Borel,
I justify my observation to the effect that:
If G is semi-simple, π irreducible unitary, $\Lambda-g$ the highest weight of $\widetilde{\mu}\left(2 g=\sum_{\alpha>0} \alpha\right)$, G / K a bounded symmetric domain, and Λ sufficiently non-singular, then $H^{q}(\pi, \mu)=0$ unless $q=\frac{1}{2} \operatorname{dim}(G / K), \pi$ is a member $\pi_{s} \Lambda, s \in \Omega_{\mathbf{C}}$, of the Weyl group when $H^{q}(\pi, \mu) \cong \mathbf{C}$.

I first reinterpret some results of Matsushima-Murakami (Osaka J. Math 1965) representation theoretically. s unitary, acts on U, U^{∞} infinitely differentiable vectors. $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$ as usual. The complex structure on G / K determines a decomposition $\mathfrak{m}^{\prime}=\mathfrak{m}_{+}^{\prime}+\mathfrak{m}_{-}^{\prime}$ if $\mathfrak{m}^{\prime}=\operatorname{Hom}_{\mathbf{R}}(\mathfrak{m}, \mathbf{C}) . C^{n}\left(U^{\infty}, \mu\right)$ is the set of K-invariant elements in $U^{\infty} \otimes L(\mathbf{C}) \otimes \Lambda^{n} \mathfrak{m}^{\prime}$. Thus

$$
C^{n}\left(U^{n}, \mu\right)=\bigoplus_{p+q=n} C^{p, q}\left(U^{\infty}, \mu\right)
$$

with

$$
C^{p, q}\left(U^{\infty}, \mu\right)=U^{\infty} \otimes L(\mathbf{C}) \otimes \Lambda^{p} \mathfrak{m}_{+}^{\prime} \otimes \Lambda^{q} \mathfrak{m}_{-}^{\prime} .
$$

If $s=\pi$ is unitary, irreducible, $\pi(\omega)=\mu(\omega)$ then $C^{n}\left(U^{\infty}, \mu\right)=H^{n}(\pi, \mu)$ and there is a Hodge decomposition.

Assume now, it is the interesting case, that $s=\pi, \pi(\omega)=\mu(\omega)$. Fix a Cartan subalgebra \mathfrak{A} of \mathfrak{G} contained in k and an order on the roots so that the annihilator of $\mathfrak{m}_{+}^{\prime}$ in $\mathfrak{m} \otimes \mathbf{C}$ is spanned by the positive roots. According to Proposition 10.1 of Matsushima-Murakami the space $L(\mathbf{C}) \otimes \Lambda \mathfrak{m}_{+}^{\prime}$ is a direct sum

$$
\left(\bigoplus_{\omega \in \Omega^{\prime}} X_{\omega}\right) \oplus X
$$

of spaces invariant under $K . X$ is of no importance.

$$
\Omega^{\prime}=\left\{\omega \in \Omega \mid \omega^{-1} \text { takes positive compact roots to positive roots }\right\} .
$$

The lowest weight of the representation of k on X_{ω} is $-\omega \wedge+g$. As in their paragraph 11 one deduces the very strong vanishing theorem:

$$
H^{p, q}(\pi, \mu)=0 \text { if } p+q \neq \pm \operatorname{dim} G / K \text { provided }(\Lambda, \alpha)>(q, \alpha) \text { for all positive roots } \alpha .
$$

My notation (in particular my Λ) differs from theirs. To treat the case $p+q=N$, I reformulate things in the language of people like Okamoto and Schmid although this is probably ultimately unnecessary.

I mention first a general type of cohomology problem which might interest you. It has been studied by M.S. Osborne. G : real semi-simple (or reductive), \mathfrak{g} its Lie algebra, \mathfrak{h} a reductive subalgebra, the Lie algebra of H, \mathfrak{p} a parabolic subalgebra of $\mathfrak{g} \otimes \mathbf{C}, \eta$: nilpotent radical of \mathfrak{p}.

[^0]We suppose $\mathfrak{h} \otimes \mathbf{C}$ is the reductive part of \mathfrak{p}. s irreducible, admissible representation of G on Banach space $U . U^{\infty}$ defined in obvious manner. $\mathfrak{g} \otimes \mathbf{C}$ acts on U^{∞}. Consider Lie algebra cohomology of \mathfrak{n} on U^{∞}. $C^{q}\left(\mathfrak{n}, U^{\infty}\right)$ standard cochain complex. Semi-norm $\|X u\|, X \in U(\mathfrak{g})$ gives topology on U^{∞} and hence on $C^{q}\left(\mathfrak{n}, U^{\infty}\right)$. Are coboundaries closed? Then $H^{q}\left(\mathfrak{n}, U^{\infty}\right)$ is a Banach space on which \mathfrak{h} acts. Does it have a finite composition series? If so, what is the relationship between s and the representations in the composition series?

In any case Okamoto-Ozeki (Osaka J. Math.) and Okamoto-Narasimhan (Annals) study these for our original \mathfrak{g} when $\mathfrak{h}=\mathfrak{a}$, the Cartan subalgebra of \mathfrak{g} contained in \mathfrak{k} and $\mathfrak{n}=\mathfrak{m}_{+}$ with $s=\pi$ unitary. They study rather, if τ_{λ} is an irreducible representation of K on V_{λ} with highest weight λ,

$$
\operatorname{Hom}_{K}\left(V_{\lambda}, H^{q}\left(\mathfrak{m}_{+}, U^{\infty}\right)\right)
$$

which is the cohomology of the complex

$$
\operatorname{Hom}_{K}\left(V_{\lambda}, C^{q}\left(\mathfrak{m}_{+}, U^{\infty}\right)\right)
$$

or, if $\widetilde{V}_{\lambda}=\operatorname{Hom}_{\mathbf{C}}\left(V_{\lambda}, \mathbf{C}\right)$, of the K-invariant elements in

$$
\widetilde{V}_{\lambda} \otimes C^{q}\left(\mathfrak{m}_{+}, U^{\infty}\right)
$$

In Okamoto-Ozeki, a Lapacian \square is introduced. On this complex it equals a scalar

$$
\frac{1}{2}\{(\lambda+g, \lambda+g)-(g, g)-\pi(\omega)\}
$$

if $\omega=$ Casimir operator. Thus the cohomology groups are 0 or the boundary operator is 0 . Comparing this with the results of Matsushima-Murakami we see that $H^{p, q}\left(U^{\infty}, \mu\right)$ is isomorphic to

$$
\begin{equation*}
\bigoplus_{\substack{\omega \in \Omega^{\prime} \\ \eta(\omega)=p}} \operatorname{Hom}_{K}\left(V_{\lambda(\omega), H^{q}\left(\mathfrak{m}_{+}, U^{\infty}\right)}\right) \tag{*}
\end{equation*}
$$

where $\lambda(\omega)=\omega \wedge-g . \eta(\omega)$ is defined in Matsushima-Murakami. Note these results (in $\S \S 5$, 11,12) imply in particular that if $\pi(\omega)=\mu(\omega)$ and as on p. 1 of this letter

$$
L(\mathbf{C}) \otimes \Lambda \mathfrak{m}_{+}^{\prime}=\left(\bigoplus_{\omega \in \Omega^{\prime}} X_{\omega}\right) \oplus X
$$

then there are no K-invariant elements in $U^{\infty} \otimes X \otimes \Lambda \mathfrak{m}_{-}^{-}$.
Schmid however considers the general problem above with $\mathfrak{h}=\mathfrak{a}$ (as above), \mathfrak{n} chosen to contain \mathfrak{m}_{+}, the subalgebra spanned by positive roots.

The groups $H^{q}\left(\mathfrak{m}_{+}, U^{\infty}\right)$ are finite-dimensional. Let $\mathfrak{n}_{0}=\mathfrak{n} \cap(\mathfrak{k} \otimes \mathbf{C})$. According to my notes (not always reliable) a spectral sequence argument + finite-dimensional Borel-Weil shows that

$$
H^{n}\left(\mathfrak{n}, U^{n}\right) \cong \bigoplus_{p+q=n} H^{p}\left(\mathfrak{n}_{0}, H^{q}\left(\mathfrak{m}_{+}, U^{\infty}\right)\right)
$$

This must be in any case a generally accepted fact. Let T be the Cartan subgroup with Lie algebra \mathfrak{a}, and let λ be a highest weight of \mathfrak{a} with respect to k (not \mathfrak{g}). Let W_{λ} be the corresponding 1-dimensional representation of T. By Borel-Weil again

$$
\operatorname{Hom}_{T}\left(W_{\lambda}, H^{n}\left(\mathfrak{n}, U^{\infty}\right)\right) \cong \bigoplus_{\lambda_{i}=\lambda} \mathbf{C}
$$

if as a K-module

$$
H^{q}\left(\mathfrak{m}_{+}, U^{\infty}\right) \cong \bigoplus_{i} V_{\lambda_{i}}
$$

But Schmid (Annals '71) shows that if λ is sufficiently regular the left-side is 0 unless $\pi=\pi_{\lambda+g}$ in the discrete series. If Λ is sufficiently regular so are the $\lambda(\omega)$ occurring in (*) and $\lambda(\omega)+g=\omega \Lambda$. Retracing our steps backward from Schmid to Matsushima-Murakami via Okamoto-Ozeki, we get all the required vanishing.

To completely justify my assertion I have only to show that for sufficiently non-singular Λ, if $\pi=\pi_{\omega \Lambda}$ the $H^{n}(\pi, \mu) \cong \mathbf{C}$.

It may be over-elaborate but I use the weak form of Blattner's conjecture has given in Schmid (Rice Studies) Theorem 2 to compute

$$
\begin{equation*}
\operatorname{Hom}_{K}\left(\widetilde{L}(\mathbf{C}) \otimes \Lambda^{p} \mathfrak{m}_{+} \otimes \Lambda^{q} \mathfrak{m}_{-}, U^{\infty}\right) \tag{**}
\end{equation*}
$$

where

$$
\widetilde{L}(\mathbf{C})=\operatorname{Hom}(L(\mathbf{C}), \mathbf{C})
$$

Suppose $s \in \Omega_{\mathbf{R}}$, the real Weyl group, and

$$
s \mu+s \rho_{K}-\left(\omega \Lambda+\rho_{p}\right)=\sum \delta
$$

where δ are positive with respect to an order putting $\omega \Lambda$ in the positive chamber. With respect to this order ρ_{K} and ρ_{p} have the same meaning as in Schmid, so $\rho=\rho_{K}+\rho_{p}=\omega g$. If, with respect to this order, μ is the highest weight of a representation occurring in **) (the first term) then $s \mu$ is a weight and

$$
s \mu=\omega \Lambda-\omega g=\sum \gamma+\sum_{i=1}^{p} \alpha_{i}+\sum_{j=1}^{q} \beta_{j}
$$

where γ are positive in this new order, α_{i} are positive and distinct in the old order, β_{i} are distinct and negative in the old order. Since $\omega g=\rho$ and $s \mu=\omega \Lambda+\rho_{p}-s \rho_{K}+\sum \delta$ we have

$$
\sum \delta+\sum \gamma+\left\{\rho_{K}+s \rho_{p}\right\}+\left\{2 \rho_{p}-\sum \alpha_{i}-\sum \rho_{i}\right\}=0
$$

The two sums in brackets are sums of roots positive in the new order. Thus the sums over γ and δ are 0 and $s \rho_{K}=s$ so that $s=1$. Moreover

$$
2 \rho_{p}=\sum \alpha_{i}+\sum \beta_{i}
$$

This determines μ uniquely. It is equal to

$$
\omega \Lambda-\omega g+2 \rho_{p}=\omega \Lambda+\rho_{p}-\rho_{K}
$$

Thus there is at most one λ such that τ_{λ} occurs in the representation $\widetilde{L}(\mathbf{C}) \otimes \Lambda^{p} \mathfrak{m}_{+} \otimes \Lambda^{q} \mathfrak{m}_{-}$ for which

$$
\operatorname{Hom}_{K}\left(V_{\lambda}, U^{\infty}\right) \neq 0
$$

and for it the Hom is of dimension 1.
I hope that with this my work is justified.

Compiled on July 3, 2024.

[^0]: William Casselman rewrote this letter of Langlands by hand. This typed version is based on Casselman's handwritten version, not the original one by Langlands.

