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This paper is based on a talk given at the bicentenary celebration

of the birth of Neils Henrik Abel held in Oslo in June, 2002. The

objectives of the talk were first to recall Abel’s theorem in more or less

its original form, secondly to discuss two of the perhaps less well known

converses to the theorem, and thirdly to present two (from among the

many) interesting issues in modern algebraic geometry that may at

least in part be traced to the work of Abel. Finally, in the reprise I will

suggest that the arithmetic aspects of Abel’s theorem may be a central

topic for the 21st century.

This talk was not intended to be a “documentary” but rather to tell

the story — from my own perspective — of Abel’s marvelous result

and its legacy in algebraic geometry. Another talk at the conference

by Christian Houzel gave a superb historical presentation and analysis

of Abel’s works.

In keeping with the informal expository style of this paper (the only

proof given is one of Abel’s original proofs of his theorem) at the end

are appended a few general references that are intended to serve as a

guide to the literature, and should not be thought of as a bibliography.
1
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1. Origins of Abel’s theorem

During the period before and at the time of Abel there was great

interest among mathematicians in integrals of algebraic functions, by

which we mean expressions

(1.1)

∫
y(x)dx

where y(x) is a ‘function’ that satisfies an equation

(1.2) f(x, y(x)) = 0

where f(x, y) ∈ C[x, y] is an irreducible polynomial with complex co-

efficients. Although not formalized until later, it seems to have been

understood that (1.1) becomes well-defined upon choosing a particular

branch of the solutions to (1.2) along a path of integration in the x-

plane that avoids the branch points where there are multiple roots. In

more modern terms, one considers the algebraic curve F ◦ in C2 defined

by

f(x, y) = 0 ,

and on F ◦ one considers the rational differential ω defined by the re-

striction to F ◦ of

ω = ydx .

On the closure F of F ◦ in the compactification of C2 given either by

the projective plane P2 or by P1 × P1 one considers an arc γ avoiding

the singularities of F and the poles of ω, and then (1.1) is defined to

be

(1.3)

∫
γ

ω .

Actually, among mathematicians of the time the interest was in more

general expressions

(1.4)

∫
r(x, y(x))dx

where r(x, y) is a rational function of x and y, and y(x) is as above. The

formal definition of (1.4) is as in (1.3) where now ω is the restriction

to F of the rational differential 1-form r(x, y)dx.
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Of special interest were the hyperelliptic integrals

(1.5)

∫
p(x)dx√
q(x)

where p(x) and q(x) are polynomials with, say,

q(x) = xn + q1x
n−1 + · · ·+ qn

of degree n and having distinct roots. When n = 1, 2 it was well

understood at the time of Abel that these integrals are expressible in

terms of the “elementary” — i.e., trigonometric and logarithmic —

functions. The geometric reason, which was also well understood, is

that any plane curve may be rationally parametrized as expressed by

the picture

X

(x(t),y(t))

t

Plugging the rational functions x(t) and y(t) into (1.5) gives an integral∫
r(t)dt ,

where r(t) is a rational function, and this expression may be evaluated

by the partial fraction expansion of r(t).

There was particular interest in the hyperelliptic integrals (1.5) when

n = 3, 4 and important fragments were understood through the works

of Euler, Legendre and others. They go under the general term of

elliptic integrals, for the following reason: Just as the resolution of the

arc length on a circle leads to the trigonometric functions as expressed

by

(1.6)

∫ √
dx2 + dy2 =

∫
dx√

1− x2
, x2 + y2 = 1 ,
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there was great interest in the functions that arise in the resolution of

the arc length of all ellipse. Thus, through the substitution

t = arcsin
(x
a

)
the arc length on the ellipse∫ √

dx2 + dy2,
x2

a2
+
y2

b2
= 1 a > b

becomes the elliptic integral

(1.7) a

∫
(1− k2x2)dt√

(1− t2)(1− k2t2)
, k2 = (a2 − b2)/a2

in Legendre form.

Of special interest were integrals (1.4) that possessed what was

thought to be the very special property of having functional equations

or addition theorems. For example, using the obvious synthetic geomet-

ric construction of doubling the length of an arc on the circle applied

to the integral (1.6), one recovers the well known formulas for sin 2θ

and cos 2θ expressed in terms of sin θ and cos θ. More generally one

may derive expressions for sin(θ + θ′) etc. which are expressed as ad-

dition theorems for the integral (1.6). In the 18th century the Italian

Count Fagnano discovered a synthetic construction for doubling the

arc length on an ellipse, and when applied to (1.7) this construction

leads to addition theorems for the “elliptic integral” (1.7). As alluded

to above this was thought to be a very special feature, one that was

the subject of intensive study in the late 18th and early 19th centuries.

2. Abel’s theorem and some consequences

In Abel’s work on integrals of algebraic functions there are two main

general ideas

• abelian sums

• inversion

Together these led Abel to very general forms of

• functional equations
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for the integrals. We will now explain these ideas.

Turning first to what are now called abelian sums, the integrals (1.1)

and more generally (1.4) are highly transcendental functions of the

upper limit of integration and consequently are generally difficult to

study directly.1 Abel’s idea was to consider the sum of integrals to the

variable points of intersection of F = {f(x, y) = 0} with a family of

curves Gt = {g(x, y, t) = 0} depending rationally on a parameter t.

Thus letting

F ∩Gt =
∑
i

(xi(t), yi(t))

be the set of solutions to {
f(x, y) = 0
g(x, y, t) = 0

written additively using the notation of algebraic cycles, the abelian

sum associated to (1.4) is defined to be

(2.1) u(t) =
∑
i

∫ xi(t)

x0

r(x, y(x))dx .

Below we will amplify on just how this expression is to be understood.

A particularly important example is given by taking the Gt to be a

family of lines as illustrated by the figures

(i) F = {x2 + y2 = 1}

1The term “highly transcendental” needs care in interpretation — cf. the reprise
below. Again Abel, in a paper published in 1826, showed the existence of polyno-
mials R,F such that ∫

F dx√
R

= ln

(
P +

√
RQ

R−
√
RQ

)
has solutions for relatively prime polynomials P,Q. Here, R is a polynomial of
degree 2n with distinct roots and F is a polynomial of degree n − 1, so that the
integrand is a differential of the 3rd kind. This is an “exceptional” case where the
integral is transcendental but expressible in terms of elementary functions.
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(ii) F = {y2 = x2 + ax+ b}

In both cases we take ω = dx/y and the integrals (1.4) are respectively

(2.2)

{
(i)

∫
dx√
1−x2

(ii)
∫

dx√
x3+ax+b

Even though the individual terms in the abelian sum are in general

highly transcendental functions, Abel’s theorem expresses the abelian

sum as an elementary function:

Theorem: The abelian sum (2.1) is given by

(2.3) u(t) = r(t) +
∑
λ

aλ log(t− tλ)

where r(t) is a rational function of t.

One of the proofs given by Abel is as follows:

Proof: For reasons to appear shortly we define the rational function

q(x, y) = r(x, y)fy(x, y) ,

so that the integrand in the integrals appearing in the abelian sum is

the restriction to the curve F of

q(x, y)dx

fy(x, y)
.

Then by calculus

u′(t) =
∑
i

q(xi(t), yi(t))x
′
i(t)

fy(xi(t), yi(t))
.

From {
f(xi(t), yi(t)) = 0

g(xi(t), yi(t), t) = 0

we have

x′i(t) =

(
gtfy

fxgy − fygx

)
(xi(t), yi(t))
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so that

(2.4) u′(t) =
∑
i

s(xi(t), yi(t))

where s(x, y) is the rational function given by

s(x, y) =

(
qgt

fxgy − fygx

)
(x, y) .

(The non-vanishing of the rational function in the denominator is a

consequence of assuming that the curves F and Gt have no common

component). Abel now observes that the right hand side of (2.4) is

a rational function of t — from a complex analysis perspective this is

clear, since u′(t) is a single-valued and meromorphic function of t for

t ∈ P1. Integration of the partial fraction expansion of u′(t) gives the

result.

In his Paris memoiré, and also in subsequent writings on the subject

in special cases, Abel gave quite explicit expressions for the right hand

side of (2.4), and therefore for the terms in the formula for u(t) in

his theorem. For example, when the curves Gt are lines the Lagrange

interpolation formula gives the explicit expression for u′(t).

We shall now give applications of Abel’s theorem to the two integrals

in (2.2). Both are based on the second of Abel’s ideas mentioned above,

namely to invert the integral (1.4) by defining the coordinates x(u),

y(u) on the curve F as single-valued functions of the variable u by

setting

(2.5) u =

∫ x(u),y(u))

(x0,y0)

ω

where ω is the restriction to the curve F of r(x, y)dx. For example, for

the integral (i) in (2.2) we obviously have

u =

∫ (sinu,cosu)

(0,1)

ω .
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The right hand side in (2.3) may be evaluated using the Lagrange

interpolation formula and this leads to the relation∫ x1

0

dx√
1− x2

+

∫ x2

0

dx√
1− x2

=

∫ x1y2+x2y1

0

dx√
1− x2

which we recognize as the addition formula for the sin function.

Before turning to the second integral in (2.2), we remark that already

in his Paris memoiré Abel singled out a “remarkable” class of abelian

integrals (1.4), now called integrals of the 1st kind, by the condition that

the right hand side of (2.3) reduce to a constant — this is evidently

equivalent to the abelian integral (1.4) being locally a bounded func-

tion of the upper limit of integration. Abel explicitly determined the

integrals of the 1st kind for a large number of examples. For instance

for the hyperelliptic curves

y2 = p(x)

where p(x) is a polynomial of degree n + 1 with distinct roots, Abel

showed that the integrals of the 1st kind are{
ω = g(x)dx

y

deg g(x) 5
[
n
2

]
.

In particular, assuming that the cubic x3+ax+b has distinct roots, the

expression (ii) in (2.2) is an integral of the 1st kind. Abel’s theorem for

the family of lines meeting the cubic may be expressed by the relation

(2.6) u1 + u2 + u3 = c

where c is a constant and

(2.7) u =

∫ (x(u),y(u))

(x0,y0)

dx

y

with u = ui plugged into (2.7) for i = 1, 2, 3 in (2.6). Differentiation of

(2.7) gives

1 =
x′(u)

y(u)

so that

(2.8) y′(u) = x(y) .
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Choosing (x0, y0) appropriately (specifically the flex [0, 0, 1] on the in-

tersection of F with the line at infinity in P2) we will have{
c = 0

x(−u) = x(u)

and (2.6) becomes the famous addition theorem for the elliptic integral

(2.9) x(u1 + u2) = R(x(u1), x
′(u1), x(u2), x

′(u2))

where R is a rational function that expresses the x-coordinates of the

third point of intersection of a line with F as a rational function of the

coordinates of the other two points.

Of course, x(u) is the well-known Weierstrass p-function and the

above discussion gives the functional equation (2.9) and differential

equation

x′(u)2 = x(u)3 + ax(u) + b

satisfied by the p-function. We give two remarks amplifying this dis-

cussion.

The first is that in order to define the integral

(2.10)

∫
dx√

x3 + ax+ b

one cuts the x-plane, including the point at infinity, along slits con-

necting two of the roots of x3 + ax + b and connecting the third root

to x =∞

δ
1

δ
2

∞

Then
√
x3 + ax+ b is single-valued on the slit plane, and one may

envision the algebraic curve F as a 2-sheeted covering of the x-plane

where crossing a slit takes one to the “other sheet” — i.e., F is the

Riemann surface associated to the algebraic function
√
x3 + ax+ b.

The topological picture of F is the familiar torus
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δ
1

δ
2

The integral (2.10) is then interpreted as an integral along a path on

the Riemann surface. The choice of path is only well-defined up to

linear combinations of δ1 and δ2. In particular, from (2.7) we infer that

(2.11)

{
x(u+ λi) = x(λi)

y(u+ λi) = y(λi)

where

λi =

∮
δi

dx

y

are the periods of dx/y. Letting Λ be the lattice in the complex plane

generated by λ1 and λ2, we have the familiar parametrizaton

C/Λ −→ F

↓ ∪|
u −→ (x(u), x′(u))

of the cubic curve by the p-function and its derivative.

In his Paris memoiré, Abel gave in generality the essential analytic

properties of elliptic functions, defined as those functions that arise by

inversion of the integral of the first kind on curves having one such

integral.

Remark that the dimension of the space of integrals of the first kind

is one definition of the genus of the algebraic curve F (or arithmetic

genus, in case F is singular). Following Abel’s pioneering work, the

extension of the above story to curves of arbitrary genus was carried

out by Jacobi, Riemann and other 19th-century mathematicians.

A second remark is that the functions x(u), y(u) in (2.7) may be

defined locally with (2.8) holding, and the functional equation (2.9) is

valid where defined. But then this functional equation may be used to

extend x(u) and y(u) to entire meromorphic functions — e.g., if x(u) is
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defined for |u| < ε, then from (2.9) we may define x(2u) and continuing

in this way proceed to define x(u) for |u| < 2ε, |x| < 3ε, . . .. The

principle that a functional equation may be used to propogate a local

object into a global one is a central consequence of Abel’s theorem, one

that will be discussed further below.

In concluding this section we mention two direct consequences of

Abel’s theorem in algebraic geometry:

(i) the first beginnings of Hodge theory

(ii) the use of correspondences.

Under (i) we mean that Abel isolated what we now call the space of reg-

ular differentials H0(Ω1
F ) as a basic invariant of an algebraic curve. He

also computed h0(Ω1
F ) = dimH0(Ω1

F ) in a number of examples, which

may be interpreted as taking the first steps toward identifying h0(Ω1
F )

with the algebro-geometrically defined arithemetic genus. The further

intepretation of h0(Ω1
F ) as one-half the first Betti number — which

marks the real beginning of Hodge theory — was to await Riemann.

Regarding (ii), the proof given above of Abel’s theorem may be sum-

marized by the diagram

I ⊂ F × P1

π1↙↘π2

F P1

where

I = {(x, y, t) : f(x, y) = g(x, y, t) = 0}

is the incidence correspondence, and where the map

ω → d

(∑
i

∫ xi(t)

x0

ω

)

in the proof is, in modern terms, the trace

ω → (π2)∗ (π∗1ω)

taking rational 1-forms on F to rational 1-forms on P1.
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3. Converses to Abel’s theorem

In addition to recalling the usual global version of Abel’s theorem

and its converse, we will in this section give two less well known local

converses to the result. These will illustrate the aforementioned princi-

ple that a local object having a functional equation may be propogated

into a global one.

The usual version, found in textbooks, of Abel’s theorem and its

converse deals with the following question:

On a compact Riemann surface X we ask when a divisor

(3.1) D =
∑
i

nipi

is the divisor of a meromorphic function; i.e., what is

the test to determine if

(3.2) D =
∑
p∈X

νp(f)p

for some function f ∈ C(X)∗.?

The answer is the following: For a regular 1-form ω ∈ H0(Ω1
X) we

recall that a period is defined to be the integral∫
δ

ω

where δ ∈ H1(X,Z). Then there are two conditions that (3.2) hold.

The first is that the degree of the divisor D

(3.3(i)) degD =:
∑
i

ni = 0 .

If this is satisfied, then we may write D = δγ for a 1-chain γ and then

the second condition is that

(3.3(ii))

∫
γ

ω ≡ 0 mod (periods)

for all ω ∈ H0(Ω1
X).

The necessity of (3.3(i)) is a consequence of the residue theorem∑
p∈X

Resp

(
df

f

)
=
∑
p∈X

νp(f) = 0 , f ∈ C(X)∗ .
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The necessity of (3.3(ii)) is essentially Abel’s theorem as given above:

Setting for t ∈ P1

f−1(t) =
∑
i

pi(t) =: Dt

the configuration of points
∑

i pi(t) moves with a rational parameter

and D = D0 −D∞. Since ω is a regular differential the abelian sum∑
i

∫ pi(t)

pi(0)

ω

is constant, and since
∫
γ
ω is only well-defined modulo periods the

assertion (3.3(ii)) follows. Alternatively, for

I ⊂ X × P2

the incidence correspondence defined by

I = {(p, t) : f(p) = t}

we have as before that

d

(∑
i

∫ pi(t)

pi(0)

ω

)
= (π2)∗ (π∗1ω)

is a regular 1-form on P1, hence equal to zero.

The usual global converse to Abel’s theorem is that the conditions

(3.3(i)) and (3.3(ii)) are sufficient that (3.2) hold. This may be formu-

lated by the statement that the map

Div0(X)→ J(X)

form the group of divisors of degree zero into the Jacobian variety

J(X) =: H0
(
Ω1
X

)∗
/H1(X,Z) ,

given by the above construction

〈D,ω〉 =:

∫
γ

ω mod periods

where D ∈ Div0(X), ∂γ = D and ω ∈ H0(Ω1
X), should be injective.

The first local converse deals with what we shall call Abel’s differen-

tial equations. These simply state the conditions that a configuration
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of points pi ∈ X together with tangent vectors τi ∈ TpiX should satisfy

the infinitesimal form

(3.4)
∑
i

〈ω(pi), τi〉 = 0, ω ∈ H0(Ω1
X)

of Abel’s theorem. We may re-express (3.4) as follows: We consider∑
i pi as a point in the symmetric product X(d). Each regular 1-form

ω on X induces a 1-form Trω on X(d) by

(Trω)(p1 + · · ·+ pd) = ω(p1) + · · ·+ ω(pd) .

Then (3.4) is equivalent to the differential system

(3.5) Trω = 0 , ω ∈ H0
(
Ω1
X

)
on X(d). From a differential equations perspective the remarkable fact

is that the maximal local integral manifolds of (3.5) are open sets in

a global integral manifold Pr ⊂ X(d). Thus the DE’s (3.5) truly do

represent the condition for infinitesimal rational motion of divisors.

The more precise statement is:

In each tangent space TzX
(d), z = p1 + · · · + pd, the

equations (3.5) define a subspace V with the properties

(i) V is tangent to a local integral manifold of (3.5); and

(ii) these local integral manifolds may be propogated to

a global integral manifold isomorphic to Pr.

The property (i) is not automatic — it requires the involutivity of

the exterior differential system (3.5), which imposes conditions beyond

d(Trω) = 0 in neighborhoods where the rank of the equations (3.5)

jumps. Property (ii) reflects the functional equation aspect of Abel’s

theorem discussed above.

The second converse to Abel’s theorem was first formulated and

proved by Abel’s fellow countryman Soplus Lie. We shall state it in a

special case based on the picture below. Here we are given local ana-

lytic arcs Fi in the plane and on each Fi a non-zero regular differential

ωi. For L in a neighborhood U of L0 in the space of lines in the plane,
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we may define a mapping

(3.6) L→ F1 × · · · × Fn

by

L→ (p1(L), . . . , pn(L))

L

Fi

L 0

where pi(L) = L · Fi. In this situation Abel’s relation is

(3.7)
∑
i

ωi(pi(L)) = 0 ;

i.e., the pullback of (ω1, · · ·ωn) on F1×· · ·×Fn to U under the mapping

(3.6) should be zero. Lie’s result is:

Under the condition (3.7) there is a global algebraic curve

F and regular differential ω on F such that{
Fi ⊂ F

ω|F = ωi .

Again, using the functional equation (3.7) the local data (Fi, ωi) may

be propogated to give a global (F, ω).

4. Some legacies of Abel’s theorem

Of course probably the main “legacy” of the theorem is the string of

developments — by many mathematicians and continuing to modern

times — leading to our understanding of the Picard variety or divi-

sor class group of an algebraic variety. Abel’s influence is reflected
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by the fact that the identity component of the Picard variety is an

abelian variety, and at least in the complex case the functions on it are

termed abelian functions. Rather than recount these developments in

any detail, however, I will discuss briefly two other legacies. One is the

interesting but less well known subject of webs and the other is based

on recent joint work with Mark Green.

4.1. Webs. We will restrict to plane webs — however, the subject

is of interest in any dimension and codimension. Also, although the

definition may be given globally on manifolds, thus far the main interest

is in the local geometry and so we shall work in an open set in R2.

Definition: An n-web W(n) is given by n foliations in general position.

Fi(x,y)= constant

The leaves of the ith web are given by the level sets of a function

Fi(x, y); general position means that the tangent lines to the leaves

through a point are distinct. It is sometimes convenient to give these

tangent lines by a Pfaffian equation

ωi = 0

where

ωi = λidFi

for some non-zero function λi.

The subject of web geometry was initiated by Blaschke and his col-

leagues in Hamburg in the 1920’s. A central problem was to find in-

variants of a web; in particular to find sufficient conditions that the

web be linearizeable; i.e., after a diffeomorphism the leaves of the web

should become lines in the plane.
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From the beginning it was understood that webs were related to

algebraic geometry. For example, the following picture gives a linear

web

(i)

C

Here, C is an algebraic curve in the plane, and through a general outside

point we draw the tangents to C (here, and similarly in what follows,

for the purpose of illustration we assume that all the tangents are real).

The degree n of the web in the usual algebro-geometric degree of the

dual curve.

The projective dual of figure (i) associates to an algebraic curve C of

degree n in the plane an n-web in an open set U in the dual projective

space of lines in the plane, as illustrated by the figure

(ii)

L

L

P
2

Here, a point in U is given by a line L in the plane. The lines through

each of the n points of intersection of C with L give n pencils of lines,

and by projective duality each such pencil gives a line in the dual space.
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An additional source of examples of web is provided by the solution

curves to an ODE

P (x, y, y′) = (y′)n + P1(x, y)(y′)n−1 + · · ·+ Pn(x, y) = 0

in the plane.

What has turned out to be thus far the most important invariant of

a web was defined already by the school of Blaschke:

Definition: An abelian relation is given by

(4.1)
∑
i

gi(Fi)dFi = 0

where g(ξ) = (g1(ξ), · · · gn(ξ)) is a vector of functions of 1-variable.

We denote by A(W) the vector space of functions g(ξ) satisfying (4.1)

and define the rank r(W) of the web by

r(W) = dimA(W) .

As an example of an abelian relation we let ω be a non-zero differ-

ential of the first kind and consider first the local integral

(4.2) I(L) =

∫ L·D

L0·D
ω

as depicted by a local picture

L
 L


D

L
0

'

where we restrict attention to an arc D on C and on an open neighbor-

hood U of a line L0 having one intersection point with the arc. Clearly

in the above picture

I(L) = I(L′) ;

i.e., I(L) is constant on the pencil of lines through a fixed point on

C. Thus the level sets of I define lines in U , and the integral curves
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of the differential dI(L) are exactly these lines. Referring to figure (ii)

and adding up this discussion over arcs around each of the intersection

points we see from Abel’s theorem that each ω gives an abelian relation.

If, for example, C is non-singular and we set h0(Ω1
C) = dimH0(Ω1

C),

we then have for the web WC associated to C as in figure (ii)

(4.3) h0
(
Ω1
C

)
5 r(WC) .

A result from the Blaschke school is that for any n-web

(4.4) r(W(n)) 5 (n− 1)(n− 2)/2 .

For W(n) = WC as above it is well known that

h0(Ω1
C) = (n− 1)(n− 2)/2

so that equality holds in (4.3). In general we say that a web W(n)

has maximum rank if equality holds in (4.4). A central question in the

subject is the

(4.5) Problem: Determine all webs of maximum rank.

Before discussing this problem we mention as another relation be-

tween web geometry and algebraic geometry that Sophus Lie’s converse

to Abel’s theorem discussed above has the following consequence

(4.6) A linear web with non-zero rank is algebraic

Here it should be understood that the abelian relation is complete in the

sense that each gi is not identically equal to zero. The assertion means

that it is the web associated to an algebraic curve by the construction

in figure (ii).

Another remark is that it is sometimes useful to give an abelian

relation (4.1) in integrated form as

(4.7)
∑
i

Gi(Fi(x, y)) = constant

where Gi(ξ) are functions of ξ with G′i(ξ) = gi(ξ).

Turning to the problem (4.5), for n = 3 we have

r(W(3)) 5 1 ,
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and it was proved by Blaschke that if equality holds then the web is

algebraic of type (ii) above. Moreover, the integrated form (4.7) of

the abelian relation may be written as a functional equation for the

logarithm

(4.8) ϕ1(x)− ϕ1(y) + ϕ1

(y
x

)
= 0

and up to a local diffeomorphism the web looks like

(iii)

For n = 4 we have

r(W(4)) 5 3 ,

and again if equality holds then the web is algebraic of type (ii) above.

Using the result (4.6) this may be seen as follows: Writing a basis for

the abelian relations as

(4.9)
∑
j

gij(Fj)dFj = 0 i = 1, 2, 3

we consider the matrix ∣∣∣∣∣∣
g11 g12 g13
g21 g22 g23
g31 g32 g33

∣∣∣∣∣∣ .
The rows give a basis for the abelian relations and the columns give a

map

(4.10) U → P2

that, using (4.9), maps W(3) to a linear web in an open set in the

projective plane. We may now apply (4.6) to conclude the result.

For n = 5 we have r(W(5)) 5 6 and a non-linearizable (and therefore

non-algebraic) web of maximum rank was found by Bol; it may be

pictured as
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(iv)

1 2

3




p

C

p

p p
4

p

Here, the pi are fixed points in general position. Through a general

variable point p the leaves of the foliation are the lines Li = ppi and the

conic C passing through pp1 · · · p5. Five of the six independent abelian

relations are derived from Abel’s theorem applied to figure (iv). The

integrated form of the sixth may be expressed by

(4.11) ϕ2(x)− ϕ2(y) + ϕ2

(y
x

)
− ϕ2

(
1− y
1− x

)
+ ϕ2

(
x

y

1− y
1− x

)
= 0 ,

which we recognize as Abel’s form of the functional equation for the

dilogarithm. So again Abel enters our story, only this time from a

completely different perspective.

For n = 6, 7, 8 there exist exceptional planar webs of maximum rank

— i.e., webs of maximum rank not of type (ii) above. All are based

on the dilogarithm. For example, for n = 6 there are two exceptional

webs; one uses the six term relation for the dilogarithm, and the other

the usual five term relation (4.11). For n = 9 Hénaut has shown that

the trilogarithm appears as an abelian relation in a 9-web of maximum

rank not composed of one of type (ii) with the Bol web. This leads to

the obvious

Question: Are all webs of maximum rank which are not algebraizable

of this type?

We do not attempt to formulate this question precisely — intuitively,

we are asking whether or not for each k there is an integer n(k) such

that there is a “new” n(k)-web of maximum rank one of whose abelian

relations is a (the?) functional equation with n(k) terms for the kth

polylogarithm Lik? Here, “new” means the general extension of the
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phenomena above for the logarithm when k = 1, where n(1) = 3, for

the Bol web when k = 2 and n(2) = 5, and for the Hénaut web when

k = 3 and n(3) = 9.

4.2. Abel’s DE’s for points on a surface. The geometry of an

algebraic variety is reflected by the configuration of its algebraic sub-

varieties. Stemming from Abel one has learned to study subvarieties

modulo the relation of rational equivalence. That is, in a smooth com-

plex algebraic variety X two subvarieties Z,Z ′ are rationally equivalent

if there is a family {Zt}t∈P1 of subvarieties with Z0 = Z, Z∞ = Z ′. Pass-

ing to the group Zp(X) of codimension-p algebraic cycles modulo the

relation generated by rational equivalence one obtains the Chow groups

CHp(X) = Zp(X)/Zp
rat(X).

For X an algebraic curve, Abel’s theorem and its converse give a

complete set of Hodge-theoretic invariants for the identity component

CH1(X)0 (which is of course the Jacobian variety of X). In general,

CH1(X) is the Picard variety whose identity component is an abelian

variety — the story has much the same general flavor as in the case of

algebraic curves.

However, already for configurations of points on an algebraic surface

the story is much different — since Mumford’s result in the 1960’s we

know that CH2(X) may be infinite dimensional. A few years ago,

motivated by Spencer Bloch’s formula for the formal tangent space

TfCH
2(X), Mark Green and I wanted to understand what geometric

content might lie behind Spencer’s formula. This led us to propose

a geometric definition for the tangent space TZ2(X) (cf. the example

below) and to then define the geometric tangent space

(4.12) TgCH
2(X) = TZ2(X)/TZ2

rat(X)

where TZ2
rat(X) is the tangent space to the subgroup of 0-cycles ratio-

nally equivalent to zero. It is then a theorem that

(4.13) TgCH
2(X) ∼= TfCH

2(X) .
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We shall denote either of these simply by TCH2(X) and refer to this

vector space as the tangent space to CH2(X).

Implicit in (4.12) and (4.13) are the infinitesimal geometric condi-

tions that a configuration of points move to 1st order in a rational

equivalence class. Recall that the condition a 0-cycle Z on X be ratio-

nally equivalent to zero is that

Z =
∑
ν

(fν)

where fν is a rational function on an irreducible curve Yν and (fν)

is its divisor. A 1st order variation of the data (Yν , fν) gives a 1st

order variation of
∑

ν(fν), and we seek the geometric conditions on

a configuration of points p1 + · · · + pd (assumed for simplicity to be

distinct) and tangent vectors τi ∈ TpiX to be a 1st order variation of∑
ν(fν).

The answer to the corresponding question for configurations of points

on an algebraic curve is given by Abel’s DE’s (3.5). We shall now

explain the answer in the case of an algebraic surface. For this we first

observe that Abel’s construction of the trace extends to differential

forms of any degree on a smooth algebraic variety X; the formula

ω(p1 + · · ·+ pd) = ω(p1) + · · ·+ ω(pd)

defines a map

H0 (Ωq
X)

Tr−→ H0
(
Ωq

X(d)

)
.

If dimX = 2 the symmetric products are singular along the diagonal;

and regular differential forms are then defined to be rational forms that

are regular on any desingularization.

We now let pi, τi be as above and set

τ =
∑
i

(pi, τi) ∈ TX(d) .

The first set of conditions that

(4.14) τ ∈ TZ2
rat(X)
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are, as in the curve case, that

(4.15) 〈Trϕ, τ〉 =
∑
i

〈ϕ(pi), τi〉 = 0

for all regular 1-forms ϕ ∈ H0(Ω1
X). Equation (4.15) simply says that

τ should be in the kernel of the differential of the Albanese map.

The new ingredient comes from the 2-forms on X. Already from the

works of Mumford and Bloch one knew that the 2-forms are relevant;

the following is a geometric explanation. First remark that if one con-

siders any n-dimensional complex manifold X; e.g. an open set in Cn,

and if one then considers collections of forms ϕd ∈ H0(Ωq

X(d)) that have

the hereditary property

ϕd+1 |X(d)= ϕd

where the inclusion X(d) ↪→ X(d+1) is given by

p1 + · · ·+ pd → p+ p1 + · · ·+ pd

for some fixed point p ∈ X, then it is theorem that

(4.16) The hereditary forms are generated as an exterior algebra by the

traces of the q-forms on X where 0 5 q 5 n = dimX. All of

these forms are needed to generate.

The geometric point is this: Taking X to be a germ of a neighborhood

of a point in Cn, were X(d) smooth then of course the 1-forms would

generate the forms of all degrees. Exactly along the diagonals — which

reflect the infinitesimal structure of X —- to generate we need forms

of all degrees up to dimX.

The other new ingredient is that

(4.17) The field of definition of the pi ∈ X enters into the condition

(4.14).

To explain this we assume for simplicity of exposition that the algebraic

surface X is defined over Q (or over a number field); e.g., we may think

of X ⊂ PN as being projected to X0 ⊂ P3 where X0 has an affine
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equation

f(x, y, z) = 0

where f ∈ Q[x, y, z]. We may assume that x, y give local uniformizing

parameters around pi = (xi, yi, zi) and write

τi = λi
∂

∂x
+ µi

∂

∂y
.

The regular 2-forms on X are given by the pullbacks to X of

(4.18) ω =
g(x, y, z)dx ∧ dy

fz(x, y, z)

∣∣∣∣∣
X0

where deg g 5 deg f − 4 and g vanishes on the double curve of X0.

Since X is defined over Q we may take a basis for H0(Ω2
X) to be given

by 2-forms (4.18) where g ∈ Q[x, y, z]. Recalling that the Kähler dif-

ferentials

Ω1
C/Q

are the complex vector space generated by expressions δa, a ∈ C, mod-

ulo the relations 
δ(a+ b) = δa+ δb

δ(ab) = aδb+ bδa

δa = 0 if a ∈ Q ,

we now define

(4.19) 〈ω(pi), τi〉 =
g(xi, yi, zi)

fz(xi, yi, zi)
(µiδyi − λiδxi) ∈ Ω1

C/Q

and

(4.20) 〈Trω, τ〉 =
∑
i

〈ω(pi), τi〉 .

Abel’s DE’s for the 2-forms are then defined to be the Ω1
C/Q-valued

equations

(4.21) Trω = 0
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where ω is as above. It is then a theorem that the equations (4.15) and

(4.21) define infinitesimal rational motion as explained above.

(4.22) Corollary: If ω(pi) 6= 0 and if the xi, yi are independent tran-

scendentals, then (4.20) has no non-zero solutions.

In other words, no matter how large d is the 0-cycle z = p1 + · · ·+pd is

rigid in its rational equivalence class. (This includes allowing rational

motions of (z + z′) − z′ for any z′ ∈ X(d′).) This result gives a proof

of Mumford’s theorem and provides rather precise meaning to the use

of “generic” in Mumford’s argument and the subsequent developments

by Roitman, Voisin and others.

At the other extreme we have the

(4.23) Corollary: If xi, yi ∈ Q̄, then (4.20) is zero for any choice of

the τi.

This is an infinitesimal version of a well known conjecture of Beilinson-

Bloch — it gives a geometric existence result, albeit only to 1st order.

Understanding the “integration” of Abel’s DE’s (4.15) and (4.21) is a

deep and fundamental question.2

One may quite reasonably ask how the essentially arithmetic object

Ω1
C/Q gets into the purely geometric question of tangents to arcs in

the space of 0-cycles on an algebraic surface. The following example

illustrates how this comes about.

Example: The issue already appears locally, so we consider the space

of arcs z(t) in Z2(C2). We may define an arc to be a finite linear

combination with integer coefficients of analytic maps of the t-disc into

the symmetric products (C2)(d). One may then define an equivalence

relation ∼ on the space of arcs and the tangent space is the complex

2Integrating a DE means finding a solution by an iterative process. Since there
are no derivations of Q the methods of calculus break down — one must break the
problem into “increments” by some other means, perhaps either by an iteration
process that at each stage decreases the “arithmetic complexity” of the 0-cycle, or
by analyzing the DE’s (4.15) and (9.20) in the completions of Q under all valuations.
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vector space defined by

TZ2(C2) = {arcs in Z2(C2)}/ ∼ .

The equivalence relation ∼ is characterized by the properties:

(i) zi(t) ∼ z̃i(t) for i = 1, 2

⇒ z1(t)± z2(t) ∼ z̃1(t)± z̃2(t);
(ii) z(αt) ∼ αz(t), α ∈ Z
(iii) αz(t) ∼ αz̃ ⇒ z(t) ∼ z̃(t) for α ∈ Z∗; and

(iv) if z(t), z̃(t) are arcs in Hilb0(X) with the same tangent vector

in T Hilb0(X), then

z(t) ∼ z̃(t) .

Now let

zαβ(t) = Var
(
x2 − αy2, xy − βt

)
, α 6= 0

and F be the free group generated by the 0-cycles

wαβ(t) = zαβ(t)− z1β(t).

Then we have the result:

(4.24) The map

F/ ∼ → Ω1
C/Q

given by

wαβ(t)→ β
δα

α
is a well-defined isomorpism.

As a non-obvious geometric corollary, we see that if α is a root of unity

then

zαβ(t) ∼ z1β(t) .

This result illustrates the very interesting and subtle interplay between

geometry and arithmetic in higher codimension.

In summary, Abel’s DE’s (4.21) for the rational motion of configu-

rations of points on a surface have an arithmetic/geoemtric character

— the integration of these equations presents a major challenge (cf.

footnote (2)).
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5. Reprise

In the beginning we considered the integral (1.1)∫
y(x)dx

of an algebraic function; there we observed that at the time of Abel such

integrals were seen as “highly transcendental” functions of the upper

limit of integration, and Abel’s great insight was to find a general recipe

for generating simple relations among them. In recent years there has

been renewed interest in the integrals (1.1), exactly because they are

generally transcendental. Whether or not relations of the Abel type

generate all such relations then leads into one of the deepest questions

in arithmetic algebraic geometry. We shall now briefly discuss this.

For this we assume that the algebraic equation

f(x, y(x)) = 0

satisfied by y(x) is defined over Q (or over a number field); i.e., f(x, y) ∈
Q[x, y]. For ξ0, ξ ∈ Q we set

(5.1) u(ξ) =

∫ ξ

ξ0

y(x)dx .

The transcendence properties of the numbers u(ξ) have been studied

over many years by many mathematicians, including Enrico Bombieri

who in 1981 proved a result first enunciated by Siegel in 1929 which

may informally be stated as follows:

(5.2) Assume that u(ξ) is not an algebraic function of ξ, and for

convenience take ξ0 = 0, assumed to be a regular value of y(x).

Then for each integer l there is a constant C(l) such that if

|ξ| < C(l)

then u(ξ) does not satisfy an algebraic equation over Q of de-

gree l.

This result also applies to the more general integrals (1.4), in par-

ticular to the integral of a differential of the first kind. Taking F to be
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a cubic curve and ξ0 the x-coordinate of a flex, small perturbations of

the flex tangent

L

lead by Abel’s theorem to linear relations

(5.3) u(ξ1) + u(ξ2) + u(ξ3) = 0

for arbitrarily small |ξi|. Thus, thinking of the u(ξi) as nearly transcen-

dental numbers in the sense of (5.2), for geometric reasons stemming

from Abel’s theorem they satisfy algebraic relations defined over Q
(actually, linear relations).

Integrals of the form

(5.4)

∫ (ξ,η)

(ξ0,η0)

r(x, y(x))dx

where (ξ0, η0), (ξ, η) ∈ F (Q̄), together with their higher dimensional

analytic analogues, are termed periods by Kontsevich and Zagier. Pe-

riods include the case when (ξ, η) = (ξ0, η0); i.e., the integral around

a closed loop γ ∈ H1(F,Z). In fact, by identifying (ξ, η) with (ξ0, η0)

the integral (5.4) becomes an integral over a closed loop on a singular

curve

The periods generate a countable field Π with

Q̄ ⊂ Π ⊂ C .

Kontsevich and Zagier point out that there is no known explicit exam-

ple of a transcendental number that is not a period.



30 PHILLIP GRIFFITHS

A general philosophy is

(5.5) The relations of Π over Q̄ should be defined by geometric condi-

tions.

One example of this was just given. For another example, if we choose

differentials ω1, . . . , ωg of the 1stkind defined over Q̄ and which give a

basis for H0(Ω1
F ), and if γ1, . . . , γ2g ∈ H1(F,Z) is a canonical basis for

the integral 1st homology, then the periods

παj =

∫
γj

ωα

satisfy the 1st Riemann bilinear relations

(5.6)
∑

παiQijπβj = 0

where Q = ‖Qij‖ is the inverse of the intersection matrix. Geometri-

cally, this relation arises from the class of the diagonal ∆ ⊂ F × F .

More generally, any generalized correspondence T ⊂ F × · · · × F︸ ︷︷ ︸
n

gives

a polynomial relation of degree n over Q. A beautiful and deep con-

jecture of Grothendeick is that all relations of the παj over Q arise in

this way. In fact, Grothendeick conjectures the analogous statement

for smooth varieties of any dimension defined over Q̄ and for all of the

algebraic de Rham cohomology defined over Q̄.

I do not know a precise formulation of (5.5) which includes

Grothendeick’s conjecture — which is in some sense global — and re-

lations of the Abel type — which are in some sense local although they

arise from the global constraint h0(Ω1
P1) = 0. In any case, taking into

account the arithmetic aspect of Abel’s DE’s discussed in the preceed-

ing section and the arithmetic questions concerning periods discussed

above, I believe that one may with some confidence expect that the

arithmetic aspects of Abel’s theorem and its legacies will be a central

and deep topic for mathematicians in the third century after the time

of Abel.
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6. Guide to the literature

Abel’s famous “Paris memoiré” entitled Memoiré sure une propriété

générale d’une class très entendue des fonctions transcendantes was

presented to l’Academie des sciences à Paris in 1826 and published in

t VII in 1841. It appears in Oeuvres complétes de Niels Henrik Abel,

pages 145–211.

The paper referred to in footnote (1) is sur l’integration de la formule

differentielle ρdx/
√
R, R and ρ étant des fonctions entières, Oevres

complétes, pages 104–144. The recent paper Abel equations, St. Pe-

tersburg Math. J., vol. 13 (2002), pages 1–45 by V. A. Malyshev gives

an extension of Abel’s result and a further guide to the literature.

The usual version of Abel’s theorem and its (global) converse appears

in standard books on Riemann surfaces, e.g., the famous Die idee der

Riemannischer flächen by Herman Weyl.

The local converses, including the theorem of Soplus Lie and its ex-

tensions by Darboux and others, are discussed in the paper by the au-

thor Variations on a theorem of Abel, Inventiones Math., vol. 35 (1976),

pages 321–390. The recent paper by G. Henkin, Abelian differentials

on singular varieties and variations on a theorem of Lie-Griffiths, In-

vent. Math., vol. 135 (1991), pages 297–328 presents new results and

references that have appeared after the paper mentioned above.

The theory of webs was first presented in the book Geometrie der

Geube. Topologische Frogen der Differentialgeometrie, Springer, Berlin

(1938) by W. Blaschke and G. Bol. Two recent works Analytic web

geometry, Toulouse (1996), 6–47, World Sci. Publishing by A. Hénaut,

and Differential geometry of webs in Handbook of differential geometry,

vol. I, pages 1–152, North-Holland (2000) by M. Akivis and

V. Goldberg give surveys of recent works and a further guide to the

literature.

Abel’s form of the functional equation for the dilogarithm is given

in his paper Note sur la fonction ψx = x + x2

22
+ x3

32
+ · · · + xn

n2 + · · · ,
Oeuvres complétes, pages 189–193.
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Bloch’s formula for TfCH
2(X) may be found in his Lectures on

algebraic cycles, Duke Univ. Math. Ser. IV (1980).

A discussion of the extension of Abel’s theorem to configurations

of points on an algebraic surface may be found in Abel’s differential

equations, Houston J. of Math. (volume in honor of S. S. Chern), vol.

28 (2002), pages 329–351, by Mark Green and the author.

A general survey of the arithmetic properties of algebraic integrals is

given in the paper Periods, Mathamatics unlimited – 2001 and beyond,

Springer, Berlin (2001), pages 771–808 by M. Kontsevich and D. Zagier.

The Bombieri-Siegel result appears in the paper by Bombieri On G-

functions, Recent progress in analytic number theory, Vol. 2, Durham

(1979), pages 1–67. The book G-functions and geometry, Aspects of

mathematics, E/3, Friedr. Vieweg and Sohn, Brandenberg (1989) by I.

André contains a “geometrization” of these issues, including a discus-

sion of Grothendeick’s conjecture.


