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The twelfth problem of Hilbert reminds us, although the reminder should be unnecessary,

of the blood relationship of three subjects which have since undergone often separate devel­

opments. The first of these, the theory of class fields or of abelian extensions of number fields,

attained what was pretty much its final form early in this century. The second, the algebraic

theory of elliptic curves and, more generally, of abelian varieties, has been for fifty years a topic

of research whose vigor and quality shows as yet no sign of abatement. The third, the theory

of automorphic functions, has been slower to mature and is still inextricably entangled with

the study of abelian varieties, especially of their moduli.

Of course at the time ofHilbert these subjects had only begun to set themselves off from the

general mathematical landscape as separate theories and at the time of Kronecker existed only

as part of the theories of ellipticmodular functions and of cyclotomic fields. It is in a letter from

Kronecker to Dedekind of 1880,1 inwhich he explains his work on the relation between abelian

extensions of imaginary quadratic fields and elliptic curves with complex multiplication, that

the word Jugendtraum appears. Because these subjects were so interwoven it seems to have

been impossible to disentangle the different kinds of mathematics which were involved in

the Jugendtraum, especially to separate the algebraic aspects from the analytic or number

theoretic. Hilbert in particular may have been led to mistake an accident, or perhaps necessity,

of historical development for an “innigste gegenseitige Berührung.” We may be able to judge

this better if we attempt to view the mathematical content of the Jugendtraum with the eyes

of a sophisticated contemporary mathematician.

An elliptic curve over a field k is a curve A in some projective space Pn defined, say, by

equations

gi(x0, . . . , xn) = 0

together with a rational map

zj = fj(x0, . . . , xn; y0, . . . , yn)

from A × A to A which turns the set of points on A into a group. Roughly speaking — the

adverb is to be taken seriously—an elliptic curve over an arbitrary commutative ringR, which

1 Gesammelte Werke, Bd V.
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we always take to be noetherian, is defined in the sameway except that the coefficients of fj and

gi are to lie inR. If one has an elliptic curve overB1 and a homomorphism ϕ : B1 → B2 then

replacing the coefficients of fj and gi by their images under ϕwe obtain an elliptic curve over

B2. In this way the sets A(B) of isomorphism classes of elliptic curves over a commutative

noetherian ring B become a covariant functor on the category of such rings.

In the theory of complex multiplication one introduces a subfunctor. Take E to be an

imaginary quadratic field and letO be the ring of integers inE. We are now interested only in

rings B together with a homomorphism ψ : O → B and maps B1 → B2 for which

O
ψ1 ւ ց ψ2

B1 −→ B2

is commutative. The tangent space T (A) to an elliptic curve overB at the zero is aB­module.

We are interested in abelian varieties A overB together with an action of the elements ofO as

endomorphisms of A such that the associated action of x ∈ O on T (A) is just multiplication

by ψ(x) ∈ B. This gives us a new functor B → AO(B). If n is a positive integer and if

we consider only rings B in which n is invertible, we can introduce a refinement. We can let

An(B) be the points of A with coefficients from B whose order divides n and introduce as

additional datum an isomorphism of O­modules

λ : O/nO → An(B).

This defines a new function B → A0
n(B).

The methods of contemporary algebraic geometry, with which the present author is as

yet only superficially acquainted, allow one to prove the existence of a universal object for this

functor. This is a ringBn, a homomorphismO → Bn, an abelian varietyA
′ overBn, an action

of O on A′, and an isomorphism

λ′ : O/nO → A′
n(Bn)

such that the conditions imposed above are satisfied and such that for any B any element of

AO
n (B) is obtained by functoriality from A′, λ′ and a uniquely determined homomorphism

Bn → B. This is not quite true for small n but the difficulty can be obviated by some technical

considerations and is not worth stressing here.

The methods not only establish the existence but also allow one to read off properties

of the ring Bn from properties of the functor AO
n , that is, of elliptic curves over rings. For

example, the notion of smoothness or, in the language of algebraic number theory, lack of

ramification, is translated into a notion of deformability. The deformation theory of elliptic
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curves, and of abelian varieties, is well understood, and one can show that Fn = Bn ⊗O E is

a finite direct sum ⊕Ei of finite algebraic extensions of E unramified away from the primes

dividing n and that if Oi is the ring of integers in Ei then Bn, a subring of Fn, is equal to

⊕Oi[
1

n
].

Here Oi
1
n
] is the subring of E generated by Oi and

1
n
.

If we imbed E into Q̄ ⊆ C then the algebra Fn is determined by the action of G(Q̄/E)

on the set of its E­homomorphisms into C, which is also AO
n (Q̄) = AO

n (C). If the action is

transitive the algebra is a field. Before investigating it we introduce some automorphisms of

Fn. These are defined by automorphisms of the functor restricted for the moment to rings in

which every positive integer is invertible. This means that Bn is to be replaced by Fn.

Let If be those ideles ofE whose component at infinity is 1. We may imbedE
× in If . We

are going to define an action of If on the functor AO
n . Let Of be the ring of adeles which are

integral everywhere and have component 1 at infinity. Suppose first that g ∈ If ∩Of . There

is a positive integer m and an h ∈ If ∩ Of such that gh = m. Suppose {A, λ} in AO
n (B) is

given. There is an extension B′ of B and an isomorphism (of sheaves!)

λ′ : O/n′O −→ An′(B
′)

such that

mλ′(x) = λ(x).

g acts on O/n′O and we define a new elliptic curve A1 by dividing by

{λ′(gx) | x ∈ nO}.

There is then an isogeny ψ : A→ A1 with this kernel and we define λ1 by

λ1(x) = ψ(λ′(gx)).

The pair {A1, λ1} actually defines an element of AO
n (B). The action of g takes A, λ to A1, λ1.

Since elements ofO are easily seen to act trivially we can extend the action to all of If by letting

that of ℓg, with ℓ a positive integer, be the same as that of g.

The action on AO
n (C) can easily be made explicit. If g ∈ If let gO be the ideal gOf ∩ E.

We have imbedded E in C, and the quotient of C by the lattice gO is an elliptic curve Ag on

which O acts. Moreover

Ag
n(C) =

gO

n

/

gO.
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If we regard O/nO as Of/nOf we may define λ
g as

x→ gx

n
.

If

Kn = {k ∈ If | k ≡ k−1 ≡ 1(mod n)}

then Ag, λg and Ah, λh are isomorphic if and only if

h ∈ E×gkn

so that as a set AO
n (C) is just the quotient space E×\If/Kn. The action of If is the obvious

action on the quotient space.

By functoriality the action of G(Q̄/E) on AO
n (Q̄) = AO

n (C) commutes with that of If .

Therefore there is a unique homomorphism σ → ϕ(σ) of G(Q̄/E) into E×\If/Kn such that

the actions of σ and ϕ(σ) are the same. It follows in particular that G(Q̄/E) acts through an

abelian quotient. To understand the homomorphism σ → ϕ(σ)we have only to identify ϕ(σ)

when σ is the Frobenius at a prime p of E which does not divide n.

Let Ep be the completion of E at p, Ēp an algebraic closure of Ep, and Ōp the ring of

integers in Ēp. Fix an imbedding Q̄ →֒ Ēp.

AO
n (Q̄) ∼−→AO

n (Ēp) = HomO(Bn, Ēp) = HomO(Bn, Ōp).

SinceBn is unramified at p, we may use the map Ōp → κ̄p, the algebraic closure of the residue

field κp of O at p, to obtain

HomO(Bn, Ōp) ≃ HomO(Bn, κ̄p) = AO
n (κ̄p).

All these isomorphisms do not affect the action of the Frobenius. Because p is not invert­

ible in κ̄p, the group If no longer operates, at least not quite as before. However I
p
f , consisting

of those ideles which are 1 at infinity and at p, continues to operate, because for these ideles

we can take the auxiliary integerm prime to p, and the difficulties attendant upon the anoma­

lous behavior of p­division points in characteristic p do not appear. Actually because of the

simplicity of the present situation, it is rather easy to define an action of the missing part of If ,

namely Ip, the multiplicative group of O ⊗ Qp. However, we want to avoid all ad hoc tech­

niques. What is needed is an understanding of the finite subgroups, in the scheme­theoretic

sense, of an elliptic curve over a field of characteristic p with order a power of p. The general

method is the theory of the Dieudonné module. I do not want to give its definition here. It
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is a module D(A) functorially associated to A. The action of Ip is replaced by the action of

the O­automorphisms of D(A) ⊗ Q. This group turns out however, because of the special

situation with which we are dealing, to be Ip so that If does operate once again. Moreover

E× andKn still act trivially. Since If is generated by E
×, Ip

f , andK
n its action is compatible

with the isomorphisms of sets introduced above.

If ̟ is a generator of the maximal ideal of Op then ̟ ∈ E×
p ⊆ Ip. The theory of

Dieudonné modules acquired, it is immediate that the action of ̟ on AO
n (κ̄p) is the same as

that of the Frobenius. It follows that Fn is a field and is the abelian extension of E associated

to E×I∞K
n ⊆ I by class field theory. Moreover the homomorphism

G(Q̄/E) −→ G(Fn/E) ≃ I/E×I∞K
n ≃ If/E

×Kn

given by class­field theory is just σ → ϕ(σ). So far we have gotten by without any real

arithmetic; only the arithmetic of finite fields has played a role. However, it is an essential part

of the Jugendtraum that every abelian extension of E is contained in some Fn. For this we

appeal to class­field theory.

But no elliptic modular functions have yet appeared. Let V (Z) be the module of col­

umn vectors of length two over Z. We can consider the functor which associates to B the

isomorphism

λ : V (Z/nZ) −→ An(B).

This functor is also represented by a universal object over a ring Jn. The morphismAO
n → An

obtained by fixing an isomorphism

O ≃ V (Z)

and then forgetting the actionofO yields ahomomorphism η : Jn −→ Bn. Ifwe imbedBn −→
C over E then of course the image generates a class­field, as described above. Composing the

imbedding with η yields a homomorphism of Jn or of Jn ⊗ C into C.

Jn ⊗ C is the ring of rational functions on an algebraic variety Sn over C whose points

give the homomorphisms of Jn into C, that is, the elements of An(C). In particular, to obtain

ψ we have to evaluate the elements of Jn at some point of Sn(C). There is, at least from the

analytic standpoint, a more concrete way of viewing Sn(C) and hence Jn ⊗ C. Let G be the

group GL(2). Let J0 be the matrix
(

0 −1
1 0

)

.

If g = (g∞, gf) belongs toG(A) with g∞ ∈ G(R), gf ∈ G(Af ) we set

gfV (Z) = gfV (Zf ) ∩ V (Q).
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Here Zf is the closure ofZ inAf and V (Zf ) = V (Z)⊗Zf . Then gfV (Z) is a lattice in V (R). Let

J = g∞J0g
−1
∞ . We turn V (R) into a one­dimensional space over C by defining multiplication

by
√
−1 to be J . Then

V (R)/gfV (Z)

is an elliptic curve Ag over C. Also

Ag
n(C) =

gfV (Z)

n

/

gfV (Z)

so we may take λg to be

x→ gfx

n
.

The isomorphism class of {Ag, λg} is determined solely by the image of g in the double coset
space

G(Q)\G(A)/K∞K
n

ifK∞ is the centralizer of J0 inG(R) andKn is

{k ∈ G(Zf ) | k ≡ 1(mod n)}.

This double coset space has a natural complex structure and may now be identified with

Sn(C) = An(C).

Analyzing the double cosets more carefully one sees that Sn(C) consists of finitely many

connected pieces each of which is the quotient of the Poincaré half­plane by a congruence

subgroup. The elements of Jn ⊗ C, in particular the elements of Jn, are functions on these

pieces and are in fact just the elliptic modular functions of level n. The points of Sn(C)

corresponding to the homomorphismψ introduced above are easily found explicitly. Summing

up, we conclude that the class field Fn is generated by the values of the elliptic modular

functions in Jn at a certain easily found point of

G(Q)\G(A)/K∞K
n.

As we said, any connected piece of this space is a quotient of the Poincaré half­plane by a

discrete group. If we lift the functions in Jn to the half­plane they become transcendental.

This aspect, the generation of class fields by the values of transcendental functions, has

been emphasized by Hilbert who suggests, in the twelfth problem, that it may be possible to

find for an arbitrary number field transcendental functions with a similar property. Whether

justly or not, the twelfth problem has received very little attention. Any progress made on
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it has been an incidental result of research with quite different ends, although it too has its

origins in the Jugendtraum. The bulk of this research is due to Shimura.

A characteristic of the number theory of the twentieth century has been the dominant

role played by zeta­functions and L­functions, especially at a conjectural level. The analytic

properties of the L­functions associated to an algebraic variety over a number field have been

particularly difficult, usually impossible, to determine. But Shimura has studied very deeply

certain varieties, which, like the varieties defined by elliptic modular functions, are closely

related to algebraic groups. For various reasons it is to be expected that the L­functions

associated to these Shimura varieties can be expressed in terms of the L­functions associated

to automorphic forms on the group defining the variety and on certain related groups. This in

itself is not enough to establish the analytic properties but it is a first step. Shimura, inspired

by earlier work of Eichler, has been able to confirm the expectation for some of his varieties,

basically those which are curves.

Butmanyproblems remain. Iwant to discuss oneof them, rather casually, in the remainder

of the lecture. There are various notions of a reciprocity law, all of them implicit in the laws of

class­field theory. For example, one can view a theorem asserting that anL­functiondefined by

diophantine data, that is, by an algebraic variety over a number field, is equal to an L­function

defined by analytic data, that is, by an automorphic form, as a reciprocity law. There is good

reason for this, for the Artin reciprocity law is such an assertion. The results of Eichler and

Shimura are also of this form. There is nonetheless a more concrete notion available.

Suppose one has an algebraic variety S defined over a number field E. Suppose in fact

that equations defining S have been chosen whose coefficients are integral outside of some

finite set of primesQ. If p /∈ Q and κp is the residue field ofE at pwe can reduce the equations

modulo p and then speak of the set S(κ̄p) of points of S with coefficients in κ̄p. S(κ̄p) is given

together with an action on it, that of the FrobeniusΦp. An explicit description of the sets S(κ̄p)

and of the actions of Φp for all p /∈ Q could also be viewed as a reciprocity law. For example,

if E = Q and S is defined by the equation

x2 + 1 = 0

then S(κ̄p) for p 6= 2 is a set with two elements and Φp acts trivially or not according as p ≡ 1

or p ≡ 3modulo 4. This is the first supplement to the law of quadratic reciprocity.

It is very likely that Shimura varieties admit a reciprocity law in this sense. I want to

describe explicitly the form the law will most probably take. The description is speculative,

but I have verified its correctness, in so far as my limited command of the necessary techniques

allows, for those varieties which arise as solutions of moduli problems for abelian varieties.
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To know the zeta­function of a variety, at least in the sense of knowing the factors of

its Euler product expansion for almost all p, one just has to know the number of points in

S(κn
p ) for all positive n, if κp is the extension of κp of degree n. This is just the number of

fixed points of Φn
p in S(κ̄p). One might expect that this could be determined from the explicit

description of S(κ̄p) and of the action of Φp; so that from a reciprocity law in the second sense

for the Shimura variety S one could obtain one in the first sense, at least for its zeta­function.

However, difficult combinatorial problems arise which have not yet been seriously broached.

But I have been able to make the transition in a limited number of cases, among which are

included varieties of arbitrary large dimension.

Thework of Shimura has been expounded in a remarkably clear fashion by Deligne,2who

also added improvements of his own. One begins with a reductive algebraic group G over Q

and a homomorphism H0 : GL(1) → G defined over C. The pair (G, h0) is subject to some

simple formal conditions. If R is the torus over R obtained from GL(1) over C by restriction

of scalars so that over C

R ≃ GL(1) ×GL(1)

then the composition

h : R
∼−→ GL(1) ×GL(1) → G,

where the second map is (x, y) → h0(x)
ρh0(y) with ρ the complex conjugation, is to be

a homomorphism defined over R. The centralizer of h(R) in Gder(R) is to be maximal

compact subgroup ofGder(R) and ifK∞ is the centralizer of h(R) inGder(R) then the quotient

G(R)/K∞ is to carry an invariant complex structure, specified by h0.

It is in fact not h0 which is significant but the collection of ad g ◦ h0, g ∈ G(R). If T

is a Cartan subgroup of G defined over Q with T (R) ∩ Gder(R) compact we may choose

h′0 = adg ◦ h0 so that it factors through T . We then denote h
′
0 : GL(1) → T by µ̂; it is a

coweight of T . If E is defined to be the fixed field of the set of all σ ∈ G(Q̄/Q) for which

σµ̂ = ωµ̂with ω in the Weyl group of T then E, which is a finite extension of Q in C, plays an

important role in the study of Shimura varieties.

IfK is an open compact subgroup ofG(Af ) then the complex manifold

SK(C) = G(Q)\G(A)/K∞K

is the set of complex points of an algebraic variety of C. It has been conjectured, hesitantly

by Shimura, openly by Deligne, that this family of algebraic varieties should have models SK

over E. The precise conjecture actually demands certain further properties of the SK , which

serve to characterize them uniquely. These properties are patterned on the Jugendtraum; so

2 Séminaire Bourbaki, 1970/71.
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that implicit in any proof of the existence of these canonical models SK is a partial solution

to the twelfth problem. The conjecture, colloquially referred to as the Shimura conjecture, has

been solved for many groups but by no means all. My suggestions will only make sense for

those groups for which the Shimura conjecture is acquired.

The group G(Af ) operates on

lim
←

K

SK(C).

It is demanded that this be reflected in an action ofG(Af ) on

lim
←

K

SK

defined over E.

Fix a prime p of E and let p be the prime of Q it divides. I shall suppose that the

group G is quasi­split over Qp and split over an unramified extension. Recall that if Gsc is

the simply­connected form of the derived group Gder then Bruhat and Tits have associated a

building to Gsc(Qp) on which G(Qp) acts. A special maximal compact subgroup of G(Qp) is

the intersection of the stabilizer inG(Qp) of a special vertex of the Bruhat­Tits building with

{g ∈ G(Qp)





|χ(g)| = 1 for all rational characters of G defined over Qp}.

We shall only be interested inK of the form

K = KpKp

whereKp ⊂ G(Ap
f ) andKp is a special maximal compact ofG(Qp).

The varieties SK are defined overE and hence overEp. SupposeOp is the ring of integers

of Ep. To speak of SK(κ̄p) we need models over Op. At the moment I do not know how they

should be characterized. Presumably if SK/E is proper and smooth then SK/Op should also

be proper and smooth. But if SK/E is not proper, some attention will have to be paid to the

behavior at infinity. I simply ignore the difficulty for now and go on to describe the expected

structure of SK(κ̄p). It is enough to consider that of

lim
←

Kp

SK(κ̄p) = SKp
(κ̄p)

provided that we know howG(Ap
f ) acts on the right­hand side, for

SK(κ̄p) = SKp
(κ̄p)/K

p.
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The setSKp
(κ̄p) shouldbe theunionof certain subsets invariant underG(Ap

f ) andΦ = Φp.

Each of them is constructed from the following data:

(i) a groupH over Q and an imbeddingH(Ap
f ) →֒ G(Ap

f );

(ii) a group Ḡ over Qp and an imbeddingH(Qp) →֒ Ḡ(Qp);

(iii) a spaceX on which Ḡ(Qp) and Φ act, the two actions commuting with each other.

The imbeddingsH(Ap
f ) →֒ G(Ap

f ), H(Qp) →֒ Ḡ(Qp) when combined with the diagonal

imbedding H(Q) →֒ H(Af ) yield an action of H(Q) on G(Ap
f ) ×X . The subsets to which I

referred have the form

Y = H(Q)\G(Ap
f ) ×X.

G(Ap
f ) acts in the obvious way to the right and Φ acts through its action onX .

Before venturing a general prescription forH,G, andX we should orient ourselves with

a brief glance at G = GL(2)with h given by

(a+ ib, a− ib) −→
(

a −b
b a

)

, a, b ∈ C, a2 + b2 6= 0.

For mnemonic reasons, I adhere to a slightly different convention than Deligne, so that my h is

the inverse of his. For this pairG, h there is one subset for each imaginary quadratic extension

F of Q. H is the group F ∗ over Q associated in the usual way to F so that H(Q) = F×, Ḡ is

alsoH , andX is the quotient ofH(Qp) = (E⊗Qp)
× ≃ Q×

p ×Q×
p byH(Zp), the group of units,

Z×
p × Z×

p . If g is one of the prime divisors of p in E and ̟ the corresponding uniformizing

parameter then Φ is multiplication by ̟ ∈ (E ⊗ Qp)
×. There is one additional subset. For

it, H is the multiplicative group of the quaternion algebra over Q split everywhere except at

infinity and p and Ḡ isH . X is the quotient Ḡ(Qp)/Ḡ(Zp), if Ḡ(Zp) is the multiplicative group

of the maximal order in the completion of the algebra at p. Φ is multiplication by any̟ in this

order which generates the maximal ideal.

There is an alternative description of theX for the final subset which yields more insight

into the general situation. Let k be the completion of the maximal unramified extension of Qp

and o its ring of integers. Denote by a → σa the action of the Frobenius. Let H be the set
of o­lattices in the space of column vectors of length 2 over k. H is the set of vertices in the
Bruhat­Tits building ofG(k). Set

b =

(

0 1
p 0

)

.

Define an action of Φ onH by
Φk = bσk.



Some contemporary problems 11

Then

Ḡ(Qp) = {g ∈ G(k) | bσgb−1 = g}

andX is the set of all x inH for which

px⊂
6=

Φx⊂
6=

x.

Geometrically this means that the images of x and Φx in the Bruhat­Tits building of Gsc(k) =

SL(2, k) are joined by an edge. To verify that the two descriptions of X are not essentially

different, one uses the fact that the Bruhat­Tits building is a tree. It is an amusing exercise.

To define H, Ḡ, and X in general we fix Q̄ →֒ C and then choose, once and for all, an

imbedding Q̄ →֒ Q̄p so that the prime of E it defines is p. Suppose γ belongs to G(Q) and is

semi­simple. Suppose moreover that all the eigenvalues of γ have absolute value 1 away from

infinity and p. Let

Ho = {g ∈ G | gγm = γmg for some m 6= 0 in Z}.

Ho is connected and of course defined over Q. Suppose ho : R→ Ho and the composition

R
ho

−→HO →֒ G

is conjugate under G(R) to h. If T is a Cartan subgroup of Ho defined over Q with T (R) ∩
Gder(R) compact, then, as before, replacing ho by ad g ◦ ho, g ∈ Ho(R) if necessary, we may

suppose ho factors through T . The associated

ho
0 : GL(1) → T

is a coweight µ̂ of T . µ̂ is not uniquely determined by ho, but its orbit under the Weyl group

of T inHo is; and that suffices for the following.

If L(T ) is the Z­module

Hom(T,GL(1))

and

L̂(T ) = Hom(GL(1), T )

then L̂(T ) is also

Hom(L(T ),Z).

Define λ̂(γ) ∈ L̂(R) by

|λ(γ)|p = p−〈λ,λ̂(γ)〉, λ ∈ L(T ).
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LetM be the lattice of rational characters ofHo defined over Qp. We say that the pair (γ, h
o)

is of Frobenius type if there is an r > 0 in Q such that λ̂(γ) − rµ̂ is orthogonal toM .

Later an equivalence relation will be introduced on pairs of Frobenius type. To each

equivalence class will be associatedH, Ḡ, andX , as well as

Y = H(Q)\G(Ap
f ) ×X.

For each equivalence class we will also define a multiplicity d. If dY is the disjoint union of

d copies of Y then, as a set on which Φ and G(Ap
f ) act, SKp

(κ̄p) should be isomorphic to the

disjoint union over equivalence classes of pairs of Frobenius type of the sets dY .

For the moment fix γ and ho. H will be obtained from Ho by an inner twisting. Since

the Hasse principle is valid for the adjoint group Ho
ad, it is enough to specify the twisting

locally! Of course it has also to be verified that there is a global twistingwith the specified local

behavior; but this turns out to be a matter of standard techniques. The twisting is trivial except

at infinity and p. At infinity it is so arranged that Hder(R) is compact. Before describing the

twisting at p, we introduce a subgroup Ḡo ofG defined over Qp. It is the connected subgroup

whose Lie algebra is spanned by those elements V in the Lie algebra ofG satisfying

Adγ(V ) = ǫV

with ǫ ∈ Q̄p and |ǫ|p = 1. Ḡ will be a twisted form of Ḡo.

We shall in fact twist Ḡo and Ho simultaneously. If T is as above, let Tad be its image in

Ho
ad and T̄ad its image in Ḡ

o
ad. We choose T so that Tad is anisotropic over Qp. Choose a finite

Galois extension k of Q in Q̄ over which T splits. Suppose aσ,τ is a fundamental 2­cocycle for

kp/Qp. Since

T (kp) = L̂(T ) ⊗ k×p

we may introduce the 1­cochain

σ → aσ =
∑

τ∈G(kp/Qp)

στµ̂⊗ aσ,τ .

It takes values in T (kp) but is not a 1­cocycle. However its image in Tad(kp) or T̄ad(kp) is.

Composing with the maps

H1(G(kp/Qp), Tad(kp)) → H1(Q̄p, H
o)

H1(G(kp/Qp), T̄ad(kp)) → H1(Q̄p, Ḡ
o)
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we obtain the twisting cocycles forHo and Ḡo at p. Onemust of course verify that the twistings

are independent of all auxiliary data.

The homomorphismHo → Gder\GyieldsH → Gder\G. Themultiplicityd is the number
of elements inH1(Q̄, H)which are trivial at every place except p, including infinity, andwhich

lie in the kernel of

H1(Q̄, H) → H1(Q̄, Gder\G).

It may be, however, a little rash to predict d on the basis of the examples studied, for the groups

involved have special cohomological properties.

The setX is the object must complicated to define. Set

ν̂ =
∑

τ∈G(kp/Qp)

τ µ̂

and denote

ν̂ ⊗ x ∈ L̂(T ) ⊗ k×p = T (kp)

byxν̂ . Wedefine theWeil group,Wkp/Qp
, bymeans of the cocycleaσ,τ . Ifw = (x, σ) ∈Wkp/Qp

,

with x ∈ k×p , σ ∈ G(kp/Qp), set

bw = xν̂aσ.

Then w → bw is a 1­cocycle. LetD be the maximal torus in the centre ofHo split over Qp. Let

k be the maximal unramified extension ofQp. It turns out that if we enlarge kp to some k
′
p and

inflate bw toWk′p/Q
p

then we may represent its class by a cocycle {b̄w} such that

b̄w = b̄′wb̄
′′
w

where b̄′w ∈ T (k), b̄′′w ∈ D(Q̄p) and

|λ(b̄′′w)|p = 1

for all rational characters ofD. Moreover ifW o is the kernel ofWkp
/Qp → G(F̄p/Fp) then we

may take b̄′w = 1 for w ∈ W o. If w is any element ofWk′p
/Qp which maps to the Frobenius in

G(κ̄p/κp) set

b = b̄′w.

We regard b as an element ofG(k). Any other choice of the auxiliary data replaces b by cbσc−1

if σ is the Frobenius on k. Such a change is irrelevant for our purposes. Observe that we may

realize Ḡ(Qp) as

{g ∈ G(k) | bσgb−1 = g}.
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The group Kp determines a special vertex in the Bruhat­Tits building of Gsc(Qp) and

hence ofGsc(k)which in turn determines a parahoric subgroup ofKp(k) ofG(k). Set

H = G(k)/Kp(k).

Let F be the mapH → H which takes the point represented by g to the point represented by
bσg.

There is a bijection between conjugacy classes of parabolic subgroups ofG and conjugacy

classes of parahoric subgroups with a representative in Kp(k). Let I be the class determined

by the parabolic subgroup generated by T and the family of one­parameter subgroups corre­

sponding to roots α with 〈α, µ̂〉 ≤ 0. Any point x of H determines a special spoint xi in the

Bruhat­Tits building of each simple factor Gi(k) of Gsc(k). We consider only those x such that

if y = F x then, for each i, xi and yi are either the same or are joined by an edge. Then xi and yi

determine a parahoric subgroup ofGi(k) and, as a consequence, x and y determine a parahoric

subgroup of G(k). X consists of those x for which this parahoric subgroup lies in the class I.

G(Qp) acts onX . If r = [Ek : Qp]we define the action of Φk to be F
r.

The correct conditions defining the equivalence of two pairs (γ1, h
o
1), (γ2, h

o
2) seem to be

local, one condition at each finite place, but none at the infinite place. There should be positive

integersm and n and a δ in the centre ofG(Q) with every eigenvalue a unit such that, first of

all, γm
1 and δγ

n
2 are conjugate inG(Qℓ) for each ℓ 6= p. They should also be conjugate inG(k).

Let

δγn
2 = gγm

1 g
−1, g ∈ G(k).

Suppose b1 and b2 inH
o
1 (R) andHo

2 (R) are associated to (γ1, h
o
1) and (γ2, h

o
2) as above. Then

gbσ1g
−1 ∈ Ho

2 (k). The final condition for equivalence is that there be a c inHo
2 (k) such that

cgb1
σg−1 σc−1 = b2.

In order to define the Γ­factors that should appear in the functional equation of the zeta­

function of a Shimura variety one must also know something about their behavior at the

infinite places ofE. Two problems arise. If τ is an automorphism of Q̄ overQwemay apply τ

to the family SK overE to obtain a family of varieties
τSK over

τE. This new family should be

again just the canonical models for the Shimura varieties defined by some new pair (τG, τh0).

There is an obvious guess. τG should be obtained fromG by an inner twisting which is trivial

at every finite place. If ρ is the complex conjugation and T is chosen as above then the twisting

cocycle at infinity should be ρ→ tρ with

λ(tρ) = (−1)〈λ,τµ̂−µ̂〉, λ ∈ L(T ).
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Then T may also be regarded as a Cartan subgroup of τG over R. The homomorphism τh0

should just be the composition

GL(1)
τµ̂−−−→ T⊂−−−→IτG.

If the field E is real then the complex involution acts on SK(C) which as a complex

manifold is isomorphic to

G(Q)\G(A)/K∞K.

It should be possible to define the resulting involution on the double coset space explicitly. E

can be real only if ρµ̂ = ωµ̂ with ω in the Weyl group of T in G. If this is so then ω can be

realized by an element w in the normalizer of T in G(R). The element w will normalize K∞

so that the map g → gwmay be transferred to the quotient. This should give the involution.

Shimura and Shih are working on these two problems, which are deeper than they appear

at first glance.


