Dear Bill,

Thanks for your preprints, which came at a very opportune time. I was about to assume in my Antwerp notes that $p \neq 2$, because I couldn't prove the following facts, which is of course a consequence of "The restriction..."

The support of the character of an absolutely cuspidal representation of GL(2, F), F a non-archimedean local field, does not contain $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ if $|\alpha| \neq |\beta|$.

As an aside, what does the word p-adic mean to you? Can a p-adic field have positive characteristic? I knew of course that this assertion should be a consequence of a Shalika-Mautner type theorem. But my attempts at finding a statement like your Theorem 3 failed.

Just to make sure that I am using your results correctly let me sketch the verification of the above corollary. σ : the representation of $U = Z(F)G(O_F)$ which you denote ϵP . $\Pi = \text{Ind}(\sigma, G(F, u))$. Commuting algebra of Π formed by functions λ such that

(*)
$$\lambda(k_1hk_2) = \sigma(k_2^{-1})\lambda(h)\sigma(k_1^{-1}).$$

If φ such that $\varphi(ug) = \sigma(u)\varphi(g), u \in U$, then $\lambda: \varphi \to \psi$ with

$$\psi(h) = \int_{Z(F)\backslash G(F)} \lambda(g)\varphi(gh)$$

Consider a λ satisfying (*) and take

$$h = \begin{pmatrix} a & y \\ 0 & b \end{pmatrix} \qquad |a| \leqslant |b|$$

 ϖ is a generator of the maximal ideal of O_F . From (*)

$$\sigma(k^{-1})\lambda(h) = \lambda(h)\sigma(hkh^{-1})$$

if

$$k \in U \cap h^{-1}Uh.$$

In particular if $x \in O_F$

$$\sigma \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \lambda(h) = \lambda(h) \sigma \begin{pmatrix} 1 & \frac{ax}{b} \\ 0 & 1 \end{pmatrix}$$

It follows from your analysis that if your c is even then $\lambda(h)$ is 0 unless |a| = |b| and that if c is odd $\lambda(h)$ is 0 unless |a| = |b| or $\left|\frac{a}{b}\right| = |\varpi|$. Moreover in the second case, trace $\lambda(h) = 0$ when $\left|\frac{a}{b}\right| = |\varpi|$. More generally if h has eigenvalues in F, there is a k in $G(O_F)$ so that

$$k^{-1}hk = \begin{pmatrix} a & y \\ 0 & b \end{pmatrix} = g \qquad \left| \frac{a}{b} \right| \leqslant 1$$

If |a| < |b|

trace
$$\lambda(h) = \text{trace } \sigma(k^{-1})\lambda(h)\sigma(k) = \text{trace } \lambda(g) = 0$$

Let $\{g_{\alpha}\}$ be a set of representations for $U \setminus G(F)$. Let σ act on V and Π on W. If $\{v_{\beta}\}$ is a basis of V, we may take as a basis for W the functions $\varphi_{\alpha\beta}$, where $\varphi_{\alpha\beta}$ is 0 outside of Ug_{α} and $\varphi_{\alpha\beta}(ug_{\alpha}) = \sigma(u)v_{\beta}$. We take g_{α} of the form $t_m k$ where

$$t_m = \begin{pmatrix} \varpi^m & 0\\ 0 & 1 \end{pmatrix} \qquad m \ge 0$$

and where k runs over a set of representatives for $K \cap t_m^{-1} K t_m \setminus K$. The $\varphi_{\alpha\beta}$ can be used to calculate the trace.

What we have to do to prove the corollary is to show that if

$$h_0 = \begin{pmatrix} a_0 & 0\\ 0 & b_0 \end{pmatrix} \qquad \left| \frac{a_0}{b_0} \right| \neq 1$$

and if t is a function with support in a small neighbourhood of h_0 then

trace
$$\lambda \Pi(f) = 0$$

for any λ in the commuting algebra.

We may suppose that if $f(h) \neq 0$ then h has eigenvalues in F of different absolute values. Let W_{α} be the functions with support in Kg_{α} . Let $\lambda \Pi(f) = A$ and let $A = (A_{\alpha\beta})$ where $A_{\alpha\beta} : W_{\alpha} \to W_{\beta}$. We have to show that trace $A_{\alpha\alpha} = 0$. Now $A : \varphi \to \psi$ with

$$\psi(x) = \int_{G(F)} \lambda(g)\varphi(gxh) \, dg$$

 $A_{\alpha\alpha}:\varphi\to\psi$ with

$$\psi(g_{\alpha}) = \int_{\{g \mid gg_{\alpha}h = ug_{\alpha}, u \in U\}} \lambda(g)\varphi(gg_{\alpha}h) dg$$
$$= \int_{\{g \mid gg_{\alpha}h = ug_{\alpha}\}} \lambda(g)\sigma(u)\varphi(g_{\alpha}) dg$$

Thus

$$A_{\alpha\alpha} = \int_{\{g \mid gg_{\alpha}h = ug_{\alpha}\}} \lambda(g)\sigma(u) \, dg.$$

Since

$$\lambda(g)\sigma(u) = \lambda(u^{-1}g) = \lambda(g_{\alpha}h^{-1}g_{\alpha}^{-1})$$

we have

trace
$$A_{\alpha\alpha} = \int \operatorname{trace} \lambda(g_{\alpha}h^{-1}g_{\alpha}^{-1}) = 0$$

Thanks once again for the preprints, Bob

Compiled on July 30, 2024.