EXAMPLES

ANTHONY V. PULIDO

In the following note, we work through theorem 2 of Langlands’s
essay A little bit of number theory for the primes 3 and 5. The theorem
claims that two numbers A, and B, for p prime are equal. We show
that A3 = B3 and A5 = Bs. Later, we give the results of a computer
program that calculates A, and B, for any p as a table for the first 100
odd primes.

We state the theorem:

Theorem.

(a)

(b)

If p = 3 (mod 4) then A, = 0. If p =1 (mod 4) write p =
2?2 + y? with (x,y) congruent to (1,0) or to (—1,2) modulo 4
and set A, = 2(a® — 3zy?).

If p=3 (mod 4) set

B,=) o’ + 8 =7 =8} = {®+ 5 -7 -5}
The first sum is over 4-tuples such that o 4+ B? +~2 + §% = p,

a =1 (mod 4), and (B,7,0) is congruent modulo 4 to one of
(0,1,1), (2,3,3), (0,3,3), (2,1,1). The second sum is similar
but now (8,7, 9) is congruent to one of (0,3,1), (2,1,3), (0,1, 3),
(2,3,1).

But if p=1 (mod 4) set

B, =) {®+ 8 =7 =6} =Y {o’+ 8=~ —%}

The two sums are defined similarly. Again o + 82 +~*+6% =p
and o = 1 (mod 4), but in the first sum (5,v,9) is congruent
modulo 4 to one of (0,0,0), (2,0,0), (0,2,2), (2,2,2) and in the
second to one of (2,2,0), (0,2,0), (2,0,2), (0,0,2).

1. Angg

Let p =3 and

A:Z{a2+62_72_52}7
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where this sum is the first one in the definition of B;. We define the
number B similarly. Then, B3 = A — B.

We calculate Bj first. To determine the ranges of summation of A
and B, we list the possible decompositions of 3 as a sum of four squares
subject to the constraints of the theorem. It is clear that o = 1, and so
we obtain the following:

3=1"4+0"+1*+1° (0,1,1)
=124+ 0%+ (=1)* + (=1)° (0,3,3)
=12 +0*+(-1)*+1 (0,3,1)
=12 +0*+ 1%+ (—1)? (0,1,3)

For each triple (b, g,d) on the right, (5,7,d) = (b, g,d) (mod 4). We
calculate Bs:

A=1+0"-1>—1°+
240% — (=1)? — (—1)?
_—
B=12402— (—1)? — 12+
12407 — 12— (=1)
_—
It follows that B3 = A — B = 0. By part (a), since 3 =3 (mod 4),
As = 0. A3 = By = 0.
2. A5 = B;
Since 5 =1 (mod 4), we write 5 = 2% + y? = (—1)? 4+ 22. Then,
As = 2(2® — 3zy®) = 2((—1)* = 3(=1)(2%)) = 2(—1 + 12) = 22.

Using A and B defined in the previous section, we calculate Bs.

A=124+22 -0 -0+ (2,0,0)
17+ (=2)* = 0* — 0
=10
B=1>4+0%-22-0%+ (0,2,0)
12+ 0% — (-2)* - 0%+
124 0% — 0% — 2%+ (0,0,2)

12402 — 0% — (=2)
= —3-4=-12.
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Finally, Bs = A — B = 10 — (—12) = 22. It follows that A5 = Bs.

3. PROGRAM

The Haskell program lbnt.hs calculates A, and B, for the first 100
odd primes. It can be easily modified to calculate any number of primes,
subject of course to the computing power of the hardware on which it
is run. Please see the comments in the source code.

The author is a novice programmer, and so the program can likely
be greatly optimized. On a mid-2012 Macbook Pro 2.3 GHz Intel Core
i7, execution time was about 9 minutes 40 seconds compiled and about
20 minutes interpreted.

The result follows:

nth odd prime | p | p (mod 4) A, B,
1 3 3 0 0
2 5 1 22 22
3 7 3 0 0
4 11 3 0 0
5 13 1 —18 —18
6 17 1 —94 —94
7 19 3 0 0
8 23 3 0 0
9 29 1 —130 —130
10 31 3 0 0
11 37 1 214 214
12 41 1 —230 —230
13 43 3 0 0
14 47 3 0 0
15 53 1 518 518
16 59 3 0 0
17 61 1 830 830
18 67 3 0 0
19 71 3 0 0
20 73 1 1098 1098
21 79 3 0 0
22 83 3 0 0
23 89 1 —1670 | —1670
24 97 1 594 594
25 101 1 598 598
26 103 3 0 0
27 107 3 0 0
28 109 1 —1746 | —1746
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