then becomes
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a linear system of equations on A1p and Ag;. This is, in fact, an overdetermined
linear PDE system, and our goal is to relate the analysis of this system to the
invariants of the hyperbolic system 7.

In order to begin to carry out this program, we shall show that the quadratic
terms of a closed 2-form in the normal form (2) satisfy further restrictions in form.
To explain these restrictions, we need to define a certain filtration on the group C.

DEFINITION: A conservation law ® € C has level k if its normal represeuntative is
well-defined as a 2-form on U*), We denote by Cj, the vector space of conservation
laws of level k.

Since a 2-form @ in normal form must be closed to represent a conservation law,
we see that Cp, consists of the 2-forms ® € C which are quadratic expressions in

wig, B1g, -+, Ors1,05 wor, o1y -+, B0 k41

It is clear that Cp C Cx+1 and that

Ua=c

k>0

A somewhat subtle point is that a conservation law ® may have level exactly equal
to k and yet have another representative 2-form — albeit not in normal form —
which is defined on U® for some | < k.2! We shall return to this point later on.

Here we want to indicate the proofs of three basic facts:

Fact 1: We have
Cor, = Cop—1, k21 (3)

That is, when we increase the level we can add new conservation laws in normal
form only at odd levels.

21) For example, a hyperbolic system of class s = 0 may become Darboux integrable exactly
at level k for k = 0,1,2,.... At this point the system gets (at least) “two functions of two
variables worth” of new conservation laws. But these new conservation laws will not in
general be in normal form, and we may have to pass to a higher level to achieve this. On
the other hand, if we pick up two functions of two variables worth of new conservation laws
in algebraic normal form at some level 2k + 1, then the system is Darboux integrable at this
level, and perhaps even at a lower one.
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FactT 2: If ® € Cox—1 then the quadratic terms have the form

2k—1
By = Bfo Z (—l)jezk_j’o/\ej_ﬂ,o -+ Z B% 97;0/\93'0
j= {j+'i<§42k
Ty
C=0 (4)
2%—1 -
Boy =Bl | Y (=1)100,26—3000 541 + Z B 0oinbo;-
=0 [
i<y

Since C = 0, the quadratic terms in the conservation law are “unmixed”, i.e., if we
think of the fyg and o as “belonging” to the two characteristic systems, then no
cross-terms Gr0n0g; occur in ®. This vanishing is a reflection of the fact that in the
structure equations the coupling between the two characteristic systems occurs only
at the lowest level and only in the form of the terms wigafip and woiabfpy.

For a conservation law @ of level k, we shall refer to the coefficients BY,
and BE, as the highest order terms in Q. It follows from the form of Big and By,
that if we have two conservation laws of level 2k—1, say, ® and ®, such that (in the
obvious notation)

Bfo = Bfo’ B(Ifl = Bgl
then ® — @ is a conservation law of level 0 when k = 1 and is of level at most 2k—3
when k > 2.

Before stating our final property, we recall that the characteristic systems are

given by the formulae

=8 = {wio, 10, b20,- -}

ng) = {woz, bo1, o2, ...}

Fact 3: For two conservation laws ® and ® € Cok-1, the ratios [BY, : Bl =
BY, /B, and [BE, : BY| = Bt/ BE, are functions that satisfy

= {k
d[Bfo : Bfo} “’:go) (5)

= e
d[Bf, : By € 3(()1)-

To see how useful these facts are, let us note that they imply the following
result:

COROLLARY: If neither of the characteristic systems has an integrable subsystem,
then for k 21,
dim Cap—1/Car—2 < 2.
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Discussion: Fact 3 clearly links the issue of adding new conservation laws at a cer-
tain (odd) level to integrable subsystems of the characteristic systems. This corollary
should be contrasted with the discussion of Darboux’s method in Section 1.4, which
depended on there being integrable subsystems in the characteristic systems. In fact,
if there is a rank 2 integrable subsystem in one of the characteristic systems, then
we always have an infinite dimensional space of conservation laws at some finite
level. Actually, this and other evidence suggests a sort of converse to this result
might be true. Roughly stated, this converse should be: “If the new conservation
laws that appear at a certain level “depend on” at least two arbitrary functions
of two variables, then the system is integrable by the method of Darboux at this
level.”

Before turning to the proof of these results, we would like to make some general
observations on the equations

d(Aro wionbio + Aor wornbor + Big + Boy) =0
for a conservation law of level k. Denote by E%M and Eé”;)i the distributions dual
to the characteristic systems (recall that dim M®*) = 2k 4+ 4 and each of these
distributions has dimension & + 2}, and denote by Vg and Vg; the operation of
total differentiation relative to these distributions. Then a consequence of d® = 0
will be equations

B;% linear function of Aig, Ag: and their derivatives

Bé{ = linear function of Ajq, Ap; and their derivatives

and - -
{V01A10 = L1o(Aro, Ao1, BTh, Bet)
Vi0dor = Loi(Aie, Ao, B%, Bé{)
where L1p and Lg; are linear in the A’s and B’s.

We will also find linear equations

{ Vo1 By = Kio - Bfy (7)
VioBE = Ko - B,

for the highest order terms; these equations obviously imply (5). Of course, the
relation d® = 0 will contain much more information than (6) and (7); we simply
wanted to point out once again the role of the characteristic systems.

These considerations — especially equation (6) — perhaps help to explain the
following consequence of the corollary to Fact 3:
Suppose that the characteristic distributions Eg?l and E(()I;)J' are bracket

generating. Then Cy/Co is finite dimensional.
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We will only prove (3) and (4) in the cases of levels k = 1, 2, 3. In this way we
believe the general pattern should be clear and the argument more easily understood
than with a notationally complicated inductive procedure.

We will, however, first list some general principles that would apply to make
the calculations at any level. We will use the notation (%) for the differential forms
on M) and F? for the image

APT() @ Q) 5 o),

The calculations will use only the structure equations (1). For a 2-form in normal
form giving a conservation law we have

¢ = AlO UJ10/\910 + A01 wWo1 /\901 mod Fz

and
d® =0 modF?.

Thus d® € F? and the calculation will only use the assumption that
d®=0 modF?,

which appears to be weaker than assuming that d® = 0. However, because the ideal
Z(*) contains no integrable subsystems, it is easy to see that any closed 3-form
in A3(Z(>)) must be identically zero anyway.

For the general principles, we will use the notation

@k{) = 5'%:0!\ PN /\910

(")ok —_ HOkA e /\901.

Then we have from (1)

d(wionbi0) AA*[B10, wrg, Bo1, wor] = 0 0
i
d(wo1A801) AA*[B10, wro, Bo1, wo1] = 0.
We note that (i) implies
d(A1o wi0rb10 + A1 wor /\5'01)/\A3 [610, w10, 001,wep1) = 0. (i)

Next, for any function F and 1-forms o and &, we have the identity

d{FarfB)rars = 0. (iit)
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Finally, again from (i)

d@kg/\@ko/\wlo/\wm = d@ko/\@ko/\wlo/\e(n =0

da()k/\@ok/\wgl/\wlo = d90k/\@0k/\w01/\910 = 0.

Level k = 1: A priori we have

O = Ajgwionbio + Aorwor~bor + Biobaorbio + Boi0o1 Aoz
+ Cagb207803 + C216207801 + Ci2bhorboz + Cr1b107001,

and we want to show that all C;; = 0. By (1), (ii), (iil), (iv)
0= d@A(@go/\Hm/\wm) = —022930/\w10/\(@20A901/\w01)
which gives Ca9 = 0. Once Cz2 = 0 we have
0 =d®a (@20A902/\003/\w01) = —021930/\0.)10/\001/\(920A902A003/\w01)
which gives C9; = 0, and then by symmetry Ci2 = 0. Finally
0 = d®n(0107002/Aw10) = —C11020Aw10A801 A(B10A802/w10)

which gives C3; = 0.

Level k = 2: We are given a closed 2-form

®=A+Bj+C+Bg (8)
where
A = Ajpwionbio + Aoy wo1 o1
and |
B10 = Z Bﬁ) 01'0/\0]'0
J<i<3
C= Z Cij 91‘0/\90]'
i,7<3
B01 = Z Béjl 901/\00]'
i<j<3

and we want to show that ® must already of level 1, i.e. all terms with a 30 or fo3
should drop out. By (1) and our general principles

0= dPna (930/\010/\@03/\0]01) = —Bng4OAw10A€20/\(030A010/\®03Aw01)
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so that B¥2 = 0. Next
0 =d®na (930/\920/\@03&.001) = —3?3640/\0}10/\610/\(93@;\920/\@03/\w01)

gives B3l = 0. By symmetry B3? = B3] = 0. Turning to the cross-terms we have
successively

0= d‘i’/\(@go/\@oz/\&lm) = —033940/\(4)10/\003/\(@30A@02AUJ01)
0 =d®na (@30/\001/\0@3/\&)01) = —032940/\(,010/\902/\(630/\901/\(903/\(4101)
0=ddna (@30/\9(}2/\9{)3/\wm) = —031940/\wlg/\901/\(830/\902/\903/\64)01)

which gives C%° = (%2 = C®! =0, and by symmetry all C¥ = 0.
Level k = 3: We again have a closed 2-form (8) where

B10: Z BiJO 6’10/\0‘7‘()

J<i<4
C= Z Cij 91'0/\00_7‘
4,j<4
Bgl = Z Béjl 907;/\903'.
i<j<4
We have

0 =doda (940/\920/\910/\@04/\(001) = —Bfg@_sg/\wlo/\ago/\(940/\920/\010/\@04/\0}01)
0 =d®dna (940/\930/\910/\@04/\&)01) = —3%3950/%010/\920/\(040/\030/\910/\@()4/\0.101)

which gives B4 = B*? = 0. More interestingly
0 = d®a(fs0r0:10/B0arwnn) = (Big + B13) 0a0nb20rw10 (B30A010/O0anwor )
which gives
Bio = Big (10n810 — 0307820) + ( lower order terms )

and similarly for Bg;.

An argument similar to those for levels & = 1,2 shows that the cross terms C
are identically zero.

This completes our discussions of (3) and (4), and we now turn to (5) which
again we shall do only for levels 1 and 3. We consider a conservation law

@ = Ajpwignbio + Agr worAbo1 + Big 0201010 + Bo1 1802
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of level 1. We will derive a relation for dByg, and for the calculation it is notationally
convenient to set fgg = wpy.

From the structure equations we will have a relation

0 =dPrwig = (dBlo -+ XBlO)AingA@l@Aw1Q -+ Z ,0”/\90;, + Z [)’uy/\gop/\egy
v20 0Sp<y

where x does not depend on ® and where
P = 0mod A®[010, w10, wor, fo1, foz)-
In particular p¥ does not contain a 2 term, and it follows that
dByo + xB1o = 0mod Z{Y).
If ® is another conservation law, then this equation implies that
ElOdBlo — BlOdBIO = 0mod Sgé),

which was to be proved.
Turning now to a level 3 conservation law, which we now write as

D =&+ Py

where
®15 = Ajowignbio + BiyOa0n010 + Biibsor010 + Bio(Baonbrg — Gz070a0)
®o; = Agrworrbor + BEi001/002 + Bi2001/003 + Bo1 (0017004 — Go27803)
we have as before
0 = d®abzonbagrwip

= (dBlg + XBl());\@40/\630/\920/\610/\(.&10 -+ Z ,OV/\QOV + Z p’uul\egu/\eg,,.
0sy 0L u<r

Inspection of the structure equations shows that
P’ = 0mod A®%[030, O20, b0, wot, wor, Bo1, Doz, - - ]
ie., p¥ does not contain a By-term. It follows that

dB1g + xB1o = 0mod Ei?(’)),
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and the argument proceeds as before.

2.1.3 An example of higher level conservation lows. In the remaining sections of
this paper we shall be concerned with level 0 or, as we shall call them, “classical”
conservation laws. Before going on, however, we would like to conclude this section
with a subsection in which we give one calculation of higher level conservation laws
in an interesting example.

ExaMPLE: We consider the EDS associated to the (slightly modified) s = 0 sine-
Gordon system
Uy = sinv

Ve = Sinu.
As coframing we take
1_ 2 _ : 3 _ 4 _ :
w=dz, w'=du—sinvdy, w'=dy, w*'=dv-—-sinudz
with structure equations
dw' = dw® =0

and

dw® = cosv (—sinuw’aw® + w?rw?)

dw* = cosu (—sinvwirw! + wiiw?).

We will show that for this system

dimCy =1 and dim Cy /Cp = 3.

REMARK: For the s = 0 sine-Gordon system we will see that both E%) and Efﬁ)

have rank one, spanned by dz and dy respectively. Thus, the corollary following
Fact 3 does not apply.

First, we compute the level 0 conservation laws. For ® € (g, we have
® = Aw'rw? + Buwiaw?
the condition d® = 0 gives

Ay=0 By =0

9)
Az = Bceosu Bi = Acosv
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where we have set df = f; w® for any function f. Explicitly, in terms of the classical
partials notation,

f2=fu fa=To
Ji=fosinu+ fe f3= fusinv + f,.

Thus, (9) expands to

A, =90 B, =0
Aysinv+ Ay = Beosu B,sinu + B, = Acoswv.
The top two equations imply that A does not depend on v and that B does not
depend on u. Freezing the value of u in the lower left hand equation at some value ug
for which cos ug is non-zero then shows that B must be of the form B = by+b; sinv
for some functions by and b, of z and y. Similarly, from the lower right hand

equation, we see that A = ag + a1 sinw for some functions ag and a; of z and y.
Substituting these expressions into the lower two equations yields

aj cosu sinv + (ao)y + (al)y sinu = by cosu + by sinwv cosu
by cosv sinu + (bg)x + <bl):c Sinv = g oSV + a1 Sinu cosv.

Now comparing coeflicients in these equations shows that we must have ag = by = 0
while a@; = b; and (al)y = (b1), = 0. These latter equations clearly imply that
a; = by = ¢ for some constant ¢. Thus, dimCy = 1 and the space of classical (i.e.,
level 0) conservation laws of the s = 0 sine-Gordon system is spanned by

® = sinu dzadu + sin v dyadv.
The corresponding undifferentiated conservation law has the form

@ = cosudz + cos v dy.
We now turn to the analysis of level 1 conservation laws. On M) = M x R?,
where R? has coordinates (hz9, ho2), we take as coframing

wio = w' 10 =w? — hygw'

Wo1 — u)3 f?gl = w4‘ - hoz w3

and
o9 = dhag — COSV Sin 4 wWoy

T = dhoz — cosu Ssinv [



EXTERIOR DIFFERENTIAL SYSTEMS, PART I 283

With this coframing, we have

d010 = ==T20AW1H ~ COSV 001/\(4)01
dfy; = —mgarwoy — cosuBigrwrg

conforming to the general form of the structure equations as discussed above.

According to Fact 2 of the general theory, any ® € C; has the general form
b = A’ 910/\&710 + B' 901/\6001 + 0910/\920 + D 901/\902.
By modifying A’ and B’ in the obvious way, we may rewrite ¢ as

D = AbBpgrwip + B oiawgy + C Broamag + D Oy Amoa.

For notational convenience, we will rename the 1-forms in the coframing of
M® as follows:
Y1 =wie Y3 =010 Y5 =m0

P2 =wor Y4 =061 e = mo2-
Thus, E%}) = {41,173, } and E(()ll) = {42,%4,16}. For any function F on M),
we define the functions F; by the rule

dF = Fy by + Fatpg + -+ + Fg1ps.

Now, expanding out the equation d® = 0 and collecting coeflicients yields the
following equations

Co=04=C¢=0, Di=D3=D5=0
as well as the equations

Az = B cosu + C (sin® u sinv — hgg cosv cosu)
Ay = D sinu sinv

Ag = D cosu

As =y

By = A cosv + D (sin® v sinu — hog cosu cosv)
Bz = C sinv sinu

By = C cosv and

Bg = Dsy.
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Now the first set of equations imply that
dc e By dD € =),

However, it may be verified that the largest integrable subsystem of '~§0> {respec-

tively, Eéll)) is of rank one and is spanned by wyg (respectively, wq1 ). This implies

the equations
03=C5$D4=D6:0.

In particular, since wyg = dz, it follows that C' must be a function of z alone and,
for a similar reason, D must be a function of y alone. Of course, this implies that
C1:Cm andDQ:D

Now, from the definition of the 1-forms ¢; it follows that, in the coordinate
system (33 Y, U, U, hag, hoz) for any function F on M), the expression Fj is the
partial of F' with respect to hyg and Fy is the partial of F with respect to hge. The
above equations for As, Ag, Bs and Bg then suggest that the functions A and B
defined by

A:A—Clhzo—DCOSUhOQ BzB‘"CCOS'tho’“DQhOQ

should depend only on z, y, u, and v. In fact, if we redefine our notation so as to
rewrite the conservation law in the form

= (A -+ Cx hgo -+ Dhgz COSs 'LA) 510/\&’10 + (B + Chgg COSvU + Dy h(}z) 901/\&)@1
+ 0910/\7'('20 + D 901/\7‘(02

where C (respectively, D} is understood to be a function only of = (respectively, y),
then the closure conditions for ® simplify to

A5=Bs :AGZBG——-‘O
together with
As = B cosu + C sin® u sinv — C, sinw cosv 4+ Dhgg sinv sinu
B: = A cosv+ D sin®v sinu — D, sinv cosu — Chgy cosu cosv
Ag =D sinuy sinv
B; = (C sinwu sinw.

These last two equations suggest that, in fact, A+ D sinu cosv is a function of z,
y, and u only and that B+ C sinv cosu is a function of z, y, and v ouly. Thus, if
we redefine our notation once again so that

P = (A — D sinu cosv+ Cphog + D cosuhgg) f10/wio
+ (B — C sinv cosu + C cosv hag + Dy hoa) o1 rwor
+ C O19am20 + D Bo1 ATr02
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we find that the closure conditions simplify yet again. They simply become (assum-
ing, as usual, that C' is a function of = alone and D is a function of y alone)

A4=A5:A6:0, BgZBs-_—BGZO
plus the relations

Ay =B cosu+ (Dy — C,) sinu cosv + (D cosv — C cosu) cosu sinv

By = A cosv+ (Cy — Dy) sinv cosu + (C cosu—D cosv) cos v sinu,

Moreover, since A is a function of z, y, and « alone while B is a function of z, ¥,
and v alone, it easily follows from our definitions that

Ay =A,+ A, sinv and By =B, + B, sinu.

Let us substitute these expressions into the above equations and take note of the fact
that A does not depend on v while B does not depend on . In the second equation,
freezing v at some value vy for which cosvg is non-zero, we see that A is a linear
combination of {1, cos u, sinu, cosusinu} with coefficients which are functions of z
and y. In a similar manner, the first equation implies that B is a linear combination
of {1, cos v, sinwv, cosvsinv} with coefficients which are functions of x and y. Thus,

let us write
A=ag+ a1 cosu -+ ag sinu + az cosu sin u,

B =by+ by cosv+ by sinv -+ b3 cosv sinv

where the a; and b, are functions of x and y alone. Expanding the above relations out
and setting equal the various coefficients of the resulting trigonometric polynomials
then yields the relation C, — Dy = 0, the relations

ao:alzbozblzo,

the relations a3 = —C and b3 = —D, and finally equations which imply that ay =
by = ¢ where ¢ is a constant. Since C is a function of r alone and D is a function
of y alone, it follows that the common value C; = D, must be a constant. Thus,
we finally get

A=csinu— (Egz+ Cp) cosu sinu

B = csinv — (Eoy + Dg) cosv sinv
C = Epz+ Cy
D = Eoy+ Do

where ¢, Cy, Dy, and Eg are constants. Moreover, these values of A, B, C, and D
are easily seen to yield a closed 2-form ®. Thus, we have shown that dim (3 = 4,
as we wanted.
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In fact, with a little inspection, we can write
@ = d(cpo + Co ¢1 + Do ¢2 + Eo ¢3)

where the ¢; are the undifferentiated conservation laws and are given by formulae
of the form

¢Po = cosudxr + cosvdy

¢1 = —hgo 610 — 3 (ho + sin® ) dz + cosu cosv dy

@2 = —hga o1 — %(hfm + sin? v) dy + cosu cosv dx

¢ = —xhgp 019 — yhos Og1 — %—(a:h%o — 2 CoSU — 2 COS U COS v) dx

— 1 (yhd, — ycosv — 2z cosu cosv) dy.

2.2 Determination of hyperbolic systems having the maximum number of classical
conservation laws: first steps. Let (M, T) be a hyperbolic exterior differential system
of class s = 0 and denote by Cqy the space of conservation laws of level zero or, as we
shall call them, classical conservation laws. Assuming symmetric behavior in the
two characteristic systems in this section we will prove that:

If dim Cy 2 7, then both characteristic systems have an integrable subsysiem.

Later on we will see that if dim Cy 2 7, then dim Cy = oo and there is a local normal
form for such hyperbolic systems.

Our technique is to use the equivalence method to express the structure equa-
tions of (M, Z) in an invariant manner, which has been done in Section 1.5 above,
and then to simply compute. The calculations are generally straightforward but a
couple of them are somewhat lengthy. For these we have used MAPLE. The main
issue of course is to interpret the calculations as we go along, and we shall give
these steps without always reproducing the full printout of MAPLE calculations.
We now proceed to the calculations.

Recall that a classical conservation law has the form
®=A00+C0n (1)

where
4

Q10 = whaw? and Qo1 = wiaw.
Using the structure equations (5} in Section 1.5, we easily deduce that the closure
condition d® = 0 is equivalent to the following differential relations on the functions

Aand C )
dA=A¢44+Ain

. (2)
dC = C ¢az + C; *
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where

3)
Cl = A 02 st 0
Since the 2-plane distributions defined by {215 and Qg1 are both non-integrable,
we know that by taking commutators we may “capture” at least one more derivative
of each of A and C. In this regard the main initial step in the computation is given
by the

{AgZC A4=‘0

LEMMA: With the above notations
Ay — Cy=Cqs — Ap:.

Proof: This follows directly from the identities
d(dA) = Omodw',w?,
d(dC) = 0mod w?, w*.

O
Using the lemma, if we define B by
As+Cy=2B
then we have the relations
{A2=B—%(AP1‘CQ3) (4)
Ci=B - %(Cgs — Aps).
LeMMA: We have
dB = B(¢2 + $sa) + 1(Cps da1 + Ags du3) + Bi v’ (5)
where*?
B; =0mod 4, C, B, Ay, Cs. (6)

Proof: The identities
d(dA) = 0mod w'

d(dC) = 0mod w®
give, using (3) and (4), relations of the form (6). The exact formula (6) will result

from an explicit computation that we shall give below. |
22) In this and similar situations to be encountered below, the expression F' = 0 mod G1,...,Gn
will mean “there exists a formula or identity expressing F' as a linear combination of the
functions Gi, ..., G where the coefficients are known combinations of coframing invariants

and their derivatives”. In this specific instance, these formulae for B; are given explicitly
below. However, we will not always write out these formulae for it frequently suffices to know
just that there exists such formulae in order to complete a proof. Frequently, the explicit
formulae are quite ungainly.
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Knowing the values of A and C at a point z gives us Aj, Ay, €1, Co at that
point. Knowing B(z) gives us As(z) and Cy(z). By the above lemma, however, we
may determine all the Ag;(x) and Cy;(2) in terms of A, C, B, Ay, C; at that point.
Iterating this gives us all higher derivatives at = of Ay, As, A4 and Cq, Cs, C5 in
terms of A, C, B, Ay, C3 at the point. Thus in the formal Taylor’s series of A and
C we are only free to specify the derivatives Ay and C5. This suggests that

The space of classical conservation laws can af most depend on two arbitrary func-
tions of one variable.

One way of thinking about this “function count” is this: Solutions to a deter-
mined set of two equations for two unknowns are uniquely determined by initial
values along a 3-dimensional hypersurface. Adding one more equation will in general
cut the initial value manifold down to 2 dimensions, and adding a fourth equation
will in general cut the initial value set down to a curve. Since (3) is a set of 4
equations for 2 unknowns we expect that the solutions will at most be given by
arbitrary initial data along a curve. We say “at most” because this function count
will only work if the system is involutive, otherwise there are even fewer solutions.
Qur main result will be to classify systems for which this upper bound is achieved.

Now, we have already developed linear expressions for
AQ, A37A4; Cla 027 04

in terms of A, C, B, A;,C3; now we shall turn to A; and (3. From the identities
d(dA) = d(dC) = 0 we will show that:
dA; = A1(2¢4a — d22) + (B — 3(Apy — Cgs)) 21 + Aqy dus + Ay o’ o
dCs = C3(2¢22 — ¢as) + (B — 2(Cgs — Ap1))¢as + Cps ¢21 + Cs; '
where
A12 = A13 = A14 =0
034 = C31 = 032 =0
In particular this implies
dAl = All w1

dC3 = C33 w3

}modA, C,B,AI,C&

}mod A,C,B, Ay, Cs.

As expected, there is at most one free derivative of the quantities 4; and Cj re-
spectively. Iterating this, in the Taylor’s series of A and C we find that we are at
most free to assign the terms A; 1 and C3, 3, confirming the statement above.
Proof of (7): The identities d(dA) = 0modw! and d(dC) = 0modw? give

By = —$A(p11 — g3) + 3C(ga1 ~ k14) — 34101 + C3qu

Bs = —3$C(qs3 — p1) + 3A(p13 — ks2) — 5C3q3 + A1ps
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and

By = —A(3p12 — 195 - pa) + C(3452 — k24 — $p3q1 — §P163) — 5Bp1 + Caqo
Bi=—C(3qsa — 305 + @) + A(3P14 — ka2 — 5103 — $a3p1) — 5Bas + Aipa.

From '
0 = d(dA) = d(A pas + A;w*) = dAjaw* + ( other terms ),

and the formulas for A, A3, A4 and B; which give the “(other terms)”, we obtain
the expression for dA; where Ajs, A13, A14 = 0mod A, C, B, Ay, C5. The argument
for dC5 is similar. 0

The issue now is: What conditions are imposed on the invariants of the system
in order that we may arbitrarily assign the coefficients A; ; and Cs._ 37

To begin developing the answer to this we shall first show that

psA11 =0
modA, C,B,Al,C3. (8)
g2C33 =0

Proof: Above we have given formulae for B; as explicit linear combinations of
A,C, B, A;,Cs. In turn, except for A;; and Css the exterior derivatives of A, C,
B, Aj, C3 are again explicit linear combinations of these five quantities. Thus, the
condition

d(dB) =0

may impose conditions on A;; and Css. The explicit formula for d(dB) is lengthy,
but when we compute it on MAPLE and then set A =C = B = A; = C3 = 0, the
expression reduces to

(p3A11 — q1033) w'Aw® + pa Ay waw? + 2033w Aw?, (9)

The last two terms come from Ayp, in By and C3gz in Bj respectively. It is clear
that setting this expression equal to zero gives (8). 0

The following is an immediate consequence of (8).
PROPOSITION: If pygo # 0, then dimCy £ 5.

Proof: If pyga # 0, then we may inductively determine each term in the formal
Taylor’s series of A and C as a linear combination of A,C, B, A;,C3. Thus, the
PDE system for A and C is af best a completely integrable system whose solutions
are specified by five constants. O
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Tt follows that if dim Cq=6, then (keeping in mind our assumption of symmetry)

we must have py = ¢ = 0, i.e., the rank 2 Pfaffian system © = Eﬁ)) Uz

integrable. Assuming this, it follows from (9) that
p3Air — q1Cs3 =0mod A, C, B, 4, Cs.
The exterior derivative of this relation gives

psdi1 =0
mod A,C,B,A{,Cs,A;11,Cs3.
q1C333 =0

By reasoning similar to that above, this immediately implies the following result.

PROPOSITION: If py = ¢2 = 0 but paq; # 0, then dimCp < 6.

It follows that if dim Cqy 2 7, then we must have py = ¢ =0 and p3 =g, =0,

={1 (1)
01

i.e., the Pfaffian systems 2, and Zj,’ are integrable.

For systems with
Pa=¢=0 and p3=q =0 (10)
the formulas for B; simplify to give
By =—1A(p11 — ¢s) + 3C(gs1 — kna) — A1
B3 = —+C(qs3 — p1) + 3 A(p13 — ks2) — 5C303

and
By = —3A(p12 — 3P7) + C(34s2 — ks — 1P143) — 5B

By = —1C(ass — 3a3) + AG3p1a — baz — $aap1) — $Bs.

The condition
d{(dB) = 0mod A,C, B

then gives, after a MAPLE calculation using the formulas obtained so far,
0= (Alkzg - Cgkhn) (.t.Jl/\(,d3 -+ A1k24 wl/\w4 -+ C3/€42 aJS/\uJ2. (11)

Thus, if koskas # O this implies as before that dimCy < 3.

‘We may summarize our results as the following



ExTeERIOR DIFFERENTIAL SYSTEMS, PART II 291

PROPOSITION:
1) Ife= E&} U Eé? is not integrable, then

dim Co § 5;
(it) Assuming that © is integrable, if Eg and Eé? are not separately integrable,
then
dimCy £ 6;

(i) Assuming that E%} and Eé? are separately integrable, if kagkqa # O then

To compute the conservation laws for a given example we may either compute
the invariants of the given system and see how these fit with the general analysis
given in this and the following section, or else we may compute directly using the
general theory to guide the calculation. At the end of the preceding section, we gave
an example of the latter.

2.3 The two classes of hyperboelic systems having the maximum number of classical
conservation laws.

2.3.1 Symmetric systems for which dimCq 2 7. In this section, our main goal is to
prove the following theorem

THEOREM: If (M , I) s a non-degenerate, symmetric hyperbolic system with s =0
on a connected manifold M for which dimCo(U) 2 7 for all open sets U ¢ M,
then, either (M ,I) is locally linearizable, or else (M,I) 18 locally isomorphic to
the s = 0 Liouwille system.

As we shall show in the next subsection, systems of this type actually have
dim Co(U) = oo for all open sets U C M.

Proof: By the results of the previous section, we know that we can now restrict
attention to hyperbolic systems whose characteristic systems each have an integrable
subsystem; i.e., whose invariants satisfy

pa=q=0 and p3=¢q =0 (1)

and which in addition have
kga = kg = 0. (2)

By the discussion in Section 2.2, these conditions hold for any symmetric hyperbolic
system which has dimCy 2= 7.
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The structure equations (from Section 1.5) of systems satisfying (1) and (2)
now simplify to

w! e — P22 0O 0 0 w! —p1 wirw?
2 2 4
d w __ ¢21 ¢22 0 0 A w + w3Aw
w? 0 0 ¢a2—¢aa O w? —q3 wiaw?
w* 0 0 a3 Ga4 w* whaw?
with L 5
d¢22 = (3w AW I*il/\(,c}1 — RoAW
dpas = p1w® rwt — kaaw® — karw?
and

dp1 = p1 22+ Vp
dgs = 93 das + Vgs.

With these assumptions, the condition d(dB) = 0 may then be expanded to give
(cf. (11) of the preceding section)

Alkzg — 031641 = 0mod A, C, B.
Differentiating this gives

An1kaz =0

}modA, C, B,Al,C;:,.
C33ksn =0

It follows that if kagks; # 0 then we must have dim Co £ 4. Consequently, (since we
are only considering symmetric systems) we shall assume that

kzg =0 and k41 =4{. (3)

Using (1), (2) and (3) in the identities d(dw®) = 0 we obtain
P13 = k32
: .
gs1 = ki

With (1)-(4) satisfied, the formula for dB now simplifies to

dB = B(¢22 + ¢ua) — % (A(p11 — q3) + A1p1) w'
- % (A (pl? - %p?) - %CP1Q3 + Bp1) w?
— 1(Clgss = p1) + Csq3) ° (5)

|
(Sl

1
<C (%4 - 54?,) — S Agqsp1 + B%) w?.
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From d(dB) = 0 we obtain

(1) (B+ 1(Ap1 + Cgs))kra — Agsa =0

6
(i) (B+ 1(Apy + Cgs))ksz — Cp12 =0. ©)

Taking the derivative of (i) in the w!-direction, we see from (5) that dB has a
—%Alpl term so that cancellation occurs and we are left with
A]_Q34 = Omod A, C, B

and similarly
C3p1s = 0mod A, C, B.

It follows that if piagas # 0 then dim Cy £ 3. Thus, we can assure that the relations
p2 =10 and gs4 =0 (7

are satisfied.
From (6) and (7) we obtain

{ (i) (B+ 3(Ap1+Cgs))k1a =0 @®

(i) (B+ 3(Ap1+ Cgs))ks2 = 0.
We are now going to show that ky4 = k3p = 0. Suppose not, then {8) implies
B =—3(Ap1 + Cgs). (9)
Computing dB in two ways — using (5) and using (9) — we find
Ags =0 and Cpy = 0.

Now, since AC # 0, we necessarily have p; = g3 = 0 and so Vp; = Vgs = 0.
Equation (4) now gives k14 = k3g = 0 anyway.
Using k4 = kgg = 0, the identity d{dB) = 0 yields

(B + 3(Ap1 + Cgs)) (k13 — ks1) — A(gss ~ p1) + C(p11 — g3) = 0. (11)
The w' and w3-derivatives of this relation give

Ai(gss —p) =0
(@ = p1) O}modA,C,B

Cs(p11 — @) =
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implying that if (p11 — ¢3)(gs3 — p1) # 0 then dim Cy < 3. We thus can assume that

p11—gs=0 (12)
¢33 —p1 =10
in which case, (11) reduces to
(B + 3(Ap1 + Cg3)) (ks — ks1) = 0.
At this point the analysis splits into two cases:
(1) kg —kzn =0 or (i) B+ 3(Ap1+Cgs) =0. (13)

Suppose (13.ii) holds. This is equation (9) above and we get the same conclu-
sion as in that case, namely that p; = g3 = 0. Moreover, we now have, from the
structure equations and identities found so far that dgeg = a1 Aw! and dgss = azaw?®
for some 1-forms ;. Also, differentiating the equations

dw' = —(pas — paz) rw', dw® = (23 — paa) n®

yields that d{(¢as — daa)rw’ = d(daz — ¢aa)aw® = 0. Of course, this implies that
o rwtaw® = azawl aw? = 0, so we finally conclude that

das = kyzw'nw®, dpag = kay wrwt.

We now see that the structure equations satisfy the conditions given by the Propo-
sition in Section 1.5.6 which characterize linear systems. It follows that the systems
which satisfy (13.il) (as well as the previously derived conditions) are precisely the
linear systems.

We shall next analyze the situation when (13.i) holds, and for this we set
kiz = kg1 = koo.
If we now differentiate (12) we obtain the relations

{Pz(iﬂ@o -1)=0

(14)
q;g(kog — 1) = 0

Thus, there are two possibilities: First, we could have koo % 1, in which case we

would have to have p; = g3 = 0, which, as we have seen, leads to the linear case.

Thus, we may set this aside and assume, as we shall, that kg = 1,i.e., k1 = k31 = 1.
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The structure equations of the system are

w! G1a— P22 O 0 0 wl —p1 whaw?
d W $a1 P22 0 0 R w? n wiawt
W' | 0 0 ¢22—¢u O w? —q3 w3 Aw?
CJ4 0 0 ¢43 ¢44 w4 wlsz
(15)
where
das = g3 wlrw? + waw® "
16
d¢44 = (4)3/\(.&}4 + w3/\w1
and )
dpy = p1 ¢22 + 3w
(17)

dgs = g3 Gas + p1 w°.

The eidetic reader will recognize these equations as (11-13) of Section 1.5.7,
which characterize the systems whose first prolongations are integrable by the
method of Darboux. In that subsection, we proved that, on the domain in M where
p1 and g3 were both non-zero (the only case we are concerned with due to our hy-
pothesis of symmetry), the ideal Z was diffeomorphic to that of the s = 0 Liouville
system. This completes our proof. O

2.3.2 Ezplicit conservation laws in the case dimCy = co. We are now going to
explicitly describe the conservation laws in the two cases found in the previous
section.

The first case is that of linear systems. According to Section 1.5.6, such a
system is locally of the form

Z = {(du — Pvdy)adz, (dv — Qudz)rdy }
where P and @) are positive functions of z and y only. Tracing through all of the
above calculations (or just doing it directly, we see that all of the conservation laws
are of the form
® = A(du — Pvdy)adz + C (dv — Qudz)rdy

where A and C are functions of x and y alone satisfying the equations

A, =QC
C, = PA.

Thus, the space of local conservation laws is clearly of infinite dimension.
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Consider now the s = 0 Liouville system described in Section 1.5. This is
described by the ideal

T = {{du — €" dy)rdz, (dv — e* dz)rdy }

and a short calculation using the above formulae shows that the conservation laws
are of the form

® = [(g()+/(2))e"+f(x)] (du—e’dy)ndz+[(f(z)+9(y))e’+¢' (v)] (dv—e“dz)rdy

where f and g are arbitrary functions of one variable. Thus, again, we see that the
space of conservation laws is of infinite dimension. The undifferentiated conservation
law corresponding to such a @ is given by

¢ = (f(z) + 9(y))(du — e°dy) — g(y)du + (f(z) + g(y))(dv — *dz) — f(z)dv
= f(z)(du — e’ dy — e“ dx) + g(y)(dv — e* dz — e” dy).

{(The first form of ¢ enables us to easily check that dp = —®). On classical solution
surfaces

(may) - (smy,u(m,y),v(m,y))

to s = 0 Liouville we have

p = f(@)(us — e*)dz + g(y)(vy — €”)dy;

clearly dy = 0 on any such solution surface.
Our calculations have thus proved the following result:

PROPOSITION: If a symmetric hyperbolic system (M,T) has dimCo 27, then it has
dim C() — 0Q.

We will now show how the conservation laws of s = 0 Liouville may be used
to analyze the singularities of the solutions. This discussion will be heuristic and is
merely intended to illustrate how conservation laws might be used to gain analytical
insight into the solutions of an equation. Of course, in the particular case of the s =0
Liouville equation, the precise results may be either derived analytically or verified
from the explicit form of the solutions to the s = 0 Liouville system given in Section
1.5 above.

The initial value problem is typically posed by prescribing initial data on the
line z + y = 0 and seeking a solution in the half-plane x 4+ y > 0. Thus, setting

t=3(+y) ¢=3(z-y)
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or equivalently
z=1t+¢ y=t—¢

we are given initial data u(&,0),9(¢, 0) and we seek to find a solution u(¢, £}, v(€,1)
defined for ¢ > 0. Since

Uy —e* = ugt+e’ —e"
vy —e’ = —vg +e¥ —e’

the conservation laws give that for any functions f, g the integrals
/f(t +&)( ug+e’ —e*)dE=C

/g(t—{)(—-vg-i-e”—e”)df:(b

are formally independent of t. More precisely, if we assume that the initial data is
smooth then u(E,t), v(£,t) will remain smooth for 0 < ¢ < 5. If we now restrict £, ¢
to the rectangle [¢] < 4,0 < ¢ < tg then for all smooth compactly supported f,g
with uniformly bounded L? norm we will have

]f(t+§)( ug + e’ —e*)dé = O(1)

/g(t )~ e+ —e)dE = O(1) .
By taking f, g to be sequences tending to J-functions we will thus have
ug +e’ —e* = 0(1) (1)
—vg +e* —e” = 0(1) (i1)

on rectangles as above. We will use these relations to analyze the possible singular-
ities that « and v can develop.

For t = to we assume that u(£,1o),v(€,t) are of class C' in a neighborhood
0 < £ < e and seek to determine what sort of singularity may develop as we approach
the origin.?® For this we assume that ug and ve have asymptotic expansions

c
u§~—§+r, c#0

/

C
’Uérv-—-—f—)\—;-*}*s, c‘#O

23)  To be more precise, we should consider u(£,t),v(£,t) as ¢ T to and £ | 0, and assuming that
u,v are of class C! in € for ¢ < to see what type of singularity may develop at t = tg,& = 0.
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where ¢*r — 0 and ¢¥'s — 0 as £ | 0. By adding (i) and (i) we see that
A= XN, c=¢

and we shall consider the case ¢ > 0.
If A > 1 we then have

c 1
“:<ﬁ>?ﬁ+R

where £27'R — 0 as € | 0, and similarly for v. By (i) we have up to a bounded
term

_-5% +r= e<ﬁ) <g§j> (e —e),

which is impossible unless u = v, a case that may be handled directly.?* Thus we
must have A < 1. If 0 < A < 1 then both e* and e¥ are O(1) as £ | 0 and this
contradicts (i). Thus we must have A = 1 which gives the expansions

ug ~ —¢ + 0(1)
ve ~ ~§ + 0(1)

as € | 0. If the initial data is real-analytic then it may be shown that this heuristic
reasoning is justified leading to the result:

There is a real analytic curve U in the half-plane © +y > 0 such that w,v are
bounded and piecewise real anolytic away from T, but where singulorities of u,v
occur ol the points of intersection I' NV {t = tg}. Moreover, ¢ is o positive integer
giving the order of contact of T' with the line t = ty at the point of intersection.*

We offer the above discussion not as a definitive analysis of the singularity
structure of the solutions of the s = 0 Liouville system but rather to illustrate how
conservation laws may be used to infer analytic behavior.

2.4 Moment conditions. Given a differential ideal Z on a manifold M we may speak
of the complex of piecewise smooth singular 7-chains and the resulting Z-homology,
denoted by H, z(M) (cf. Section 6 in [BG;]). Of particular interest are the first
non-vanishing local Z-homology groups and their relationship to conservation laws.

24) When u = v, the s == 0 Liouville system reduces to a simple Ricatti f’ = f2 with dependence
on a parameter.

25) If t = tp is the first time a singularity is encountered, then for ¢ slightly larger than to the
singularity will split into “simple” singularities for each of which the asymptotic expansion
holds with ¢ = 1.
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In the situation of a hyperbolic exterior differential system on a 4-manifold, we work
locally in a contractible open set and the issue is this:

Let v © M be a closed curve. Then v = 385 is the boundary of a (piecewise smooth)
surface, and we ask when S may be taken to be an integral surface of I?

Necessary conditions are given by the moment conditions coming from the space
Co of classical conservation laws, as follows: For @ € Cy we have

@ =dyp

for some 1-form ¢, and by Stokes’ theorem

/7@:/5@.

The right hand side vanishes in case S is an integral surface of 7, and by definition
the moment conditions are

/<p=0, ‘13660.

Y

The question is whether they are sufficient as well as necessary in order to be able
to fill in v with an integral surface, or at least with a piecewise smooth integral
chain whose simplices are integral surfaces.

We shall discuss this question in the following variational form. Let v C M
be a non-characteristic smooth curve given as the image of a smooth immersion

f:00,1] = M,
and for some § > 0, let v, 054 <6 be a variation of v given by a smooth mapping
F:[0,1]x[0,8] > M
where v = f;([0,1]) with f; = Fljo.1xz}-
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For § sufficiently small f; will be an immersion and v; will be non-characteristic.
For 0 < T < 6 we set

Sr = gtUgT v with 5 = S5

and we make the assumption
For all T and for oll ® € Cy we have

/csz, 0<T <4 (1)
S

We then have the following

PROPOSITION: If dimCy = oo, then the moment conditions (1) are necessary and
sufficient that the S be an integral surface of (M,T).

Proof: We must show that for each point p € S, the tangent plane T,,5, is an integral
element of Z. Clearly it will suffice to do this for p € v5. Let 7 be the tangent vector
field to o and v the variation vector field for the family of curves ;. Note that the
vector field v is only defined modulo 7. We want to show that for each p € - the
2-plane v(p)a7(p) is an integral element.

Suppose now that & € Cy is compactly supported along each v — ie, ®
vanishes near the endpoints of the +;. Then a standard calculation gives

o:%g@ e o

Now ® € (Cy has the form

D= AQyp+ CQp
and depends upon “two arbitrary functions of one variable”. In fact, as is clear
from the discussion in Section 2.3.2, we may specify A and C arbitrarily along a

non-characteristic curve vp. Thus, the only way that we can have (2) for all ® is
that v .19 and v _i 21 both restrict to zero on vq. This is equivalent to

(Qm7 V/\T> = <Q01, I//\T) =0

along 7g, which is what was to be proved. O
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§3. Symplectic Hyperbolic Systems

3.1 Definition and structure equations; characterization of Euler-Lagrange sys-
tems. A symplectic hyperbolic exterior differential system is given by the data
(M,®,T) where M is a 4-dimensional manifold, ® is a symplectic form on M,
and 7 is a differential ideal that defines a hyperbolic system with ® € Z. Integral
surfaces of 7 are thus necessarily Lagrangian surfaces for ®. Examples of symplectic
hyperbolic systems include the Euler-Lagrange systems introduced in Section 1.6.

The automorphisms of a symplectic hyperbolic system (M, ®,7) are diffeomor-
phisms of M that preserve both @ and Z. As we shall see, inequivalent symplectic
hyperbolic systems may well become equivalent when considered as hyperbolic sys-
tems. In particular, a non-linear (M, ®,7) may linearize when we consider only
(M,TI).

We shall quickly work through the equivalence problem for symplectic hy-
perbolic systems. As before, we shall assume that the hyperbolic system itself is

symmetric and non-degenerate. This leads us to consider coframes w',w? w?,w?*
such that
QlO = (.L):L/\(/.J2
s 4 (1)
Qo1 = w’rw
and with the additional condition that the symplectic form is
® = whaw? + Wit (2)

As in Section 1.5 we may use the assumed non-integrability of Q19 and Qg1 to
assume further that w! and w® generate the first derived systems of =19 and Zg;
and that

(3)

dw? = w* aw* mod{w!,w?}
dw* = whaw? mod{w®,w*}.
Coframes satisfying (1)—(3) will be called symplectic coframes.

Keeping the notation of Section 1.5, diagonal transformations that preserve
the conditions (2), (3) must satisfy

and hence must all be 1. Thus the structure group of the G-structure Bg — M is
now 2-dimensional consisting of matrices of the form

0 O

0 ¢
1 0
v 1
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Being smaller than our previous group we may expect more invariants, although
the condition d® = 0 will tend to impose relations among them.

The equivalence problem proceeds much as in Section 1.5. The structure equa-
tions have the form

wt 0 0 0 0 w! ~p11 AWt —@iarw? — wiaw?
d w? __|pam 0 0 0 . w? p11Aw? +wlawt
w? 0 0 0 0 w? —p33aw? —pgarw?t — wiaw?
wt 0 0 @a3 O w? 033w + wlaw?

(4)
By modifying the pseudo-connection terms in the obvious way we may assume that
the torsion is

~kowrw? — (azw® + agwt)rw! — (p3w® + ppwt)aw? — wiaw?
(a3 w? + agwh)aw? + W rwt (5)
—kow?rw? — (e1 ! + caw?)aw® — (g wt + @ w?)aw? — wirw!

(e1 W + cpw)rw? + whaw?

The fiber variation of the individual terms in the torsion is given by

0ko = dpg = 6g2 =0

and
0p3 = papu3
baz = a4 943 + 3 P21
bagq = papa1
5q1 = g2 pa1

dcr = P21 + Q1 Qa3
L 6c2 = g2 Pa3.

Thus kg, pa, ¢2 are (absolute) invariants of the G-structure. If py = go = 0 then p3, ¢1
and a4, ¢» become invariants, and if in addition these vanish then a3 and ¢; become
invariants. The interpretations of these quantities may be given in an analogous
manner to what was done in Section 1.5.

As an application of these structure equations, we shall answer the following
interesting question: When is a symplectic hyperbolic exterior differential system an
Euler-Lagrange system? This is a special case of the more general question: When
s a hyperbolic exterior differential system an FEuler-Lagrange system? We shall not
attempt to answer this latter question in this paper, but, in principle, the techniques
we use could do so.

Qur answer is summarized in the following
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PROPOSITION: The necessary and sufficient conditions that a hyperbolic system
with torsion given by (5) be Euler-Lagrange is that the invariants satisfy

ko=0, pi=q, a=q, c2=p3, a3z=ci. (6)

Proof: We seek the conditions that there exist
T = Aw'awo? 4 Cwaw?
satisfying
ST =0 (i)
d¥ = 0. (if)

Clearly (i) gives that
¥ = B(w'rw? — waw?)

for some function B. Then (ii) gives
dB = —2B(w' 4+ w?),
and then the identity d(dB) = 0 implies the conditions (6). O

This result has a curious

CoRroLLARY: Let (M,Z) be a hyperbolic Euler-Lagrange exterior differential sys-

tem, and assume thot each characteristic system 219,201 has an integrable sub-
system.?® Then (M,T) is linear.

This corollary stands in strong contrast to the exterior differential system associated
to f-Gordon equations zzy = f(), all of which are Euler-Lagrange but which are
non-linear unless f is linear.

For the proof we note that under the above assumptions we have

kh=pa=@=ps=qi=a1=c;=0 and az3=c¢; =59

26) This is equivalent to (M,T) being locally the exterior differential system associated to a
PDE system

{uy :f(m7y7u1v)

Vg = 9(551 vy, U)'
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and hence the structure equations reduce to

dw’ = (50 — 1) whaw®

dw® = (50 — 1) w?rw?
dw? = sqw*rw? + WP aw? mod Wt
dw* = s waw* + wraw? mod w?
dso = 0modw?, w?.
The last equation results from the identities d?w! = d?w® = 0. These structure
equations can now be applied to compute the invariants of the ideal Z as described
in Section 1.5. The result of comparing these structure equations to those is that
the system satisfies the conditions to be a linear system set forth in Section 1.5.6.

Another interesting consequence is:

COROLLARY: The s = 0 Liouville exterior differential system is not an Fuler-
Lagrange system.

Proof: We consider the above situation of a symplectic manifold (M, ®) and a hy-
perbolic Euler-Lagrange exterior differential system 7 such that & € Z. The above
proposition implies that we may write the structure equations in the form

w! daa— P22 0O 0 0 w?
d w? | _ on ¢z 0 0 w?
3= A 3
w 0 0 ap—as O w
wt 0 0 P43 g w?
win(~psw! + ps w? +tow?)
+ wiaw?
Win(=g W3 + g wt +tow?)
whaw
where 5 . .
Paz = —(spw” +qw*) —w
Gag = —(spw’ + pgw?) — ®

P21 = P21 — w” mod w'
43 = Paz — w?mod w3,

Comparing this with the structure equations (5) in Section 1.5 we deduce that
If a hyperbolic EDS has the properties that (i) each characteristic system contains
an integrable subsystem and (i) p1gs # 0, then the system is not Buler-Lagrange.

By the computation at the end of Section 1.5, the s = 0 Liouville system has
these properties and hence cannot be Euler-Lagrange. 0
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3.2 The three classes of symplectic hyperbolic systems having an infinite number of
classical conservation laws. In this section we shall discuss the conditions imposed
on a (symmetric) symplectic hyperbolic exterior differential system (M,®,Z) to
have dim Cy = co. Writing

\I] = A Q10 + C le

the condition

d¥ =0

is equivalent to the overdetermined system

As=C—-A A4=0
i 0

Ci=A-C C(Cy=0.

The analysis of the solutions to these equations proceeds in exactly the same way
as that given in sections 2.2 and 2.3, and we shall only give the conclusions.

It turns out that there are three classes of symplectic hyperbolic systems with
dim Cy = oo and we shall discuss these.

Class A: The structure equations have the form

w! 0 0 0 0 w! (a3 — Dwhrw?
w? war O 0 0 w? —az waw® + wiaw?
=10 o o of " |w]™ (e1 = 1) wirw? @)
w? 0 0 @ O wt —cq whaw? + whaw?
where

1 (3)

das = az; w* + agz w®
dey = ¢i3 ws + cl1w .

We shall show that any such structure is linear. More precisely, we shall say that
(M, ®,7) is symplectic linearizable in case there are local coordinates (z,y,u,v)
together with a 2-form ¥ € 7 such that ® and ¥ generate 7 and each is linear
in u and v. Such a system is clearly linearizable in our previous sense, but not
conversely. We shall prove that symplectic hyperbolic systems satisfying (2) and (3)
are symplectic linearizable.

Proof: Since w! and w? are separately integrable we may find local coordinates z,y

such that
wh = Adz

wd =Cdy.

These coordinates are determined up to

(z,y) = (X(2),Y(5))-
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From the structure equations we infer that A, C and as, ¢y are all functions of z,y
and furthermore that the hyperbolic PDE system

Ay = —(ag — 1)AC
(4)
Cg; = —(Cl - 1)AC
is satisfied.
Next we may find functions w, v such that
w? = Bdu

modw?!, w?.
wt=Ddv

From the structure equations we have that

B,=D,=0.

Thus we may introduce new coordinates u, v so that
w? = du+ Edymodw'
w* = dv + Fdzmodw?®.

From the structure equations we obtain
Eu = ——a3C Ev =-C
Fv = —C}_A F, = -A.

Integrating these gives
E= _C<$a y}(a?,(:c,y)u + FU) - E@(&?, y)
F = —A($,y)(01($, y)v + u) - FQ(LL‘, y)

Thus the exterior differential system
whaw? = Adza(du+ Edy) =0 )
)
Wawt = Cdyn(dv + Fdz) =0

models the affine linear PDE system
uy = C(z,y)(as(z,y)u + v) + Eolz,y)
Uy = A('Za y)(cl ($,y)’U -+ U) “+ F()(!II, y)

By subtracting from w,v a particular solution we may assume that Ey = Fp = 0.
4, O

Clearly (5) is linear in u,v as is ® = wlaw? + wirw
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Of particular interest is the case when a3 = a¢ and ¢; = ¢g are constant.
Then the group of symmetries of (M,®,7) is an infinite-dimensional transitive
pseudogroup whose general element depends on two functions of one variable. Note
that the PDE system (4) is then a constant scaling in z and y of the s = 0 Liouville
system for the quantities log A,log C.

Assuming that (ao — 1)(co — 1) # 0, the general solution is given by

@
4= o D) —a@)
ol W)

(a0 —1)(a() — (y))

and so (5) models the interesting linear PDE system

w = c(y){agu + v)
Y7 (a0 —1)(alz) — e(v))
vy = — a'(z){eqv + 1)

(co = 1)(c(y) — a(z))

In case ap = ¢g = 1, (4) gives

Ay, =0
C, =0
and so
A= Ax)
C =C(y).
Thus (5) yields the following linear system
_utv
R
U+ v
Uy = M

Class B: The structure equations have the form

2

w? 0 0 0 O wl
w? w1 0 0 O w2
Her]= 1o 0 0 o]
wt 0 0 a3 O wt ©)
~kowirw? — (a3 w? + ag wH)aw! — wiaw®
n (a3 w?® + ag wt)aw? +w 8
—kowawt — (clw + ¢o w? 1
( 2

)/\w — wiaw
)

clw + cow?) pwt +whaw
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where kg # 0 and

r — 1 2 3 4
dko = —(ag + c1ko) w' — cakgw® — (ca + agko) w?® — agkow

daz = ag 043 +asz(c; — 2)w' + azey w? + azzw® — (2asko + ag)w

day = —as(c; + 1) w' — agco w® — (ag + azko) w? — agko w* (7)

)
dCl=Cz<P21+C1(a3"2)w +craawt + cpp Wt - (2¢1ko + c2)w
)

3

\ dez = —ca(az + 1jw” — czagw* — (co + clko)w — ok w?.

Comparing (6), (7) with the proposition in Section 1.5 we obtain the following

PROPOSITION: Any system satisfying (6) and (7) is Darbouz integrable on the first
prolongation.

In order to give a normal form we need to separate into the subcases

a4 = Cg = 0 (8)
a4Co 75 0. (9)

We shall deal mainly with the first case and shall show that

PROPOSITION: A hyperbolic exterior differential system satisfying (6),(7) and (8)
has ko = constant and is equivalent to the system modeled on the s = 0 Liouwville

system
_ ko’U
U= €
U.’L': eko’u.

Proof: From (7) we have a3 = ¢; = 0 and so ko = constant. Thus (6) reduces to

wh 0 0 0 O wt —kowhaw? — wlaw?
w? w21 0 0 O w? w3 aw?

Al =10 0 0 o et || <kowtrot —wtnat | (10
w? 0 0 @ O w* wlrw?

where kq # 0 parametrizes the equivalence classes of these structures. Since w* and
w? are integrable we may introduce local coordinates (z,y,u,v) such that

wl=Adz
wP=Cdy
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and

w? = Bdu + E dymod w*
w* = Ddv + Fdzmodw?®.

From the structure equations for dw? and dw* we have
B, =D, =0
By changing u, v appropriately we may assume that
w? = du + E dy mod v’
{ w? = dv + F dzmod w?.

Again from the structure equations we have

(i) B,=0 E,=-C
(i) F,=0 F,=-A4

and
{(iﬁ) A, =koA A, =0

(iv) Cy,=keC C,=0.
Integrating (iii) and (iv) gives
A= kvo(m,y)ekO“ C = koCo(z, y)ek"”,
while from (i) and (ii) we obtain
E = —Cye®? + Ey(z,v)
F = —Agefo¥ + Fy(z,y).
Thus we now have
w? = du + (~Cpe™” + Ey) dymod dz
{w4 = dv + (—Ape™* + Fy) dz mod dy.

Clearly we may make a substitution
U — %+ / Eody

U—->v+/Fodx
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to set Eg = Fy = 0 (with a new Ag and Cp). The structure equations for dw* and
dw? then give

(Ao)y = (Co)o = 0.
By choosing new coordinates z and y we may assume that

{ wh = eFordy

w3 - ekg’!}dy

and
w? = du — e¥dy mod dz
w* = dv — e**dz mod dy
which gives the s = 0 Liouville system. O

REMARK: These systems with parameter kg are inequivalent as symplectic hyper-
bolic systems but equivalent as hyperbolic systems.

For symplectic hyperbolic systems satisfying (6), (7) and (9) we may restrict
to the subbundle of coframes that satisfy

a3:61:0,

in which case the structure equations reduce to

wl —kow /\w2 — agwtrwt — wliau®
p L N cpgl/\w T4 agwtaw? 4+ wiawt 1
ER Bl 4_ 2.3 3 1 (11)
o wiAw?t — g w?aw® — wiaw
Wt — azrw® + e wrw? 4+ whaw?
where L ) . .
dk() = Qg W — CQkow — CoW ——a4k0w
das = —asw" — aucy w? — g w® — agkow? (12)
dey = —eawt — eskow? — caw® — coaqw.

In addition, from (7) we have

@21 = w? modw*
(13)

043 = w* modw?i.

An example of such a system is provided by the hyperbolic system associated
to the s = 0 Goursat equations

_ 2w
T @ty
2y/uv
(z+y)

Vgp =
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This system is Darboux integrable and is in fact equivalent, as hyperbolic systems,
to the linear gystem Z; ¢ given in Section 1.5.

Since every system of Class B is Darboux integrable, from the discussion in
Section 1.5, we see that as hyperbolic exterior differential systems (though not as
symplectic hyperbolic EDS) there are exactly two equivalence classes, corresponding
to the s = 0 Liouville system and the s = 0 Goursat system.

Class C: The structure equations have the form

wt 0 0 0 0 wt
(U2 ©Ya1 0 0 0 w2
et )= 710 0 0 o]
wt 0 0 ws3 O wi
~kow'rw? — (a3 w?® + kg w*)rw! — wlaw?
+ (azw? + ko wH)Aw? + wirw?
~kow?rw?t — (¢ w + ko w?)aw? — wiaw?
(e1 Wt + ko w?)aw* + whrw?
where
dkg = —ko(er + D w' — k2 w? —kolaz +1)w® - K w
and

daz = kg paz + (boo + 1 — az) w' + azko w® + azzw® — ko(2a3 + 1) w?
deg == ko a1 + (boo + as — ¢1) W + e kow? + e wt — ko{2¢1 + 1) W?
In addition kg # 0 and so from the last two equations we see that we may restrict

to a subbundle defined by ag = ¢; = 0. After further computation the structure
equations then become

w? - ko w' aw? + kg wiaw® — wiaw®
d w? —(w? + fow® )/\w — kg w?rw? 4+ wiaw® (14)
w? - ko wirw? + ko wiaw? — wiaw?!
w —(w* + fowhrw® — ko w*rw? + winw?
where
dko = —ko (w' + ko w? + w® + kow?) (15)
and
dfo = ko fo(w® + w?!) modw!, w?. (16)

REMARK: Since kg # 0 the structures of Class C cannot be homogeneous as sym-
plectic hyperbolic systems. The structure equations may be proved to be involutive
with Cartan characters s; = $3 = 1,83 = 84 = 0 (the w! and w® derivatives of f,
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may be specified arbitrarily); hence structures of Class C depend on one function
of two variables.

We will prove that

ProPOSITION: (i) No structure satisfying (14)-(16) is symplectic linearizable. (ii)
On the other hand, every such structure is linearizable os o hyperbolic exterior
differential system.

Proof: For the proof, since w' and w® are integrable we may introduce local coordi-

nates z, y, 4, v such that
wh = Adz
w? =Cdy

w? = (Bdu+ Pdz +Qdy)/A
w* = (Ddv+ Sdzx+Tdy)/C.

and

From the structure equations we deduce that
B,=D, =0,
so we may introduce new coordinates so that

w? = (du+ Pdz + Qdy)/A
w* = (dv + Sdz + T dy)/C.

Our exterior differential system thus models the PDE system

uy + Q(z,y,u,v) =0
Ug + S(m,y,u, ’U) =0.

The coordinates x,y are determined up to
(z,9) = (X(2),Y(D)),
and A, C then undergo the transformation
(4,0) = (X'(2)A,Y'(§)C)

while u, v undergo
(u,v) = (X' (@)u, Y'(§)v).
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Noting that
® = (du+ Qdy)adz + (dv + S dz)ndy

it follows that the condition that Q{z,y,u,v) and S(z,y,u,v) be non-linear in u,v
has intrinsic meaning under symplectic equivalence and measures the non-linearity
of the original system.

From the dw? and dw* equations we have
QutA=0
Sy +C =0

and

ko(AT — CQ) + C(A, + AQ,) =0
—ko(AS = CP) + A(C, + CS,) =0,

while the dw' and dw® equations give

Qu+C=0
SU’TLA:O.
Thus
(@-5)=0
and so
Q=R+ f(z,y)

for some function f. We may then choose new coordinates such that
w? = (du+ Pdz + Rdy)/A
{w4 = (dv+ Rdz +Tdy)/C.
The PDE system {17) becomes

{uy{-R(x,y,u,v} =0

(18)
vy + R(z,y,u,v) = 0.

We will show that: R is necessarily non-linear in u,v.
From the dw? and dw? equations we obtain

R,=—-C
R,=—A
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while from the dw! and dw® equations we find

koA
Ay = ko Av=~—90—
koC
C, = ko Cu_—T.
Thus
Ruv:_ko#o

so that R cannot be linear in u,v.

To complete the argument we need to show that systems satisfying (14)-(16)
linearize as hyperbolic systems. But in Section 2.2 we have seen that there is only
one class of non-linear hyperbolic system having an infinite number of classical
conservation laws, namely the class of the s = 0 Liouville system. We have already

seen that this system is of Class B.

We may summarize the situation by the following schematic

O

Symplectic equivalence classes of Equivalence classes of hyperbolic
hyperbolic systems having an infinite | — |systems having an infinite number
number of classical conservation laws of classical conservation laws

A\*\\M

/ I (linear)
s = 0 Goursat

B

s = 0 Liouville —__

II (non-linear)

The notation means that B contains exactly two classes, one of which maps to I

and the other of which maps to II.

This illustrates again in a rather dramatic way just how an exterior differential

system may linearize when we increase its symmetry group.

To complete the story we shall derive a symplectic normal form for equations

of Class C.
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PROPOSITION: Any hyperbolic exterior differential system of Class C is symplecti-
cally equivalent to the exterior differential system generated by*’

{Uy = F(x,y)\/%

(20)
vy = Flz,y)v/uv.

Proof: From the expression for dkg in (15) we obtain

__k _ kg
(o)u = -2 (ko) = —2-

Combining these equations with (19} yields the relations

(i) (AAu)u =0 (CCy)y =0
(ii) (AC)y =0  (AC), = 0.

From (i) it follows that
(B2) 0 =0 (B2),, =0
and from (ii) it follows that
(RuR,), = (R.R,), =0.
Holding z,y fixed for the moment we shall prove the following

LemMA: Let R(u,v) be a function that satisfies
(i) RZ is linear in v and R? is linear in u;
(ii) RyR, = C is constant;

then
R=vyu+BVv+a+d

27) The symplectic form of the EDS that models (20) is

® = whrw? +wlauwt

2
where w' = —-%F(x,y}\/gdx Ww? = —m\/g (du — F(z,y)v/ov dy)

W= ——%F(:c, y}\/%—d,y wt = —F(j " \/g(dv — F(z,y)/wwdz) .
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where a, B, v, & are constants.
Proof: By (i)
= a(u)
= b(v)y/u + B(v)

for suitable functions a(u), a(u), b(v), B(v). In the following argument we shall
assume that a{u)a{u) # 0 and b(v)B(v) # 0; the cases where these conditions are
not satisfied may be handled by (easier) special arguments. Differentiating

v+ afu)

B2 = a(u)(v + a(u))
R = b(v)*(u+ B(v))
with respect to v and u respectively gives
2R Ry = az(u)
2Ry Ry, = b* ().
Multiplying these equations and using (ii) gives

4CR?, = a®(u)b*(v).

Thus
PP _ ) a)
4C T AR T 4(v + afu)
which implies that
C
2 ——p———
b = v+ alu)

and therefore
a(u) =a is a constant .

Similarly, 8(v) = 8 is a constant and

R, =Gyt P
v+

which integrates to give

R =7y (u+8)(v+a)+du), v =2VC.
But then

_ [ e ;
R,=VC g W

i

and so &'(u) =0, i.e., §(u) = ¢ is a constant. |
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Applying the lemma to R(z,y, u,v) with z,y variable gives

R =(z,9)v/u+ Bz, y) Vv + alz,y) + 6(z,y). (21)
Hence we can now introduce new coordinates
i =u+ 0z, y)
7=+ a(z,y)
such that (dropping the tildes)

w? = (du + Pdz + (Ro + p(z,y))dy) /A
w* = (dv + T dy + (Ry + v(z,y))dz)/C

where Ry = v(z, y)/uv.

"To complete the proof we need to show that u(z,y) = v(z,y) = 0. To establish
this, we return to the structure equation (14). Expanding out the dw?-equation and
using (19), the coefficient of the [dyadv]-term yields the relation

A=-%7@40¢g (22)

P, =0

while the [dzAdv]-term implies

Now the [dzadul-term gives

As = AP | ko(Ro +v)
A c
Ay — AP — Ay(Ry +v)

= A+ A .

—P,=A+

Differentiating with respect to v, keeping in mind (22), yields
v(z,y) = 0.
Similarly, from the dw*-equation we obtain

pz,y) = 0.
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REMARK: The explicit linearization of the F-Goursat system (20) alluded to above
is achieved by the mapping

u = p?, v=¢

which transform the F-Goursat system into the following linear PDE system

vy = 3F(z,9)q,
Gz = %F(m,y)p

The above result stands in interesting contrast to the fact that the usual F~Goursat

equation
Zoy = F(&,y)\/Zazy

cannot be linearized by a contact transformation in (,y, 2, 2, 2, )-space.

3.3 Euler-Lagrange representations of hyperbolic systems. In this final section, we
shall discuss the question: What is the mazimum number of ways in which a given
hyperbolic exterior differential system of class s = 0 may be realized as an Euler-
Lagrange system? Given (M, I} what we are asking for is the maximum dimension
of the space ¥ of orthogonal pairs (<I>, ‘If) of conservation laws. We shall establish
the following

PROPOSITION: For hyperbolic systems I of class s = 0, the dimension of the space &
s at most 4, with equality holding if and only if T is locally diffeomorphic to one
of the linear systems Tx o discussed in Section 1.5.6

Proof: What we shall actually prove is that the maximum dimension of ¥ is achieved
exactly when the structure equations of (M, T) are

w! Gaa—¢22 O 0 0 w! 0
w? $a1 h22 0 0 w? Wi aw?
U =70 00 0 dm-ou o [Mwt] T 0
Ct.?4 0 0 ¢43 Q§44 w4 wlxxwz
where

d¢22 =K wlxxw?’

d¢44 =K (,L13/\L:u1
where K is an arbitrary comstant. Of course, comparing this with the structure
equations at the end of Section 1.5.6 will then yield the result.

The proof will proceed by calculations very similar to those used in determin-
ing hyperbolic systems with infinitely many classical conservation laws. We shall
only write down the main steps in the computation.
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A pair of conservation laws may be written as
d = Aw'r® + Cuwirn?
U = Bw'rw? + Dwiau?,

and the orthogonality condition

AP =0
is
AD+ BC =0.
Thus we have " o
B —_ = D - — —
c’ A
for some function H. The closure conditions
dd=d¥ =0
give )
dA = A(f)44 + A; "
dC = C¢22 +C’iwi
with
A3 - C A4 =0
Cl =A 02 ={
and A
dH = H(Q§22 -+ @44) -+ Hg w‘
where

Hy; = H(CA; — A%)JAC

Hy = HA3/A
Hg = H(AC3 — Cz)/AC
H, = HC,/C.

As in Section 2.2 above, from the identities d(d4) = Omodw!,w? and d{dC)

O0mod w3, w* we obtain

{Az = Ko — 5(Ap1 — Cgs)
Cy =Ko — 2(Cqs — Ap).

Then d(dA) = 0modw' and d(dC) = 0mod w? gives

dKo = Ko{¢az + daa) + 5(Cps b1 + Ago du3) + Koy w'*

319

(1)

(2)
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where
K()i = OmodA, C, Ko, Al, Cg,.

From the identity d(dH) = 0modw!,w? we obtain
H(p4A2 - QQCQ) = {.

If pygo # 0, then we may normalize to have p; = g2 = | and therefore 4 = +C.
This imposes conditions beyond (1)—(3) and cuts down the dimension of the solution
space. Thus we assume that

ps=q2 =0.
From the identities d(dA) = d(dC) = 0 we find that
dAy = A1(¢as — 2 bas) + (Ko — 5(Ap1 — Cgs)) da1 + Agr pa3 + Ar; *
dCs = C3(¢aa — 2 ¢22) + (Ko — 2(Cas — Ap1)) du3 + Cps ¢a1 + Cai '
where
A=A =A411=C3 =0 =03 =0mod A, C, Ky, Ay, Cs.

This is just as we found in Section 2.2 above. New conditions arise from d(dH) = 0,
which gives

Ko = —3(Ap1 + Cg3) (5)
and L
0
Al = E
. (©
¢
03 = Zg

for some function Lo. From (4) and dKo = —d(3(Ap1 + Cgs)) we obtain
kag = kgs = 0.
Plugging back into d(dH) = 0 then gives

{ A%pg +C?py =0
C?qy + A%qs = 0.

Again, if p3q; # 0 we impose further conditions on the system. Thus we assume
that

p3=Q1:07
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which then gives also that
pr=¢s=0.

Substituting these conditions back into dKy and comparing with (4) gives
kg = k3p =0.
Now we use the expressions for 4; and Cs in (6) to obtain
dLy = 2Lo(¢ag + dag) + Lo; "

where
Loy == Log =0

and
Lm = L03 = OmodA, C.

Moreover, the conditions
A1y =033 =0mod A, C

are also forced. Noting (3), (5) and (6), at this point we have proved that ¥ is finite
dimensional.

From d(d¢az) = d(dss) = 0 we infer that
dkis = kiz1 w' + kizg w®

dk31 = kay w' + ka3 w.
Then d(dLo) = 0 gives
3(k1z — k31 ){Lo — A*C?) + AC(A%ky33 — C%kz1y) = 0. (7)

If k13 # kgy then the above relation impose further conditions, cutting down .
Thus we need to assume that

kis = k31 = koo.
We then have ‘
dkoo = kooi w*

where
kooa = koos = 0.

Moreover, {7} gives
A?kgos — Choor = 0.
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Again, if kgggkoor # 0 we impose additional conditions, so we may assume that
kgo1r = koos = 0.

In other words, kg is a constant, say K. At this point we have
A= Ady+ 2201 40
= Ady o5 Y +Cuw

L
dC:C¢22+—9~w3+Aw1

A3
and H(A202 L ) 1 3
— Ly w w
dH = (g2  0as) - = (c— + ;r)
(A4C4(k0() - 1) - 3L%) wl w3
dLo = Lo(¢2z + ¢aa) — e Fop + )

This is a (non-linear) integrable Frobenius system whose sclution depends on four
constants. Moreover, the structure equations of the exterior differential system are
the same as the structure equations of the ideal Tx o described in Section 1.5.6.
This proves the desired equivalence. O
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