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Although some of the books of Hermann Weyl, especially those dealing with algebraic

matters, are notoriously difficult, the papers on geometry and analysis were often models of

ease and transparency, as much in the incidental papers as in the major ones, like those on the

spectral theory of ordinary differential equations or the representation theory of compact Lie

groups.

This lecture is a brief introduction to some problems in the contemporary theory of

automorphic forms, a part of the spectral theory of group actions, a topic that perhaps began

with the theorem of PeterWeyl on the representation theory of general compact groups; but the

clue to the present investigations, and indirectly the major link to Hermann Weyl, is provided

by the spectral theory of HarishChandra for noncompact semisimple groups. The influence

of Weyl’s techniques for studying characters and of the spectral theory of ordinary differential

equations is manifest throughout the work of HarishChandra. Specifically, however, the clue

is given by the geometrical and cohomological properties of the discrete series.

None the less our major concerns will be arithmetical and owe more to Weyl’s fellow

student Hecke than to Weyl himself, for two subjects that began with Hecke play the principal

roles, the extension of the theory of complex multiplication to higherdimensional varieties, a

subject that has become the theory of Shimura varieties, and the theory of Hecke operators and

the associated Lseries. Even so, Weyl was fascinated by arithmetic from the beginning of his

career, Hilbert’s Klassenkörperbericht being one of the first papers he read as a student, and,

as his monograph on ideal theory and other papers testify, it continued to attract his interest

until the end.

I begin by recalling some familiar, but fundamental and ultimately very difficult concepts.

We begin with a smooth projective variety V over a finite field k. If kn is the extension of k of

degree n, letNn be the number of points on V with coefficients in kn, and form

Z(t, V ) = exp

(

∞
∑

n=1

Nn

n
tn

)

.

It is the zetafunction of V introduced by Weil.
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If, for example, k has q elements and V is the projective line, thenNn = qn + 1 and

Z(t, V ) = exp

(

∞
∑

n=1

(qt)n

n
+

∞
∑

n−1

tn

n

)

=
1

(1 − qt)(1 − t)
.

It is by now very well known that for any variety V the function Z(t, V ) is a rational function

of t of the form

Z(t, V ) =
∏

0≤i≤2dim V

Li(t, V )(−1)i−1

,

where Li(t, V ) is a polynomial

Li(t, V ) =

di
∏

j=1

(1 − aijt).

In addition, |aij| = qi/2 and di has cohomological significance.

If we take a variety of V over a global field F , in particular overQ, then V will be defined

by a finite number of equationswith coefficients that are integral outside a finite setS of primes,

and thus can be reduced modulo any prime not in S, and if S is taken to be sufficiently large

will even give upon reduction a smooth variety over the residue field and thus a zetafunction

Z(t, V ; p) =
∏

i

Li(T, V ; p)(−1)i−1

.

It has been suggested, somewhat casually and in specific cases by Hasse and then system

atically, and independently, by Weil, that the Euler products

Li(t, V ; S) =
∏

p/∈S

1

Li(Np−s, V )

would be of interest. For example, if V is just a point, the global field is Q, and if S is empty

then L0(t, V ; S) is simply the Riemann zetafunction.

In general these functions are of interest for at least two reasons.

(i) They pose an obvious problem of analytic continuation.

(ii) Although the functions are defined in terms of local data, they yield information about

the global arithmetic of the variety. For example, for varieties of dimension zero this is
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expressed by the classical classnumber formulas and for elliptic curves by the conjectures

of Birch and SwinnertonDyer.

The problem (i) is of course patent and in comparison with those posed by the ideas

implicit in (ii) puerile. None the less it leads not only to serious analytic questions but also to

serious arithmetic questions. Even for varieties of dimension 0 it requires classfield theory to

solve it even in part.

Depth aside, it is certain that the problem is solved in very few cases:

(i) varieties of dimension zero associated to abelian extensions;

(ii) abelian varieties with complex multiplication, in particular, for elliptic curves with com

plex multiplication but not, except for a few isolated examples, for other elliptic curves.

Thus even for curves there is a great deal left to do. There is one class of curves for which

much is known, the modular curves, and more generally Shimura curves. A fairly general

family of modular curves is obtained by dividing the upper halfplane by the discrete groups

ΓN =

{

γ ∈ SL(2, Z)|γ ≡

(

1 ∗
0 1

)

(mod N)

}

.

The associated complex algebraic curve ShN can bemade projective by adding a finite number

of points and then given a structure over Q.

It is possible to show thatL1(s, ShN ; S) can be analytically continued by showing that it is

a product of theLfunctions attached by Hecke to automorphic forms on the upper halfplane,

which are of the form

LS(s, π) =
∏

p/∈S

1

(1 − αp/ps)(1 − βp/ps)
,

and thus of degree two. Here π denotes the form or, what amounts to the same thing, the

associated representation. Thus

(1) L1(s, ShN ; S) =
∏

π

LS(s − 1/2, π),

only a finite number of π, and these not necessarily distinct, intervening in the product.

Such a result poses further problems, for if one of the curves ShN appears as a ramified

covering of some curve C, not itself an ShN , then one may hope and expect to deduce from

(1) a similar representation for L1(s, C; S), and thus verify that it too can be analytically

continued. This is the method that has been proposed—for very good reasons—for dealing
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with elliptic curves. In order to deal with other base fields, one needs a theory of base change

for automorphic forms, but that is only partially developed [L2] and not pertinent to this

lecture. It is more important to stress that the methods that lead to (1) and its refinements

are also important for apparently quite different arithmetic problems, like the structure of the

idealclass group of cyclotomic fields [MW].

There is another class of varieties for which an analogue of (1) is valid, those attached to

the names of Hilbert and Blumenthal. They can be of any dimension, but the surfaces of this

type—associated to real quadratic fields—are perhaps of most interest at the moment because

for them a number of important conjectures can be tested with the help of (1), the conjectures

of Tate relating algebraic cycles to the Galois action of étale cohomology and to the order of

the poles of the HasseWeil zetafunction [HLR] and the conjectures of Beilinson [Ra].

All this is bywayof preface to stress the importance of theproblemof analytic continuation

and to observe that its solution even for what appear to be very special varieties can lead to

unpredictable and valuable arithmetic consequences.

The one class of varieties that offers hope for substantial advances is that of Shimura

varieties. There are several problems involved and on all but one progress was being made,

especially by R. Kottwitz, but there is one central obstacle that it was not clear would be

removed in the near future, so that I feared that like JeanDébardeur wewould remain “toujours

à terre, jamais au large”, but the obstacle has now been removed by Kottwitz himself [K6], and

by H. Reimann and T. Zink as well [RZ]. These are important developments, and the purpose

of this lecture is to draw attention to them.

There are three types of Shimura varieties to be distinguished:

(a) the general type;

(b) those associated to a moduli problem for abelian varieties with endomorphism algebra

and polarization;

(c) those associated to the Siegel upper halfspaces.

The problems can be posed for all of them, but it is often a major step to pass from the

solution for those of type (b) to the general solution for those of type (a). At the moment one

is attempting only to deal with those of type (b). The methods that work for those of type (c)

usually work for those of type (b) with little change. Thus I confine myself to type (c).

The Shimura varieties associated to the Siegel upper halfspaces are, properly speaking,

attached to the group of symplectic similitudes, the group G of 2n × 2nmatrices U for which

tUJU = λJ,

λ a scalar, and
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J =

(

0 I
−I 0

)

.

To describe, even approximately, the form that (1) is expected to take we have to introduce at

the same time the Lgroup LG ofG. The groupG is a group over Q; the Lgroup is in contrast

a group over C. It is the Clifford group attached to the orthogonal form in 2n + 1 complex

variables. The spin representation of the corresponding orthogonal group is of dimension 2n

and LG consists of all matrices that can be written as the product of a scalar matrix and an

element of the spin group, so that LG has a natural representation r of degree 2n.

According to the general definition of Lfunctions associated to automorphic forms there

is attached to every finitedimensional representation ρ of LG and every automorphic repre

sentation π ofG an Euler product

(2) LS(s, π, ρ).

Here S is some large finite set of primes of Q.

The Euler products attached to ρ = r are of particular importance for the zetafunctions

of the Shimura varieties attached to G. Questions of completeness and connectedness aside,

these are as complex manifolds essentially quotients Γ\H , where Γ is a congruence subgroup

ofG(Z) andH is the set of all complex symmetric matrices Z = X + iY with Y > 0 and

γ =

(

A B
C D

)

: Z → (AZ + B)(CZ + D)−1.

The structure of these varieties over Q, or over a number field if that is appropriate, is given

by the theory of Shimura, completed by Deligne [D].

To obtain a Shimura variety in the proper sense, one must in fact take the disjoint union

of several of these varieties, obtaining for this particular group varieties over Q. The question

of completeness is more vexing, and forces us to enlarge the notion of a zetafunction with

the help of intersection cohomology to deal with singular varieties. The conjecture of Zucker,

proved by Looijenga and SaperStern, allows one for many purposes to argue as though the

quotients Γ\H were compact, and in order to arrive without too much delay at the problems

that have actually been settled we do so here.

The bulk of the cohomology of the Shimura variety Sh is contained in the middle dimen

sion q = n(n + 1)/2 and if calculated by means of the theory of continuous cohomology [BW]

is given by the discreteseries representations of G(R) that annihilate the Casimir operator.
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The set Π∞ of such representations V has 2n−1 elements. If π∞ is one of them, and if K is

the open compact subgroup of the adelic group G(Af ) that must be introduced when Sh is

defined completely, then each time that an automorphic representation π = π∞⊗πf , πf being

an irreducible representation ofG(Af ), occurs inL2(G(Q)Z(R)\G(A)) there is a contribution

to the cohomology in degree q of dimension 2d(πK
f ). We denote by d(πK

f ) the dimension of

the space of vectors fixed by K under πf . The critical observation is that 2 · 2n−1 = 2n, the

dimension of r and thus the degree of the Euler product LS(s, π, r).

If π′ = π′
∞ ⊗ πf , where π′

∞ ∈ Π∞ then, by definition,

LS(s, π′, r) = LS(s, π, r).

(This would be valid even if Γfactors had been incorporated into the Lfunctions.) Thus if,

as is often but not always the case, whenever π∞ ⊗ πf occurs in L2(G(Q)Z(R)\G(A)) then

π′
∞⊗πf also occurs for anyπ′

∞ ∈ Π∞ then the representations {π∞⊗πf |π∞ ∈ Π∞} contribute

a space of dimension 2nd(πK
f ) to the cohomology each time that they occur, and thus should

contribute a factor of degree 2nd(πK
f ) to the Lfunction Lq(s, Sh; S). If the EichlerShimura

theory for the upper halfplane which leads to (1) is kept in mind, then a natural guess is that

this factor is

(3) LS(s − q/2, πf , r)d(πK
f ).

The shift by q/2 is to account for the absolute value of the roots of the local Lfunctions.

There are two distinct questions implicit here: (a) can the Euler products (2) be analytically

continued; (b) can the zetafunction of the variety Sh really be expressed in terms of these

functions? These are two very different aspects of the problems posed by the introduction

of the general Euler products into the theory of automorphic forms. The problem of analytic

continuation can be approached in various ways [GS] and is in particular tied to functoriality,

so that although a great deal remains to be done, it is clear that we are dealing with promising

material methods [AC].

The question (b) emphasizes a distinct consideration. Even if the functions (2) have

interesting analytic properties and lead to an internally rich theory of automorphic forms, is

it a theory that bears on other domains of mathematics, in particular, on arithmetic? At first,

after the EichlerShimura theory, an almost but not quite decisive response to this question is to

show that the zetafunctions of Shimura varieties can be expressed in terms of these functions,

for then wemay hope that even those varieties not defined by groups have zetafunctions that

can be so expressed.
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We are here concerned with question (b), which requires that we give a precise expression

for the zetafunction as a product of the functions (2) (and their inverses) and that we prove

it. Since the precise expression is not so important, simply whatever the proof yields, it is the

strategy of the proof that counts, and that is elaborate. It has to be recognized immediately

that the occurrence of π∞ ⊗ πf , π∞ ∈ Π∞, in L2(G(Q)Z(R)\G(A)) does not always entail

the occurrence of π′
∞ ⊗ πf with the same multiplicity. This is the subject of endoscopy and

the stable trace formula, which have only begun to be developed [K1, K2, L3, LS, Ro]. Our

experience so far [L1] suggests that there are subgroups LH →֒ LG, attached to groupsH over

Q, and that r′ = r|LH decomposes into a direct sum ⊕ri of irreducible representations, so

that for a representation π obtained by functoriality from a representation π′ ofH(A) there is

a factorization

L(s − q/2, π, r) = L(s − q/2, π′, r′) =
∏

i

L(s − q/2, π′, ri)

and that it is not L(s − q/2, π, r) that occurs in the zetafunction but only some of the factors

L(s − q/2, π′, ri).

To compare two Lfunctions, and that is what one is attempting, it is simpler to compare

their logarithms, or rather for each p and n the coefficients of 1/pns in the expansion of their

logarithms.

On one side, for the product of automorphic Lfunctions, this will turn out to be a sum

(4)
∑

H

cHST (fH),

where fH is a function inH(A) that depends on p and n and ST denotes the stable trace.

For the zetafunction this is, apart from difficulties with the cusps,

(5) Np,n

the number of points on the variety with coefficients from Fpn .

To compute (4) we use the stable trace formula, which in principle expresses (4) as a sum

over stable conjugacy classes in the various H and thus as a sum over conjugacy classes in G.

Thus to make the comparison we need a method of calculatingNp,n as a similar sum.

Now, to reach this stage, we have had to proceed as though some developments that

were only beginning had been carried successfully to completion, but at least they have been

inching forward. Until the recent work of Kottwitz and Zink, however, Np,n offered quite
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different difficulties, and there were some who felt that we were dealing with a problem that

would remain for the forseeable future intractable.

There are two things to be done: (i) to find a grouptheoretical description of the points on

the variety with coefficients inFpn that allows one to calculateNp,n in terms ofG; (ii) to put the

resulting expression in a form that can be compared termbyterm with the expansion of (4).

Kottwitz had already shown that step (ii) could be effected by the fundamental lemma for the

endoscopic groups for base change [K4], and thus reduced to a problem in harmonic analysis

for which at least some serious progress could be made [K5, AC]. In addition he had isolated

the algebrogeometrical problem that has to be regarded as the irreducible form of (i), namely

to show that an invariant introduced by him, and referred to in [LR] as the Kottwitz invariant,

was 1 for abelian varieties over finite fields. Only recently have Kottwitz himself [K6] and

ReimannZink [RZ] succeeded in showing that this is so, thus overcoming what seemed to me

the major obstacle to a successful treatment of the zetafunction of Shimura varieties, so that,

in spite of the many difficulties that remain and that I hope have not been slighted here, we

can at last be sanguine about the prospect of obtaining utilizable results in the nottoodistant

future.

The Kottwitz invariant for the group of symplectic similitudes G is attached to a triple

(γ, δ, ε). Here ε lies inG(Q), is elliptic in G(R), and

〈εx, εy〉 = c(ε)〈x, y〉, |c(ε)|p = |q|p,

q = pr, r > 0, 〈x, y〉 = txJy.

Moreover γ = {γl|l 6= p}, γl ∈ G(Qλ) and γl is conjugate to ε in G(Ql) for all l and in G(Ql)

for almost all l. If F is the unramified extension ofQp of degree r and σ the Frobenius element

inGal(F/Qp) then δ ∈ G(F ) and

δσ(δ) · · ·σr−1(δ)

is conjugate to ε in G(Qp).

The associated invariant k(γ, δ; ε) is of cohomological nature, and is most easily defined

when the centralizer of ε inG is a torus I . Suppose Γ = Gal(Q/Q). The invariant takes values

in the dual of π0(Î
Γ), the connected component of the group of Γinvariant elements in Î . The

group Î is that complex torus on which Γ acts in such a way that

Hom(Î , Gm) ≃ Hom(Gm, I)
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is a homomorphism of Γmodules.

If v is a place of Q let Γv ⊆ Γ be Gal(Qv/Qv). The invariant is a product Πvβ(v),

where β(v) is a homomorphism from ÎΓv to C×, or properly speaking the restriction of such

a homomorphism to ÎΓ. In the definition of β(v) three types of places are distinguished.

(i) If v = l 6= p, then

γl = cεc−1, c ∈ G(Ql).

Since both γl and ε lie inG(Ql), the cochain

{c−1σ(c)}

defines an element of H1(Ql, I) and thus by TateNakayama theory a homomorphism from
ˆIΓv to C×.

(ii) For v = p we write

δσ(δ) · · ·σr−1(δ) = cεc−1, c ∈ G(Qun
p ),

and then

b = c−1δσ(c) ∈ I(Qun
p ).

In [K3] Kottwitz associates to this b a coweight of ÎΓv . It is taken as β(v).

(iii) If v = ∞ then I(R) ∩ Gsc(R) is compact Cartan subgroup of Gsc(R), the symplectic

group. All of these are conjugate and possess a standard coweight that is used to define

β(∞).

Precise general definitions can be found in [K6] and [LR]. To pass from the Kottwitz

invariant for triples to the Kottwitz invariant for abelian varieties with polarization, observe

that if the variety and the polarization are defined over a field with q elements then the ladic

cohomology together with the Frobenius endomorphism yields γl, l 6= p, so that γ is defined.

The element δ is provided by the Dieudonné module attached to the variety. All the γl have

the same eigenvalues. They are algebraic numbers and there is at least one element of G(Q)

with these eigenvalues. Any such element serves as ε, and the geometric theorem essential to

the calculation of theNp,n is that for triples arising in this way the invariant is 1.

The argument of Kottwitz has a strong functorial flavor and uses Fontaine’s theory for

Galois modules attached to pdivisible groups, while Reimann and Zink use more explicit

methods based on classifications of group schemes over finite fields due to Raynaud.
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