Borel,

I justify my observation to the effect that:

If G is semi-simple, π irreducible unitary, $\Lambda - g$ the highest weight of $\tilde{\mu}$ $(2g = \sum_{\alpha > 0} \alpha)$, G/K a bounded symmetric domain, and Λ sufficiently non-singular, then $H^q(\pi, \mu) = 0$ unless $q = \frac{1}{2} \dim(G/K)$, π is a member $\pi_s \Lambda$, $s \in \Omega_{\mathbb{C}}$, of the Weyl group when $H^q(\pi, \mu) \cong \mathbb{C}$.

I first reinterpret some results of Matsushima-Murakami (Osaka J. Math 1965) representationtheoretically. s unitary, acts on U, U^{∞} infinitely differentiable vectors. $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ as usual. The complex structure on G/K determines a decomposition $\mathfrak{m}' = \mathfrak{m}'_+ + \mathfrak{m}'_-$ if $\mathfrak{m}' = \operatorname{Hom}_{\mathbb{R}}(\mathfrak{m}, \mathbb{C})$. $C^n(U^{\infty}, \mu)$ is the set of K-invariant elements in $U^{\infty} \otimes L(\mathbb{C}) \otimes \Lambda^n \mathfrak{m}'$. Thus

$$C^n(U^n, \mu) = \bigoplus_{p+q=n} C^{p,q}(U^\infty, \mu)$$

with

$$C^{p,q}(U^{\infty},\mu) = U^{\infty} \otimes L(\mathbb{C}) \otimes \Lambda^p \mathfrak{m}'_{+} \otimes \Lambda^q \mathfrak{m}'_{-}.$$

If $s = \pi$ is unitary, irreducible, $\pi(\omega) = \mu(\omega)$ then $C^n(U^{\infty}, \mu) = H^n(\pi, \mu)$ and there is a Hodge decomposition.

Assume now, it is the interesting case, that $s = \pi$, $\pi(\omega) = \mu(\omega)$. Fix a Cartan subalgebra \mathfrak{A} of \mathfrak{G} contained in k and an order on the roots so that the annihilator of \mathfrak{m}'_+ in $\mathfrak{m} \otimes \mathbb{C}$ is spanned by the positive roots. According to Proposition 10.1 of Matsushima-Murakami the space $L(\mathbb{C}) \otimes \Lambda \mathfrak{m}'_+$ is a direct sum

$$\left(\bigoplus_{\omega\in\Omega'}X_{\omega}\right)\oplus X$$

of spaces invariant under K. X is of no importance.

$$\Omega' = \{ \omega \in \Omega \mid \omega^{-1} \text{ takes positive compact roots to positive roots} \}.$$

The lowest weight of the representation of k on X_{ω} is $-\omega \wedge +g$. As in their paragraph 11 one deduces the very strong vanishing theorem:

$$H^{p,q}(\pi,\mu)=0 \ \text{if} \ p+q\neq \pm \dim G/K \ \text{provided} \ (\Lambda,\alpha)>(q,\alpha) \ \text{for all positive roots} \ \alpha.$$

My notation (in particular my Λ) differs from theirs. To treat the case p+q=N, I reformulate things in the language of people like Okamoto and Schmid although this is probably ultimately unnecessary.

I mention first a general type of cohomology problem which might interest you. It has been studied by M.S. Osborne. G: real semi-simple (or reductive), \mathfrak{g} its Lie algebra, \mathfrak{h} a reductive subalgebra, the Lie algebra of H, \mathfrak{p} a parabolic subalgebra of $\mathfrak{g} \otimes \mathbb{C}$, η : nilpotent radical of \mathfrak{p} . We suppose $\mathfrak{h} \otimes \mathbb{C}$ is the reductive part of \mathfrak{p} . s irreducible, admissible representation of G on Banach space U. U^{∞} defined in obvious manner. $\mathfrak{g} \otimes \mathbb{C}$ acts on U^{∞} . Consider Lie algebra cohomology of \mathfrak{n} on U^{∞} . $C^q(\mathfrak{n}, U^{\infty})$ standard cochain complex. Semi-norm ||Xu||, $X \in U(\mathfrak{g})$

gives topology on U^{∞} and hence on $C^q(\mathfrak{n}, U^{\infty})$. Are coboundaries closed? Then $H^q(\mathfrak{n}, U^{\infty})$ is a Banach space on which \mathfrak{h} acts. Does it have a finite composition series? If so, what is the relationship between s and the representations in the composition series?

In any case Okamoto-Ozeki (Osaka J. Math.) and Okamoto-Narasimhan (Annals) study these for our original \mathfrak{g} when $\mathfrak{h} = \mathfrak{a}$, the Cartan subalgebra of \mathfrak{g} contained in \mathfrak{k} and $\mathfrak{n} = \mathfrak{m}_+$ with $s = \pi$ unitary. They study rather, if τ_{λ} is an irreducible representation of K on V_{λ} with highest weight λ ,

$$\operatorname{Hom}_K(V_{\lambda}, H^q(\mathfrak{m}_+, U^{\infty}))$$

which is the cohomology of the complex

$$\operatorname{Hom}_K(V_{\lambda}, C^q(\mathfrak{m}_+, U^{\infty}))$$

or, if $\tilde{V}_{\lambda} = \operatorname{Hom}_{\mathbb{C}}(V_{\lambda}, \mathbb{C})$, of the K-invariant elements in

$$\tilde{V}_{\lambda} \otimes C^q(\mathfrak{m}_+, U^{\infty}).$$

In Okamoto-Ozeki, a Lapacian □ is introduced. On this complex it equals a scalar

$$\frac{1}{2}\{(\lambda+g,\lambda+g)-(g,g)-\pi(\omega)\}$$

if $\omega = \text{Casimir operator}$. Thus the cohomology groups are 0 or the boundary operator is 0. Comparing this with the results of Matsushima-Murakami we see that $H^{p,q}(U^{\infty}, \mu)$ is isomorphic to

$$\bigoplus_{\substack{\omega \in \Omega' \\ \eta(\omega) = p}} \operatorname{Hom}_{K}(V_{\lambda(\omega), H^{q}(\mathfrak{m}_{+}, U^{\infty})})$$

where $\lambda(\omega) = \omega \wedge -g$. $\eta(\omega)$ is defined in Matsushima-Murakami. Note these results (in §§5, 11, 12) imply in particular that if $\pi(\omega) = \mu(\omega)$ and as on p. 1 of this letter

$$L(\mathbb{C}) \otimes \Lambda \mathfrak{m}'_{+} = \left(\bigoplus_{\omega \in \Omega'} X_{\omega}\right) \oplus X$$

then there are no K-invariant elements in $U^{\infty} \otimes X \otimes \Lambda \mathfrak{m}_{-}^{-}$.

Schmid however considers the general problem above with $\mathfrak{h} = \mathfrak{a}$ (as above), \mathfrak{n} chosen to contain \mathfrak{m}_+ , the subalgebra spanned by positive roots.

The groups $H^q(\mathfrak{m}_+, U^{\infty})$ are finite-dimensional. Let $\mathfrak{n}_0 = \mathfrak{n} \cap (\mathfrak{k} \otimes \mathbb{C})$. According to my notes (not always reliable) a spectral sequence argument + finite-dimensional Borel-Weil shows that

$$H^n(\mathfrak{n}, U^n) \cong \bigoplus_{p+q=n} H^p(\mathfrak{n}_0, H^q(\mathfrak{m}_+, U^\infty))$$

This must be in any case a generally accepted fact. Let T be the Cartan subgroup with Lie algebra \mathfrak{a} , and let λ be a highest weight of \mathfrak{a} with respect to k (not \mathfrak{g}). Let W_{λ} be the corresponding 1-dimensional representation of T. By Borel-Weil again

$$\operatorname{Hom}_T(W_{\lambda},H^n(\mathfrak{n},U^{\infty})) \cong \bigoplus_{\lambda_i=\lambda} \mathbb{C}$$

if as a K-module

$$H^q(\mathfrak{m}_+, U^\infty) \cong \bigoplus_i V_{\lambda_i}$$

But Schmid (Annals '71) shows that if λ is sufficiently regular the left-side is 0 unless $\pi = \pi_{\lambda+g}$ in the discrete series. If Λ is sufficiently regular so are the $\lambda(\omega)$ occurring in (*) and $\lambda(\omega) + g = \omega \Lambda$. Retracing our steps backward from Schmid to Matsushima-Murakami via Okamoto-Ozeki, we get all the required vanishing.

To completely justify my assertion I have only to show that for sufficiently non-singular Λ , if $\pi = \pi_{\omega\Lambda}$ the $H^n(\pi, \mu) \cong \mathbb{C}$.

It may be over-elaborate but I use the weak form of Blattner's conjecture has given in Schmid (Rice Studies) Theorem 2 to compute

$$(**) \qquad \operatorname{Hom}_{K}(\tilde{L}(\mathbb{C}) \otimes \Lambda^{p} \mathfrak{m}_{+} \otimes \Lambda^{q} \mathfrak{m}_{-}, U^{\infty})$$

where

$$\tilde{L}(\mathbb{C}) = \operatorname{Hom}(L(\mathbb{C}), \mathbb{C})$$

Suppose $s \in \Omega_{\mathbb{R}}$, the real Weyl group, and

$$s\mu + s\rho_K - (\omega\Lambda + \rho_p) = \sum \delta$$

where δ are positive with respect to an order putting $\omega\Lambda$ in the positive chamber. With respect to this order ρ_K and ρ_p have the same meaning as in Schmid, so $\rho = \rho_K + \rho_p = \omega g$. If, with respect to this order, μ is the highest weight of a representation occurring in (**) (the first term) then $s\mu$ is a weight and

$$s\mu = \omega \Lambda - \omega g = \sum_{i=1}^{p} \gamma + \sum_{i=1}^{p} \alpha_i + \sum_{j=1}^{q} \beta_j$$

where γ are positive in this new order, α_i are positive and distinct in the old order, β_i are distinct and negative in the old order. Since $\omega g = \rho$ and $s\mu = \omega \Lambda + \rho_p - s\rho_K + \sum \delta$ we have

$$\sum \delta + \sum \gamma + \{\rho_K + s\rho_p\} + \{2\rho_p - \sum \alpha_i - \sum \rho_i\} = 0.$$

The two sums in brackets are sums of roots positive in the new order. Thus the sums over γ and δ are 0 and $s\rho_K = s$ so that s = 1. Moreover

$$2\rho_p = \sum \alpha_i + \sum \beta_i$$

This determines μ uniquely. It is equal to

$$\omega \Lambda - \omega g + 2\rho_p = \omega \Lambda + \rho_p - \rho_K$$

Thus there is at most one λ such that τ_{λ} occurs in the representation $\tilde{L}(\mathbb{C}) \otimes \Lambda^{p} \mathfrak{m}_{+} \otimes \Lambda^{q} \mathfrak{m}_{-}$ for which

$$\operatorname{Hom}_K(V_\lambda, U^\infty) \neq 0$$

and for it the Hom is of dimension 1.

I hope that with this my work is justified.

Compiled on August 26, 2019 6:18pm -04:00