Chapter III '
INFINITESIMAL VARIATION OF HODGE STRUCTURE

Phillip Griffiths
Written by Loring Tu

Giving a polarized Hodge structure {HZ,Hp'q,Qi of weight one is
equivalent to giving a polarized Abelian variety (A,w), as follows. We

set the complex torus A to be Ho'l/HZ. Via the identification

Hom(A’H;;,Z) ~ Hom(N’H,(A,Z),Z)
=~ Hom(Hz(A,Z),Z)
~ H¥A,2) .

the polarization Q corresponds to a class [w] € H%A,Z). It can be
checked that as a consequence of the two bilinear relations, [w] is a
positive (1,1)-class. In case the polarization is unimodular, the class
[w] defines a divisor @, unique up to translation, called the theta
divisor of A. It is the geometric object ® that plays the major role in
classical Hodge theory.

Much of the formal aspects of classical Hodge theory has been extended
to higher weights; for example, the asymptotic behavior of a family of Hodge
structures. However, one may argue that the applications to geometry have
fallen short of expectations, as evidenced by the lack of progress on higher

codimensional cycles. We suggest that one reason for this is the following.

OBSERVATION 1. A general Hodge structure of weight n > 2 (where
h2:° >2 if n=2) does not come from geomettry, so that there is no

“natural’’ way of assigning a geometric object such as @ to it.
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EXPLANATION. Let DCD be the classifying space for the polarized
Hodge structures {HZ,HP’q,Q} and Th(B) the horizontal subbundle,
given by

{£ e T(D) | éFP C FPLY.
Set

I - O®)h c ok

Define IC Qb’ to be the sheaf of ideals generated by the 1-forms 6 ¢ 18
and their exterior derivatives df. Then I is a GC-invariant differential
system on D and hence induces a differential system on I"\D, which
we also denote by I. In this context the horizontality condition in the
definition of a variation of Hodge structure ¢:S »I"\D amounts to re-

quiring that ¢ be an integral manifold of the differential system I ; that is,
¢¥@) =0 forall 6 in I.

The point is that if the weight n > 2 (assuming h2.0 >2 if n=2), then
I14(0). Thus ¢(S) can never contain an open subset of I"\D. q.e.d.

Since the differential system I appears to be causing the trouble, we
will try and use it to extract some geometry. This leads to the topic of
today’s talk, the infinitesimal variation of Hodge structure, a work which

is still in the experimental stage.

DEFINITION 2. An infinitesimal variation of Hodge structure

V= {HZ,Hp’q,Q,T,B} of weight n is given by a polarized Hodge structure
{HZ,Hp’q,Qi of weight n together with a vector space T and a linear
map (here q =n-p)

8:T » @ Hom(HP'9 HP-1,a+1y
1<p<n

satisfying
1) o *l(gl)b\p(§2) =6 __1(52)81,(51) for 51152 €T,
@) QBEW . + QW)Y =0 for ¢ eHPY, 5 HITLPTT,

f
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In particular, an infinitesimal variation of Hodge structure is an

integral element of the horizontal differential system I on D.

EXAMPLE 3. If £ - S is a family of polarized algebraic varieties and
¢:S > T'\D is its period map, then the differential of the period map

b T, ) » @D Hom(HP-9,HP~1,4+1)
0 1<p<n

gives rise to an infinitesimal variation of Hodge structure in which
T =TSO(S) and 0 =¢, .

Whereas a polarized variation of Hodge structure has no algebraic in-
variants (because GR acts transitively on the classifying space D ), an
infinitesimal variation of Hodge structure has too many. Of these, five

have thus proved useful in geometric problems.

CONSTRUCTION #1. The kernel of the n-th coiterate of the differential.
For fl, ---,fn in T consider the map

8(¢,) -+ 8¢, :H™O » HOP
It follows from (1), (2), and the symmetry of Q that

QBE,) - 8EN Y = (-DPQW,EE ) -+ &€
= Q&)+ AE MY -

So in fact S(fl)---a(fn) is in Hom(s)(Hn’o,Ho’n), the symmetric maps
from H™? to (Hn’o)*. Define

80({.‘1, ) fn) = 6(‘::1) o 8(‘511) .
By (1), &" is symmetric in its arguments and so induces a map

8. Sym™T - Hom®)(HY O, HOM),

called the n-th iterate of the differential. Note that
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Hom(s)(Hn’o,HO’n) - Symz(H“'o)* .
The dual of 8" is then
M* : Sym2H™ 0 5 SymPT* .
Our first invariant is
2AV) = ker BM* ;
it may be viewed as a linear system of quadrics on PHO" .

EXAMPLE 4. Let C beacurve of genus g and T = Hl(C,®). It is
well known that this T effectively functions as the tangent space to the

moduli space fmg at C. Let
8:T > Hom®)y!.0 xo.1y

be the differential of the period map at C. This gives the universal

infinitesimal variation of Hodge structure of C. Then
8*:Sym2H1'0 N T* .
Note that H-® < HY%C,K) and T* = H%C,K?). Therefore,
8% : sym?HO(C,K) » HYC,K?)
is the obvious map and

2(V) = quadrics through the canonical curve éx(C) .

COROLLARY 5. A general curve of genus g > 5 can be reconstructed

from its universal infinitesimal variation of Hodge structure.

Proof. A general curve of genus g > 5 is not hyperelliptic, trigonal, or a

plane quintic. By a theorem of Babbage, Enriques, and Petri the canoni-

cal image of such a curve is the intersection of all the quadrics through it.

Hence, the base locus of (V) is the canonical curve of C. | g.e.d.
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COROLLARY 6 (Generic Global Torelli). For g > 5 the extended period

map

¢:My > $My) C F\}(g

has degree one.

Proof. Suppose ¢ has degree d >1. Let Z ¢ ¢(Wg) be a regular value.
Then ¢ is a local isomorphism around ¢“1(Z) = {Cl, .o, Cdl . It follows

that Cl’ e, Cd all have the same universal infinitesimal variation of

Hodge structure. By Corollary 5 all the C;’s are equal. q.e.d.

Of course, this theorem is a consequence of the well-known global
Torelli theorem for curves, but the virtue of this proof is that it does not
use the theta divisor ® and so has a chance to generalize. In general,
speaking philosophically, if a variety can be reconstructed from its
infinitesimal variation of Hodge structure, then the generic global Torelli

theorem holds (cf. Chapters XII and XIII).

CONSTRUCTION #2. Degeneracy loci of iterates of the differential.
In this construction we consider the (n-2p)-th iterate 8" 2P of the

differential. As in the previous construction
89-2P . sym®~2PT - Hom® )(Hn—p,p,Hp,n-p) .
This induces a map
f:T - Hom(s)(Hn‘p’p,Hp’n—p)
£(&) = 8", -, ) = 8(€) - 8(E) .

Define

EP g = £ e PT |rank £(§) <k}.
NOTATION.
3y = £, k = locus where the n-th iterate has rank <k .

pI Ehn o . = locus where the n-th iterate drops rank.
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EXAMPLE 7. We keep the notations of Example 4. Fix n=1 and p=0.

e £(¢) = 8¢):H%C,K) » HI(C,0),

and

31 = (€ e PHY(C,®) |rank 8(£) <1} .

PROPOSITION 8. For a general curve C of genus g > 5 the rank one

degeneracy locus is the bicanonical image:
20,1 = $2x(©) -
EXPLANATION. For x in C we have &£ =¢,g(x) in PH!(C,0). It
is an easy lemma that
ker 8(¢£,) 2 HAC,K(-=)) .
Since HO(C,K(~x)) is a hyperplane in HO(C,K),

rank 5(5*) <1.

This gives a map
¢,x©) > Zp,1 -

The remainder of the proof of the proposition may be found in {4, §Vc)].

From this result we get another proof of the generic global Torelli theorem
for curves.
CONSTRUCTION #3. Annihilator of a Hodge class.
Given an infinitesimal variation of Hodge structure V={HZ,Hp’q,Q,T,3}
of even weight n = 2m and a Hodge class y ¢ H%’m, we set Hm+k’m~k(~y)=

e umrkomk oK) y,y) =0 forall £ in T

: 3
EXAMPLE 9. Let S be a smooth surface of degree d >5 in P~ and
w € H%(S,Z) its hyperplane class. A Hodge line is by definition a
cohomology class A ¢ HI’I(S). NHXS,Z) satisfying

i
2
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A2=24
Arw=1.
We will view Hz'o(-)\) as a subspace of HO(S,Qz) , the holomorphic

2-forms on S. It is a theorem (cf. [4]) that the base locus of the forms in

H2'O(—)t) is a line A with fundamental class A :

©.1) n

¥ e 0

W) =A.

REMARK 10. This result generalizes to the following (loc. cit.). Let C
be a smooth curve of degree d and genus g in P3 such that
hl(c,N /P3) =0 and let S be a surface of sufficiently large degree

C

>m(d,g) containing C. If V is the universal infinitesimal variation of

Hodge structure of S and y is the class of C, then

c- N

¥ en2:0p)

W ;

that is, the curve C may be reconstructed from V and y. A similar

statement holds for a curve in P’

As an application of (9.1) we will sketch in Chapter V a proof of the
following theorem.

THEOREM 11. Any smooth surface in P3 with the same universal

infinitesimal variation of Hodge structure as the Fermat surface

Fy = {x%+x?+x§+xg =0} of degree d >5 is projectively equivalent to

Fyq. Furthermore,
Aut (V(Fd)) = Aut (Fd) f

We will motivate and then give a result concerning Construction #1.
Given a family of polarized algebraic varieties, which we think of as

X Jses s there is the Kodaira-Spencer map at s = s

0

. 1
piTy -H(X8), X-X

so'
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There is also the cup product map

«:HYX,®) - @D Hom(HP-9(X), HP~1:9+1(X)) .
1<p<n

It can be shown ([2]) that the differential of the period map is

8 =«op:Ty ® - & Hom(HP 9(X), gP-1athxy) .
0 1<p<n
Because X - S is a projective family, the hyperplane class ® is con-

stant. Therefore,

0=58¢)(w) =p¢)aw forany ¢ eTSO(S) .

Recalling the definition of the primitive cohomology, it follows that &(£)
carries a primitive class to a primitive class. Setting T= TSO(S) , and

HPd = ng‘fm(x), we then have

S=xep:T > @ Hom(HP-4 ,HP-Liatly
1<p<n
This infinitesimal variation of Hodge structure V= {HZ,Hp’q,Q,T,B } is
said to arise from geometry.
The motivation for Construction #1 is as follows. Except when X is
a curve, H(X,®) is in general not particularly geometric. However,
there is a map
p": Sym"HY(X,8) » HY(X,A'8) .
The map p" is the composition

"H1(X,8) - H(X,8"®) » H'(X,A"8)

of two alternating maps and so is symmetric, It is straightforward to

verify that the following diagram is commutative:
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Sym™T ——-——Hom<S>(H“ 0 HOM — Hom©XHOK),HYO))

\ / cup product

HY%X,K*)

The dual of this is our basic diagram:
nyk
Sym2H%X,K) e, Sym™T*
12) B A

HYX.K?) ,

where p is the dual of the cup product and is given by multiplication. To
get some feeling for what is going on, we assume that p is onto. Then

quite formally we get the exact sequence
* 0 > ker - ker 8™ s ker A » 0.
Note that

ker p = I¢K(X)(2) = {quadrics through the canonical image ¢ (X)}.

So (*¥) may be rewritten as

0- I¢K(X)(2) - SZ(V) >ket A0,

When n=1 and X - S is the Kuranishi family of curves, ker A = (0)

and we have

AN =1y @

as in Example 4. In the general situation, to be able to interpret geometri-
cally the infinitesimal Schottky relations 9(V) one must first understand

ker A. We give a partial result in this direction.

__M




60 PHILLIP GRIFFITHS INFINITESIMAL VARIATION OF HODGE STRUCTURE 61

0 : ; .
For X = xso CPf, wetake T=H (X,NX/Pr). Consider the composi- , available from Dipartimento di Matematica, Universitd Degli Studi di Pisa),
tion of the Gauss map followed by the Pliicker embedding: Donagi and Tu (work in progress), and M. Green (also work in progress)
. are encouraging signs for a stronger interplay between formal Hodge theory
X X Ga+l,r41) — pArticitly = PN, and geometry.

Finally, an excellent exposition [5] of IVHS in the setting of general

If X is locally given by x(uy,---,u,) € Cr+1_{0}, then
I moduli problems will soon appear.

ax ox
Poy)(u) = x(u) A 2 (W) A-en == (u).
Y o, n, | REFERENCES
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I, = image of reHOx, KL @) L HOX,K?) .
THEOREM 13 (see [1]). I, Cker A. PHILLIP GRIFFITHS LORING TU
2K m’ll;m;:\mncs DEPARTMENT MATHEMATICS DEPARTMENT
-1 nyk _ 9 . HA VARD UNIVERSITY JOHNS HOPKINS UNIVERSITY
It follows that pu (F2K) C ker (M = A(V); that is to say, the Gauss MBRIDGE, MA 02138 BALTIMORE, MD 21218

linear system always gives infinitesimal Schottky relations. This is con-
sistent with the experimentally observed phenomenon that a geometric .
understanding of Hodge theory frequently involves dual varieties (e.g.,
Andreotti’s proof of Torelli for curves, the intermediate Jacobian of the
cubic and other Fano threefolds, the generic global Torelli theorem for
hypersurfaces (cf. Chapters XII and XIII below)).
Since this talk was given (in November 1981) there has been progress
in IVHS. Some of this occurred during the year and is reported on in
Chapter XIII. Additional applications of the methods of IVHS by
F. Catanese (On the period map of surfaces with K2 = x =2, preprint

—— — —— [ -




