Public _Lecture :

The Prime Number Theorem —

a historical overview of the first hundred years

Antiquity : Euclid, Eratosthenes

L. Euler notes that
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for s > 1, concludes
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C. F. Gauss 1792 or 1793 empirically arrives at
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continues throughout his life as new more extensive prime number tables appears.
Correspondence with Bessel 1810, letter to Encke 1849.

A. M. Legendre in his “Essai sur la théorie des nombres” 1st edition 1798
states that x(z) probably can be approximated by an expfession
__*
Alogz + B’
where A and B are constants. In the second edition 1808 he gives the formula
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Abel’s letter to Holmboe 1824. Dirichlet 1839 on the arithmetic progression.
May 24, 1848 P. L. Chebyshev read a paper before the St. Petersburg Acad-

emy where he proved:
If a very good simple approximation function to 7(x) exists, it has to be liz.
More precisely he showed
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as s — 14, also
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as § — 1+,
From this he concludes: for any given a > 0 and N , we have
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for a sequence of z that tends to co.

Chebyshev first to utilize
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for real s > 1 in this context. His proof depends on the identity
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The right hand side is
Zlog (5 - 1)¢(s)) + (o)
where g(s) is regular at s = 1, differentiating k times with respect to s and letting
s — 1+ one gets the required resuls.
In a second paper presented in 1850, Chebyshev obtains the first good bounds
for w(z).

Writing: J9(z) = 3 logp, ¥(z) = 5. logp, so that
psz priz

P(z) =19(33)+19(2:%) +---—|—19(le1“) o

Chebyshev considered
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= Z logm’ = log ([=]!)
m' <z

= z(logz —~ 1) + O(log z).
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He formed the linear combination

o0 =m=2(5)-2(5) -7 () 7(3)
= Az + O(log 2},
A 1052 + lo§3 + Io§5 B 105030’
A =0.92129202294. .. .

Inserting the expression for T' by the 1 one gets

T
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One sees that

from which
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U(s) < $(z) < Ulz) + U (
and so:
Az — O(log z) < ¥(z) < gA:c +O(log’z) = Az + O (log® ),

with A’ = 1.1055504275. Since ¥(z) = ¥(z) + O(/z), and
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we have similar bounds for #(z) and #(z).

3



Improvements, J. J. Sylvester 1881 and 1892: H. Poincaré 1891 analogue for

“Gaussian integers”.

G. F. B. Riemann’s note to Prussian Academy of Science in Berlin (of which
he had just been elected a corresponding member) in 1859 finally brings in ¢ (s)

as a function of a complex variable.

The motivation is inversion of the relation

élog ¢(s) = i:(_fz dz

where
1, 1, .
f(=) =m(z) + 5m(22) +-- + —r{z7) + -

which in essence is already present in Chebyshev’s work.

Considering the right hand expression as a Fourier integral (writing z = e¥;

8 = a4+ it) he finds

] atico R
T
f(z) = 7 ~ log {(s) ds,
=100
. . 1 .
for @ > 1. Riemann writes s = 5+t (where ¢ may be complex) and

£ = 53(s = VL (5) 7 5¢(s),

Lo =

and shows that £ is an integral function of ¢2, all of whose zeros have imaginary

i : . .
parts between — and > From growth considerations he concludes that
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where o runs through the zeros of ¢, if @ runs through the zeros of £ with positive

real part. He states that

T T
N(T) = o (log P 1) + O(log T)
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if N(T') denotes the number of zeros with real part in the interval (0,7, and that
there seems to be about that many real zeros there, so he conjectures that all zeros

1
of {(¢} are real (or all non-trivial zeros of ¢ (s) on the line o = 5)-
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Using a rather reckless procedure of integrating termwise (after having ex-
1
8 — =
2

pressed log ((s) in terms of log ¢ ) and simple terms, and integrating first

by parts) he arrives at the formula

fl@) =li(z) = 31 (ah+?) 1 1i (ah-e)
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It is clearly a preliminary note, and might not have been written if L. Kronecker
had not urged him to write up something about this work. (Letter to Weierstrass
Oct 26, 1859). It is clear there are holes that need to be filled m, but also clear

that he had a lot more material that is in the note.

What also seems clear: Riemann is not interested in an asymptotic formula,

not in the prime number theorem, what he is after is an exact formula!

In his introduction Riemann mentions Gauss and Dirichlet it is known (letter
from Schyfalfuss) that the had read Legendre. He had undoubtedly also seen the
work of Chebyshev which had been published in French.

It is quite possible that it was Chebyshev’s first paper referred to earlier,
which inspired him to consider the zeta function. I am convinced that Riemann
knew that ((s) has no zeros on the line ¢ = 1. If there were one it would have to
be a simple zero since

o)C(o +i) > 1,

for o > 1. If there were one say 1+itg, one gets by looking at the higher derivatives

of : :
S+ S i),

as 8 — 14, and taking the real part that

EO k+1
Z '%;“2(1 + costglog p) = O(1),
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as ¢ — 14. This means that
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since ) - diverges, contradiction. Had Riemann’s goal been the prime number

7
theorem, he would probably have considered ¢(z) instead of his f(z), and used a
z T 3+1 g

smoothed expression like { $(t) dt or 2f ibé-ﬂ dt, leading to factors 8(2—.1_17 or 32—

"
in his integrals instead of Tl very likely that he would have succeeded had
3

he tried.
Some asymptotic relations involving primes were established in the following

decades by F. Mertens who in 1874 proved

2 loip =logz + O(1),

p<z

and

Zﬂl—mloglog::—l—c-{"(’)( L )
P log z

p<z

Mertens also conjectured based on empiric evidence that

> u(n)

n<T

< +/z.

Mertens first formula probably was known to Chebychev, since it follows simply

from
T(z) = Z logp [%] = zlogz + O(z).
pr<z p
T. J. Stieltjes in two C.R. notes 1885 claimed to have shown that the series
pn) _ 1
nt  ((s)’

. 1 . . .
is convergent for ¢ > 5 (which would clearly imply Riemann’s statement about

=

1
the zeros of {(s) being on the line ¢ = 3); from this he concluded

P)=z+0 (x%*")

for any £ > 0!
G. Halphen in a C.R. note from 1883 states that J(z) ~ 2 as z — co. By

some French authors this is later referred to as: la loi asymptotiques d'Halphen !

(it surely was conjectured by Chebyshev if not earlier!)
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1893 E. Cahen claims to prove #(z) ~ =z “Halphen’s law” assuming the
R;(mann Hypothesis (as “proved” by Stieltjes).
Substantial progress was made when J. Hadamard in 1892 in connection with

his work on entire functions proved rigoronsly Riemann’s assertion

he also showed
allogT < N(T) < AT log T,

with positive constants a and 4 for 7 > 15.

Finally in 1896 Hadamard rigorously proved 9(z) ~ z, “ Halphen’s law” (from
which the prime number theorem follows, but he does not mention this at alll).

He bases his proof on the formula
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for 4 > 1. Using his results from 1892, and that (1 +it) £ 0 for £ real. He proves
that the left hand side is asymptotic to I'(x)z, as =z — oo. Taking p = 2, he gets
?(z} ~ z by a difference argument. He also sketches a proof of the analogous

result for an arithmetic progression.

That ((1+1t} # 0, he concludes by showing that if ¢(1 +itg) = 0 then 14 24¢,

would be a pole of {(s) (an obvious contradiction).

The same year de la Vallée Poussin independently, but building on Hadamard’s
1892 paper, gives a proof along somewhat sirnilar lines. He does state the prime
number theorem in his paper! His paper treats not only the case of the arithmetic

progression but also that of a binary quadratic form.

de la Vallée Poussin concludes that ¢(1 + i) # 0 from the inequality
(o) (o + it)( (o + 2it)] > 1,
for ¢ > 1, based on the inequality

3+ 4cosp + cos 2 > 0.
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A few years later he develops this idea, now applied to the logarithmic derivative

as
! t !
R (——32:-(0') — 4%(0 + it) — %(o‘ + 2it)> >0,
into an argument that shows {(s) # 0 for
og>1- [t] > A,

a
log [#]’
where a and A4 are certain positive constants. From this he concludes

n(z) =z 4+ O (me“am) ,

for some constant a > 0.

Later progress by J. E. Littlewood and I. Vinogradov and others in the di-
rection of improving the remainder term is entirely based on improving estimates
for certain exponential sums. Apart from that it is still de la Vallée Poussin’s
argument that is used. This can in principle never give us more than a zero free

region which lies close to o = 1, whose width tends to zero as |t| — co.



