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Abstract. The partition function with boundary conditions for various two-dimensional
Ising models is examined and previously unobserved properties of conformal invariance and
universality are established numerically.
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1. Introduction

Although the experiments of this paper, statistical and numerical, were undertaken in
pursuit of a goal not widely shared, they may be of general interest since they reveal a
number of curious properties of the two-dimensional Ising model that had not been previously
observed.
The goal is not difficult to state. Although planar lattice models of statistical mechanics

are in many respects well understood physically, their mathematical investigation lags far
behind. Since these models are purely mathematical, this is regrettable. It seems to us that
the problem is not simply to introduce mathematical standards into arguments otherwise well
understood; rather the statistical-mechanical consequences of the notion of renormalization
remain obscure.
Our experiments were undertaken to support the view that the fixed point (or points) of

the renormalization procedure can be realized as concrete mathematical objects and that a
first step in any attempt to come to terms with renormalization is to understand what they
are. We have resorted to numerical studies because a frontal mathematical attack without
any clear notion of the possible conclusions has little chance of success. We are dealing with
a domain in which the techniques remain to be developed.
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A fixed point is a point in a space of presumably an infinite number of dimensions; so
this point and all other points of the space are defined by an infinite number of coordinates.
Some will presumably be superfluous, so that the total space is realized as a submanifold
of some larger coordinate space. The total space will be the carrier, in some sense, of the
renormalization transformation, but the transformation will not appear explicitly in this paper.
The point does! The implicit condition on each quantity serving as a possible coordinate of
the fixed point is that, at the fixed point itself, it remains invariant under renormalization
and that, at a critical point of any model within the class considered, its value approaches a
limit under repeated renormalization because renormalization drives the critical point to the
fixed point. Since repeated renormalization is in coarsest terms nothing more than passage
to larger and larger blocks or to smaller and smaller mesh, the condition is that the quantity
has a meaning as the mesh length goes to zero, the dimensions otherwise remaining the same.
For percolation this is a property of crossing probabilities. Our point of view is that any such
quantity is a candidate as a possible coordinate in the space of the fixed point. Rather than
a single numerical quantity we can consider several at once, which amounts in the customary
mathematical way to considering objects lying in some given space, finite-dimensional or
infinite-dimensional, for example, a space of probability distributions, and if these objects
satisfy this criterion, thus if, for each model at the critical point, they tend to a limit as the
mesh goes to zero, then this limit or rather its coordinates in the given space can also serve
as coordinates of the fixed point. Such objects are described in the paper.
There are at least two possibilities: one modeled on the considerations for the free boson

of [L]; the other on the crossing probabilities for percolation [LPPS, LPS]. The second
possibility was suggested to us by Haru Pinson to whom we are grateful. Thus to each form
M of the Ising model (taken at the critical temperature) we will attach two points pD(M)
and pC(M), each defined by an infinite number of coordinates. Both are, in so far as this can
be confirmed by experiments, universal and conformally invariant in the sense of [LPS]. It is
unlikely that these two points are independent. One set of coordinates may well be deducible
from another, but we have not examined this possibility.

Crossing probabilities may or may not be peculiar to a few models. The evidence for their
conformal invariance and universality is not difficult to present and appears in Section 5.
There is, however, one point to underline. The Ising model is considered in regions that may
be bounded or unbounded. Crossing probabilities are defined for crossings within a region
that may or may not coincide with the region in which the model is considered. It may be
smaller. In contrast to crossing probabilities for percolation, in which there is no interaction,
those for the Ising model depend on both the region in which the crossings are allowed to
occur and the region of thermalization on which the Ising model is considered. Conformal
invariance refers to the simultaneous action of a conformal mapping on the pair of regions.
The coordinates modeled on the free boson should, on the other hand, be available for a

large class of models. Their definition is, in principle, quite general, but we have confined
ourselves to the Ising model. The states σ of the Ising model take values in the set {±1}
which is contained in the set of all complex numbers z with |z| = 1. This set in turn is covered
by the line z = exp(2πix). We simply develop the circle on the line. We first assign to one
site p0 in the lattice the value h(p0) = 0 and then choose for all other p the value h(p) = mπ,
m ∈ Z, so that exp

(
ih(p)− ih(p0)

)
= σ(p)/σ(p0). Of course, there has to be more method

than that. For example, for the square lattice we introduce clusters: maximal collections
of lattice sites of the same spin that are connected through bonds joining nearest-neighbor
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sites. Each cluster is surrounded by a curve constructed from edges of the dual lattice and
this curve separates it from all other clusters. To each of these curves an orientation is
assigned randomly and, for nearest neighbors p and q, we set h(p) − h(q) = ±π, the sign
being determined by the relative orientation of the bond from p to q and the curve it crosses.
If it crosses no curve, then σ(p) = σ(q) and we take h(p) = h(q). Thus to every state σ are
attached several functions h, but h determines σ up to sign. For a finite lattice the measure
on H, the set of all possible h is taken to be such that the measure, mI , on H assigns the
same mass to all points lying above a given σ. Their sum is one-half the mass of σ.
Fix now a bounded planar region D and consider the Ising model in this region with

respect to a square lattice whose mesh a approaches 0. Since the model is to be critical, the
contribution to the Boltzmann weight of a pair of neighboring spins is

eJσ1σ2 , sinh(2J) = 1, J = 0.440687.

Each h is in effect a function on the whole region if we take the value in the open square of
side a about the site p to be h(p). (The ambiguity at the boundary is disregarded here; it has
to be confronted in various ways from experiment to experiment.) If C is a (smooth) curve
in R, which can lie entirely in the interior or run entirely or partially along the boundary,
then we can restrict each function in H to C. This yields a set of points, each carrying a
mass, in the set DC of Schwartz distributions on C, and thus a probability measure on DC .
Experiments to be described in Sections 2 and 3 suggest strongly that this measure has a
limit as the mesh tends to 0 and that the limit is universal and conformally invariant. This
is perhaps the most important conclusion of the paper.

These measures have surprised the authors more than once. When C is the boundary, the
measure has a number of properties, to which we devote considerable attention, that suggest
it is gaussian. It is not.
There is no reason to restrict ourselves to planar regions and we begin our study with

the cylinder, because the ambiguities at the boundary are then absent. A long cylinder
(effectively semi-infinite) is, provided we stay close to the end, to be regarded as equivalent
to a disk. The simplest conformally invariant distribution on the set of distributions on the
boundary of a disk is the gaussian distribution with respect to the quadratic form defined
by the Dirichlet form. For a function φ this form is obtained by extending φ to a harmonic
function φ̃ in the interior and then taking

(1)
g

4π

∫ ((
∂φ̃

∂x

)2

+

(
∂φ̃

∂y

)2
)
dx dy.

The first experiments described in Section 2 strongly suggest that the measure given by our
construction is in some respects very similar to this gaussian with a constant g = gB that
appears to be universal; the final experiments of that section show, however, that it differs
in important respects from a gaussian. If C is interior, the measure on DC is in no respect
similar to a gaussian.

Our construction is different from but not unrelated to familiar constructions relating the
Ising model to SOS models. For the Ising model on a triangular lattice our construction is
equivalent in many respects to the usual one for the O(1)-model. In particular, it is expected
that in the plane 〈(

h(x)− h(0)
)2〉 ∼ 2

g
ln|x− 0|.



4 ROBERT P. LANGLANDS, MARC-ANDRÉ LEWIS, AND YVAN SAINT-AUBIN

The constant g = gI is expected to be 4/3, at least for the triangular lattice, but the two
constants gI and gB are not equal.

gI = 4/3, gB = 1.4710.

Although gI is usually defined only for the triangular lattice, it can be defined in general.
We suppose that it is universal, but we have not examined this carefully. The pertinent
experiments are briefly discussed in Section 6. The conclusion, which will be reinforced more
than once as we proceed, is that the comparison with the free boson undertaken in this paper
is quite different than the usual one.

There is no reason that the two constants gI and gB should be equal. One refers to interior
behavior in the bulk, the other to behavior on the boundary. Moreover, as it turns out, they
refer to different aspects of a construction that leads to nongaussian measures with some
gaussian behavior. Although a departure from the conventional view, it could be argued (we
do not attempt to do so here) that for questions of renormalization the constant gB may be
every bit as important as gI , or, much better, that the distributions on curves of Section 2
are at least as important for renormalization as asymptotic behavior because renormalization,
at least as it is often presented, entails the fusion of bounded regions along their boundaries
(which may or may not partially coincide with that of the region of thermalization). The
measures on DC were originally examined only for curves on or close to the boundary. They
appear, somewhat to our surprise, to be of interest even in the absence of a boundary.
Indeed it may turn out, with hindsight, that the numerical arguments towards the end of
Paragraph 3.2 for the existence of nontrivial and conformally invariant measures on interior
curves are at least as important as the other results, argued more elaborately and with more
detail, of Sections 2 and 3.

Our point of view would not be at all persuasive if there were no sign in our fixed point pD,
thus in the measures on DC , of the critical indices 0, 1/2, and 1/16. It is seen in Paragraphs
2.3 and 3.2 that these measures do contain information about critical indices. Section 4, in
which we describe another manifestation of the index 1/16 as well as an interpolation of a
formula of Cardy, is also an essential part of the paper.
The final section is less important. It contains a few observations that provide some

perspective on the definitions of the paper. First of all, the construction of h is by no means
canonical. There are alternative constructions described in Section 7. We can allow jumps
other than ±π, in particular several jumps nπ, n odd, with equal or different probabilities.
They lead to different values of gI and to a measure on DC with little resemblance to a
gaussian.

The possibility of not using clusters in our sense but the clusters of Fortuin and Kasteleyn
that appear in the high-temperature expansion of the Ising (or more generally the Potts)
model also suggests itself. Such clusters can also be used to define the crossing probabilities.
They lead to different measures and to different crossing probabilities, whose universality
and conformal invariance we have not tested.

Finally we point out that the results for the distributions appear to remain valid at infinite
temperature with, of course, a different value for the parameter appearing in the distribution.
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2. Distribution of h at the boundary

2.1. The free boson on domains with boundary conditions. The partition functions

of a free boson ϕ̃, with compactification radius R, are familiar objects when the domain is
a torus, or a rectangle with the field satisfying Dirichlet boundary conditions, thus equal
to 0 on the boundary. For a general Riemann surface with boundary and for an arbitrary
specification of the field at the boundary, it may still be possible to describe the partition
functions explicitly (see [CG]). For a cylinder we use the formula of [L]. As it suggested some
of the statistical quantities for the Ising model studied in this paper, we review this formula.

The cylinder is described as the quotient of the region 0 ⩽ ℜw ⩽ − ln q, 1 ⩾ q > 0, in the
complex plane by the transformations generated by z → z + ω, ω = 2iπ. If the fundamental
domain is chosen to be 0 ⩽ ℜw < − ln q and 0 ⩽ ℑw < 2iπ, the map w → e−w identifies
the cylinder with the annulus of outer radius 1 and inner radius q. We shall use freely the
terminologies associated with the cylinder and with the annulus. Observe that q is close to
zero for long cylinders. The angle θ is used as the parameter on both the inner and the outer
boundary.

The extremal fields ϕ̃ on the domain are real harmonic functions

ϕ̃(z, z) = ϕ0 + a ln z + b ln z +
∑
n̸=0

(ϕnz
n + ϕnz

n).

The boundary conditions fix the restriction ϕ of ϕ̃ to the boundary. On the inner circle where
z = qeiθ and z = qe−iθ, this restriction is

ϕin(θ) = ϕ0 + (a+ b) ln q + iθ(a− b) +
∑
k ̸=0

aBk e
ikθ

with the reality condition aB−k = aBk and on the outer circle

ϕout(θ) = ϕ0 + iθ(a− b) +
∑
k ̸=0

bBk e
ikθ

with bB−k = b
B

k . (The superscript stands for boson.) The compactification condition does not

require ϕ̃ to be periodic but imposes a milder condition: ϕ̃(e2iπz, e−2iπz) = ϕ̃(z, z)− 2πnR,
n ∈ Z, thus (a− b) = inR, n ∈ Z. Since the Lagrangian function (1) does not depend on the
term ϕ0, this constant can be set to zero. Therefore only the difference of the constant terms
in ϕin and ϕout is of significance and we choose to parametrize it with a variable x ∈ [0, 2πR)
and an integer m ∈ Z:

(2) −(a+ b) ln q = x+ 2πmR.

The partition function on the cylinder with the boundary values of ϕ̃ specified by ϕin, ϕout,
or equivalently by x, {aBk }, and {bBk }, is a product of three terms [L]

Z(ϕin, ϕout) = Z
(
x, {aBk }, {bBk }

)
(3)

= ∆−1/2Z1(x)Z2

(
{aBk }, {bBk }

)
(4)

where ∆ is the ζ-regularization of the determinant of the Laplacian for the annulus. It is
given by ∆ = −iτη2(τ) where q = eiπτ and η(τ) = eiπτ/12

∏∞
m=1(1− e2imπτ ) is the Dedekind
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η function. Since this factor is independent of the boundary data, it will be disregarded. The
crucial terms here are the two other factors Z1(x)

(5)
∑
u,v∈Z

eiux/Rq
u2

4R2+v2R2

and Z2

(
{aBk }, {bBk }

)
(6)

∞∏
k=1

exp

−2k

(
(aBk a

B
−k + bBk b

B
−k)

1 + q2k

1− q2k
− (aBk b

B
−k + bBk a

B
−k)

2qk

1− q2k

).
If measurements are made disregarding the variable x, only∫ 2πR

0

Z
(
x, {aBk }, {bBk }

)
dx

is of importance and this gives, after proper normalization, a probabilistic measure on the
space of boundary data parametrized by

(
{aBk }, {bBk }

)
. The mixing of the boundary data at

both extremities becomes more and more intricate when q approaches 1 or, in other words,
when the cylinder becomes a narrow ring. When q is taken to zero, the measure simplifies as
it becomes the product of two terms, each one depending on {aBk } or {bBk }. Moreover, in the
limit q = 0, the probabilistic interpretation of Z is simply that of the gaussian measure in
the variables aBk and bBk .
Even though the Coulomb gas provides a description of the minimal models, we do not

know of any similar explicit formula for the partition functions of these models for general
boundary conditions, although Cardy’s paper [C1] treats explicitly the case of conformally
invariant boundary conditions. There are indeed only a finite number of these, and one of the
difficulties addressed in this paper is how to introduce continuously varying conditions. None
the less we proceed boldly using the partition function (4) as a guide for the Ising model. In
contrast to the free-boson model, the Ising model defined on a graph G does not have a field
taking its values in the whole real line that we could easily identify with ϕ—the spin field σ
takes its values in {+1,−1}. Starting from the spin field σ, defined on the sites of a (finite)
graph G, one can construct the function h as described in the introduction. It is such that, if
p and q are joined, then h(p)− h(q) = ±π if σ(p) ̸= σ(q) and h(p) = h(q) otherwise. If the
graph G is embedded in a surface D, for example, a cylinder or R2, this function h can be
extended to a function locally constant on D except on the edges of the dual graph where it
has jumps. The Ising measure mI on the space of configurations on the graph G of mesh a
endows the (finite) set Ha

D of possible functions h with a (discrete) probability measure. (As
observed above, this measure is such that ma

D(h) = 2mI(σ)/Nσ where Nσ is the number of
distinct h’s that lead to σ and −σ.)

Take the graph to be the subset of the lattice aZ2 of mesh a = 1/LV formed by the points
(am, an), 0 ⩽ m < LH, 0 ⩽ n ⩽ LV . We identify upper and lower edges and regard the
graph as a subset of the cylinder: z = m+ in→ exp(−2πz/LV ). How can we compare Ha

D to
the field-theoretic measure of the free boson? Using the same letters ak and bk (but without
the superscript “B”) for the Fourier coefficients of the restriction of h to the extremities of a
cylinder:

hin(θ) =
∑
k∈Z

ake
ikθ and hout(θ) =

∑
k∈Z

bke
ikθ,
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we study the dependence upon ak and bk, k ∈ {−N,−N + 1, . . . , N − 1, N} of the measure
ma

D on Ha
D, disregarding all other coefficients. The object obtained this way is a measure

ma,N
D on R2(2N+1) concentrated on a finite set. Keeping N fixed, we then take the mesh

a on to zero. If the limit of the measures on R2(2N+1) exists, presumably as a continuous
distribution, the limit as the number 2N + 1 of Fourier coefficients is taken to infinity can be
considered. We name the limiting object

(7) mD = lim
N→∞

lim
a→0

ma,N
D .

This measure, if it exists, is therefore defined on a space HI with coordinates
(
{ak}, {bk}

)
and we shall denote the elements of this space by ϕI . This measure is to be compared with
the probability measure induced by (4) on the space of ϕ/R. (The radius of compactification
R appears here because we normalized the jumps of the function h to be ±π, forcing h
to change by an integral multiple of 2π as θ winds around one extremity.) The first, and
principal, question is:

(i) does the measure mD exist?

The parallel just suggested can be pushed further. We introduce first the derivativeH = dh/dθ
of the restriction of h to either extremity. It is clearly a sum of delta functions concentrated
half way between those sites p and q at the boundary such that σ(p) ̸= σ(q). The mass of
each jump is ±π. We shall use the letter Ak for its Fourier coefficients,

H(θ) =
∑
k∈Z

Ake
ikθ.

Clearly Ak = ikak. At the other end we use Bk = ikbk. We will use Ak equally for
the coordinates parametrizing ψI , the derivative dϕI

dθ
. For the boson, the probabilistic

interpretation of the partition function Z implies that the kth Fourier coefficient of the
restriction ϕin is distributed (up to a normalizing factor) as exp

(
−2k|aBk |2

)
in the limit q = 0.

Consequently, if we use the Fourier coefficients of

1

R

dϕ

dθ
=
∑
k∈Z

Cke
ikθ

with ikaBk = RCk, the probability density is e−2R2|Ck|2/k, again up to normalization. For a
long cylinder the parallel drawn here raises the following questions on mD granted, of course,
that the answer to (i) is positive:

(ii) are the random variables defined by the Fourier coefficients Ak of ψI distributed

normally as e−βk|Ak|2?
(iii) is there a constant R = RB such that the constants βk are simply related by

(8) βk =
2R2

B

k
?

(iv) is the joint distribution a product of independent single-variable distributions?

The rest of this section will describe the response to these questions provided by numerical
simulations. The next will provide evidence that this limit measure is both universal and
conformally invariant.
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Figure 1. The distribution of ℜAk, k = 1, 2, 4, 8, with respect to the measure
ma

D. The mesh size a corresponds to the lattices 59× 401, 79× 157, 157× 1067,
199× 397, 397× 793, and 793× 1585. The curve 59× 401 is at the top when
ℜAk = 0. (See text.)

2.2. The distribution of h at the boundary of a long cylinder. The diagrams of
Figure 1 are some evidence for the existence of the distribution mD on the space HI . They
represent the probability distribution densities of H restricted to one of the extremities of
various cylinders, in terms of a single variable (either ℜA1, ℜA2, ℜA4, or ℜA8), all others
being disregarded or, thinking in terms of the limit, integrated out. By rotational symmetry
these densities are (almost) identical to those with respect to the imaginary part of the same
coefficients. (A small discrepancy could arise from the fact that the numbers of sites along
the circumference were not divisible by 4.) The square lattices contained 59× 401, 79× 157,
157× 1067, 199× 397, 397× 793, and 793× 1585 sites. The first number (LV ) is the number
of sites around the circumference and is half the number of sites along the length (LH) minus
one, or less. The Appendix gives some further technical details on the simulations. We
note at this point that the partition function (4) is obtained by summing over the integer
n parametrizing the linear term (a − b) = inR in both ϕin and ϕout. The analogue of this
term for Ising configurations is straightforward: a configuration with exactly two clusters (of
opposite signs) extending from one end to the other of the cylinder will have two longitudinal
jump lines. Depending on the choice of the jump across these lines, h will increase by 0, 2π,
and −2π as θ wraps around the boundary. Other (even) integral multiples of π appear for
configurations with more clusters crossing from one end to the other and the numbers 2nπ
can be used to partition the set of configurations. We have not differentiated the measure mD

for these various classes. We should add that, for the cylinders studied in the present section,
the configurations h whose linear term is zero are by far the most probable. The multiples
±2π occurred with a probability about 0.0005; higher multiples we did not see at all.
Even though the raw data clearly differentiate the curves attached to smaller cylinders,

smoothing helped to separate the curves between the two largest ones (397 × 793 and
793× 1585). This smoothing was done using the kernel method with a gaussian kernel; the
smoothing parameter was chosen according to Eq. (3.28) of [Si], in which σ was taken to be
the sample standard deviation.
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The narrowing of the gaps between the curves as the number of sites is increased is a good
qualitative argument for the existence of the limit mD = limN→∞ lima→0m

a,N
D . The peaks of

the curves go down systematically as LV and LH increase, except for the dependence on A1.
In this case the center of the curve for 793× 1585 lies slightly above the center for 397× 793
on the small interval (−0.05, 0.05). Around ℜA1 = −0.05 the two curves cross and the curve
for 793× 1585 remains below that for 397× 793 until approximately ℜA1 = +0.5. From then
on (|ℜA1| > 0.5) the two curves are so close that they cross each other several times, probably
due to the limitation of our samples. This puzzled us and was checked independently by
two of us. We have no explanation for it. As will be seen below however, the variance of
the samples, a more global indicator, increases systematically over the spectrum of all the
cylinders considered; in particular that of 793× 1585 is larger than that of 397× 793.

1 2 3 4 5 6 7 8 9 10

1.4

1.6

1.8

2.2

2.4

2.6

Figure 2. The numbers ω̂k, k = 1, . . . , 10 for the cylinders, the squares, and
the disk.
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Figure 3. The numbers ω̂k for 59× 401 and 397× 793 with the horizontal
axis scaled proportionately to 1/LV .

These distribution densities are so similar to normal curves that their variances are a
natural tool for a more qualitative assessment of the finite size effects. In order to answer
questions (ii) and (iii), we plot in Figure 2 the numbers

ω̂LV×LH
k =

k

2(Σ̂LV×LH
k )2
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where ΣLV×LH
k is the square root of the variance with respect to the variable ℜAk for the

cylinder with LV × LH sites. (If both questions were to be answered positively, then the
numbers kβk = k/2Σ2

k for Σk = limLV,LH→∞ ΣLV×LH
k would be a constant. Note that we follow

the usual statistical convention of distinguishing between the theoretical value α of a quantity
and its measured value α̂.) We plotted these numbers for k = 1, . . . , 10 (or, sometimes, k = 1,
2, 4, 8), together with a linear fit of these ten points for every cylinder size on the square
lattice considered, the largest triangular and hexagonal lattices, the anisotropic lattice, and
the 254 × 254 square and disk geometries. The latter will be discussed in Section 3. The
data, read from the top, appear in the order: cylinders of size 59× 401, 79× 157, 157× 1067,
199× 397 for the square lattice G□; of size 464× 1069 for the hexagonal lattice Ghex; then of
size 397× 793 for G□; of size 312× 963 for the anisotropic lattice; of size 416× 721 for the
triangular lattice G△; the cylinder of size 793× 1585 for G□ and the square of size 254× 254
are superimposed; and finally the disk of radius r = 300.2 for G□. The numerical data are also
recorded in Table I for k = 1, 2, 4, 8 together with those for triangular and hexagonal lattices
on a cylinder and those on an ellipse covered by an anisotropic lattice. The digit after the
vertical bar gives the statistical error on the digit just before; for example, the first element

in the table (1.609|3) means that 1/2(Σ̂59×401
1 )2 is 1.609 with the 95%-confidence interval

being [1.606, 1.612]. The (statistical) error bars were not drawn on Figure 2 as their length is
approximately the size of the symbols used, or less. All the linear fits meet in a very small
neighborhood on the vertical axis. For the two cylinders with the greatest number of sites, the
disk and the two squares, the ordinates at the origin are all in the interval [1.47071, 1.47262],
while the largest cylinder and the disk meet at essentially equal values (1.47071 and 1.47095
respectively). It is likely that, for the two smallest cylinders, a positive quadratic term would
have improved the fit and narrowed the gap with the intersection of the others.
Figure 3 reinforces this impression. The numbers ω̂LV×LH

k were drawn for all the linearly
independent Fourier modes (but the constant one) for the cylinders 59× 401 and 397× 793.
Since each function H59×401 is the sum of multiples of the same 59 δ-functions on the
circumference, it can be identified with a point in R59 that we choose to parametrize with
A0,ℜA1,ℑA1, . . . ,ℜA29,ℑA29. Again the distributions with respect to ℜAk and ℑAk are
identical and the corresponding samples can be united. The 29 crosses on the plot are the
data for 59× 401 and the 198 dots are those for 397× 793. The horizontal axis was scaled
differently for the two cylinders: the data were spread evenly on the interval [0, 1], starting
at 1

29
for 59 × 401 and at 1

198
for 397 × 793. The crosses and the dots follow almost the

same curve when scaled that way. Hence, the change in the slopes for the various cylinders
(Figure 2) can be seen to be the effect of calculating the slope of a curve at the origin taking
10 values lying in an interval of length proportional to 1/LV . This is confirmed by a log-log
plot of these slopes (Figure 4). The six dots can be fitted linearly and the slope is found to
be −1.031 or, if the two smallest cylinders are discarded, −1.008. These results are indeed
very close to −1. (It is this second fit that is drawn of the figure.) Consequently the numbers
k/2Σ2

k are likely to be all equal to one and the same constant 2R2
B whose four first digits are

1.471.
This observation together with the previous data indicates that the distribution mD quite

probably exists and that the variances σ2
k with respect to the variables ak = Ak/k are inversely

proportional to k:

(9) σ2
k =

1

k2
Σ2

k =
cst

k
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Geometry (lattice) Size ω̂1 ω̂2 ω̂4 ω̂8

59× 401 1.609|3 1.742|3 2.020|4 2.627|5
79× 157 1.573|2 1.675|2 1.880|2 2.314|3
157× 1067 1.520|3 1.574|3 1.676|3 1.883|4
199× 397 1.506|6 1.550|6 1.629|7 1.793|8
397× 793 1.494|3 1.511|3 1.553|3 1.631|3
793× 1585 1.482|3 1.491|3 1.512|3 1.553|3

Cylinder (G□, Jh = 2Jv) 312× 963 1.487 1.507 1.540 1.614

Cylinder (G△) 416× 721 1.491 1.496 1.536 1.593

116× 267 1.599 1.719 1.946 2.418
235× 535 1.535 1.601 1.717 1.952
464× 1069 1.502 1.530 1.560 1.716

Disk (G□) r = 300.2 1.474|3 1.482|3 1.487|3 1.506|4

major axis = 749.2,
minor axis = 485.2

80× 80 1.502|4 1.535|4 1.600|4 1.728|5
254× 254 1.480|5 1.494|5 1.510|5 1.552|5

Cylinder (G□)

Cylinder (Ghex)

Ellipse (G□, Jh = 2Jv) 1.477 1.480 1.489 1.505

Square (G□)

Table I. The numbers ω̂k, k = 1, 2, 4, 8 as measured on the cylinder, the disk,
the ellipse and the square. (Only the square lattice on cylinders is discussed in
this section. See Section 3 for the others.)

with cst = 0.3399 close to, but unlikely to be, 1
3
. We have not discussed yet whether the

distributions are gaussian but the form (9) is in fact in agreement with the form (8), at least
for the variances of the distributions with respect to one of the variables when all the others
are integrated. The constant R2

B is therefore 0.7355.
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Figure 4. Log-Log plot of the slopes of the linear fit of ω̂k as a function of
LV .

We turn now to question (ii): are the Fourier coefficients Ak of ψI distributed normally as

e−βk|Ak|2? To address this question we used three complementary methods that we shall refer
to as the graphical method, the method of moments, and the method of goodness-of-fit.

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5. Comparison of the empirical distribution m793×1585
D as a function

of ℜAk, k = 1, 2, 4, 8 with gaussian densities whose variance is the sample
variance. The case k = 1 is at the top.

Graphical methods seem a coarse way to assess whether an empirical distribution is a given
theoretical one. Still they are a natural first choice among the arsenal of statistical techniques
designed for this purpose. Figure 5 plots the empirical histograms for mD as measured on the
cylinder 793× 1585 as functions of a single variable (ℜA1, ℜA2, ℜA4, and ℜA8), all other
dependence being integrated out. For these plots we have joined the data for ℜA1, ℑA1,
ℜB1, and ℑB1 which brings the sample to 1,424,000 configurations. (The symmetries of mD

insure that these variables are identically distributed. We are not assuming here that they
are statistically independent. This will be discussed in the next paragraph.) Besides these
four empirical distributions, four normal curves have been plotted whose variances are those
of the data. (These variances can be deduced from Table I.) We have left these empirical
distributions as they are, in contrast to those seen in Figure 1, to distinguish them from
the (smooth) normal curves and to give to the reader an idea of the difference between raw
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and smoothed data. For the dependence on ℜA2, ℜA4, and ℜA8, the ragged and smooth
curves are essentially identical and, based on this evidence, one is tempted to claim that
mD is distributed normally with respect to these variables. The agreement between the two
curves for ℜA1 is clearly not so good. The empirical curve lies above the normal curve at
the center, crosses it before |ℜA1| = 0.5 and remains under it at least till |ℜA1| = 1.0. The
departure from normality is statistically significant for the dependence upon ℜA1. After
having observed this fact, one also sees, looking more closely, a gap at the center of the curves
for ℜA2, though on a significantly smaller scale. (It might not even be visible if Figure 5 has
been too compressed.) Since this departure from normality surprised us and, especially, as it
is easily observable only for ℜA1, we tried to explain it as a finite-size effect. The curves for
the smaller cylinders are however similar and the gaps seem similar to the eye. (The curves
for ℜA1 become wider as the number of sites is increased, as is seen on Figure 1, but the
variance of each sample also becomes larger.) If one is convinced of conformal invariance,
discussed in Section 3, one can also use the data from an analogous simulation performed
on a disk whose boundary contained 2,400 sites. For this geometry, the two curves for ℜA1,
empirical and gaussian, show a similar gap. Thus, on graphical evidence only, we cannot
conclude that the gap seen between m̂D(A1) and the normal curve is a finite size effect and
that it is likely to disappear as LV , LH → ∞. The other distributions (for A2, A4, and A8)
are, however, extremely close to gaussian.

Our first attempt at a more quantitative statement is through calculation of the moments
of the samples. We shall quickly see, however, the limitations of this approach. We denote
by µL

k,i the ith moment of the distribution mL
D with respect to the variable ℜAk

µL
k,i =

∫
(ℜAk)

imL
D(A0, A1, . . . ) dA0

∞∏
ℓ=1

dℜAℓ dℑAℓ.

The even moments of the normal distribution are known to be the mean (the 0th moment, in
our case 0 by definition), the variance σ2 (the second moment, in our case an unknown) and
µ2s = (2s− 1)!!σ2s. The first five non-vanishing moments are therefore σ2, 3σ4, 15σ6, 105σ8,
945σ10. None of the statisticians among our colleagues suggested the moments as a quantitative
tool, probably because of the enormous errors that these measurements carry. Indeed the

variance on a measurement of µL
k,i is (2i− 1)!!σ2i

k if i is odd and
(
(2i− 1)!!−

(
(i− 1)!!

)2)
σ2i
k

if i is even. Consequently the error on µL
k,i rapidly grows out of hand as i increases. None the

less the first ten moments were calculated for the samples for the cylinders 59× 401, 79× 157,
157× 1067, 397× 793, and 793× 1585.

Since the distribution mL
D is, by definition, an even function in all its variables, all the ith

moments, with i odd, are zero. The data only support this weakly, as more than 10% of the
odd moments lie outside what would be the 95% confidence interval if the distributions were
gaussian.
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Figure 6. The quotients µ̂L
1,i/σ̂

i
1 and µ̂L

8,i/σ̂
i
8 for i = 4 and 6 as functions of

logLV .

Even though the errors on the moments µL
k,i are large, it is instructive to plot some of

the moments as functions of logLV , for LV = 59, 79, 157, 397, 793. Figure 6 shows the
quotients µ̂L

1,i/σ̂
i
1 and µ̂L

8,i/σ̂
i
8, for i = 4, 6, that should tend to 3 and 15 respectively if the

limit distributions are gaussian. (The case i = 2 is the variance and was discussed previously.)
For the 8th Fourier coefficient, these quotients are monotone decreasing for both i = 4 and
6 and Figure 6 repeats in another way the visual observation made from Figure 5 that the
distribution mD as a function of ℜA8 is very close to a gaussian. The plots for the first Fourier
coefficient are less conclusive: the overall behavior is decreasing, but not systematically, and
the sixth moment is still rather far from 15, perhaps an indication that 15 is not the limit.

The goodness-of-fit technique is our last attempt to quantify the departure from normality
of the dependence on the Fourier coefficients, particularly of A1. An overview of this technique
(or more precisely this set of techniques) is given in [dAS]. We are going to concentrate on
the random variable

(10) w2
n = n

∫ ∞

−∞

(
Fn(x)− F (x)

)2
dF (x)

known as the Cramér-von Mises statistic ([dAS, chap. 4]). In this expression n is the size of the
sample and F (x) the cumulative distribution function to which the data are to be compared,
in our case the gaussian whose variance is that of the sample. If the data x1, x2, . . . , xn are
ordered (xi ⩽ xi+1), then the empirical distribution function Fn(x) = Fn(x;x1, x2, . . . , xn) is
a step function defined by

Fn(x) =


0, x < x1
i
n
, xi ⩽ x ⩽ xi+1, i = 1, . . . , n− 1

1, xn ⩽ x.
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The measure of integration dF (x) in w2
n is equal to f(x) dx, where f(x) is the probability

distribution corresponding to F (x). The integral therefore gives more weight to intervals
in which the random variable x is more likely to fall. This is particularly well-suited for
our purpose as the gap between empirical and proposed distributions is precisely where the
distribution peaks. Note that, if the data xi, i = 1, . . . , n, are not distributed according to
the distribution F proposed, the variable w2

n will grow with the sample size n.
The null hypothesis H0 is, henceforth, that Fn(x) is a measurement of a variable whose

distribution is F . Under the null hypothesis H0, Anderson and Darling [AD] gave an analytic
expression a(w2) for the asymptotic probability distribution of w2

n, that is, the distribution
of the variable w2

n when the sample size n is taken to infinity. We used their formula (4.35)
to plot the curve of Figure 7. In Chapter 4 of [dAS], Stephens indicates corrections to be
applied to w2

n that allows finite samples to be compared to the asymptotic distribution. For
the n’s that will be used below these corrections are negligible. The two first moments of the
distribution for w2

n are 1
6
(independent of n) and 4n−3

180n
[PS].

0.2 0.4 0.6 0.8
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6

Figure 7. The asymptotic distribution a(w2) together with the histograms
for A1 (dots) and A8 (crosses) for the cylinder 59× 401 and n = 1000.

We concentrate on two Fourier coefficients, A1 and A8, as our goal here is to see whether
the departure from normality for A1 can be quantified and whether it decreases with the
increase in the number of sites of the lattice. Again we consider ℜAi, ℑAi, ℜBi, and ℑBi

as independent and following the same statistics. We can either split the whole available
samples into smaller sets of n elements or measure the variable w2

n for a very large n. With
the first method, a good average w2

n can be calculated if the number N/n of smaller sets is
large enough. The second method will provide a single number that will, with luck, clearly
reject H0 if it has to be rejected. We apply both.

In splitting the large samples into smaller sets, we have to make a careful choice for n. One
restriction comes from the actual values of the L2-integral that we want to measure. Using the
data for the cylinder 397× 793 in the first format described in the appendix (that is, grouped

in 401 bins), we can estimate an order of magnitude of w2
n/n =

∫∞
−∞

(
Fn(x)− F (x)

)2
dF (x)

for the whole sample. (This was done using not the technique suggested by statisticians
[dAS, AD] but using rather the naive Riemann integral over these 401 bins, F (x) being
estimated at the center of these bins. We did not attempt to evaluate the error in these
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A1 A8 A1 A8

59× 401 0.1818 0.1673 5.578 0.1877
157× 1067 0.1802 0.1638 3.490 0.0682
397× 793 0.1745 0.1656 2.587 0.0947

n = 1000 n = 250,000

Table II. The means w2
n for n = 1000 and the number ŵ2

n for n = 250,000.

calculations.) For A1 this integral is 0.000046 and approximately 10 times smaller for A8.
Even though there is an important statistical error on these numbers they give us an idea of
the order of magnitude. We are therefore measuring a very small departure from normality

if any. On the one hand, the strategy of splitting the sample requires to get an average ŵ2
n

good enough that, if it is different from 1
6
, the difference is unlikely to be of statistical origin

and should instead indicate that H0 needs to be rejected. In other words, one should break
the sample into several smaller samples to get a good average. On the other hand, if H0 is
false, the quantity w2

n increases with n. Since the second moment of the distribution for w2
n

is rather large (≈ 1
45
), we need to choose n large enough that the statistical error on w2

n be

reasonably smaller that the number itself. A rough estimate of this error is given by
√

1
45(N/n)

where N/n is the number of sets obtained by splitting the sample of size N into subsets of n
elements. There is an obvious compromise to be struck and we chose n = 1000.
We measured w2

n for the three cylinders 59 × 401, 157 × 1067, and 397 × 793 using the
methods described in [dAS, AD]. These cylinders are the three runs whose data were kept
in the second format described in the appendix, so that the exact values of all the xi were
available. This format allowed us to compute again the coefficients Ai (and Bi for 397× 793).
The two histograms for A1 (dots) and A8 (crosses) for the cylinder 59× 401 are plotted on
Figure 7 together with the asymptotic distribution a(w2). The range [0, 0.8] accounts for
more than 99% of the observations. Even though the crosses seem to follow more closely the

curve than the dots, a quantitative assessment is not inappropriate. The number N/n of ŵ2
n

is at least 2,064 for each of the three cylinders and, consequently, the statistical error on the
resulting w2

n listed in Table II is 2
√
1/(45× 2064) ∼ 0.0066. Note that, for A8, the intervals

of confidence around the average w2
n always contain 1

6
, the predicted mean. Any departure

from normality for A8, if any, cannot be observed from this test. For A1, the predicted 1
6

always falls outside of the 95%-confidence interval, though barely so for 397 × 793. This
confirms the graphical observation made earlier and forces us to reject H0.
As described earlier the other strategy is to compute the numbers w2

n for a large n. We
chose n = 250,000. The disadvantage of doing so is clearly that one has a single measurement

of w2
n, not an average. The results appear also in Table II. The (single) ŵ2

n for the dependence
on A8 is small for all three cylinders and the hypothesis that as the size of the cylinder (as well
as n) goes to infinity the distribution of w2

n approaches a(w2) is totally acceptable. However,

the values of ŵ2
n of A1 indicate that, almost surely, they do not follow these statistics. The

null hypothesis H0 must be rejected for A1.
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The null hypothesis refers, however, to a lattice of a given size and it is not these with
which we are ultimately concerned; it is rather the limit of the distributions as the lattice
size tends to infinity that is relevant. One obvious observation from Table II is that the gap
between the empirical data and a gaussian curve is narrowing as the number of sites increases.
Even though H0 has been rejected, we used the variable w2

n, n = 250,000, to examine the
relationship between the gap and LV . We did further runs, calculating only the value of w2

n

for the dependence on A1. For each of the lattices 59× 157, 77× 155, 101× 203, 125× 251,
157× 313, 199× 399, 251× 501, and 397× 793, we obtained between 20 and 53 measurements
of the variable w2

n. Since H0 does not hold, we do not know the distribution of this random
variable. On the log-log plot 8, we drew the average for each lattice (×) together with the
whole sample (dots). The spread in the sample for each lattice shows that the variance
is very large and thus underlines the difficulty of obtaining a reliable mean for w2

n. None
the less the function w2

n(LV ) is monotone decreasing and the linear fit of the data (with
the first two excluded) plotted on Figure 8 indicates that a power law,

(
w2

n − 1
6

)
∝ αLV ϵ

(α ∼ 2.48, ϵ ∼ −0.278), is a reasonable hypothesis. We point out however that, with our
measurements of w2

n, we could hardly choose between the above power law or any of the
form (w2

n − x) ∝ LV ϵ with x in the interval [0, 1]. For this we would need αLV ϵ ≪ 1/6 or
LV ≫ 10000.
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Figure 8. Log-log plot of w2
n, n = 250,000, as a function of LV .

So, are the Fourier coefficients Ak distributed normally? For k large enough (say k ⩾ 4),
it is impossible with our samples to see or calculate any difference between the empirical
and the normal distributions. For small k, particularly for A1, the gap is obvious but the
goodness-of-fit technique provides clear evidence that it decreases as the size is increased.
That the gap vanishes as LV , LH → ∞ is not a claim on which we care to insist given only
the present data.

2.3. Statistical dependence and the two-point function. The previous paragraph
studied the distribution mD with respect to a single ℜAk or ℑAk, all the others being
integrated. We now turn to the last question raised in Paragraph 2.1, that of statistical
dependence of the variables Ak and Bk.

The test for statistical independence that comes first to mind is the correlation coefficients
between the random variables ℜAk, ℑAk, ℜBk, and ℑBk. These were calculated for the
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cylinder with 397× 793 sites. According to Ch. 5 of [W] the correlation coefficient of a pair
of independent gaussian variables is distributed with mean 0 on [−1, 1] as

(11)
Γ
(
N−1
2

)
√
πΓ
(
N−2
2

)(1− r2)
N−4

2 dr.

Here N is the size of the sample used to measure the correlation coefficient (N = 281,000 for

the present calculation) and no longer the cutoff N used to measure the distribution ma,N
D . If

we set r = s/
√
N and apply Stirling’s formula, (11) becomes approximately

1√
2π

(
1− s2

N

)N/2

ds ∼ 1√
2π
e−s2/2 ds.

Of the correlation coefficients for all pairs of distinct variables in ℜAk, ℑAk, ℜBk, and ℑBk,
k = 1, . . . , 198, the largest turned out to be 0.0097, very small indeed. However this test
is (almost) useless! The measure mD is invariant under rotation of the cylinder around
its axis, or at least, m397×793

D is invariant under a finite subgroup. Under a rotation by an
angle ϕ, the Fourier coefficient Ak picks up a phase eikϕ and the expected value E(AkAℓ)
must vanish unless k = −ℓ. For pairs of variables attached to the same extremity, the
previous numerical calculation is not useful. It is meaningful only for the pairs (ℜAk,ℜBk),
(ℑAk,ℜBk), (ℜAk,ℑBk), and (ℑAk,ℑBk) of variables at different extremities, but a more
discriminating test of independence is certainly required.

The two-point correlation function of spins along the boundary turns out to be a striking test
for the independence of the variables at one end of the cylinder. Because of the identification
σ(q) = eih(q) introduced in Paragraph 2.1, the measure mD on the space of functions h, or
more precisely on the space HI , should allow for the computation of the correlation function〈
σ(θ1)σ(θ2)

〉
of spins along the extremity. Arguments have been given in the literature (e.g.

in [C3, CZ]) that this two-point function should behave as the inverse of the distance between
the two points, namely the cord length sin

(
(θ1 − θ2)/2

)
for the geometries of the disk and of

the cylinder. If we distinguish between the functions h and the elements ϕ of the limiting

space HI , the function
〈
σ(θ1)σ(θ2)

〉
should be

〈
ei(ϕ(θ1)−ϕ(θ2))

〉
with

ϕ(θ1)− ϕ(θ2) =
∞∑
k=1

{
ak(e

ikθ1 − eikθ2) + ak(e
−ikθ1 − e−ikθ2)

}
.

(The relative minus sign between the ϕ’s removes the irrelevant constant term.) Now assume
that the variables ℜak and ℑak are statistically independent and normally distributed with
variance 1/(2RB

√
k). Gaussian integrations lead to〈

ei(ϕ(θ1)−ϕ(θ2))
〉
=

∞∏
k=1

exp

(
− |zk|2

2kR2
B

)
,

with
|zk|2 = |eikθ1 − eikθ2|2 = 2|1− cos kθ|, θ = θ1 − θ2.

Since
∑∞

k=1 cos kx/k = − ln(2 sinx/2), we obtain up to an (infinite) constant

(12)
〈
ei(ϕ(θ1)−ϕ(θ2))

〉
=

1

sinα(θ/2)
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with α = 1/R2
B ≈ 1.360, a number that is not a simple fraction and certainly not 1. Since

the small departure from normality discussed in the previous paragraph is unlikely to change
this result much, there is here an obvious conflict between the prediction α = 1 and this
result based on the hypothesis of independence of the ak’s.

We do not know if the prediction
〈
σ(θ1)σ(θ2)

〉
∝ 1/ sin

(
(θ1 − θ2)/2

)
has ever been checked

through simulations. However the correlation can be retrieved easily from our data for the
cylinders 59× 401, 157× 1067, and 397× 793. Figure 9 presents the results together with the
linear fits of the data after deletion of the seven first (short-distance) points. The slopes of
these fits are 0.993, 1.001, and 0.988 for the small, middle and large cylinders. This prediction
requires no further scrutiny.
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Figure 9. Log-Log plot of
〈
σ(θ1)σ(θ2)

〉
as a function of sin

(
(θ1 − θ2)/2

)
for

the cylinders 59× 401 (top), 157× 1067 and 397× 793 (bottom) together with
linear fits.

We are left with the possibility that the variables Ak are statistically dependent. To show
that this is most likely the case, we offer the following two data analyses. We first study
the conditional distributions of Fourier coefficients. Namely, we consider the distribution
of m(ℜAk|xmin < ℜAℓ < xmax), that is, the distribution of Ak when Aℓ is restricted to
values between xmin and xmax and all the others variables are integrated. Similar conditional
distributions with the imaginary parts are also considered. If the Fourier coefficients were
independent, every value or interval for the restricted coefficient would lead to the same
distribution.

In Figure 10, we present the distribution of ℜA1 given two windows on the values of ℜA2,
for a 157×1067 cylinder. The windows were chosen in such a way that both distributions had
similar statistics. The numerical data clearly show that the two distributions are different,
and thus that these two Fourier coefficients are correlated. However, this correlation could
be affected by the finite size of our lattices. This question of the importance of such effects
is difficult to address. Since we have easy access to only three cylinder sizes, we omitted a
rigorous study of finite-size effects.
Nevertheless, to acquire a feel for the dependence of m(ℜAk|xmin < ℜAℓ < xmax) on the

choice of k, ℓ and the finite size, we computed, for several values of k and ℓ, the ratio of
the variances of the conditional distributions of ℜAk when |ℜAℓ| > 1.125 and |ℜAℓ| < 1.125
(which we will denote r(ℜAk,ℜAℓ)). We also made the same comparison for the real part of
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Figure 10. The conditional distribution of ℜA1 on the 257× 1067 cylinder.
The top graph contains configurations with |ℜA2| > 1.125, while the lower one
contains those with |ℜA2| < 1.125.

Ak and the imaginary part of Aℓ. If the distributions were independent, all these ratios would
be one. We studied these ratios for cylinders of size 59× 401, 157× 1067, and 397× 793. The
first observation is that almost all these ratios diminish when lattice size increases, so that
there is a finite-size effect. For example, r(ℜA1,ℑA1) goes from 1.19 for the 59× 401 cylinder
to 1.05 for the 397× 793 one. Besides this finite-size effect, comparing ratios for different
values of k and ℓ, we observed that the statistical dependence of Fourier coefficients Ak and Aℓ

diminishes rapidly when |k− ℓ| increases, and is weaker for larger k or ℓ. For instance, for the
biggest cylinder, r(ℜA1,ℜA2) = 1.06, while r(ℜA5,ℜA6) = 1.01 and r(ℜA1,ℜA12) = 0.99.
These numbers are not conclusive, and further experiments would be essential were there not
another more compelling argument to establish the dependence of the variables.

As the second analysis we measure the two-point correlation
〈
ei(ϕ(θ1)−ϕ(θ2))

〉
using the mea-

suremD. This is not the same as directly measuring
〈
σ(θ1)σ(θ2)

〉
from the configurations as we

just did to obtain Figure 9. Recall thatmD is obtained by the limitmD = limN→∞ lima→0m
a,N
D

(see Eq. (7)). Consequently we need to set a cut-off N and compute the correlation function
on a sufficiently large cylinder using as an approximation for ϕ the truncation of h to its N
first Fourier coefficients. If the cylinder is large enough, the distribution mD as a function
of Ak, k = −N, . . . , N will be fairly well approximated by ma,N

D . There remains the limit
N → ∞. To a good approximation this limit may probably be forgotten altogether. The
previous analysis showed that the dependence between Fourier coefficients with small indices
and those with large ones is significantly smaller than the dependence amongst the first
Fourier coefficients. If this is so, the gaussian approximation and the independence hypothesis
are good ones for the distribution of Ak, k > N . If the function h being approximated is
smooth enough, the error around θ1 − θ2 = π for example should be of order o

(
1
N

)
according

to the computation leading to (12). By definition the functions h are piecewise continuous
and their smoothness might be improved by smearing functions as in the usual mathematical
treatment of Green’s functions. (See Section 6.) We performed the calculation with and
without smearing. The results for the cylinder 397× 793 are shown on Figure 11. The thick
curve is the log-log plot of

〈
σ(θ1)σ(θ2)

〉
as a function of sin

(
(θ1 − θ2)/2

)
that was plotted on
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Figure 9. The middle, undulating curve has been obtained by repeating the following two

steps over the whole set of configurations: first replace the function ϕ by the truncation ĥ of
h to the sum of its 30(= N) first Fourier coefficients and, then, add the resulting complex

number ei(ĥ(θ1)−ĥ(θ2)) to the sum of the numbers previously obtained. Only the real part of
the average is plotted as the imaginary one is essentially zero. The first term neglected by
the truncation (a31) is responsible for the wavy characteristic of the curve. The local extrema
occurs at every 6 or 7 mesh units in agreement with the half-period (397/31/2 ≈ 6.4). A
linear fit of this curve (after deletion of the seven first data) has a slope of −1.027. The
top curve was obtained in a similar fashion, except that the two steps were preceded by the
smearing of the function h. This smearing was done by convoluting the functions h with
a gaussian whose variance was 2.5 in mesh units. The wavy structure is essentially gone.
The curve appears above the two others because the smearing introduces in h(θ1) and h(θ2)
contributions of spins at points between θ1 and θ2 and thus more strongly correlated. The
smeared correlation function is therefore larger than the two others. A linear fit with the
deletion of the same short-distance data gives nevertheless a slope of −1.062.

The conclusion is thus that the random variables Ak (or ak) are statistically dependent and

that the computation of
〈
ei(ϕ(θ1)−ϕ(θ2))

〉
using the distribution mD leads to the predicted

critical exponent α = 1 for the spin-spin boundary correlation. A consequence of the statistical
dependence is that we cannot offer as precise a description of the measure mD as would have
been possible if the answer to question (iv) had been positive. This detracts neither from its
universality nor from its conformal invariance.
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Figure 11. Log-Log plot of
〈
σ(θ1)σ(θ2)

〉
and of

〈
ei(ϕ(θ1)−ϕ(θ2))

〉
as functions

of sin
(
(θ1 − θ2)/2

)
for the cylinder 397× 793. (See text.)



22 ROBERT P. LANGLANDS, MARC-ANDRÉ LEWIS, AND YVAN SAINT-AUBIN

3. Universality and conformal invariance of the distributions of h on
closed loops

3.1. Two hypotheses. Various crossing probabilities were measured in [LPS] for several
percolation models at their critical points. Their fundamental character was stressed by
two general hypotheses, one of universality, the other of conformal invariance, that were
convincingly demonstrated by the simulations. The same two hypotheses will be demonstrated
for the Ising model at criticality in Section 5. In this section, we propose similar hypotheses
for the distribution of the function h introduced above and confront them with simulations.
We have considered in the previous section the Ising model on the square lattice. Other

lattices could be used. The strength of the coupling could vary from one site to another.
Aperiodic lattices could be considered or even random ones. It is, however, easier to be
specific and to consider two-dimensional planar periodic graphs G. We adopt, as in [LPS],
the definition used by Kesten [K] in his book on percolation: (i) G should not have any loops
(in the graph-theoretical sense), (ii) G is periodic with respect to translations by elements of
a lattice L in R2 of rank two, (iii) the number of bonds attached to a site in G is bounded.
(iv) all bonds of G have bounded length and every compact set of R2 intersects finitely many
bonds in G and (v) G is connected. An Ising model is a pair (G, J) where J is a positive
function defined on bonds, periodic under L. The function J is to be interpreted as the
coupling between the various sites. Only some of the models (G, J) will be critical, or, as
often expressed, each model is critical only for certain values of the couplings J . The following
discussion is restricted to models at criticality.
Let D be a connected domain of R2 whose boundary is a regular curve and let C be a

parametrized regular curve (without self-intersection) in the closure of D. If (G, J) is an
Ising model, one can measure the distribution mD,C

(
{ak};G, J

)
as we did in the previous

section for mD on the square lattice. (Although the coordinates Ak will ultimately become
our preferred coordinates, we continue for the moment with the ak.) The limit on the mesh
can be taken either by dilating C and D with the dilation parameter going to infinity while G
fixed or by shrinking the planar lattice G uniformly while keeping C and D fixed. As before
we shall assume that the limit measure exists for every regular C. The previous section gave
strong support for this supposition when C is the boundary of D and (G, J) the isotropic
Ising model on the square lattice. We examine the following hypothesis.

Hypothesis of universality. For any pair of Ising models (G, J) and (G ′, J ′), there exists
an element g of GL(2,R) such that for all D and C

(13) mD,C

(
{ak};G, J

)
= mgD,gC

(
{agk};G

′, J ′).
The notation gD and gC stands for the images of D and C by g. The Fourier coefficients
agk are obtained by integrating on gC with respect to θg, the image by the linear map g of
the parameter θ on C. The transformation g does not affect the underlying lattice G. For
example, if G ′ is the regular square lattice, it remains the regular square lattice. The domains
D and gD are simply superimposed on G and on G ′. For the usual Ising models, those defined
on other symmetric graphs (the triangular and the hexagonal) with constant coupling or
the model with anisotropic coupling on a square lattice, the matrix g is diagonal. It is easy
to introduce models for which g would not be diagonal. We have not done so for the Ising
models, but an example for percolation is to be found in [LPS].

To introduce the hypothesis of conformal invariance of the distributions mD,C

(
{ak};G, J

)
,

it is easier to restrict at first the discussion to the Ising model on the square lattice G□
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with the constant coupling function J□. A shorter notation will be used for this model:
mD,C

(
{ak}

)
= mD,C

(
{ak};G□, J□

)
. We endow R2 with the usual complex structure. In other

words we identify it with the space of complex numbers in the usual way. For this complex
structure any holomorphic or antiholomorphic map ϕ defines a conformal map, at least locally.
Given two domains D and D1 we consider maps ϕ that are bijective from the closure of D to
the closure of D1 and holomorphic (or antiholomorphic) on D itself. Thus D1 = ϕD. Let ϕC
be the image of C.

Hypothesis of conformal invariance. If ϕ satisfies the above conditions, then

(14) mD,C

(
{ak}

)
= mϕD,ϕC

(
{aϕk}

)
where the Fourier coefficients aϕk appearing as arguments of mϕD,ϕC are measured with respect
to the arc-length parameter on ϕC in the induced metric, or equivalently as:

(15) aϕk =
1

2π

∫ 2π

0

hϕD ◦ ϕC(θ)e
−ikθdθ

where ϕC is the restriction of ϕ to C, hϕD is the function h on the domain ϕD and θ is the
(usual) arc-length parameter of the original loop C.

Even though we have formulated this hypothesis for the Ising model on the square lattice
with constant coupling, it is clear that it can be extended to any model (G, J) using the
hypothesis of universality.

3.2. Simulations. Since the curve C is no longer necessarily an extremity of a cylinder, our
first step is to acquire some intuition about the measure mD,C for curves C inside the domain
D. To do so, we continue our investigation of the cylinder for (G□, J□). Thus D remains
the cylinder, but we select several curves inside it. On the cylinder 397× 793 the curves Ci

are sections coinciding with the leftmost column (C0), the 9th column (C1), the 17th (C2),
the 33rd (C3), the 65th (C4) and the middle column (C5). These curves are at a distance
of 0, 0.0201, 0.0403, 0.0806, 0.161, and 0.997 from the boundary measured as a fraction of
the circumference. We have not checked that the measurements on curves and their mirror
images with respect to the middle of the cylinder are statistically independent. The closest
pair (the curves on columns 65 and 729) are, however, at a distance of 665 mesh units, that
is, more than 5

6
of the full length of the cylinder. So to the distributions on the first five

curves (all but the central one), we have joined those on their mirror images, doubling the
numbers of configurations studied. Figure 13 presents the measure mD,Ci

as functions of
the real part of the Fourier coefficients Ak, k = 1, 2, 4, 8, 16, 32. Each graph shows the
dependence on a fixed Ak for the six curves. On each graph the lowest curve at the origin
corresponds to C0 = boundary, the case studied in Section 2. As the curve C is taken closer
to the center of the cylinder, the distribution becomes sharper at the center. This is perhaps
to be expected as the sites at the boundary are freer to create clusters of intermediate size
than are the sites in the bulk, increasing thereby the values of the various Fourier coefficients.
(See Figures 12 and 18.) Another natural feature is the gathering of the distributions for
all the interior curves on the plot for ℜA16 and ℜA32. Indeed the higher Fourier coefficients
Ak probe small scale structure, at the approximate scale of 1

k
in circumference units. For

example, the Fourier coefficient A32 will be sensitive mostly to clusters having a “diameter”
of ≈12 mesh units or less and these clusters intersecting the curves C at a distance of 32 or of
64 mesh units from the extremity should be distributed more or less the same way. In other
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words the bulk behavior is reached closer to the boundary for higher Fourier coefficients. One
last observation about these plots is that the bulk distribution is definitely not a gaussian in
ℜA1! It is sharply peaked at the center but still has a wide tail. (The distribution in ℜA1

measured along the mid-curve of the cylinder can be better seen on Figure 14 below.)
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Figure 12. Two “typical” configurations on a disk of radius 200 with free
boundary.
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Figure 13. Distributions mD,Ci
as functions of the real part of Ak in the

natural order: k = 1, k = 2, k = 4, k = 8, k = 16, k = 32.

To examine the hypotheses of universality and conformal invariance, we ran simulations
on other pairs (G, J) and on other geometries. We discuss both at the same time. Three
other pairs (G, J) were considered: the regular triangular and hexagonal lattices G△ and Ghex

with the constant function J and the regular square lattice G□ with a function J that takes a
constant value Jh on the horizontal bonds and another constant value Jv on the vertical ones
with Jh = 2Jv. We shall call this model the anisotropic Ising model. This choice of J makes
the horizontal bonds stronger than the vertical ones and clusters of identical spins will have
a shape elongated in the horizontal direction as compared to those of the isotropic model
(G□, J□).
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The critical couplings are determined by sinh 2Jh sinh 2Jv = 1 (see [B] or [MW]). If the
hypothesis of universality is accepted then it follows from formula (5.9) of XI.5 of [MW] that
the matrix g that appears in (13) (when (G, J) is the critical model on the square lattice and
(G ′, J ′) the anisotropic model) is1 (

1 0
0 sinh 2Jh

)
.

(The critical value of Jh for which Jh = 2Jv is 0.609378 . . . .) The lattice used for the
anisotropic model has LV = 312 and LH = 963. These dimensions correspond to a cylinder
on the square lattice with a horizontal/vertical ratio of 1.999, very close to the one used
for the square lattice 397× 793 that has a ratio 1.997. The lattice used for the triangular
lattice was oriented in such a way that every triangle had one side along the horizontal axis
and the dimensions used were LV = 416, that is, the number of horizontal lines containing
sites, and LH = 712, the number of sites on these lines. The aspect ratio for a square lattice
corresponding to these numbers is 2.001. The largest hexagonal lattice used was of size
464 × 1069. Again 464 is the number of horizontal lines containing sites and LH = 1069
is the length of the cylinder in mesh units. The corresponding aspect ratio for the square
lattice is 1.995. We also measured the smaller hexagonal lattices of sizes 116 × 267 and
235 × 535. The difference between these four ratios is smaller than the limitation due to
finiteness discussed in [LPPS]. The distances of the curves Ci from the boundary were chosen
as close as possible to those used for the cylinder on (G□, J□) and given above. (The manner
in which the Fourier coefficients of the restriction of h to these curves were calculated is
described in the appendix.)
As evidence for the hypothesis of conformal invariance, we compared three different

geometries, namely the cylinder used in Paragraph 2.2, a disk, and a square. We identify the
cylinder with the rectangle in the complex plane of height v (its circumference) and of length
h. The analytic function z → e−2πz/v maps this cylinder onto an annulus. With our choice of
dimensions for the cylinder (v = 397, h = 793), the ratio of the inner and outer radii is less
than 10−5 and unless the outer diameter of the annulus is larger than 105, the inner circle
contains a single site. We took the liberty of adding this site to the domain and of identifying
it with a disk. In other words, although the geometries of the cylinder and of the disk are
not conformally equivalent in the sense of the hypothesis, the finite size realization used here
for the disk differs by a single site from the annulus conformally equivalent to the cylinder.
The radius of the disk was taken to be 300.2. The disk can be mapped onto the square by
the Schwarz-Christoffel formula

(16) ϕ(z) =

∫ z

0

1√
(w2 − eiπ/2)(w2 − e−iπ/2)

dw

which defines a map, with the unit disk as domain, holomorphic except in the four points
±e±iπ/4. Both maps satisfy our requirements. For the square and the disk, the distributions
were measured at the boundary. For the disk, they were also measured on the four circles
corresponding to the inner circles on the cylinder that are not at its center. This latter circle
on the cylinder is mapped, inside the disk of radius r = 300.2, onto a circle of radius ≈0.57,

1The point is that because of the anisotropy the two-point correlation function decays more slowly in the
horizontal direction than in the vertical, behaving at large distance as 1/(x2+a2y2)1/4 with a = sinh 2Jh ≈ 1.54.
The appropriate conformal structure is that defined by the ellipse x2 + a2y2 = 1. We are grateful to Christian
Mercat for this reference. See also his thesis ([Me]) in which the conformal properties of the Ising model are
discussed from quite a different standpoint.
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less than one mesh unit. The distribution mD,C on this circle is clearly impossible to measure
for this lattice size.
Table I of the previous section has been completed with the data ω̂k = k/2(Σ̂k)

2 for six
new experiments: the three new Ising pairs (G, J) (triangular lattice, hexagonal lattice and
anisotropic function J) on the original cylindrical geometry; the two new geometries (disk
and square) covered by the square lattice; an ellipse covered by the square lattice with
anisotropic interaction. For the square, two runs were made on a lattice of 80 × 80 and
254 × 254 sites. The data for the disk and both squares were also drawn on Figure 2. As
discussed previously, it can be seen there that their ω̂k’s follow exactly the same pattern
as those of the cylinders and that the ordinate at the origin of their fits falls in the same
very small window [1.47071, 1.47262]. It is interesting to notice that the small lattice 80× 80
on the square geometry leads to ω̂k’s that are between those of the lattices 199× 397 and
397× 793 for the cylinder. Considering that the number of sites in the lattice 199× 397 is
more than twelve-fold that in the small square, this might seem surprising. The explanation
is likely to be that the number of sites on the boundary where the distribution is measured
is the leading cause of the finite size effect. The ω̂k’s for the triangular lattice and for the
anisotropic model were obtained from the 401-bin histograms of the empirical distributions.
(See the appendix.) No attempt was made to provide confidence intervals. The linear fits
of the ω̂k, k = 1, 2, 4, 8, are 1.4723 + 0.0152k (triangular lattice) and 1.4695 + 0.0180k
(anisotropic model). For the largest of the square lattices it was 1.4712 + 0.0102k and for the
disk 1.4710 + 0.0044k. The ordinates at the origin (1.4723, 1.4695, and 1.4712) are extremely
close to the narrow window above for the larger cylinders, the disk and squares, especially
striking as the samples for these experiments (200K) were the smallest of all in this section
and the previous one. The linear fit for the largest of the hexagonal lattices is 1.4793+0.0294k
and the ordinate at the origin is not quite so good but the slope remains large compared
with the other fits. Indeed the product of the slope and the circumference LV is in the
four cases: ∼8.1 (square); ∼6.3 (anisotropic); ∼6.4 (triangular); ∼14.0 (hexagonal). This
suggests that the circumference of the hexagonal lattice must be twice that of the triangular
lattice in order to obtain comparable results, perhaps because it contains only half as many
bonds per site as the triangular lattice. The ordinate at the origin (1.4770) is nevertheless
close and this is important because it confirms the suitability of the construction of the
function h that is described in the appendix, a construction less obvious and more difficult
to implement for the hexagonal lattice than for the others. The anisotropic lattice on an
ellipse was included to demonstrate that the measure mD,C at the boundary is able to select
the appropriate conformal structure even when it is not obvious by symmetry. One map
between the structure attached to the anisotropic lattice, thus the square lattice with the
indicated asymmetric interaction, and that attached to the square lattice with symmetric
interaction takes an ellipse x2 + ay2 ⩽ 1, a = 1.54369, to the disk x2 + y2 ⩽ 1. As ellipse we
took one whose major and minor axes were of lengths 749.2 and 485.2. The usual linear fit
of ω̂k, k = 1, . . . , 10 yielded 1.4712 + 0.0044x.
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Figure 14. Distributions mD,Ci
as functions of the real part of Ak (k = 1 on

the first line, k = 8 on the second) on three different curves C: the boundary
(first column), the curve at a distance of 16 mesh units on the cylinder 397×793
and its conformal images (second column) and the curve at the middle of the
cylinder (last column).

The plots of Figure 14 show the measure as a function of ℜA1 and ℜA8 when h is restricted
to three different curves on the cylinder or to their conformal images on other geometries:
the boundary, the second inner circle (at a distance 0.0403 from the boundary measured as a
fraction of the circumference) and the circle in the middle of the cylinder. For the boundary
(first column of Figure 14) five models have been drawn: the cylinder covered with the square,
the triangular and the anisotropic lattices, the disk and the square both covered with the
square lattice. (The numbers of sites on the various lattices are those given earlier in this
paragraph; only the data for the square of side 254 were drawn here.) For the second column
of the figure, the same models were used but no measurements were made for the square. For
the curve in the middle (third column), only the three lattices on the cylinder were measured,
because the corresponding circle on the disk is too small to allow for reliable measurements.
(See below.) To these three lattices a fourth square lattice, with 199× 2399 sites, was added
on the ℜA1 plot. The agreement is convincing, as it is for the distributions along the other
curves Ci that we measured.

At first glance no cogent comparison can be made between the central circle on the cylinder
and a circle in the disk. A circle in the middle of a short cylinder is equivalent to a circle
in an annulus, but when the cylinder becomes extremely long, it is more like a circle in the
plane. For example, if the cylinders of size 397 × 793 and 199 × 2399 are mapped to an
annulus of outer radius 1, the inner radii will be 4× 10−6 and 1× 10−33 and the images of
the central circles will have radii 2 × 10−3 and 4 × 10−17 respectively (too small to make
a measurement). All circles in the plane are, however, conformally equivalent. So we can
still compare the distributions on the central circle of a cylinder with the distribution on a
circle in the plane. This is easier said than done, because the larger the circle the larger the
domain needed to make useful measurements. There is none the less a method, so that the
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distributions measured on the central circle on both cylinders 397× 793 and 199× 2399 can
be considered as distributions in the bulk.
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Figure 15. The ω̂k, k = 1, . . . , 8 on the boundary and on three inner circles
of the disks of radius 100.2 (+), 200.2 (×) and 300.2 (•). The continuous lines
represent the corresponding data for the cylinder 397× 793.

We first calculate the ωk’s for progressively smaller circles inside disks and observe that
they do tend toward a limiting distribution. The main difficulty is again the finite-size effect
revealed in Figure 2. We compare corresponding inner circles on disks of radius 100.2, 200.2,
300.2. On each of these, the distributions were measured on inner circles of radius 1.0, 0.5,
0.4, 0.3, 0.2, 0.1319, 0.1, and 0.04790 times the outer radius. The smallest inner circle on
the disk of radius 100.2 has a radius 4.8 in mesh units. Finite-size effects will be indeed
important! Though we measured the ωk’s for k up to 32, the overall behavior is clear for
k = 1, . . . , 8, as presented in Figure 15. Only the circles of relative radius 1.0, 0.4, 0.2, and
0.0479 were retained for ease of reading. The “+” are for the disk of radius 100.2, the “×” for
200.2, the “•” for 300.2 and the corresponding data for the cylinder 397× 793 are joined by
straight lines. For the boundary, the three disks give a better approximation of the limiting
distributions than the cylinder but for the inner circles the roles are exchanged. The spread
between the three disks, and between them and the cylinder, is particularly important for the
smallest inner circles but the way it decreases with the increase of the disk radius supports
the hypothesis that a common distribution for these two geometries exist on each of these
circles.

A comparison of the distributions on inner circles for the disk and the cylinder is therefore
possible. Figure 16 shows the ωk’s, k ∈ {1, 2, . . . , 32}, for the cylinder 397 × 793 (•) and
the disk of radius 300.2 (+). Curves were added to help the eye. Seven circles were used.
Their distance from the boundary of the cylinder, in mesh units, and their relative radius
for the disk (in parenthesis) are 0(1.0), 8(0.881), 16(0.776), 32(0.602), 64(0.363), 128(0.132),
and 192(0.0479). The measurements on the central circle of the cylinder were added (■).
Only for the two smallest circles of radius 0.132 and 0.0479 is the agreement less convincing
but, again, the previous figure showed how the gap diminishes as the outer radius increases.
We shall therefore refer to the limiting distribution, approached by that on central circles
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of cylinders and on very small inner circles of disks, as the bulk behavior irrespective of the
global geometry.
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Figure 16. The ω̂k, k ∈ {1, 2, . . . , 32} on a disk (+) and on a cylinder (• and
■) for various inner circles.

Another way to check that the bulk behavior is almost reached in the middle of the cylinder
is to compute the spin-spin correlation along the central parallel. Using the conformal map
from the (infinite) cylinder to a disk one can see that the function

〈
σ(θ1)σ(θ2)

〉
should be

proportional to sin−αbulk
(
(θ1 − θ2)/2

)
. The conformal exponent αbulk is 1

4
(see [MW]). A

log-log fit of
〈
σ(θ1)σ(θ2)

〉
as a function of sin

(
(θ1 − θ2)/2

)
gives a slope of −0.257. We can

also verify that the measure mD on the distributions on this curve allows us to recover

this αbulk by the measurement of
〈
ei(ϕ(θ1)−ϕ(θ2))

〉
. As in Paragraph 2.3 we did this by first

smearing the functions h with a gaussian and then truncating their Fourier expansion at N .
(As before we set N = 30 and the variance of the gaussian to 2.5 mesh units.) The linear fit
of the log-log plot leads to an αbulk ≈ −0.260, in fair agreement with the expected value.
Although the random variable ℜA1 is not normal, Figure 14 and, less clearly, Figure 13

show that higher Fourier coefficients are close to normal. In fact, starting around k = 8,
the histograms of the ℜAk are graphically indistinguishable from the normal curves whose
variances are those of the samples. One may ask quite naturally if the distribution of these
variables is given, at least asymptotically, by the law (8) with, maybe, another constant
Rbulk. The linear fit for the ω̂bulk

k is 4.380 + 0.0065k and the slope is slightly smaller than
that of the boundary, an indication that finite-size effects are smaller in the bulk. It therefore
seems likely that the variables Ak are asymptotically normally distributed as in (8) with
(Rbulk)

2 = 2.190. The ratio (Rbulk)
2/R2

B is 2.98, very close to 3.
The existence of a nontrivial bulk behavior on curves in the plane, was by no means

initially evident and may, in the long run, be one of the more mathematically significant
facts revealed by our experiments. One supposes that the distribution of spins in a fixed,
bounded region for the Ising model on the complete planar lattice at criticality on a lattice
whose mesh is going to 0 is such that they are overwhelmingly of one sign with substantially
smaller islands of opposite signs and that these islands in their turn are dotted with lakes
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and so on. This is confirmed by the two typical states of Figure 12 in which the large islands
of opposite spin appear only in regions influenced by the boundary. Typical states for the
cylinder are similar (Figure 18) but the conformal geometry is such that the bulk state is
reached closer to the boundary. The conclusion is not, apparently, that in an enormous disk,
thus in the plane, the integral of h against any fixed smooth function on a fixed smooth
curve is generally very close to 0, so that the distribution of each of the Fourier coefficients
ℜAk and ℑAk approaches a δ-function. Rather, they are approaching a distribution which is
not trivial but is, at least for k small, clearly not a gaussian. What we may be seeing is the
effect of the shifting boundaries of the large regions of constant spin. Once a circle in the
plane is fixed, the boundary between even two very large regions of different spin can, as the
configuration is varied, cut it into intervals of quite different size.
Indeed the existence of a nontrivial limiting measure on the space of distributions on the

boundary was itself not certain beforehand. In spite of the attention we gave in Section 2 to
the possibility of its being gaussian for the boundary of a circle, the exact form is perhaps of
less mathematical significance than its universality and conformal invariance.

3.3. Clarifications. In order not to encumber the initial discussion with unnecessary abstrac-
tion, we worked with the distributions mD,C

(
{ak},G, J

)
. A better theoretical formulation

would be in terms of a measure mD,C on the set of real-valued distributions in the sense
of Schwartz on the oriented smooth curve C, or if C were merely regular (thus sufficiently
differentiable) on some Sobolev space. To be more precise, the measure is on the set of
distributions that annihilate the constant functions. (To be even more precise, this is so only
if the curve is contractible. For other curves, such as the circumference of a cylinder, the
set of distributions whose value on the constant function 1 lies in { 2mπ | m ∈ Z,m ̸= 0 },
may have a nonzero measure. Under many circumstances, it is small enough that it can for
numerical purposes be supposed 0.) To introduce the measure mD,C concretely, we need a
basis for the dual space, thus in principle just a basis for the smooth (or regular) functions
on C modulo constants. If this basis is {φk | k = 1,∞} then λ →

{
λ(φk)

}
defines a map

of the distributions into a sequence space and a measure is just a measure on the collection
of real infinite sequences, {µ1, µ2, . . . }. It would have to be defined by some sort of limiting
process from measures on RN . The simplest such measures are product measures. Given
such a measure on the space of real sequences, it defines, at least intuitively, a measure on dis-
tributions if for almost all sequences {µk}, the assignment φk → µk extends to a distribution,
thus in particular if it lies in some Sobolev space. For example, if a parametrization x(θ),
0 ⩽ θ ⩽ 2π of the curve has been fixed then one possible choice of the basis is the collection{

x(θ) → ℜeikθ, x(θ) → ℑeikθ
∣∣∣ k > 0

}
Then it is better to put the µk together in pairs and to use sequences {Ak} (or ak = Ak/ik)
of complex numbers. This has been the point of view of this paragraph. Starting with a given
parametrization, we examined the joint distributions of the complex random variables ak.
The parametrization also allows us to introduce the measure dθ/2π and thus to identify

functions with distributions. In particular, in order for a measure on sequences to yield a
measure on distributions it is necessary, and presumably usually sufficient, that the sum

∞∑
k=−∞

ake
ikθ
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converges as a distribution for almost all sequences ak. For example, if the measure is a
gaussian defined by

(17) exp

−α
∞∑
k=1

k|ak|2


then the expectation E
(
|ak|2

)
is 1/(2αk), so that

∑
|ak|2/k converges almost everywhere.

As a result, the sum (17) converges almost everywhere as a distribution. This conclusion
remains valid provided only that the expectations ⟨akaℓ⟩ are those of the gaussian (17), a
property that according to the results of Section 2 the measure mD has a good chance of
possessing. Therefore, if λ =

∑
k λkak is any random variable that is a linear function of the

ak then the expectation E(λ2) is calculated as though the measure were gaussian.
Our method is numerical, so that we approximate the measure on sequences from a large,

finite scattering of functions h, or rather of their derivatives, because the derivative H is
well-defined as a distribution, although h itself is not. The distribution H is a sum of
δ-functions, with mass ±π at each point where the curve crosses a contour line of the function
H. Since its value on the constant function 1 is the sum of those jumps, this value is 0, as
noted, whenever that sum necessarily vanishes, either because the curve is contractible or
because the cylinder is extremely long.
Although our construction required a specific parametrization, the resulting measure on

distributions may be independent of the parametrization and, more generally, even of the
choice of basis. We did not attempt to verify this. It may be useful, however, to describe an
example.
When D is a disk of radius 1 with the boundary C parametrized in the usual way by

arc length θ, the function h can be recovered by integration with respect to dθ from the
distribution H. The measure on distributions on C is, as we discovered, not equal to the
gaussian measure associated to a constant, 2R2

B, times the Dirichlet form Q(H), but, if we
ignore the reservation expressed at the end of Paragraph 2.1, the variance of linear functions
of the Fourier coefficients can be calculated as though it were. We recall that to calculate
Q(H), or Q(H,H) if we want to stress that it is a quadratic form, we extend the function h
as a harmonic function to the interior and then

Q(H) = D(h) = D(h, h) =
1

4π

∫ {(
∂h

∂x

)2

+

(
∂h

∂y

)2
}
dx dy.

or, extending it to a hermitian form,

(18) Q(H) = D(h) = D(h, h) =
1

4π

∫ {∣∣∣∣∂h∂x
∣∣∣∣2 + ∣∣∣∣∂h∂y

∣∣∣∣2
}
dx dy

if we use again the symbol h for the harmonic function inside D. If we identify formally
distributions with functions by means of the bilinear form

1

2π

∫ 2π

0

h1(θ)h2(θ) dθ = ⟨h1, h2⟩,

or, in complex terms,

(19)
1

2π

∫ 2π

0

h1(θ)h2(θ) dθ = ⟨h1, h2⟩,
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and regard therefore Q and D as operators, so that Q(H) = ⟨QH,H⟩ and D(h) = ⟨Dh, h⟩,
then, as a simple calculation with the functions eikθ shows, D has 0 as an eigenvalue
of multiplicity one, eigenvalues 1

2
, 2
2
, 3
2
, . . . , each with multiplicity two, Q has eigenvalues

1
2
, 1
4
, 1
6
, . . . , each with multiplicity two and on the domain of Q, the orthogonal complement of

the constant functions, 4D = Q−1. More precisely, and this is the best form for our purposes,
if the Fourier expansion of h is

∑
k ake

ikθ then

D(h) =
1

2

∑
k ̸=0

|kak|2,

or if h is real, ∑
k>0

k|ak|2.

Suppose now that D′ is any domain, C ′ its boundary, and φ′ any smooth function on C ′.
The function φ′ defines a linear form

(20) λ→ λ(φ′)

on distributions. By conformal invariance, the measure on distributions on C ′ is obtained by
transport of the measure on distributions on C using any conformal transformation ϕ from D
to D′. If the measure on the distributions is in fact well-defined, independently of any choice
of basis, then the characteristic function of (20) is formally calculated as∫

exp
(
−2R2

B(Qλ, λ) + iαλ(φ)
)/∫

exp
(
−2R2

B(Qλ, λ)
)

which is
exp
(
−α2Q(λϕ)/8R

2
B

)
if φ = φ′ ◦ ϕ and λφ is the distribution such that λ(φ) = Q(λ, λφ). Consequently, the
probability distribution of the random variable defined by (20) will be gaussian with variance
Σ2 given by

1/2Σ2 = 2R2
B/Q(λφ).

But λφ = Q−1φ so that

(21) 1/2Σ2 = R2
B/2D(φ).
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Figure 17. The Schwarz-Christoffel map from the disk to the square. The
images of the rays of the disk are the curves intersecting at the center of the
square.

Suppose for example that D′ is a square of side π
2
and that we parametrize its boundary by

arc length: s = s(t), s(0) being one of the vertices. We write t = t(s) for the inverse function.
The Schwarz-Christoffel map ϕ of the disk onto the square is depicted in Figure 17 where the
curves intersecting at the center of the square are the image of the rays on the disk. Although
arcs of equal length on the circular boundary are mapped to intervals of different lengths on
the edge of the square, this effect is important only close to the vertices. Thus if φ′

k is the
function s(t) → cos(kt) and φk = φ′

k ◦ ϕ then the distribution of the random variable defined
by φk should be gaussian with variance D(φk)/R

2
B. Moreover D(φk) is obtained from the

Fourier coefficients of φk and they are calculated by observing that, apart from a constant
factor, which is unimportant, the Schwarz-Christoffel transformation (16) restricted to the
boundary w = eiθ of the unit disk can be expressed in terms of the elliptic integral of the
first kind,

F (t|2) =
∫ t

0

dψ√
1− 2 sin2 ψ

.

With our choice of s(0), the function s(t), for t ∈
[
0, π

2

]
, is

s(t) =
π
4

F
(

π
4

∣∣2)F
(
t− π

4

∣∣∣∣2
)

+
π

4
.

The graph of
(
t, s(t)

)
on [−π, π] is obtained from that on

[
0, π

2

]
by translation by

(
π
2
, π
2

)
.

The function s = s(t) is odd and composition of odd or even functions with s preserves their
parity. If the basis

{
s(t) → cos ℓt, s(t) → sin ℓt, ℓ > 0

}
is chosen and φℓ(t) = cos

(
ℓs(t)

)
(or

sin
(
ℓs(t)

)
) written as

(22)
Cℓ0

2
+
∑
k⩾1

(Cℓk cos kt+ Sℓk sin kt),
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then the Dirichlet form is

(23) D(φℓ) =
1

4

∑
k⩾1

k(C2
ℓk + S2

ℓk).

For a given ℓ the random variables ℜAℓ and ℑAℓ are identically distributed on the disk, at
least when the number of sites at the boundary is a multiple of 4. On the square they were
shown to be also identically distributed, at least in the limit of the simulations, when these
variables are measured with respect to the induced parameter. However, if the arc-length
parameter s is used on the square, the two variables ℜAs

ℓ and ℑAs
ℓ are identically distributed

only when ℓ is odd. The graphs of two functions cos
(
ℓϕ(t)

)
and sin

(
ℓϕ(t)

)
are translations

of each other when ℓ is odd but not when ℓ is even. The variances of the random variables
ℜAs

ℓ and ℑAs
ℓ must then be distinguished and they are given by

(24) (Σs
ℜAℓ

)2 =
1

4R2
B

∑
k⩾1

kC2
ℓk and (Σs

ℑAℓ
)2 =

1

4R2
B

∑
k⩾1

kS2
ℓk.

Using these formulas we shall compute the numbers

ωs
ℜAℓ

=
ℓ

2(Σs
ℜAℓ

)2
and ωs

ℑAℓ
=

ℓ

2(Σs
ℑAℓ

)2

introduced in Section 2.
The coefficients

Cℓk =
1

π

∫ π

−π

cos ℓs(t) cos kt dt and Sℓk =
1

π

∫ π

−π

sin ℓs(t) sin kt dt

are therefore needed. They can be calculated numerically. The convergence rate of (22) is

however slow. The elliptic integral F (t|2) =
∫ 2

0
(1− 2 sin2 ψ)−1/2 dψ behaves like

(
t− π

4

)1/2
as t→ π

4
−. Consequently, the function s has a similar behavior at integer multiples of π

2
and

the absolute values |Cℓk| and |Sℓk| decrease approximately as M/k3/2. Even with the 250
first Fourier coefficients Cℓk, k = 1, . . . , 250, the Parseval identity for the function cos ℓϕ(t) is
satisfied to only five decimal digits. We decided none the less to restrict the sums (24) to
these 250 first coefficients. Since all the terms in D(φℓ) are positive, the truncated sums will
lead to larger estimates of the ω’s than the true sums.
Since we wish to compare ωs

ℜAℓ
and ωs

ℑAℓ
with those measured with the simulations done

on the square of side 254, it is appropriate to modify slightly the Dirichlet form (23) to take
into account finite-size effects. Paragraph 2.2 showed that the quantity k/(2Σ2

k) is not strictly
constant on a finite lattice but grows slowly. We found that

k

2Σ2
k

= 2R2
B(1 + ϵk)

was a good approximation. (See Figure 3.) Since the ratio k/4R2
B in (24) plays the role of

the variance, we decided to replace it by

k

4R2
B(1 + ϵk)

.

The slope ϵ is that of the linear fit appearing in Figure 2 for the square with 254× 254 sites.
Table III lists the values of ω̂s

ℓ , that is ω̂
s
ℜAℓ

and ω̂s
ℑAℓ

, ℓ = 1, 2, 3, 4, 5, as measured by
the simulations and the values ωs

ℜAℓ
and ωs

ℑAℓ
obtained using the (truncated) sums (24) with

finite-size effects introduced as discussed. The original values ω̂ℓ have been added to give an
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ℓ ω̂ℓ ω̂s
ℓ ωs

ℓ

1 1.480 1.380 1.388
2.241 2.251
0.963 0.974

3 1.505 1.365 1.386
1.921 1.958
1.146 1.181

5 1.520 1.451 1.499

2 1.494

4 1.510

Table III. The numbers ω̂ℓ, ω̂
s
ℓ , and ω

s
ℓ for ℓ = 1, 2, 3, 4, 5 for the square of

side 254. When they differ, the ω for ℜAℓ is placed above the ω for ℑAℓ.

idea of the discrepancy that the use of the arc-length parameter introduces. The values ω̂s
ℓ

and ωs
ℓ are close to one another and the latter are always greater than the former, probably

because of the truncation.

3.4. Conditional probabilities. Suppose that the curve C of the previous section is the
disjoint union of two curves C1 and C2. Then the space of distributions on C is the product
of the space on C1 and the space on C2. We fix the model to be the Ising model at criticality
on the square lattice and denote a distribution by ψ and the measure whose meaning
was clarified in the previous paragraph by mD,C(ψ). Then, in principle, the conditional
probability mD,C(ψ1|ψ2) on the set of distributions on C1 is defined for each distribution
ψ2 on C2. Whether this is so is not so easy to test experimentally. To approximate the
conditional probability numerically with our methods we have to choose a neighborhood U
of ψ2 and proceed as before, eliminating from the sample all distributions ψ′ = (ψ′

1, ψ
′
2) for

which ψ′
2 does not fall in U . We recall that ψ′

i is a distribution given by a sum of δ-functions
on Ci. First of all, the neighborhood U is a neighborhood in an infinite-dimensional space,
so that it is going to be, in any case, very large. Secondly, we cannot eliminate too many
distributions for then the samples would be far too small. Thus U is going to have to be
enormous. The notion seems nevertheless to be workable even at a coarse experimental level.

There are two properties that one might expect. We can introduce and study experimentally
the measure on the distributions on C1 obtained when the spins on C2, or in a small neigh-
borhood of it, are all taken to be +1. This of course presupposes some kind of compatibility
of C2 with the lattice structure, as in the examples studied where C2 passes through a row
of sites, or some way, either theoretical or practical, of specifying the neighborhood, but
granted this, we consider the measure mD,C1(ψ1|C2,+) obtained from this familiar condition.
It is defined quite differently than the conditional probability mD,C(ψ1|0) for ψ2 ≡ 0. (See
Paragraph 4.2.) None the less, one could hope that they were equal. The experiments to
be described are too coarse to establish this with any degree of certainty, but do render the
expectation plausible.

The second property is the markovian property. Suppose that C1 is the disjoint union of C3

and C4, so that ψ1 is a pair (ψ3, ψ4). Suppose moreover—this is the essential condition—that
C2 separates C3 from C4. Then one can hope that conditioning the measure mD,C(ψ1|ψ2) on
ψ4 leads to a measure mD,C

(
ψ3|ψ4|ψ2

)
that is equal to mD,C(ψ3|ψ2), thus the measure on

the distributions on C3 when the distributions on C2 and C4 are given is independent of the
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distribution on C4. The influence of the distribution ψ4 is not propagated across C2 when
the distribution on C2 is fixed.

Figure 18. Configurations on cylinders.

We begin by examining Figure 18 in which three typical states are shown, from left to right:
free boundary conditions on a cylinder of circumference 199 and length 31; free boundary
conditions on a cylinder of circumference 199 and length 399; and free boundary conditions
on the left but + boundary conditions on the right on a cylinder of circumference 199 and
length 31. The picture in the center is the familiar one: towards the middle there is a
tendency to form very large clusters of constant sign, indeed there is only one very large
(white) cluster but at the boundary the clusters are smaller. Recall as well that for a cylinder
there is conformal distortion. In Figure 12 the phenomenon is illustrated without distortion:
there is one large (white) cluster on the left and one large (black) one on the right. In the
picture on the left of Figure 18, the freedom to form smaller clusters is reinforced by the
proximity of the two boundaries. There is almost no bulk behavior at all. On the other hand,
in the picture on the right, the boundary condition is forcing a single large cluster on the
right and this cluster is attempting to envelop the left boundary as well.

5 10 15 20 25 30

1.25

1.5

1.75

2

2.25

2.5

2.75

3

5 10 15 20 25 30

1.25

1.5

1.75

2

2.25

2.5

2.75

3

5 10 15 20 25 30

1.25

1.5

1.75

2

2.25

2.5

2.75

3

5 10 15 20 25 30

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Figure 19. The numbers ω̂k associated with the conditional distributions.
(See text).

This qualitative description is confirmed by a calculation, for the measures on the distribu-
tions on the left boundaries, of the numbers ω̂k introduced in Paragraph 2.2. The results are
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plotted in the diagrams of Figure 19 for the measure associated to the left boundary in the
three cases. In clockwise order from the upper left, they are: free boundary conditions on a
cylinder of size 199× 31; free boundary conditions on a cylinder of size 199× 399; boundary
conditions on the left free, those on the right constant, and size 199× 31. In the diagram on
the lower left, they are superposed. The graph in the upper right is like those of Figure 2,
except that we have used new statistics with a smaller sample, so that the graph is somewhat
irregular. All graphs are pretty much the same except for the first four or five values of k. As
far as the higher values of k are concerned the two boundaries are effectively at an infinite
distance from each other. For k = 1, there is a pronounced difference between the graphs so
that the distribution of ℜA1 on the short cylinder is flatter than on the long cylinder. On
the other hand, when the boundary condition is imposed the value of ω̂k increases and the
distribution of ℜA1 is peaked. The superposition of the three curves is shown in Figure 20.

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

Figure 20. The distribution of ℜA1 for the three pairs (domain, boundary
conditions) described in the text. At the center the curves are in the order,
from top to bottom: short cylinder with constant spins on the right, long
cylinder, short cylinder with both sides free.

We now take C1 to be the left boundary of a cylinder of aspect ratio 199/31 and C2 to be
the right boundary. To test the assertion that mD,C1(ψ1|C2,+) is the conditional probability
mD,C(ψ1|0), we thermalize for free boundary conditions at both ends of a cylinder of size
199× 31 but only keep those samples for which

|ℜA1| < 0.125, |ℜA2| < 0.2
√
2, |ℜA3| < 0.35

√
3,(25)

|ℑA1| < 0.125, |ℑA2| < 0.2
√
2, |ℑA3| < 0.35

√
3.(26)

About 3 out of every 10,000 states satisfy this condition. So our crude experiments will
not permit a substantially smaller neighborhood of 0. In Figure 21, we plot the resulting
collection of ω̂k together with those obtained from the previous experiment with + boundary
conditions on the right side. We see that in spite of the large size of the neighborhood,
the two graphs are quite close. It is the values of ω̂1 and ω̂2 that tell. The graphs of the
distributions of ℜA1 are compared in Figure 22 to ensure that not only are the variances
close but also the probability measures themselves. Without being at all conclusive, the
experiment encourages the belief that

mD,C(ψ1|0) = mD,C1(ψ1|C2,+).
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5 10 15 20 25 30

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Figure 21. The numbers ω̂k for mD,C1(ψ1|C2,+) and mD,C(ψ1|0).
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Figure 22. The distribution of ℜA1 for mD,C1(ψ1|C2,+) and mD,C(ψ1|0).

In order to test whether the probabilities are markovian we considered on the one hand a
cylinder of size 199× 31 on which we thermalized, keeping only the distributions that on the
right boundary satisfied the conditions

(27)
|ℜA1| < 0.125, |ℜA2| < 0.2

√
2, |ℜA3| < 0.35

√
3,

0.3 ⩽ ℑA1 ⩽ 1, |ℑA2| < 0.2
√
2, |ℑA3| < 0.35

√
3.

On the other hand we considered a cylinder of size 199× 61 on which we thermalized with
spin + as the boundary condition on the right and then selected only those states satisfying
the conditions (27) on the distributions for the central meridian. We then examined the
resulting measure on the distributions on the left boundary, in particular the distribution of
ℜA1 and ℑA1. The markovian hypothesis asserts that, when we fix the distribution on the
center, the measure on the distributions on the left boundary is completely shielded from the
boundary conditions on the right, although once again we are prevented by the necessity of
allowing the rather large open neighborhood (27) from actually fixing the distribution on the
center. We can only impose very crude constraints on the first few Fourier coefficients. For
the experiments on the smaller cylinder about 3 samples in 10,000 are kept; on the larger,
curiously enough, about 1 in 1,000.
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Figure 23. Test of the markovian hypothesis. The numbers ω̂k for the two
cylinders with ℜAk on the left and ℑAk on the right.
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Figure 24. The distributions on the left boundary as a function of ℜA1 (on
the left) and of ℑA1 (on the right).

In Figure 23 the ω̂k are plotted and compared once again, on the left those for ℜAk, on
the right those for ℑAk. For ℜA1 the value of ω̂1 is slightly larger for the broader cylinder;
the other values are very close. For ℑA1 the value is smaller for the narrower cylinder,
and the other values are again very close. In Figure 24 a similar comparison is made of
the distributions of ℜA1 on the left and of ℑA1 on the right. As is to be expected from
conditions 27, the distribution of ℑA1 is shifted to the right. It is more shifted for the narrow
cylinder than for the broad. The results encourage the belief in the markovian hypothesis,
even though it is hard to imagine that experiments as coarse as these could ever successfully
refute the hypothesis because some shielding is inevitable. The question is rather how much.
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4. Cylinders of variable length and the phase

We have seen in Paragraphs 2.3 and 3.2 that the measures mD,C can be used to recover
the conformal exponent associated to the spin-spin correlation at the boundary and in the
interior. Various formulas in the theory of free fields suggest that critical exponents might
also be obtained from the analogue for the field h of the variable x defined in Paragraph 2.1

for the free boson ϕ̃. We refer to this variable as the phase, and our examination in this
section, although brief, indicates clearly that it also can be used to reproduce exponents of
the classical Ising model.
The variable x for the boson field measures the difference between the constant terms in

ϕ1 and ϕ2, the restrictions of ϕ̃ to the two boundaries of the cylinder. It takes its values in
the interval [0, 2πR) where R is the radius of compactification. (See Paragraph 2.1.) An
analogue for the Ising model on the cylindrical LV × LH square lattice G□ is defined using

x′ =
1

LV

∑
p

(
h(p+ δ)− h(p)

)
where δ is the unit vector in the horizontal direction and the sum runs over all sites p in the
lattice that have a right neighbor. Because the jumps of h are chosen at random between
±π, it is natural to study the distribution of

x = x′ mod 2π

instead of x′. The normalization of x is such that a closed curve of discontinuity in h that
wraps around the cylinder, in other words that is noncontractible, gives a contribution of
±π to x. Clusters intersecting the boundary contribute π∆/LV to x where ∆ is the number
of boundary sites inside the cluster. However contractible curves surrounding clusters of
constant spins not intersecting the boundary do not contribute.

In Section 2 we introduced, for the cylinder D, the measure

mD

(
{ak}, {bk}

)
= lim

N→∞
lim
a→0

ma,N
D

(
{ak}, {bk}

)
defined on the space HI with coordinates

(
{ak}, {bk}

)
, k ∈ Z \ {0}. As we observed in

Paragraph 3.3, this can also be regarded as a measure mD(ψ1, ψ2) on a space of distributions,
one ψ1 on the circle at one end of the cylinder and one ψ2 on the circle at the other end. We
could as well have defined

mD(ψ1, ψ2, x) = mD

(
{ak}, {bk}, x

)
= lim

N→∞
lim
a→0

ma,N
D

(
{ak}, {bk}, x

)
taking the variable x into account. The probability mD(ψ1, ψ2) is a conditional probability,
thus—speaking imprecisely—we have integrated over the variable x. Writing all measures
informally as measures absolutely continuous with respect to a Lebesgue measure on the
underlying spaces, we express this as

dmD

(
{ak}, {bk}

)
= dmD(ψ1, ψ2) = ZD(ψ1, ψ2) dψ1 dψ2

with

ZD(ψ1, ψ2) =

∫ 2π

0

ZD(ψ1, ψ2, x) dx.

This is a convenient notation that avoids technical explanations about conditional probabilities
and also reminds us of the connection between the measures and partition functions.
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4.1. The measure mq(x). We first consider dmq(x) = dmD(x) = Zq(x) dx, D = D(q), with

Zq(x) =

∫
ZD

(
{ak}, {bk}, x

)∏
k

dak dbk =

∫
ZD(ψ1, ψ2, x) dψ1 dψ2,

the choice between the three notations
(
{ak}, {bk}

)
, ({Ak = ikak}, {Bk = ikbk}) and (ψ1, ψ2)

being a matter of convenience. We shall parametrize by the variable q the cylinder D in the
plane of length ℓA, ℓ = ln(1/q), and circumference 2πA, with A arbitrary. It is mapped to
an annulus the ratio of whose inner and outer radii is q by z → exp(z/A). The measure is
normalized ∫ 2π

0

Zq(x) dx = 1

and its Fourier expansion is

Zq(x) =
1

2π
+
∑
k ̸=0

νk(q)e
ikx.

We can try to expand each coefficient in a series of powers of q

νk(q) =
∞∑
j=0

ck(αj)q
αj .

We expect from the original calculations on the Ising model or from arguments of conformal
field theory that α0 = 0, although we admit ck(α0) = 0, and that α1 =

1
8
. The remaining

αj should be at least 5
8
. (The usual argument of conformal field theory would select the

exponents 0, 1
8
, and 1, and all those differing from these by two positive units, but it requires

unitarity. It is not yet clear to us to what extent unitarity is pertinent in the present context.
The whole Kac spectrum could intervene—at least our experiments are not fine enough to
rule out α = 5

8
which is smaller than α = 1.)

We have run two sets of experiments to measure the smallest exponent in ν1(q), one for
LV = 59, the other for LV = 117. As q → 0, that is for long cylinders, the graph of Zq is
practically of period π, instead of 2π, and the odd Fourier coefficients c2k+1(q) −−→

q→0
0. The

physical reason for this behavior is that, for very long cylinders, several noncontractible curves
of jumps in h are likely to occur and configurations with an even or an odd number of these
curves will arise in approximately the same numbers. Figure 25 shows, for the long cylinder
of size 117× 801, the distribution of the variable x′ (before the identification x′ ∼ x′ + 2π)
and of the variable x. The peaks for x′ are centered on the integer multiples of π, clearly
underlining the role of noncontractible curves of jumps. The figure shows configurations with
n curves, |n| = 0, 1, 2, 3, 4, and the data also indicate that |n| = 5 and 6 were obtained
in the sample of 1.6 × 106 configurations. Even for |n| = 4 the probability is fairly large.
It should be remembered that only 1

16
of the configurations with 4 noncontractible curves

will contribute to the peak around 4π. The distribution mq(x) is, for this cylinder, almost
perfectly periodic of period π.
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-5 Pi -4 Pi -3 Pi -2 Pi -Pi Pi 2 Pi 3 Pi 4 Pi 5 Pi

0.02

0.04

0.06

0.08

0.1

0.12

Pi/2 Pi 3 Pi/2 2 Pi

0.14

0.16

0.18

Figure 25. The distributions of the variables x′ and x for the cylinder
117× 801.

Figure 26 is a log-log plot of ν1 as a function of q. The data for the cylinders with LV = 59
are marked by “•” and those with LV = 117 by “+”. The shortest cylinders were 59× 27
and 117 × 53. We measured several other longer cylinders for both LV ’s. We decided to
discard for both the figure and the fits the measurements of ν̂1 whose 95% confidence interval
was more than 5% of the measurement itself.2 The linear fits of the log-log pairs give a slope
of 0.12506 for LV = 59 and of 0.12478 for LV = 117. The line on the figure is the latter fit.
The value α1 =

1
8
appears clearly. We did not check its universality but there is no reason to

doubt it.
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Figure 26. Log-log plot of the Fourier coefficient ν̂1 as a function of q.

4.2. The ratio Z+−(q)/Z++(q). Let Z++(q) and Z+−(q) be the relative probabilities that
with constant boundary conditions on a cylinder of parameter q the spins are equal at opposite
ends or unequal. There is a well-known formula due to Cardy [C1],

(28)
Z+−(q)

Z++(q)
=
χ1(q)−

√
2χ2(q)

χ1(q) +
√
2χ2(q)

2The Fourier coefficients are given by νk =
∑2LV

i=1 cipi where ci = cos
((

i− 1
2

)
2πk/2LV

)
and pi are the

frequencies for the 2LV bins in which the data are distributed. We use ni for the number of data in the
ith bin and N for the sample size. Hence p̂i = ni/N . Since the distribution of the ni is a multinomial
MULT(N ;n1, n2, . . . , n2LV−1), the first moments are ⟨ni⟩ = Npi and ⟨ninj⟩ = N(N − 1)pipj + Npiδij .
Therefore Var(νk) =

1
2N

∑
i ̸=j pipj(ci − cj)

2. For the cylinder 117 × 801 discussed above (q ≈ −43.0), the

measured ν̂1 with the 95% confidence interval is 0.00468± 0.00110 even though the sample was larger than
1.6× 106. It was not used for the fit.
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with

χ1(q) =
∏

m>0, m odd

(1 + qm),

χ2(q) = q1/8
∏

m>0, m even

(1 + qm).

We could, in experiments, fix the spins along one or both of the two ends of the cylinder
to be constant. This leads to alternative measures mq

(
{bk}, x

)
, in which the spins at the left

end are taken to be +1, and
(
Z+−(q), Z++(q)

)
. The question arises whether

(29) mq

(
{bk}, x

)
= mq

(
{ak = 0}, {bk}, x

)
and whether

(30) Z++(q)δ0 + Z+−(q)δπ = mq

(
{ak = 0}, {bk = 0}, x

)
.

These two equations require some explanation. The measure mq

(
{ak = 0}, {bk = 0}, x

)
is

understood, in so far as it can be assumed to exist, to be the conditional probability defined by
the probability measure mq

(
{ak}, {bk}, x

)
, the conditions being ak = bk = 0, or equivalently

Ak = Bk = 0, ∀k ∈ Z \ {0}. Experimentally this means that it is a distribution that
we approximate just as we approximate mq

(
{ak}, {bk}, x

)
itself except that we discard all

samples for which the restrictions h1 and h2 at the ends of the cylinder do not lie in a suitably
chosen neighborhood of 0. The neighborhood is thus to be as small as possible but large
enough that we do not reject so many samples that the number of useful samples becomes
impossibly small. We define mq

(
{ak = 0}, {bk}, x

)
in the same manner, but the condition is

now that ak = 0, ∀k ∈ Z \ {0}.
If (30) is valid the distribution defined by

(31)

∫
|Ak|<ck

∫
|Bk|<ck

Zq

(
{Ak}, {Bk}, x

)∏
k

dAk dBk

with sufficiently small ck’s should be approximately a(q)δ0 + b(q)δπ, thus a sum of two
δ-functions with coefficients whose ratio b/a is given by (28). Similarly the distribution

(32)

∫
|Ak|<ck

Zq

(
{Ak}, x

)∏
k

dAk

provides another ratio b/a to be compared with (28).
Measuring these two ratios b/a is difficult. The ratio Z+−/Z++ decreases from 1 at q = 0

to 0 at q = 1. Large ratios Z+−/Z++, those easier to measure, correspond therefore to long
cylinders. For these the variables Ak and Bk are independent and their distributions are
known from previous sections. The effect of the constraints can therefore be estimated by
using rk = Probq=0

(
|Ak| < ck

)
. Even by imposing restrictions |Ak| < ck and |Bk| < ck only

for k = 1, 2, 3, leaving the other variables free, a choice of r1 = r2 = r3 ∼ 0.1 cuts the
number of admissible configurations by a factor of one million for the measurement of (31)
and the measurement is impracticable. For shorter cylinders (q → 1), the ratio Z+−/Z++

drops quickly. For a circumference four times the length, the ratio is less than 2
1000

, again
difficult to measure. We limited ourselves to a small window of r = ℓ/2π, choosing six values
corresponding to values of q increasing by a factor of approximately 4 at each step. Table
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LV × LH 79× 122 79× 104 79× 86 79× 68 79× 52 79× 34
r = LH/LV 1.544 1.316 1.089 0.861 0.658 0.430

q 0.0000611 0.000256 0.00107 0.00448 0.0160 0.669
Z+−/Z++ 0.408 0.331 0.249 0.165 0.0927 0.0260

const/const 0.419 0.341 0.276 0.193 0.117 0.0419
b/a const/fixed 0.411 0.338 0.259 0.179 0.101 0.0301

fixed/fixed 0.4071 0.3289 0.2494 0.1640 0.0916 0.02539

Table IV. Ratio b/a Measured for Several Cylinders

IV gives the values of r, q, the (rather small) lattices we used and Cardy’s prediction. The
ratios b/a were measured for the constraints:

(33) c1 ∼ 0.377 c2 ∼ 0.653 c3 ∼ 0.929,

the others being infinite. These numbers correspond to the following probabilities

Prob
(
|A1| < c1

)
= 0.2 Prob

(
|A2| < c2

)
= 0.3 Prob

(
|A3| < c3

)
= 0.4

if the cylinder were of size 79× 157 like the one used in Section 2. For this long cylinder and
these constraints applied at both extremities, only a fraction (0.2×0.3×0.4)2 ∼ 0.0006 of the
configurations would be used. We observed that for the shorter cylinders of Table IV more
configurations passed the test. The difficulty of getting proper samples for the measurement
of (32) is of course less acute.
Three sets of measurements were taken. For the first set the constraints given by (33)

were applied at both extremities of the cylinders and is thus of the form (31). In Table IV
it is referred to as const/const for “constrained”. For the second they were applied at one
extremity while the spins at the other were forced to be the same though they were allowed
to flip simultaneously during the Swendsen-Wang upgrades. This corresponds to (32) and
is referred to as const/fixed. The last set is the measurement of the ratio Z+−/Z++, that is
the case fixed/fixed. For each lattice enough configurations (> 20 million in each case) were
generated so that at least 30,000 contributed to the integral (31). Far larger samples were
obtained for the two other sets.
Because of the small sample, especially in the case (31), large statistical variations are

expected between neighboring bins and smoothing provides an efficient tool to identify the
two local maxima around x = π and x = 0 whose ratio was used as a measurement of
b/a. These measurements appear in the last lines of Table IV. (Smoothing was done as
in Paragraph 2.2. The smoothing parameter was chosen as if the distribution of x were
approximately the sum of two gaussians centered at θ = 0 and θ = π. The ratios b/a did
not seem to be very sensitive to the exact choice of the smoothing parameter. Of course the
case fixed/fixed does not require any smoothing since the distribution is actually of the form
a(q)δ0 + b(q)δπ.) The measurements for constrained/constrained and constrained/fixed are
systematically larger than the predicted values though they are very close, in fact closer for
longer cylinders than for shorter ones.
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Figure 27. The distribution of x for four different sets of constraints {ck}.

It is useful to see how the choice of constraints changes the measured ratios b/a and whether
the distribution of the variable x is at all similar to the proposed sum aδ0 + bδπ. For the
cylinder 79× 52 we compared four sets of constraints for the measurement of (31). The first
set consisted of no constraint at all, that is all the ck’s were infinite. The second was the one
used before and the finite ck’s for the third and fourth sets were

c1 ∼ 0.259 c2 ∼ 0.653 c3 ∼ 0.929

and
c1 ∼ 0.259 c2 ∼ 0.441 c3 ∼ 0.614 c4 ∼ 0.782.

These ck’s correspond to r1 = 0.1, r2 = 0.3, r3 = 0.4 and r1 = 0.1, r2 = 0.15, r3 = 0.2,
r4 = 0.25. For the fourth set only 3,152 configurations were admissible out of the 200 million
generated and they were distributed in the 2LV = 632 bins. Errors are large in this case.
Instead of smoothing as before we compared the four sets by expanding their histograms in
Fourier series keeping only the first ten terms. The ratios b/a are sensitive to the number of
terms kept. Only the first two digits of the ratios given below, at the end of this paragraph,
are reliable. The smoothed distributions are shown on Figure 27. If the distribution goes
to aδ0 + bδπ as the constraints become more stringent then the peaks at 0 and π should be
narrower and the distribution around π

2
and 3π

2
should go to zero as one goes to the first to

the fourth set. This is what happens with the four curves. At π
2
the top curve is that with

no constraint and the one closer to zero corresponds to the fourth set of constraints. Even
though the values of a and b for the three last sets are quite different, as they should be,
their ratios are strikingly close: 0.120, 0.109, and 0.114.

Finally we compared the ratios b/a for the three lattices 79× 52, 158× 104, and 316× 208
using always the constraints (33). The numbers of admissible configurations were 40409,
9931, and 8816 and the ratios b/a, obtained again after truncation of their Fourier series, are
0.120, 0.129, and 0.130. These numbers are the same within the statistical errors though the
values of a and b are again different. Figure 28 shows the three distributions, the sharper
peaks being for the smaller lattices. It seems that smaller ck’s are necessary for finer lattices
if the peaks are to be as sharp as for the coarse lattice.
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Figure 28. The distribution of x for the constraints (33) on the three lattices
79× 52, 158× 104, and 316× 208.

It is not clear whether the above measurement technique can reproduce accurately the
ratios Z+−/Z++ with a proper choice of the ck’s and the size of the lattice. The very superficial
analysis we have done does not indicate any decrease in the small gap appearing in Table IV
for the short cylinders. Still the measurements and the predictions are very close.

4.3. The measure mq

(
{ak}, {bk}, x

)
for long cylinders. Some identities are suggested by

the previous experiments. For infinitely long cylinders the following hypothesis seems natural

(34) Zq=0

(
{ak}, {bk}, x

)
=

∫ 2π

0

Zq=0

(
{a−k}, y − x

)
Zq=0

(
{bk}, y

)
dy.

As evidence, integrate with respect to the ak and bk. On the left we obtain∑
k

νk exp(ikx)

and on the right

2π
∑
k

|µk|2 exp(ikx),

if ∫
Z0

(
{bk}, x

)∏
dbk =

∑
k

µk exp(ikx).

We have, by definition, ν0 = µ0 =
1
2π

and νk = µk = 0 if k is odd. Experiments on a cylinder
with 59× 401 sites yield

ν2 ∼ 0.00273 µ2 ∼ 0.0208 2πµ2
2 ∼ 0.00271,(35)

ν4 ∼ 0.0000267 µ4 ∼ 0.00279 2πµ2
4 ∼ 0.0000488.(36)

Unfortunately only the first line carries any conviction. It may not be possible to measure ν4
with any accuracy.

The measure dm0

(
{ak}, x

)
= Z0

(
{ak}, x

)
dx may be of some interest, but we cannot offer

any precise hypotheses. It can be expanded in a Fourier series.

Z0

(
{ak}, x

)
=
∑
j

µj

(
{ak}

)
exp(ijx),
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in which µ0

(
{ak}

)
≡ 1 and µj

(
{ak}

)
≡ 0 for j odd. Then, for example, µ2

(
{ak}

)
is a function

of {ak}, or equivalently, of {Ak}, but, in spite of considerable effort, we have no idea what
this function might be.

A simpler function is

(37)

∫
µ2

(
{ak}

)∏
k⩾2

dak = f
(
|A1|

)
.

The experiments indicate that

(38) f(x) ∼ a
sin(bxπ)

(bxπ)

with a ∼ 0.415 and b ∼ 0.603, but this can be no more than an approximation, as Figure 29
indicates. (It was obtained for the cylinder 157× 1067 with a sample of more than a million
configurations. The error bars are indicated.)
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Figure 29. The second Fourier coefficient µ2 as a function of |A1|.

The functions µj

(
{ak}

)
possess little symmetry. They are invariant under a rotation,

thus under a simultaneous transformation of all variables ak → eikθak, θ arbitrary, but not
obviously under anything else, so that for example,∫

µ2

(
{ak}

)∏
k⩾3

dak

is a function of three variables, |A1|, |A2| and arg(A2
1/A2). The functions µj

(
{ak}

)
are

intriguing, and we would have very much liked to discover more about them.
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5. Crossings

5.1. Events and the two hypotheses. Crossings are one of the main order parameters
for percolation models. Consider, for example, a rectangle covered by a regular lattice. A
configuration is fixed when each vertex has been declared open or closed and this configuration
has a crossing if it is possible to move on open sites joined by lattice bonds from the left
side of the rectangle to the right one. A probability is usually defined on the set of all
configurations by fixing the probability p that a site is open, so that a site is then, of course,
closed with probability 1− p. The probabilities for each site are independent but equal. In
the limit of mesh length zero, the probability of such horizontal crossing is known (rigorously)
to have a singular behavior as a function of p, being 0 for p < pc and 1 for p > pc, for a
certain constant pc ∈ (0, 1) that depends on the lattice. This definition can be extended
readily to the Ising model by replacing crossings on open sites by crossings on spins of a given
sign, say, for example, of positive sign. The probability of crossings on clusters of + spins
is not a familiar order parameter for the Ising model, and it is not even clear that it is not
trivial, thus identically 1 or identically 0. We examined it, at first, only out of idle curiosity,
following a suggestion of Haru Pinson and were somewhat astonished to discover that it is
far from trivial. With hindsight, it does have some immediately appealing features and has
been studied before although not with the same goals [KSC]. It is related to spontaneous
magnetization and to the geometry of the main cluster. It even turns out to share striking
properties of the percolation crossings: universality and conformal invariance [LPS]. Whether
a formula for it analogous to that of Cardy [C2] for percolation remains an open question.
We recall the definitions.

Let D be a domain and D′ a closed subset of D. Let α =
{
(α1, α2), . . . , (α2n−1, α2n)

}
and

β =
{
(β1, β2), . . . , (β2m−1, β2m)

}
be sets of n and m pairs of intervals in the boundary of D′

such that the 2(m+ n) intervals are pairwise disjoint. (In fact, the intervals need not be in
the boundary of D′ but these are the only cases we treated.) Let a lattice G be superimposed
upon the domain D. Let Γ be a configuration for the Ising model (G, J) on D and Γ′ its
restriction to D′. We shall say that the event E specified by the data (D,D′, α, β) occurs for
the configuration Γ

(i) if for every pair (α2i−1, α2i), i = 1, . . . , n, there is a connected cluster of + spins for
Γ′ that intersects both α2i−1 and α2i

(ii) and if for no pair (β2j−1, β2j), j = 1, . . . ,m, is there a connected cluster of + spins for
Γ′ that intersects both β2j−1 and β2j.

(For percolation the definition of an event is simpler as the introduction of the larger domain
D is superfluous, so that the measure on the configurations on D′ is independent of the choice

of D. Thus one takes D = D′.) Let Ga be the lattice G shrunk by the factor a and let π
(G,J),a
E

be the probability of the event E = (D,D′, α, β) for the Ising model (Ga, J) at its critical

point, then π
(G,J)
E will be defined as

π
(G,J)
E = lim

a→0
π
(G,J),a
E

if the limit exists. The two hypotheses of universality and conformal invariance are then
identical to those proposed in [LPS] for percolation.
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Hypothesis of universality. For any pair of Ising models (G, J) and (G ′, J ′), there exists
an element g of GL(2,R) such that

(39) π
(G,J)
E = π

(G′,J ′)
gE , for all events E.

Hypothesis of conformal invariance. Let (G□, J□) be the Ising model on the square lattice
with critical coupling J□. Let ϕ be a map satisfying the same requirements as in the hypothesis
of conformal invariance of Section 3. Then

(40) π
(G□,J□)
E = π

(G□,J□)
ϕE , for all events E

It is best to observe explicitly that the map ϕ acts on both D and D′, so that if D is
the whole plane there are very few admissible ϕ. The following two paragraphs describe
simulations done to examine these hypotheses when D = D′ (Paragraph 5.2) or D′ ⊊ D
(Paragraph 5.3).

5.2. D = D′. For the first events to be considered we take D = D′. Their description is simple
when the geometry of D is that of a rectangle. We introduce the notation πh(r) and πv(r),
instead of πE, for events E occurring on D, a rectangle with aspect ratio r = width/height,
with a single pair (α1, α2) and an empty β. For the probability of horizontal crossings πh
the two intervals α1 and α2 are the left and right sides and for the probability πv of vertical
crossings, the top and bottom. The probability πhv(r) will give an example of an event with
two pairs α =

{
(α1, α2), (α3, α4)

}
. It is the probability of having simultaneously horizontal

and vertical crossings in a rectangle D of aspect ratio r. Note that the number πh(r)− πhv(r)
is the probability to have a horizontal crossing without having a vertical one. It thus provides
an example of event E with one pair α and one pair β. Finally we introduce πA

h (r) and
πA
v (r) whose corresponding events have a single pair (α1, α2). For πA

h , α1 is the vertical
segment splitting the rectangle in two parts of equal areas and α2 the right side. For πA

v ,
α1 is the horizontal segment in the middle of the rectangle and α2 the top side. For these
two probabilities, we could also have taken D′ to be the half-rectangle bounded by {α1, α2}
because a path joining α2 to α1 reaches α1 before it leaves this half-rectangle, so that the
sites outside the half-rectangle are superfluous.
Two difficulties limit the precision of the numerical measurements. The first one is the

limitation due to a choice of convention and was discussed at length in [LPPS]. Since π
(G,J)
E

are approximated by measurements on finite lattices, the exact position of the domain D
with respect to the lattice must be specified by convention; or, equivalently, a prescription
must be given for calculating r for a rectangle with LH sites in the horizontal direction and
LV in the vertical one. To examine the sensitivity to convention consider an extreme case.
Suppose that in convention I the width is that of the narrowest rectangle containing the LH
horizontal sites and that in convention II, the width is that of the widest. For the square
lattice oriented so that its bonds are parallel to the sides of the rectangles, the difference
between the two widths is 2 mesh units. If both conventions measure the height in the same
way, the discrepancy for πh between the two conventions is

2

LV

∣∣π′
h(r)

∣∣,
the prime denoting a derivative. These numbers can be estimated from the data of Table VII.
Table V gives an order of magnitude for this limitation on precision for the two probabilities
πh and πA

h at the center (r = 1) and at the extremities (r = 0.1361 and 7.353) of the range of
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r πh
2

LV
|π′

h| Statistical error πA
h

2
LV

|πA′

h | Statistical error

7.3 0.02 3× 10−4 6× 10−4 0.12 1× 10−4 1× 10−3

1.0 0.50 3× 10−3 2× 10−3 0.66 3× 10−3 2× 10−3

0.14 0.98 2× 10−3 6× 10−4 0.99 5× 10−3 3× 10−4

Table V. Sensitivity to Convention and Statistical Errors for a Sample of
200,000 for Three Values of r on a Lattice Containing ≈40,000 Sites

the aspect ratio we measured. Our conventions are given in the appendix; whatever they are,
the above limitation is unavoidable.

To confirm the conformal invariance we also measure all these probabilities for comparable
geometries on the disk and the cylinder. The Schwarz-Christoffel map can be chosen so
that the four vertices of the rectangle of aspect ratio r correspond to the four points ±e±iθ

for some θ ∈
[
0, π

2

]
, on the unit circle. Notice that r = 0 corresponds to θ = π

2
, r = 1 to

θ = π
4
and r = ∞ to θ = 0. The slope of the function θ(r) at r = 0 is zero. This means

that the sensitivity to convention is magnified for values of θ close to π/2. For example we
measured the probabilities π in the rectangular geometry for five different values of r in
the range [0.1361, 0.1647]. The corresponding range of θ is [1.57051, 1.57076] and, on the
disk of radius r = 300.2 mesh units that we used, at most one site can be contained along
the boundary in this interval. This is even worse for the corresponding geometry on the
cylinder of size 397× 793 where the π’s have also been measured. Such measurements are
too imprecise to be useful and we measured the probabilities, on the disk and the cylinder,
only for the θ’s corresponding to the forty-one values in the middle of the eighty-one we used
for the rectangular geometry. The arc between the two smallest as well as the two largest θ’s
among these 41 values is about 3.7 mesh units. Since we have taken the sites in the angles
(π − θ, π + θ), (−θ, θ) to define the pair of intervals (α1, α2), it is clear that a rather large
systematic error is to be expected.
Finite-size effects are the origin of the second difficulty. Fortunately the relation πh(r) +

πv(r) = 1 is verified for the triangular lattice, even for finite ones. This is a well-known
identity for percolation and the argument for its validity here is the same. For the other pairs

(G, J), this relation is not verified for finite lattices, that is π
(G,J),a
h +π

(G,J),a
v ̸= 1. Nevertheless,

if universality holds, it should be satisfied for the other pairs (G, J) in the limit of zero mesh.

Departure from zero of the quantity |1−π(LH,LV )
h −π(LH,LV )

v | for r = LH
LV

is therefore a measure
of finite-size effects. Interpreted differently, this quantity is a measure of the error made

on πh(r) when the number π
(LH,LV )
h is used in its stead. A verification for a square domain

covered by the square lattice indicates that π
(G□,J□)
h (r) + π

(G□,J□)
v (r) = 1 is likely to hold when

the number of sites goes to infinity. The log-log plot of Figure 30 shows that (1− πh − πv)
and LH are related by a power law. (The five points correspond to squares with 25, 50, 100,
200, and 400 sites along their edges.) The slope is 0.437 and unlikely to be universal. The
crossing probabilities πh and πv on the square lattice for the square (r = 1) of size 200× 200
were measured to be 0.4963 and 0.4964. The gap is of order of 3.5× 10−3, comparable to the
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value of 2π′
h(r)/LV at this point. Note finally that, even though πh(r) + πv(r) = 1 holds for

finite rectangular subsets of the triangular lattice, it does not follow that πh(r) is equal to

π
(LH,LV )
h as finite-size effects could alter both π

(LH,LV )
h and π

(LH,LV )
v while keeping their sum

equal to 1.
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Figure 30. Log-log plot of 1− πh − πv measured on a square as a function of
the linear number of sites.

The five plots in Figures 31 to 33 show all the data available: the probabilities for 81
values of the aspect ratio for the rectangles and 41 for the disk and the cylinder. For the
rectangles, 4 different Ising models were studied: the three regular lattices with isotropic
coupling and the square lattice with the anisotropic coupling used in Section 3. Each figure
contains therefore six sets of measurements, four for the rectangles, one for the disk and one
for the cylinder. The cylinder is treated as though it were infinitely long and the crossings
are from an interval on one end to another disjoint interval of the same length on the same
end, the intervals being chosen so that their position on the cylinder is conformally equivalent
to that of two opposite sides on a rectangle. Because of the large amount of information
on these figures, the error bars were not drawn. Some of the 95% confidence intervals for
the measurements of πh were listed on Table V and the difference of the extreme values of
these intervals is equal to 0.07 at r = 0.136, 0.02 at r = 1.000 and 0.07 at r = 7.351 for the
variable log πh/(1 − πh) that appears in Figure 31. (For the square lattice, the confidence
intervals on the probabilities are a factor 1√

5
smaller since the sample was 5 times larger.)

The vertical dimension of the dots on this figure is approximately 0.065 and thus comparable
to the statistical errors or larger than them.

In all the figures, one sees clearly some spreading of the data at the two extremities of the
range of r. The data for the disk and for the cylinder also fall slightly beside those for the
rectangles around the extreme values of their range (log r ∼ ±1). These small discrepancies
can all be explained by the above two limitations. First, for all the pairs (G, J) but the
isotropic triangular lattice, the quantity πh + πv is less than one. It is thus likely that
finite-size effects tend to decrease both πh and πv. Since for log r ∼ ±2, one of the linear
dimensions of the rectangle is half what it is around log r ∼ 0, the values of πh and πv
should be spread more at the extremities than at the center of the range of r; and π

(△)
h

should be the largest of all measurements. This is what is observed though the spread is
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noticeable only when the small linear dimension is in the direction of the crossing. Second, by
keeping the sites inside the sector

(
−θ(r), θ(r)

)
or
(
π − θ(r), π + θ(r)

)
, the number of sites

(necessarily integral) is underestimated, leading to probabilities lower than what universality
would predict. This is again what is observed. But these discrepancies are rather small. As
can be seen from the figures the agreement is remarkable.
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Figure 31. log πh/(1− πh) and log πv/(1− πv) as a function of log r.
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Figure 32. log πhv as a function of log r.
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Figure 33. log πA
h /(1− πA

h ) and log πA
v /(1− πA

v ) as functions of log r.



UNIVERSALITY AND CONFORMAL INVARIANCE 53

Only for the isotropic Ising model on the square lattice is π
(LH,LV )
h strictly equal to π

(LV,LH)
v .

It is then sufficient to measure the five probabilities πh, πv, πhv, π
A
h , π

A
v for 41 values of r

to cover the same range. We profited from this coincidence and substantially increased the
sample in order to measure the probabilities with very high accuracy. In this case each
sample contained at least one million configurations. For the other models we used samples
of at least 200,000 configurations. As can be seen from Table V, even the smaller sample
size yields statistical errors at worst of the same order of magnitude as the sensitivity to
conventions. Table VII lists the crossing probabilities πh, πv, πhv, π

A
h , π

A
v for the isotropic

Ising model on the square lattice; Table VIII lists them for the triangular lattice. This table
gives an idea of both the difference between the various probabilities as measured for two
different Ising models and the isotropy of the probabilities: the pairs (πh, πv) and (πA

h , π
A
v )

are approximately symmetric under the exchange of r ↔ r−1 even though the lattice is not
invariant under a rotation of π

2
.

For percolation, Cardy’s formula predicts the following asymptotic behavior

log πperco
h (r) −π

3
r + constantr→∞ ,

or equivalently

log
(
1− πperco

h (r)
)

− π
3r

+ constant
r→0

.

The data for the Ising model behave similarly. We used those for the triangular lattice
since they respect closely the relation πh(r) + πv(r) = 1. We rejected the ten points at both
extremities of the spectrum of r because they carry the largest finite-size effect. The 30
remaining points with largest r were fitted to log πh(r) ≈ a+ br and the 30 with smallest r
were fitted to log

(
1− πh(r)

)
≈ c+ d/r. The fits appear in Figure 34. The constants b and d

turned out to be −0.1672π and −0.1664π. A natural guess for both constants is −π/6.
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Figure 34. Fits of the asymptotic behavior of πh: (a) log πh(r) and (b)
log
(
1− πh(r)

)
.

5.3. D′ ⊊ D. We measured the crossing probabilities from one curve Ci to another one Cj

on the cylinder, 0 ⩽ i < j ⩽ 4, and for the corresponding configurations on the disk. (The
curves Ci have been introduced in Section 3.) The simulations were done on the cylinder
with 397× 793 sites and on the disk of radius 300.2 mesh units. The results are tabulated
in Table VI. In each cell the number on top is the probability for the disk, the one on the
bottom that for the cylinder and, again, the vertical bar “|” is used as in Section 2 to give
the statistical errors. The agreement is convincing even though the probabilities for the disk
are systematically larger than those for the cylinders. Again the geometries of the disk and
the cylinder are not quite conformally equivalent. Only if the cylinder is infinitely long can
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C1 C2 C3 C4

0.99998|1 0.9976|1 0.9634|4 0.8465|9
0.999979|5 0.99741|6 0.9631|2 0.8456|4

0.99958|5 0.9727|4 0.8541|8
0.99932|3 0.9699|2 0.8510|4

0.9848|3 0.8643|8
0.9827|2 0.8614|4

0.8995|7
0.8973|4

C0

C1

C2

C3

Table VI. Crossing probabilities from one curve Ci to another Cj for the disk
and the cylinder.

one hope to have perfect agreement. Since the relative gap increases as the two curves Ci

and Cj move closer to the middle of the cylinder, the shortness of the cylinder is a likely
explanation for the discrepancy.

Since the numbers of Table VI are all close to 1.0, one more example of crossing probability
was measured. The event E for the cylinder (= D) is given by the following data: the domain
D′ is delimited by the curve C2 and the right-hand side of the cylinder and α1 and α2 are the
two intervals on C2 that correspond to the forty-seventh value of the aspect ratio r considered
in the previous paragraph (r = 1.35). The data for the disk are the conformal images of
those of the cylinder. For the disk and the cylinders the numbers πE are 0.412|1 and 0.4096|6
respectively.

Another interesting choice is D′ ⊊ D = R2. That means measuring crossings on domains
D′ in the bulk. We have seen that the ωbulk

k are larger than those at the boundary by
approximately a factor of 3. The corresponding variances Σ2

k are consequently smaller and
the number of large clusters intersecting the central meridians of the cylinder is also smaller.
Are there enough of them to break crossings? Or is πbulk

h (r) a trivial function, namely equal
to 1

2
for all r?

Such a measurement would amount, in an ideal situation, to thermalizing an infinite
lattice Z2 and then measuring crossings on finite D′ inside this lattice. Only the usual
limitations (convention and finite size of D′) would then have to be dealt with. To do the
actual simulations, the first idea is to truncate D to a finite though large lattice and to
choose D′ as the largest domain possible inside a region in which the behavior of the spins
is as close as possible to the bulk behavior. With our present computers, a lattice size of
practical use contains about 106 sites. If R2 is approximated by a square lattice, then it
would be of size 1000 × 1000. The domains D′ used in Paragraph 5.2 contained around
40,000 sites and the domain D′ with r = 1 was therefore 200 × 200. If we compare these
sizes with disks, as we are interested only in orders of magnitude, the boundary of D′ would
correspond to a circle of radius one fifth that of D. The distribution mD,∂D′ on the boundary
of D′ is approximately equivalent to that of a circle at a distance of 100 mesh units from
the boundary of the cylinder 397× 793. Figure 16 (Paragraph 3.2) shows that the first four
Fourier coefficients are still far from their bulk distribution. These coefficients are precisely
those measuring the large clusters responsible for creating crossings or for breaking them.
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But as we have seen (Paragraph 3.2), the middle of a long cylinder provides a better
approximation to bulk behavior. So we confine our experiments to cylinders. If a square D′

of size 200× 200 is located in the middle of a cylinder of size about 397× 793 as before, its
distance from the boundary is about 300 mesh units and its spins behave essentially as in
the bulk as can be seen in Figure 16. This choice has one possible drawback. It spoils the
symmetry between horizontal and vertical directions. The mean width of the largest cluster
is surely not equal to its mean height on a long cylinder. Fortunately a simple quantity,
πh(r)− πv

(
1
r

)
, can be used to quantify this symmetry breaking.

To enforce the relation πh(r) + πv(r) = 1, we took the measurements on triangular lattices
with 426×737 and 852×1475 sites, the 737 and 1,475 sites being in the longitudinal direction.
On these lattices, the crossings πh, πv, and πhv were measured on rectangles with the 81
aspect ratios r used before. To keep the rectangles safely in the bulk, we used domains D′

with approximately 10,000 sites. (We used the same domains on both cylinders. See below.)
The longest rectangle (r ≈ 7.3) has 40× 253 sites and its distance from the boundary, for the
cylinder of size 426× 737, is similar to that of the square of size 200× 200 square in a cylinder
of size 397× 793 discussed above. The highest rectangle (r ≈ 0.13) has 293× 34 sites and its
height takes up more than 2

3
of the circumference of the smaller lattice, possibly too large

a fraction if the symmetry breaking is important. The larger lattice helps to address this
question. We also measure the crossings πh, πv, and πhv inside a disk of radius 100.2 whose
center is within one mesh unit from the central meridian of the cylinders. Note that the
hypothesis of conformal invariance stated above does not relate the crossings in the bulk on
the rectangles and on the disk. As emphasized, the map ϕ must act on both D and D′ and
there is no conformal map from the plane (D) to the plane taking a rectangle (D′) to a disk.

Figures 35 and 36 present the results. Squares (□) were used for the crossings on rectangles
and circles (◦) for those on the disk. White symbols are for the 426× 737 lattice and black for
the 852× 1475. The two samples were 895,000 for the 426× 737 cylinder and 227,000 for the
852× 1475. Even though these data look almost identical to those presented in Paragraph 5.2
(Figures 31 and 32), the vertical scale is different. When D = D′, πh ranges from 0.02 to 0.98
as r decreases from 7.3 to 0.14. Here, in the bulk, πh goes from 0.23 to 0.76 for the same
interval of r.
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Figure 35. log πh/(1− πh) and log πv/(1− πv) as a function of log r.
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Figure 36. log πhv as a function of log r.

There is a definite breaking of the horizontal-vertical symmetry. The graph of πhv for
the cylinder with 426× 737 sites is clearly asymmetrical. For the rectangles the quantities
πh(r) and πv

(
1
r

)
that should be equal if the symmetry was present differ by about 6% for r

large or small and by 1% for r ≈ 1. For the measurements on the disk their departure from
symmetry varies from 3% to 7%. For both cases, rectangles and disk, the vertical crossings
are always larger than the corresponding horizontal ones. Large clusters wrapping around
the circumference are more likely than clusters having about the same number of sites but
that fail to surround the cylinder simply because the former have fewer peripheral sites than
the latter. This difference seems to play a role here. If this is so, a better measurement of
the π’s would therefore be obtained by, say, doubling the linear dimensions of the cylinder
while keeping the number of sites in the domains D′ unchanged. This is why we studied
the larger 852× 1475 cylinder. For this new experiment, the asymmetry is essentially gone.
For example most of the quantities π̂h(r) and π̂v

(
1
r

)
differ now by less than 0.5%. Still the

data for the two lattices remain very close and experiments with smaller cylinders show that
the curves in Figures 35 and 36 do not change much with lattice size, so that we can assert
with some confidence that the crossing probabilities in the bulk are well-defined as the mesh
goes to zero, in other words, the crossing probabilities are defined even when D is the whole
plane. The data, especially those for the 852× 1475 cylinder, must represent a very good
approximation to the crossing probabilities in the bulk for the rectangles and the disk.
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Figure 37. The Riemann surfaces R1 and R2 and their corresponding neigh-
borhoods. Only one sheet of R1 is presented.

In particular, the curves for the crossings on the rectangles and on the disk are now distinct
and their difference does not seem to be due to the limitation of the experiments. There was
in fact no reason at all to compare them or to use the parameter r to describe the arcs on the
disk, for it pertains to a conformal transformation ϕr from the disk to the rectangle of aspect
ratio r that is no longer pertinent. Nevertheless, it does appear that πrectangle

v (r) < πdisk
v (r)

for r > 1 and that πrectangle
v (r) > πdisk

v (r) for r < 1, inequalities for which we have no very
persuasive explanation. For each r, the map ϕr extends to a conformal equivalence ϕr of a
double covering R1(r) of the plane, or rather of the Riemann sphere, ramified at four points
with a torus R2(r). Figure 37 represents R1 and R2 and their corresponding neighborhoods.
Only one sheet of R1 is depicted here; the other is identical, all data being primed (2 → 2′,
etc.). R1 is a double covering of C with cuts tying the four singular points on the unit circle ω,
ω, −ω, and −ω. The cuts were drawn along the unit circle. Consequently the neighborhood
to the left of the domain 2 on the first sheet is the domain 6′ on the second. The thicker
lines on R2 are not cuts but circumscribe the images of the disks on R1. The top and bottom
sides of the whole rectangle are identified as are the left and the right. Both R1 and R2 are
tori. The conformal class of R1 and R2 depends on r. The hypothesis of conformal invariance

does apply to π
disk⊂R1(r)
v and π

rectangle⊂R2(r)
v . They are expected to be equal. We do not know

what relations might subsist between πrectangle
v (r) and π

rectangle⊂R2(r)
v or between π

disk⊂R1(r)
v

and πdisk
v (r).
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LH LV r r−1 πh πv πhv πA
h πA

v

200 200 1.000 1.000 0.4963 0.4964 0.4022 0.6553 0.6554
205 195 1.051 0.951 0.4811 0.5107 0.4005 0.6403 0.6667
210 190 1.105 0.905 0.4671 0.5250 0.3989 0.6286 0.6811
216 186 1.161 0.861 0.4527 0.5396 0.3956 0.6153 0.6937
221 181 1.221 0.819 0.4389 0.5553 0.3910 0.6023 0.7058
227 176 1.290 0.775 0.4220 0.5711 0.3839 0.5870 0.7212
232 172 1.349 0.741 0.4083 0.5837 0.3764 0.5766 0.7324
238 168 1.417 0.706 0.3922 0.5963 0.3665 0.5627 0.7428
264 164 1.488 0.672 0.3791 0.6133 0.3582 0.5521 0.7582
250 160 1.562 0.640 0.3649 0.6288 0.3484 0.5398 0.7714
257 156 1.647 0.607 0.3482 0.6449 0.3359 0.5242 0.7854
263 152 1.730 0.578 0.3324 0.6592 0.3228 0.5111 0.7972
270 148 1.824 0.548 0.3169 0.6753 0.3097 0.4982 0.8102
277 145 1.910 0.524 0.3028 0.6888 0.2974 0.4847 0.8195
284 141 2.014 0.497 0.2875 0.7062 0.2836 0.4727 0.8334
291 137 2.124 0.471 0.2717 0.7208 0.2688 0.4573 0.8447
298 134 2.224 0.450 0.2571 0.7354 0.2550 0.4456 0.8569
306 131 2.336 0.428 0.2424 0.7503 0.2408 0.4324 0.8666
314 128 2.453 0.408 0.2275 0.7651 0.2265 0.4183 0.8786
322 124 2.597 0.385 0.2115 0.7823 0.2108 0.4033 0.8903
330 121 2.727 0.367 0.1971 0.7963 0.1966 0.3893 0.8987
338 118 2.864 0.349 0.1836 0.8101 0.1833 0.3748 0.9094
347 115 3.017 0.331 0.1697 0.8242 0.1695 0.3597 0.9173
355 113 3.142 0.318 0.1581 0.8340 0.1579 0.3475 0.9237
364 110 3.309 0.302 0.1447 0.8486 0.1446 0.3330 0.9338
374 107 3.495 0.286 0.1318 0.8626 0.1318 0.3178 0.9409
383 104 3.683 0.272 0.1192 0.8749 0.1192 0.3013 0.9490
393 102 3.853 0.260 0.1089 0.8858 0.1089 0.2880 0.9553
403 99 4.071 0.246 0.09758 0.8976 0.09757 0.2723 0.9606
413 97 4.258 0.235 0.08836 0.9069 0.08836 0.2589 0.9656
423 94 4.500 0.222 0.07719 0.9178 0.07719 0.2428 0.9714
434 92 4.717 0.212 0.06971 0.9265 0.06971 0.2313 0.9755
445 90 4.944 0.202 0.06150 0.9343 0.06150 0.2160 0.9792
456 88 5.182 0.193 0.05432 0.9425 0.05432 0.2035 0.9825
468 85 5.506 0.182 0.04596 0.9509 0.04596 0.1874 0.9854
480 83 5.783 0.173 0.03933 0.9573 0.03933 0.1735 0.9881
492 81 6.074 0.165 0.03407 0.9631 0.03407 0.1612 0.9902
504 79 6.380 0.157 0.02899 0.9687 0.02899 0.1488 0.9922
517 77 6.714 0.149 0.02450 0.9738 0.02450 0.1355 0.9938
530 75 7.067 0.142 0.02015 0.9778 0.02015 0.1246 0.9951
544 74 7.351 0.136 0.01738 0.9813 0.01738 0.1153 0.9963

Table VII
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r r−1 πh(r) πh(r
−1) πv(r) πv(r−1) πhv(r) πhv(r

−1) πA
h (r) πA

h (r−1) πA
v (r) πA

v (r−1)

1.000 1.000 0.4997 0.4997 0.4996 0.4996 0.4056 0.4056 0.6586 0.6586 0.6586 0.6586
1.000 1.000 0.4997 0.4997 0.4996 0.4996 0.4056 0.4056 0.6586 0.6586 0.6586 0.6586

1.050 0.9516 0.4868 0.5142 0.5146 0.4852 0.4061 0.4048 0.6456 0.6706 0.6717 0.6445
1.105 0.9049 0.4707 0.5305 0.5282 0.4710 0.4027 0.4037 0.6316 0.6849 0.6840 0.6330
1.160 0.8614 0.4574 0.5426 0.5434 0.4544 0.3998 0.3974 0.6190 0.6968 0.6980 0.6191

1.222 0.8190 0.4411 0.5579 0.5587 0.4406 0.3935 0.3931 0.6060 0.7087 0.7109 0.6059
1.290 0.7752 0.4258 0.5747 0.5747 0.4246 0.3874 0.3868 0.5919 0.7255 0.7250 0.5915
1.349 0.7412 0.4120 0.5883 0.5871 0.4119 0.3803 0.3799 0.5800 0.7365 0.7354 0.5814

1.416 0.7056 0.3979 0.6033 0.6020 0.3969 0.3720 0.3718 0.5678 0.7498 0.7489 0.5671
1.487 0.6720 0.3827 0.6174 0.6164 0.3818 0.3622 0.3616 0.5545 0.7612 0.7619 0.5547
1.563 0.6401 0.3679 0.6323 0.6320 0.3685 0.3514 0.3519 0.5431 0.7758 0.7750 0.5427
1.647 0.6071 0.3516 0.6482 0.6468 0.3511 0.3390 0.3387 0.5295 0.7875 0.7876 0.5279

1.728 0.5774 0.3375 0.6642 0.6624 0.3365 0.3277 0.3272 0.5152 0.8009 0.8003 0.5165
1.824 0.5483 0.3202 0.6788 0.6782 0.3219 0.3128 0.3144 0.5009 0.8137 0.8133 0.5034
1.909 0.5235 0.3060 0.6946 0.6923 0.3055 0.3006 0.3002 0.4876 0.8269 0.8250 0.4908

2.013 0.4964 0.2908 0.7103 0.7088 0.2906 0.2868 0.2867 0.4758 0.8370 0.8372 0.4760
2.124 0.4708 0.2745 0.7267 0.7264 0.2739 0.2716 0.2712 0.4603 0.8499 0.8500 0.4606
2.224 0.4497 0.2599 0.7412 0.7403 0.2612 0.2578 0.2592 0.4488 0.8616 0.8608 0.4505

2.337 0.4280 0.2446 0.7555 0.7553 0.2448 0.2432 0.2434 0.4348 0.8719 0.8716 0.4356
2.454 0.4077 0.2310 0.7693 0.7702 0.2301 0.2300 0.2291 0.4229 0.8813 0.8821 0.4218
2.596 0.3839 0.2141 0.7864 0.7855 0.2108 0.2134 0.2102 0.4067 0.8938 0.8935 0.4033
2.727 0.3666 0.2004 0.8003 0.8001 0.1986 0.1999 0.1982 0.3940 0.9020 0.9024 0.3916
2.863 0.3492 0.1864 0.8144 0.8135 0.1854 0.1861 0.1852 0.3770 0.9123 0.9118 0.3781

3.018 0.3315 0.1712 0.8288 0.8287 0.1712 0.1710 0.1711 0.3637 0.9204 0.9222 0.3626
3.142 0.3182 0.1613 0.8395 0.8383 0.1611 0.1612 0.1610 0.3530 0.9285 0.9274 0.3523
3.308 0.3023 0.1477 0.8522 0.8517 0.1476 0.1477 0.1475 0.3370 0.9353 0.9361 0.3368

3.496 0.2861 0.1337 0.8667 0.8666 0.1331 0.1336 0.1330 0.3209 0.9441 0.9446 0.3204
3.683 0.2715 0.1216 0.8790 0.8781 0.1212 0.1215 0.1212 0.3060 0.9507 0.9514 0.3050
3.853 0.2596 0.1120 0.8899 0.8888 0.1099 0.1119 0.1099 0.2930 0.9573 0.9569 0.2911

4.071 0.2456 0.09977 0.9012 0.9010 0.09799 0.09976 0.09798 0.2774 0.963 0.9634 0.2743
4.258 0.2349 0.08975 0.9093 0.9100 0.08995 0.08975 0.08994 0.2625 0.9675 0.9678 0.2611
4.500 0.2222 0.07988 0.9218 0.9210 0.07853 0.07988 0.07853 0.2468 0.9733 0.9730 0.2458
4.717 0.2119 0.07010 0.9297 0.9287 0.07042 0.07010 0.07042 0.2328 0.9765 0.9766 0.2334

4.944 0.2023 0.06240 0.9378 0.9371 0.06288 0.06240 0.06288 0.2196 0.9802 0.9806 0.2196
5.181 0.1931 0.05558 0.9453 0.9444 0.05514 0.05558 0.05514 0.2058 0.9833 0.9834 0.2066
5.506 0.1816 0.04739 0.9533 0.9533 0.04602 0.04739 0.04602 0.1908 0.9865 0.9871 0.1874
5.784 0.1730 0.04084 0.9598 0.9597 0.04010 0.04084 0.04010 0.1762 0.9893 0.9894 0.1760

6.074 0.1647 0.03488 0.9655 0.9648 0.03486 0.03488 0.03486 0.1649 0.9913 0.9912 0.1638
6.381 0.1567 0.02971 0.9705 0.9704 0.02902 0.02971 0.02902 0.1511 0.9930 0.9932 0.1497
6.715 0.1489 0.02517 0.9756 0.9746 0.02494 0.02517 0.02494 0.1384 0.9945 0.9945 0.1378

7.067 0.1414 0.02097 0.9795 0.9793 0.02057 0.02097 0.02057 0.1264 0.9957 0.9957 0.1266
7.352 0.1360 0.01793 0.9824 0.9818 0.01750 0.01793 0.01750 0.1172 0.9965 0.9966 0.1162

Table VIII
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6. Comparison with free fields

If we take η = ϕ̃R the interaction for the free field on a square lattice is
g

8π

∑(
η(p)− η(q)

)2
, g = 2R2,

the sum running over all pairs of nearest neighbors. In the continuum limit this becomes
formally

(41)
g

4π

∫ {(
∂η

∂x

)2

+

(
∂η

∂y

)2
}
dx dy.

We observe that there is an inconsistency in [L] between the discrete and continuous hamilto-
nians. For consistency the denominator in (4.3) of that paper has to be replaced by 4π. We
have used the formulas based on the continuous hamiltonian.
There are at least two properties of free fields that appear again in other models. Either

might be chosen as a basis of comparison and a means of studying these models. The property
commonly chosen is the asymptotic behavior of correlation functions. In particular, in the
plane,

(42)
〈(
η(p)− η(0)

)2〉 ∼ 2

g
ln|p|,

where |p| is the distance between x and 0; and on a cylinder of circumference 2π

(43)
〈(
η(p)− η(0)

)2〉 ∼ a+
1

g
|p|,

if p and the origin 0 lie on the same generator and |p| is the distance between p and the
origin with respect to the metric that yields a circumference of 2π. We shall briefly recall
below the pertinent calculations. In the formula a is a constant that depends on the mesh. It
could approach infinity as the mesh approaches zero.

Another property is described in [L]. Consider the partition function Z(ϕ) with boundary
conditions, either on a disk so that ϕ is a function on the circle, defined however only modulo
constants, thus for simplicity with constant term 0, or on a cylinder, taken to be infinitely
long, so that ϕ is really a pair of functions ϕ1, ϕ2, and a constant x, taken modulo 2π. In the
notation of Paragraph 2.1

ϕ1 =
∑
k ̸=0

aBk e
ikθ, ϕ2 =

∑
k ̸=0

bBk e
ikθ.

For the disk,

(44) Z(ϕ) = exp

−g
∑
k>0

|Ck|2/2


and for the cylinder,

(45) Z(ϕ1, ϕ2, x) = Z(ϕ1)Z(ϕ2).

Thus, as far as the variable x is concerned, the measure is homogeneous, a behavior that
contrasts with that of the Ising model discussed in the previous section.
For the Ising model on a triangular lattice the SOS-model constructed in Section 2 is

almost the same as the SOS-model attached, as in [N] for example, to the O(1)-model on a
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hexagonal lattice,3 and for this model there are familiar arguments that suggest the behavior
(42) with g = gI = 4/3. We have not tested carefully the universality of the behavior or of
the constants. Crude experiments for the square and the triangular lattice suggest that the
behavior is universal but we are not certain that the constants do not vary slightly.
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Figure 38. The quantity
〈(
h(p)− h(0)

)2〉− 1.5 ln|p| measured on disks of

radii 100 and 300 covered by a square lattice.
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Figure 39. The quantity
〈(
h(p)− h(0)

)2〉− 1.5 ln|p| measured on a disk of

radius 90 covered by a triangular lattice.

The function η of the free-field theory plays the same role as the function h of our

construction so that to test (42) we examine
〈(
h(p)− h(0)

)2〉
. For what they are worth, the

results for the plane appear in Figures 38 and 39 in which the value of

(46)
〈(
h(p)− h(0)

)2〉− 1.5 ln|p|

3In [N] the partition function for the O(1)-model is expressed as a sum over weighted closed curves in
the hexagonal lattice which is dual to the triangular lattice. Every state of the Ising model leads also to a
collection of closed curves, formed from the dual edges separating sites of different spin. The weight of the
collection as a whole can be taken as the mass of the set of Ising states that lead to it. Our prescription leads,
however, for the individual curves in the collection to different Boltzmann weights than the usual complex
weights determined locally as in [N]. For the reasons explained in the following section this does not affect
the relation (46).
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is plotted against |p|. For the square lattice in Figure 38 the experiments are performed
in disks of radii 100 and 300, an edge of the lattice being taken in each case as unit. The
experiments are perhaps not to be taken too seriously because the finite size leads to an
ambiguity. Not only are the states in a disk qualitatively different at the boundary from those
in the true bulk limit but also the jump lines that in a disk terminate at the boundary could,
in some sense, in the bulk turn and pass once again through the disk, so that working in the
disk increases the statistical independence. The graphs, in which vertical distances are drawn
at a much larger scale, suggest that the function is approximately constant except close to
the origin and near the edge of the disk, where the effect of the boundary manifests itself.
The constant to which one might imagine the difference (46) tending has not yet stabilized
in the diagrams. There is a difference of about 0.4 in the minimum of the two curves. For
comparison, a similar curve for the triangular lattice, obtained once again in a small disk of
radius 90, an edge of the lattice again being taken as unit, is shown in Figure 39.
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Figure 40. The correlation function
〈(
h(p)− h(0)

)2〉
on a cylinder for the

square lattice 120× 2401.
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Figure 41. The correlation function
〈(
h(p)− h(0)

)2〉
on a cylinder for the

triangular lattice 160× 1601.

For the cylinder and the same two lattices, square and triangular, the graphs of〈(
h(p)− h(0)

)2〉
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appear in Figures 40 and 41. We have not used the parameter |p| in the figures but rather
the parameter k because it is then easier to explain which part of the curve we used to
calculate the slope (for the square lattice |p| = 4πk/LV , for the triangular |p| = 8πk/

√
3LV ).

None the less the data have been so normalized that if the behavior is, as in equation (43),
asymptotically a+ b|p| then the slope of the curves in the figures on their middle, linear parts
and as functions of k is also b. For the square lattice the cylinder is of circumference 120 and
length 2,401 in lattice units; for the triangular of circumference 160 and length 1,601. The
slope for the square lattice is about 0.460; for the triangular it is about 0.452, which is not a
number that we can deduce easily from 4/3. These numbers are close; so universality of the
slope is strongly suggested.

To obtain Figures 40 and 41 we construct h as in Sections 2 and 3 and use the difference
between the values of h at points on generators of the cylinder symmetrically placed with
respect to the central meridian and at a distance of k sites from it. Thus k is necessarily less
than one-half the length of the cylinder. Since we use all generators there is considerable
statistical dependence. None the less this yields for a cylinder of size 120×2401 a very regular
graph and if we use that part of it between 100 and 1,100 we obtain a fit 37.6275 + 0.4597k
from which the statistically generated values differ by no more than two units at any point
on this interval, so that the slope should be correct to about two parts in a thousand. (The
curve is in fact slightly concave and the departure from linearity regular. With a quadratic fit
and a slightly shorter interval we would do much better with the fit but not with the slope.)
The experiment repeated on the interval [200, 1000] leads to a slope of 0.4599 but the same
conclusions. A similar experiment for a cylinder of size 120× 1201 yields to a slightly better
fit and similar conclusions with a slope of 0.4593. An anisotropic lattice of size 78 × 2401
is roughly conformally equivalent to a square lattice of size 120 × 2401. Using the points
on the interval [200, 1200] we obtain a fit of 39.8942 + 0.4519k from which the statistically
generated values differ by no more than 1.5 units. The difference is again not random but not
convex. We can again conclude that the slope is correct to about two parts in a thousand.
The difference between the slopes in the symmetric and the anisotropic cases is 0.0078. In
other words, it appears that we obtain the same constant. A triangular lattice of length 1,601
and circumference 160 is conformally equivalent to a square lattice of circumference 120 and
length a little shorter than 1,401. Thus it is long enough. On using that part of Figure 41
in the interval [100, 700] we obtain a fit 20.6918 + 0.4515k that is as good as those for the
square and anisotropic lattice and suggests, for the same reasons, an error of two parts in a
thousand.
We observe finally that the experiments described in Section 2, in which the analogue of

Z(ϕ) is studied, yield the behavior (44) and (45) with gB = 2R2
B = 1.4710 ̸= gI .

For the convenience of the reader, we recall briefly the calculations that lead to (42) and

(43). The average
〈(
η(p)− η(0)

)2〉
is taken with respect to the measure defined by the

weights

(47) exp

− g

8π

∑
p,δ

(
η(p+ δ)− η(p)

)2 = exp
(
−(Qη, η)

)
, δ ∈

{
(±1, 0), (0,±1)

}
.
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The operator Q is obtained from the relation∑
p,δ

(
η(p+ δ)− η(p)

)2
=
∑
p

8η(p)− 2
∑
δ

η(p+ δ)

η(p).
We are calculating the second derivative of

−
∫ (

exp
(
iαλ(η)

))
exp
(
−(Qη, η)

)
dη

/∫
exp
(
−(Qη, η)

)
dη = − exp

(
−α2(Q−1λ, λ)/4

)
with respect to the parameter α, where λ is the linear form η → η(p)− η(0) or the function
δp − δ0. The second derivative is

(Q−1λ, λ)/2.

This expression is easier to treat when we pass to Fourier transforms. The two delta
functions of λ can be written as integrals of eigenfunctions of Q. Since the operator Q acts
on η so that (Qη)(p) is g/8π times

8η(p)− 2η
(
p+ (1, 0)

)
− 2η

(
p− (1, 0)

)
− 2η

(
p+ (0, 1)

)
− 2η

(
p− (0, 1)

)
,

its eigenfunction e2πi(p1x+p2y) corresponds to the eigenvalue g(sin2 πx+ sin2 πy)/π. Therefore
1
2
(Q−1λ, λ) becomes at p = (p1, p2)

π

2g

∫ 1/2

−1/2

∫ 1/2

−1/2

|e2πi(p1x+p2y) − 1|2

sin2 πx+ sin2 πy
dx dy,

or

(48)
2π

g

∫ 1/2

−1/2

∫ 1/2

−1/2

sin2
(
π(p1x+ p2y)

)
sin2 πx+ sin2 πy

dx dy.

The integral outside a circle of small positive radius ϵ about 0 remains bounded as |p| → ∞
and inside this circle the denominator can be replaced by π2(x2 + y2). The result is

(49)
2

gπ

∫ ϵ

0

dr

r

∫ 2π

0

sin2(ru cos θ) dθ, u = |p|.

The integral of (49) is the sum of∫ 1/u

0

dr

r

∫ 2π

0

sin2(ru cos θ) dθ = O

(
u2
∫ 1/u

0

r dr

)
= O(1)

and

(50)

∫ ϵ

1/u

dr

r

∫ 2π

0

sin2(ru cos θ) dθ.

Since sin2 φ = 1
2
− 1

2
cos 2φ, ∫ 2π

0

cos(z cos θ) dθ = 2πJ0(z),

and J0(z) = O
(
|z|−1/2

)
, (49) can be replaced by

π

∫ ϵ

1/u

dr

r
≈ π lnu.
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Multiplying by 2/gπ we obtain (42).
For a cylinder we treat a lattice that is periodic in the vertical direction (the p1 direction)

with period A, which for simplicity we take to be even. If p = (0, An), n > 0, the analogue of
(48) is

2π

g

A/2−1∑
x=−A/2

1

A

∫ 1/2

−1/2

sin2(πAny)

sin2(πx/A) + sin2(πy)
dy.

Once again we drop terms that remain bounded as A approaches infinity. This yields

(51)
2

gπ

 1

A

∫ 1/2

−1/2

sin2(πAny)

y2
dy +

2

A

A/2−1∑
x=1

∫ 1/2

−1/2

sin2(πAny)

x2/A2 + y2
dy

.
We examine the second term of (51) using the identity

sin2(πAny) =
1

2
− 1

2
cos(2πAny).

The expression obtained from the term 1/2 on the right is independent of n and on close
examination is seen to behave like lnA, but that is not pertinent here. Since

1

A

A/2−1∑
x=1

∫ 1/2

−1/2

cos(2πAny)

x2/A2 + y2
dy =

∑
x

∫ A/2

−A/2

cos(2πny)

x2 + y2
dy,

which upon integration by parts becomes

1

2πn

∑
x

sin(2πny)

x2 + y2

∣∣∣∣A/2

y=−A/2

+
1

2πn

∑
x

∫ A/2

−A/2

2y sin(2πny)

(x2 + y2)2
dy,

the second term behaves—independently of A—as O(1/n). This leaves the first term of (51)
which is n times

2

gπ

(
1

An

∫ 1/2

−1/2

sin2(πAny)

y2
dy

)
.

For large An this expression is approximately 2π/g. If, however, we measure the distance
between p and 0 not in terms of the circumference but in terms of the radius of the cylinder,
the constant 2π/g is replaced by 1/g as in (43).
Although we have inferred the relation (46) from the corresponding relation for the SOS-

model associated to the O(1)-model by the construction of [N], our construction of the
measure on the set of functions h is much more naive and involves no complex weights. As a
consequence the measure is no longer gaussian. The relation (42), with g = 4/3, applied to h
suggests that, if it were, the appropriate gaussian would be

g

4π

{(
df

dx

)2

+

(
df

dy

)2
}
,

thus that of (41). The usual formulas for the expectation of the exponential eiλ(h) of the
linear function λ(h) = h(p)− h(0) then suggest, after renormalization, that the correlation
function of the spins, thus the expectation of eih(p)−ih(0), is

e−3/4 ln(p) ∼ 1/p3/4.
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The exponent is of course not correct. The explanation is presumably similar to that of
Section 2. It may be possible, although we have made no attempt to do so, to use the
functions h to construct in the limit a measure on distributions in the plane and this measure
may very well share some basic properties with the usual gaussian measure, but it will not
be gaussian.

It should perhaps be observed that the random variable ϕ(p)− ϕ(0) is not well-defined on
distributions, so that the expectation of eiϕ(p)−iϕ(0) makes no sense. Strictly speaking, one
should take a smooth function λσ = λσp,0 approximating as σ → 0 the difference δp − δ0 of

two δ-functions, calculate the expectation of eσ(p) of eiϕ(λ
σ) = eiλ

σ(ϕ), normalize by dividing
by the value eσ(p0) at a fixed p0, usually taken at a distance 1 from the origin, and then pass
to the limit σ → 0. This method was used in Paragraph 2.3.
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7. Alternate constructions

In this section, we examine briefly other conventions and constructions that we could have
chosen in our experiments.

7.1. SOS-Model jumps. If, as indicated in the introduction, the aim is simply to develop
the circle onto the line, thereby turning the Ising model into an SOS-model, the particular
construction chosen is somewhat arbitrary. We could, apparently with equally good reason,
replace the jumps of ±π by jumps from a set,

{
−(2k + 1)π,−(2k − 1)π, . . . , (2k + 1)π

}
,

k ∈ N, each choice being assigned a probability on which the only conditions are that the sum
of the probabilities is one and that the probabilities of jumps by equal amounts in opposite
directions are equal. It is not, at first, clear what effect this has.

Thomas Spencer pointed out to one of us that the behavior, for jumps of ±π,〈(
h(p)− h(0)

)2〉 ∼ 3/2 ln|p|

is a consequence of a more geometric hypothesis.4 To construct the function h attached to a
particular state of the Ising model, we construct curves separating the regions in which the
spins take different values. Let, in the plane, N = N(p) be the number of curves separating
p from the origin. The hypothesis is that

(52)
〈
N(p)

〉
∼ cN ln|p|.

Since h(p) is then obtained by assigning independent values to the jumps of ±π, it is clear
that cN must be 2/gπ2. For a cylinder the analogue of (52) is

(53)
〈
N(p)

〉
∼ c|p|.

Once again, out of curiosity, we tested this hypothesis numerically for the square lattice.
The results are presented in Figure 42 in which

〈
N(p)

〉
/ ln|p| is plotted for the square lattice

and two disks of radii 200 and 300. It appears that except at the center and near the
boundary the quotient is approximately constant but that it is only very approximately equal
to 3/2π2 ∼ 0.15199. There are several possible causes—in addition to a departure from
gaussian behavior. As we saw in Paragraph 3.2 the bulk state is approached only slowly in
a disk. Moreover the finite-size effects that appear in the examination of (46) appear here
too. The first consequence is that there will be a tendency to overestimate the number N(p)
when |p| is not small in comparison with the radius because the curves in a disk that reach
the boundary are not allowed to close. In principle, this effect should, for a given |p|, be
mitigated as the radius grows. On the other hand, rather than increasing toward 0.15 as we
pass from a radius of 200 to one of 300, the minimum of the curve, decreases from about
0.14 to about 0.13. Since the smallest pertinent value of |p| is about 75 and ln(75) ∼ 4.3 and
the difference in (46) does not, as we saw in the previous chapter, approach a limiting value
rapidly, if it approaches one at all, a decrease in the minimum of 0.4/4.3π2 ∼ 0.01 is not
completely unreasonable. No conclusions are possible without further study. Our purpose
here is not, however, to examine (52) but rather to acquire a rough understanding of what
we might have discovered if we had chosen the jumps in a different way.

4The hypothesis (52) refers only to the weights attached to curves without regard to orientation and for
them our weights are the usual ones. When deducing (46) from (52) the relative weights, complex or not,
attached to the two possible orientations are irrelevant. All that matters is that they be independent from
curve to curve.
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Figure 42. The quantity
〈
N(p)

〉
/ ln|p| for the square lattice on disks of radii

200 and 300.

The advantage of (52) and (53) is that they make clear that the behavior (42) and (43)
does not change when the definition of h is modified. If there are jumps of (2k + 1)π with
probability ϖk, k ∈ Z, then (42) persists with a new constant

(54) cN

∞∑
k=−∞

ϖk(2k + 1)2.

There is a similar change in (43).
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Figure 43. The distribution as a function of ℜA1 (first line) and ℜA5 (second
line) with four jumps (first column) and six jumps (second column).

The behavior of the functions Z(φ) appears to be quite different. We have performed a
few rough experiments, replacing the jumps of ±π by jumps of −3π, −π, π, 3π, each with
probability 1/4 and by jumps of −5π, −3π, −π, π, 3π, 5π, each with probability 1/6. If
the measures continue to exist, but with gB modified as suggested by (54) then the Fourier
coefficients would continue to be distributed as gaussians but with g = gB of (44) multiplied
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by 1
5
and by 3

35
respectively, so that the ideal value of

√
2R2

B/π ∼ 0.68 of the distribution

at 0 would be multiplied by
√

1/5 or
√

3/35 yielding ∼0.31 and ∼0.20. In the first row of
Figure 43 (four and six jumps) the distribution of the Fourier coefficients RA1 for a cylinder
of size 299× 599 is compared in each of these cases with a gaussian with the same value at 0.
There is some similarity but considerable difference. Moreover the value at 0 is close to but
different from the suggested value. For the higher coefficients the distribution looks more and
more like a gaussian. In the second row of Figure 43 the distributions of RA5, normalized so
that the factor

√
k with which we are familiar from Section 2 are compared with gaussians.

Not only are they closer to gaussians, but the values at 0 are closer to those predicted by
(54).
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Figure 44. The distribution as a function of ℜA1 (first line) and ℜA5 (second
line) with four jumps (first column) and six jumps (second column) on the
cylinders 99× 199, 199× 399, and 299× 599.

On the other hand, the first row of Figure 44, in which the distributions of RA1 for the
three sizes 99× 199, 199× 399, and 299× 599 are compared in each of the two cases, suggests
that the limiting measures may none the less exist. So does the second row of Figure 44
for RA5. We have, however, as yet made no serious effort to decide whether this is so, nor
whether these measures could be conformally invariant and universal.
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Figure 45. The quantity

〈(
N(p)−

〈
N(p)

〉)2〉/
ln|p| on disks of radii 200

and 300.

Another possible “natural” choice for the relative weights of the jumps nπ, n odd is given
by the Dirichlet form. Its discretized form (47) used in Section 6 suggests that the weights
ϖ2k+1 and ϖ1 of having jumps ±(2k + 1)π or ±π satisfy ϖ2k+1 = ϖ2k+1

1 . If ϖ1 is fixed by
requiring that

∑
i∈Zϖ2i+1 = 1, then ϖ1 =

√
2− 1. Then the constant gB would be multiplied

by the inverse of
∑

i∈Zϖ2i+1(2i+ 1)2 = 3, that is 1
3
.

In addition to (52) we also examined, following a suggestion of Thomas Spencer, the
behavior of 〈(

N(p)−
〈
N(p)

〉)2〉/
ln|p| ,

whose behavior is pertinent when attempting to establish (46) rigorously, in disks of radii
200 and 300. Although the results are not relevant to this paper, they are presented, for the
curious reader, in Figure 45. Once again, the curves are extremely flat, but there is a drop
for the larger radius that has to be explained.

7.2. The Fortuin-Kasteleyn construction. The Fortuin-Kasteleyn formulation of the
Ising model can be used to map the partition function of the high-temperature phase of the
model to a percolation-like sum over bond configurations. To construct the F-K version of an
Ising model on a planar graph G with vertices s ∈ S and bonds b ∈ B we shall form the first
barycentric subdivision G ′ of G. Thus associated to G are the vertices s, the bonds b, each
joining two sites, and the faces f , each face f being bounded by sites and vertices. The sites
S ′ of G ′ are the sites in S and points obtained by choosing arbitrarily from each bond b and
each face f a point in its interior. Thus, set-theoretically, S ′ = S ∪B ∪ F . The bonds B′ are
pairs consisting of a bond in B and one of its ends or a face in F and a bond or vertex on
its boundary. In fact, the bonds in B′ joining a face to a vertex in its boundary are for our
purposes superfluous and are not included in our constructions.

The partition function of the original model is taken in the form

(55) Z =
∑
σ

∏
B

exp(Jδσ(s),σ(t)).

Here s and t are the two sites joined by b. Thus, for a square lattice, sinh(J) = 1, J = 0.881374.
For a given configuration σ, the clusters, in the sense of this paper, are maximal connected
subsets of S on which σ is of constant sign. To obtain a Fortuin-Kasteleyn cluster we remove
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the bonds of these connected clusters one by one with probability 1/ν, ν = exp J (for a
square lattice 1/ν = 0.414214). This replaces the sum (55) by a sum over decompositions
of G into subgraphs, each component being provided with a sign. A decomposition is the
subgraph obtained by keeping all vertices and removing some bonds.

(56)

Z =
∑
σ

∏
B

(
1 +

(
exp(Jδσ(s),σ(t))− 1

))
=
∑∏

(exp J − 1)

=
∑∏

(ν − 1)

=
∑(

1 + (ν − 1)
)r{

(ν − 1)q/
(
1 + (ν − 1)

)r}
=
∑

νr
(
1− 1

ν

)q(
1

ν

)r−q

The sum in the second line runs over all decompositions into subgraphs, each component
being signed, so that a constant spin is assigned to each of its vertices, and so do the sums in
the remaining lines. From a signed decomposition we can of course reconstruct, from the
signs alone, the original state of the Ising model. This state has r bonds that join sites with
the same spin, so that its probability is νr. The number of bonds in the subgraph is q and

the factor
(
1− 1

ν

)q( 1
ν

)r−q
is the probability that we arrive at it on removing bonds. If we

now ignore the spins, the final sum in (56) becomes∑
(ν − 1)q2c,

if c is the number of connected graphs in the decomposition.
To construct the function h we associate to a decomposition a state σ′ on S ′. The value of σ′

is 1 at the vertices of G, at the bonds of G that belong to the subgraph, but is −1 at all other
vertices of G ′. Now h can be constructed as before, except that the jumps are to be ±π/2
and not ±π. It turns out to be instructive, at least for the crossing probabilities, to replace
the probability 1/ν by a variable probability 1− µ between 0 and 1. Thus µFK = 0.585786.
We have considered only graphs formed by square lattices on either a cylinder (for dis-

tributions and correlations) or a rectangle (for crossing probabilities). Our aim was not
to establish conformal invariance and universality for the F-K construction, but rather to
acquire a provisional understanding of the way the various objects introduced in this paper
behave under an alternative description of the model.

There are two ways to define crossings in the F-K construction. If cluster signs are taken
into account, a crossing is a cluster of sites with positive spins that joins one side of the
rectangle to the opposite one. The crossing probabilities considered earlier are recovered if
µ = 1 but the crossing probabilities are zero if µ = 0.
If clusters are unsigned, crossings are defined as in bond percolation. This is more in the

spirit of the F-K formalism and we shall use this definition. Note that both conventions
are linked: if π+ and π− are the crossing probabilities over a positively or negatively signed
cluster, and π+− the probability that there are spanning clusters of both positive and negative
sign, then the probability π that an unsigned cluster crosses is given by the following obvious
relation,

π = π+ + π− − π+−.
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Our crossing probabilities now depend on two variables: the aspect ratio of the rectangle r
and the probability µ of not removing a link. We studied each of these variables separately,
varying one and keeping the other fixed. We first took 1− µ = 1− µFK ≡ 1/ν and studied
the dependence on the aspect ratio. Results for πh(r, µFK), the probability of horizontal
crossings in G ′ on either + or − clusters, are shown in Figure 46. The numbers of sites in G
inside the rectangles were around 40,000 and the samples 250,000. The absence of symmetry
implies that duality fails,

πh(r, µFK) + πh(1/r, µFK) ̸= 1.

The asymptotic behaviour of log πh(r, µFK), shown on Figure 47, is found to be

log πh(r, µFK) −0.502πr + constantr→∞

a number reasonably close to π/2, despite the rather low statistics.
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Figure 46. log πh(µFK)/
(
1− πh(µFK)

)
as a function of log r.
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Figure 47. Fits of the asymptotic behavior of log πh(r, µFK) as a function
of r.

In the second experiment we measured the dependence on µ of πh(1, µ). The results
presented in Figure 48 raise the question whether µ = µFK might be a critical value of the
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function πh(r, µFK) or at least of πh(1, µFK), that is πh(1, µ) would be zero for 0 < µ < µFK

and nonzero for µ > µFK . It is not obvious from the numbers obtained what the limit of the
function πh(1, µFK), µ > µFK , is when the mesh goes to zero.
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0.2

0.4

0.6

0.8

Figure 48. πh(1, µ) as a function of µ for 100 × 100 and 200 × 200 square
lattices G. (The curve of the larger lattice is the top one for large µ.)
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Figure 49. The correlation
〈(
h(p)− h(0)

)〉2
µFK

− 2
3
ln|p| on disks of radii 60

and 180.

We examined the correlation functions〈(
h(p)− h(q)

)2〉
µ
,

both on a cylinder and on the plane. According to [N] one should expect (provided that an
analogue of (52) is valid) that for correlations in the plane〈(

h(p)− h(0)
)2〉

µFK

∼ 2

3
ln|p|.

This is confirmed by the graphs of Figure 49. In the first the radius of the disk considered is
relatively small, about 60 bond units; for the second it is 180 bond units. The presence of
three distinct curves, corresponding to the cases that p is a new site on an old site, an old
bond, or an old face, while 0 is taken to be a new site on an old, is curious. It appears that
they remain distinct in the limit of an infinite radius, but their separation remains bounded.
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Once again the scale in the vertical direction is very large; the curves of these diagrams are,
in fact, extremely flat except near the ends.

On the cylinder, the correlation functions behave as〈(
h(p)− h(q)

)2〉
µ
∼ a(µ) + b(µ)|p− q|,

at least if p and q lie on a common generator. As observed in Section 6, the quantity a(µ) is
a constant that depends on the mesh and on the nature of the pair {p, q}, on whether p or q
is a site, bond or face of the graph G. If the conventions of the equation (43) are used, the
value of b(µFK), estimated on a cylinder of size 99× 699, is close to 0.26.
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Figure 50. The numbers ω̂k for 1 ⩽ k ⩽ 30 for the cylinders 149× 339 and
299× 679.

We studied the distribution of the function h for two sizes of cylinder, 149 × 339 and
299× 679, but only on the boundaries, not on inner circles. These cylinders are a little short,
so that about 8/1000 of the samples are such that the sum of the jumps on a circumference
are not 0, but passing to longer cylinders of size 149× 449 and 299× 899, although it reduces
this fraction to 2/1000 does not change the conclusions. The measures on the boundary
appear to be gaussian once again, but with a new value of gB that is a little greater than 3.
(Given the behavior of ωk of Figure 50 it is not so clear what gB is to be. Further study
might suggest defining it by the asymptotic behavior of ωk.) We plot the values of ω̂k for
1 ⩽ k ⩽ 30 on Figure 50. The results, coarse as they are, are similar to those described in
Section 2, although there are curious features that advise against hasty conclusions. The
collection of values for the two cylinders cross at k = 7. Graphs of the distributions of RA1

and RA5 appear in Figure 51. On the left the results for the cylinders of different sizes
are compared with each other; on the right the results for the largest of the two cylinders
are compared with gaussians. Figures 50 and 51 together suggest that the behavior of the
function h constructed according to the FK-definition might have similarities with that of
the function constructed by the methods of this paper, but we have not examined the matter
carefully. In particular, we tested neither conformal invariance nor universality.
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Figure 51. The distribution constructed according to the FK-definition as a
function of ℜA1 or ℜA5.

7.3. Infinite temperature. For the Ising model at infinite temperature, thus for site
percolation in which each site is open with probability 0.5, the crossing probabilities cease to
be of interest. They are all 0 or, in exceptional and trivial cases, 1. On the other hand, the
partition functions Z∞(ψ1, ψ2, x, q) seem to behave much like those at the critical temperature.
In Figure 52 we present results for the square lattice on cylinders of size 99× 399 and size
299× 1199. On the top, the results for RA1 and RA10 for these cylinders are compared with
each other. On the bottom the results for the largest of the two cylinders are compared with
a gaussian. As in Figure 1, there has been no renormalization of these distributions, so that
if the distributions were similar to those of Section 2 the ratio of the heights of the two curves
would be 1/

√
10 ≈ 0.32. It is about 0.34, but the cylinders are still fairly small. Although

this has no perceptible consequences, these cylinders are short enough that about 15/10000 of
the sample states yield jumps whose sum along a circumference is not 0, so that the states at
the two ends are certainly not independent. In Figure 53 the results for the smallest cylinder
are compared with those for a cylinder on a triangular lattice of size 116× 401. This is a
very stubby cylinder, but, curiously enough, once again only about 15/100000 of the states
are such that the sum of the jumps along a circumference is not 0. Figure 54 is analogous to
Figure 2: the two sequences of points on the left are for the square lattice, the upper for the
smaller of the two cylinders, the lower for the larger; the two sequences of points on the right
are for the smaller of the cylinders with a square lattice (lower set) and for the cylinder with
the triangular lattice (upper set). If Figure 54 is to be believed the constant 2RB changes
and becomes approximately one-half its previous value, but, as with the other examples of
this section, our aim was more qualitative than quantitative.
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Figure 52. The distributions ℜA1 and ℜA10 at infinite temperature.
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Figure 53. The distributions ℜA1 and ℜA10 at infinite temperature compared
for square and triangular lattices.
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Figure 54. The numbers ω̂k at infinite temperature.

We can also introduce, as in Section 4, the partition functions Z∞
++ and Z∞

+− or the measures
Z∞(ψ, x). A little reflection shows that the two numbers do not depend on q and are now
both equal to 1

2
. The analogue

Z∞
++δ0 + Z∞

+−δπ = m∞
q

(
{bk = 0}, x

)
of an equation deduced from equations (29) and (30) is not valid, rather the simulations
suggest that, if Z∞(0, x, q) exists, then it peaks at π/2 and 3π/2. On the other hand,
Z∞(0, 0, x, q) has quite a different behavior and a relation between Z∞

q=0

(
{ak}, {bk}, x

)
and

Z∞
q=0

(
{ak}, x

)
like that of equation (34) is difficult to ascertain because the functions h do

not very often have level lines that encircle the cylinder, even when the cylinder is very long.
More pertinent to the study of the measures at criticality is that the behavior of∫

Z∞(ψ1, ψ2, x) dψ2

/∫
Z∞(ψ1, ψ2, x) dψ2 dx =

∑
µ∞
k (ψ) exp(ikx)

is similar to that of Z0(ψ, x). This may be of some advantage for numerical studies since at
infinite temperature no thermalizations are necessary. Consider for example the analogue
f∞ of the function defined by equation (37). There is, once again, a simple, rough, but
inexact—as is clear from Figure 55—approximation to this function,

f∞(x) ∼ a
sin(bπx)

bπx
,

but, as before, we were unable to improve upon it in a useful fashion.
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Figure 55. An unsatisfactory but curious approximation.
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8. Afterword

Most of the phenomena we have examined in the paper are manifestations of the influence
of the boundary, so that to some extent the thrust of the paper runs counter to the notion
that statistical mechanics, especially as it refers to critical phenomena, is the study of bulk
properties. Since critical behavior appears when the appropriate equilibrium between the
strength of the interactions and the number of paths by which the interaction is transmitted
over long distances is achieved it is not, from a mathematical standpoint, such a bad idea to
study criticality by examining the consequences of systematically blocking large numbers of
these paths. On the other hand, renormalization is usually conceived in bulk terms. So it is a
relief that the distributions investigated here, whose ultimate purpose is the introduction of a
concrete notion of fixed point, do not become trivial when the boundary moves off to infinity.
For the Ising model, however, in contrast to percolation or to the free boson, there are

formal difficulties in the introduction of a closed renormalization transformation that we are
still unable to overcome, even with measures that continue to have a meaning in the bulk.
One connection that we would like to make, and that is suggested by some of the experi-

mental results of the paper, is with the notion of conformally invariant field theory in the
strongly geometric form envisaged by Graeme Segal ([GS1, GS2]). It may be that the basic
objects of that theory are constructible from the measures examined in this paper. Recall
that in that theory one of the first objects to construct is a Hilbert space

H =
∑
α

Hα ⊗Hα

associated to a circle with parametrization. In addition, suppose that we are given a
Riemann surface Σ with boundary C consisting of disjoint parametrized circles C1, . . . , Cm

and C ′
1, . . . , C

′
n, the parametrizations being given by real analytic functions. Then (equation

(1.4) of [GS1]) the theory is provided with an operator

UΣ : Hm → Hn.

We might suppose that H is the L2-space of a measure µ on the space of distributions on
the parametrized circle. One such measure whose existence is suggested by the experiments
of this paper is the measure µ on distributions on a circle in the plane or on the central circle
of an infinite cylinder described at the end of Paragraph 3.2, thus the measure defined in the
bulk. It is possible that L2(µ) is, if not H, then the vacuum sector Hα0 ⊗Hα0 or some other
subspace of H.

Consider the annulus Σq of inner radius q and outer radius 1 and the operator Uq associated
to this surface. Take C2 to be the outer circumference with the natural parametrization, C1

the inner, and C to be their union. We consider the annulus as imbedded in the plane or,
if we treat it as a cylinder of finite length, as being imbedded in a cylinder extending to
infinity in both directions. The construction of bulk measures suggested in Section 3 yields
experimentally a measure mq = mΣq ,C on the product of the spaces of distributions on C1

and C2. If, as we might suppose, mq is absolutely continuous with respect to µ× µ then it is
given by a kernel

dmq(ψ2, ψ1) = Kq(ψ2, ψ1) dµ(ψ2) dµ(ψ1).
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It is not impossible that the operator Uq, or rather its restriction to the sector represented by
L2(µ), is given by

UqF (ψ2) =

∫
Kq(ψ2, ψ1)F (ψ1) dµ(ψ1).

An essential feature of these operators would be the relation Uq = Uq1Uq2 when q = q1q2
which would follow from a relation

(57)

∫
Kq2(ψ2, ψ)Kq1(ψ, ψ1) dµ(ψ).

Let C be the circle that separates the annulus of parameter q into annuli of parameters q1
and q2. We apply the notions of conditional probability and the markovian property, as well
as the obvious symmetry of Kq, to the bulk measures. Thus

Kq(ψ2, ψ1) dµ(ψ2) dµ(ψ1) = dmq(ψ2, ψ1)

=

∫
dmq(ψ2, ψ1|ψ) dµ(ψ)

=

∫
dmq1

(
ψ1|ψ2|ψ

)
dmq2(ψ2|ψ) dµ(ψ)

=

∫
dmq1(ψ1|ψ) dmq2(ψ2|ψ) dµ(ψ)

=

{∫
Kq1(ψ, ψ1)Kq2(ψ2, ψ) dµ(ψ)

}
dµ(ψ1) dµ(ψ2),

from which the equation (57) would follow.
These are tentative suggestions, and we only make them to confess that we have not yet

had an opportunity to test them experimentally. That may not be an easy matter. Nor do we
know whether they are confirmed by the conventional wisdom. To construct some analogue
of Segal’s operators on the whole H it may be necessary to utilise the phase of Section 4, but
here again more reflection is necessary.
Another set of experiments waiting to be performed, although here the outcome is more

certain and the experiments therefore less tempting, is an examination of the behavior of
the measures in a neighborhood of the critical point as we vary J (or the temperature) and
introduce a small magnetic field. The limits as the mesh goes to 0 are expected to exist no
longer, but the behavior of the measures, of their moments for example, should yield the usual
critical exponents ν and ∆ and should correspond to the usual intuition. We are nevertheless
curious to see how the geometry of the fixed point is reflected in the coordinates introduced
in this paper and to see, in particular, which linear combinations become irrelevant.

We have also not pursued the study of other models, the Potts model, the n-vector model
and so on. The examples of Section 7 indicate a surprising sensitivity to the definitions that
would be useful to examine further. For the Ising model we made, more by good luck than
good management, a particularly happy choice which it is not utterly clear how to generalize
to other models.
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Appendix

The present work contains simulations of both qualitative and quantitative nature. We
aimed in most of Sections 2 to 6 to provide numerical results reproducible to the precision
of statistical errors. It is therefore important that we be precise about our conventions.
Though many details are given in the text we complete them here with technical additions.
In Paragraphs 3.4 and 4.3 and in Section 7 the work is mostly qualitative and the reader
who wants to examine these matters further will need to devise his own experiments.

8.1. Distribution mD. According to the principles of the introduction, each possible func-
tion h lying above a given σ is to be assigned the same measure. This principle has to
be incorporated into the programs locally. For example, there are two possibilities for the
configuration of jump lines (or level curves) passing through the center of the configuration
appearing in the first row of Figure 56. They are chosen with equal probability. Since
the curves are constructed one at a time by adjoining edges, when we first adjoin an edge
passing through the center we then turn to the left or right with equal probability 1/2. The
next time we pass through the center there is no choice; there is only one unused successor
remaining. For a triangular lattice, there are no ambiguous configurations. For the hexagonal
lattice, all combinations of + and − around vertices of the dual lattice lead to at most two
possible choices of jump lines (and they are then treated as in the square lattice) except for
the configurations in the two last rows of Figure 56 for which there are five possible local
configurations of jump lines. Each will then have the probability 1

5
. As a consequence, when

a curve first passes through the center of this configuration it continues on a straight line
with probability 1

5
(which then leads necessarily to one of the configurations in the bottom

row) or makes a sharp reverse turn to the left or the right with equal probabilities 2
5
. If the

first curve through the center is straight, the following curves are determined. Otherwise
the next curve, which may very well be a continuation of the first, returning after perhaps
extensive wandering, has two options, each chosen with probability 1

2
.

For the square lattice, two examples of the random determination of h occur in Figure 57
where a configuration was drawn together with the jump lines of h. If the site at the bottom-
left corner has coordinate (1, 1), then four clusters meet at

(
91
2
, 21

2

)
and at

(
131

2
, 51

2

)
. In the

first occurrence, the two minus-clusters are joined and, in the second, they are separated. By
definition the jump lines occur on edges dual to lattice bonds. Their vertices were rounded in
this figure to show clearly the difference between joining and separating. The jump lines that
wrap around the cylinder are indicated by dashed lines.

The restrictions of h (on both the cylinders and the squares) were taken along several
curves C. For the square lattices the curves were taken along lines of sites so that the
intersection with dual bonds is unambiguous. The triangular lattices were oriented such that
longitudinal lines with sites had one site per mesh unit. The longitudinal lines with sites
of the hexagonal lattices had the pattern site-site-vacant repeated over every three-mesh
cycles. For the triangular and hexagonal lattices the conformal images of the curves Ci on
the cylinder never contained dual bonds parallel to them. They were however moved slightly
to the closest position where their intersections with dual bonds were equally spaced. For the
curves C = C0 at the boundary they were chosen as the curve closest from the boundary
satisfying the previous requirement.
We also measured the distributions on a disk of radius r = 300.2. The center of the disk

was a site. All the sites inside the disk of radius r, and only these, were thermalized. Some
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Figure 56. Configurations of jump lines on the square and the hexagonal
lattices.

Figure 57. A configuration on an 11× 21 cylinder with the jump lines of h.

of the boundary sites had three neighbors, others only two. We then determined an effective
radius reff as the radius of the largest circle that intersects only dual bonds associated to
sites in the disk. It turned out to be reff = 299.50. The restriction of h at the boundary was
obtained along the circle of radius reff − ϵ with ϵ = 0.001. The jumps in H are of the form
±πδ(θ − θ0) where θ0 is the position of the intersection on the circle of the dual bond with
the curve C. The exact positions of all the intersections with dual bonds were determined
and used to compute Fourier coefficients. The radius of inner circles were determined as
fractions of (reff − ϵ). For example C0 and C1 are at 8 mesh units from one another on the
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397× 793 cylinder and the radii of the corresponding curves on the disk should be (reff − ϵ)
and 0.8811(reff − ϵ) since e−2π·8/397 ∼ 0.8811.
Initial thermalization was provided by a few thousand Swendsen-Wang sweeps starting

from a random configuration for the smaller cylinders, by 5,000 sweeps for 397× 793 and by
10,000 or more for 793× 1585. After the initial thermalizations, measurements were taken
every third Swendsen-Wang sweep for all the cylinders, except for the 793×1585 for which we
used a 5-sweep cycle. A quick time-series analysis indicated that these cycle lengths insured
proper statistical independence of consecutive measurements. The pseudo-random number
generator was the one proposed by Tezuka and L’Écuyer in [TL].

Programs for the square lattice on the cylinders and on the disks were written independently
by at least two of the authors and errors were chased down until measurements agreed within
the statistical errors reported in the text.
It might not be clear, on reading the main text, why certain data are given for some of

the geometries studied and not for others. It is because the results for the various runs
were kept in two different formats. For the first format, the observed values of each random
variable ℜAk or ℑAk were grouped into 401 bins of equal size. Thus for each random variable,
401 nonnegative integers were stored. The width of the bins used during the first months
was a little too narrow and some of the values fell outside the range covered. Later, in the
final months, the bin width was adjusted to avoid this difficulty. When we used the first
format, we also kept, most of the time, the sum, the sum of the squares and the sum of
mixed products of the random variables. These allowed us to calculate accurately the two
first moments of the distribution and the correlation coefficients. The second format was
more thorough. For each configuration of spins σ, we constructed one possible h and recorded
its restriction to the various curves C, not simply to the extremities of the cylinder or its
median. When we realized that the conformal invariance might hold in the sense of Section 3,
we kept the restriction of h to more curves. These databases, with only the boundary as C
or with several curves C for each configuration, are sizeable even when compressed (a few
gigabytes in all). We generated one for the cylinder 397 × 793 with eleven curves C. For
59× 401 and 157× 1067 we only kept the restriction of h to one extremity. With the second
format it was possible to test various assertions that we could not have anticipated without
the experience gained from the experiments, but the first required far less memory, so that
more sizes were examined.

8.2. Crossings. To determine the aspect ratio of the rectangles where the crossings are
measured we have used the width and the height of the smallest rectangle that contains
the sites of the lattice considered. For example, for the rectangles of LV × LH sites of the
square lattice, the ratio is LH/LV . We used here the orientations of the lattices used for the
measurement of mD (see above).
For πh, πv, and πhv on rectangles, crossings started on + spins from one boundary and

ended on + spins on the other. For πA
h and πA

v , the crossings were required to reach the
central meridian if it contained sites or, if it did not, to reach the line of sites just before.
The dimensions of the rectangles for the square lattice were the same as those used for
percolation crossings in [LPPS]. The results for the triangular lattices are given in Table VII.
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The dimensions {LV, LH} that were used are

{586, 69}, {596, 73}, {566, 73}, {582, 79}, {540, 77}, {554, 83},
{566, 89}, {616, 103}, {508, 89}, {474, 87}, {504, 97}, {526, 107},
{456, 97}, {476, 107}, {438, 103}, {440, 109}, {424, 111}, {410, 113},
{512, 147}, {420, 127}, {400, 127}, {400, 133}, {354, 125}, {348, 129},
{398, 155}, {336, 137}, {314, 135}, {386, 175}, {318, 151}, {302, 151},
{310, 163}, {276, 153}, {366, 213}, {270, 165}, {310, 199}, {356, 239},
{258, 183}, {248, 185}, {282, 221}, {324, 267}, {232, 201}, {232, 211},
{210, 201}, {200, 201}, {224, 237}, {196, 219}, {196, 229}, {190, 233},
{184, 237}, {184, 249}, {176, 251}, {288, 431}, {164, 259}, {176, 291},
{152, 265}, {156, 287}, {148, 285}, {210, 425}, {152, 323}, {278, 625},
{152, 359}, {148, 367}, {132, 345}, {140, 381}, {126, 361}, {182, 551},
{132, 421}, {110, 367}, {116, 409}, {112, 413}, {126, 491}, {106, 433},
{110, 471}, {154, 691}, {108, 515}, {112, 561}, {96, 505}, {116, 641},
{92, 535}, {108, 661}, {90, 573}.

The ratio r is given by r = 2LH/
√
3LV as LH and LV count the number of lines and

columns of sites.
For πh, πv, and πhv on the disk, crossings started from and ended on sites in the annulus

between r = 300.2 and r−
√
2. The crossings for πA

h and πA
v had to reach the central diameter.

On cylinders the crossings between the curves Ci started from and ended on the curves.
On the disk the five curves were chosen at radii r̂, 0.8811r̂, 0.7763r̂, 0.6026r̂, 0.3632r̂ with
r̂ = 300.2−

√
2. The crossings from Ci to Cj (ri > rj) started outside the outer curve Ci and

ended inside the inner Cj.
The programs for all lattices and geometries were written by two of us and checked until

they agreed within the statistical errors for a sample larger than 106 even though most
crossings were measured with samples of ∼200K. (See Section 5 for the samples used for the
various lattices and geometries.)

8.3. The phase x. The phase x measured by the experiments is described in Section 4. For
Figure 26, results from cylinders of the following sizes were plotted

{59, 27}, {59, 37}, {59, 47}, {59, 61}, {59, 73}, {59, 93},
{59, 119}, {59, 147}, {59, 179}, {59, 211}, {59, 249}, {59, 283},

all with at least 400K configurations each, and

{117, 53}, {117, 73}, {117, 95}, {117, 123}, {117, 145}, {117, 187},
{117, 239}, {117, 293}, {117, 357}, {117, 421}, {117, 499}, {117, 565},

with at least 600K configurations.
The distribution of the random variable x is also used to obtain the ratios b/a through the

constrained integrals (31) and (32). The errors on the ratios b/a appearing in Table VIII are
difficult to evaluate as the numbers a and b are the local maxima of a smoothed distribution.
For the integral (31), the most difficult to measure, the samples varied between 31K and
50K. After experimentation with various smoothing parameters we think that the two first
digits of the ratios b/a for the case constrained/constrained are exact. The accuracy for the
other cases is far better, the samples being at least 85K for constrained/fixed and 300K for
fixed/fixed.
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8.4. The correlation
〈(
h(p)− h(0)

)2〉
. These correlations can be measured in a straight-

forward way using the above definition of h and the details in the text.
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[TL] S. Tezuka, P. L’Écuyer, Efficient and portable combined Tausworthe random number generators,
ACM Trans. Model. Comput. Simul., 1 (1991) 99–112.

[W] S. S. Wilks, Mathematical statistics, Princeton University Press (1943).



Compiled on November 12, 2024.


	1. Introduction
	2. Distribution of h at the boundary
	3. Universality and conformal invariance of the distributions of h on closed loops
	4. Cylinders of variable length and the phase
	5. Crossings
	6. Comparison with free fields
	7. Alternate constructions
	8. Afterword
	Appendix
	Acknowledgments
	References

