
February/March 1973

Dear Bill,

This letter is an excuse to clarify to myself the notion of L-indistinguishability. You may
find some things in it of some slight interest; certainly if you don’t, no one else will. I shall
work on the whole over R and C. It is a matter of definitions, some simple lemmas, and a
rehash of parts of Harish-Chandra’s papers. But even simple observations, provided they
suggest more precise formulations of the Washington problems, are of some value. I hope
in this and a subsequent letter not only to formulate the local problems at infinity more
precisely but also to show that in reality they have already been solved.
I begin by pointing out a consequence of Steinberg’s paper (Publ. Math. N◦ 25). G

is, and will remain, a connected reductive group over the field F . There is a quasi-split
group G′ over F and an isomorphism φ : G′ → G defined over a finite Galois extension K
of F such that aσ = φ−σφ is inner for all σ ∈ G(K/F ). {P} will denote a conjugacy [2] class
over F of parabolic F -subgroups of G. pF (G) will denote the finite set of such classes. Recall
(Borel-Tits 4.13) that two parabolic F -subgroups are conjugate over F if they are conjugate
over an extension field of F . There is an injection pF (G) ↪→ pF (G

′) determined by φ alone.
To define it I shall apply a result in the aforementioned paper of Steinberg. He states it over
perfect fields. As far as I can tell this assumption is used only to ensure that a maximal torus
exists over F . This one now knows (Grothendieck).

If F is finite, the cocycle aσ is trivial. Thus aσ = ψ−σψ where ψ is inner. Set φ1 = φψ−1; it
is defined over F . We send {P} to {φ−1

1 P}. This map is independent of the choice of ψ and
is bijective. In general let P be an F -parabolic subgroup and let S be a maximal split torus
in R(P ). By 4.15a of Borel-Tits we may choose an order on the roots of S so that P = G+

Φ.
Let T ⊇ S be [3] a Cartan subgroup over F . Suppose we can find an inner automorphism ψ
so that if φ1 = φψ−1 then φ−1

1 (T ) = T ′ is defined over F as is φ1|T ′. Then φ−1
1 (S) = S ′ is a

maximal split torus in T ′. Since Φ(S ′, G′) ≃ Φ(S,G) we can define P ′ = G′
Φ+ . It is clear that

φ1(P
′) = P . We map {P} → {P ′}.

We have only to verify that ψ exists for infinite F . Let G̃0 be the simply-connected

covering group of the semi-simple part of G. Let T̃0 be the inverse image of T under the

natural map G̃0
π−→ G. Choose t̃0 ∈ T̃0(F ) so that T̃0 is its centralizer. If G̃′

0 is defined in a

similar matter, we may lift φ to φ̃ : G̃′
0 → G̃0. ãσ = φ̃−σφ̃ is inner. Let φ̃(t̃′0) = t̃0. Then

aσ(t̃′0
σ
) = t̃′0 so the class of t̃′0 is defined over F . By Steinberg’s Theorem 1.7 there exists an

inner automorphism ψ̃ of G̃′
0 so that ψ̃(t̃′0) is F -rational in G

′. Let ψ be the automorphism

of G′ defined by ψ̂ and let t′ be the [4] image of ψ̃(t̃′0) in G
′. Let t be the image of t̃0 in G

and let φ1 = φψ then φ1(t
′) = −t. Since both t and t′ are F -rational φ−σ

1 φ1 lies in T ′, the
centralizer of t′. φ1 maps T ′ to T and its restriction to T ′ is defined over F.

There is an order defined on p(G′). {P ′
1} ≻ {P ′} if and only if some element of the first class

contains an element of the second. I claim that if {P ′} is the image of {P} and if {P ′
1} ≻ {P ′}

then there is a class {P1} which maps to {P1}. Choose P ∈ {P} and then choose S as before.
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Let {α1, . . . , αr} be the simple roots of S. Suppose P1 ⊇ P is a parabolic subgroup. It must
be defined by θ ⊆ {α1, . . . , αr} as follows. S1 =

{
s ∈ S

∣∣ α(s) = 1 ∀α ∈ θ
}
and let S0

1 be its
connected component. Choose an order on the roots of S0

1 so that the restriction of every
α ∈ Φ+(S,G) is positive or zero. Then P1 = GΦ+(S0

1 ,G). Starting [5] from P ′ and P ′
1 we

obtain in the same manner a set O′. If P corresponds to P ′ in the manner described above
then O′ determines a set O and the class of the associated P1 maps to {P ′

1}.
Now consider the associated group Ĝ = ĜK of G, where K/F is finite and Galois. I say

that P̂ ⊆ Ĝ is parabolic if P̂0 = Ĝ0 ∩ P̂ is parabolic (we are dealing here with a connected

reductive complex group Ĝ0) and P̂ → G(K/F ) is surjective. This notion is invariant under

inner automorphisms by elements of Ĝ0 (or even elements of Ĝ). Thus when considering

classes of parabolic subgroups of Ĝ we need only consider those for which P̂0 is standard.

Then P̂ = P̂0 ×G(K/F ). Ĝ0 is defined with respect to a fixed Cartan subgroup T0 and a

fixed set ∆̂ of its simple roots. Suppose P̂0 is defined by θ̂ ⊆ ∆̂. Recall that ∆̂↔ ∆′ (the set
of simple roots of T ′, a Cartan subgroup of G′ over F contained in a parabolic F -subgroup.)

Let θ̂ ↔ θ′. Then [6] P̂0×G(K/F ) is a group if and only if θ′ or θ is invariant under G(K/F ).
But the simple roots of G′ with respect to S ′, a maximal F -split torus of T ′, correspond
to the orbits in ∆′ under G(K/F ). Thus there is a bijection from the classes of parabolic

subgroups of Ĝ to the classes of parabolic F -subgroups of G′. This, together with the earlier
considerations, allows us to regard pF (G), which I now write simply as p(G), as a set of

classes of parabolic subgroups of Ĝ.

Now take F to be R or C and consider maps φ : WC/F → Ĝ = ĜC such that φ(w) is
semi-simple for all w ∈ WC/F and such that

WC/F Ĝ

G(C/F )

φ

is commutative. φ1 and φ2 are equivalent if they differ by an inner automorphism by an

element of Ĝ0. An equivalence class will be written {φ}. Let Φ(G) be the set of all classes

{φ} such [7] that φ(WC/F ) ⊆ P̂ implies {P̂} ∈ p(G). Let Π(G) be the set of infinitesimal
equivalence classes of irreducible admissible representations of G(F ). The purpose of this
letter is to define a surjective map λ : Π(G) → Φ(G) such that the inverse image of each
class {φ} is finite.
If π (which denotes either a representation or its class) maps to {φ} and if ρ is a finite-

dimensional complex representation of G then, by definition,

L(s, π, ρ) = L(s, ρ ◦ φ).
Thus if π1 and π2 both map to {φ}

L(s, π1, ρ) = L(s, π2, ρ)

for all ρ. For this reason π1 and π2 are said to be L-indistinguishable.
The definition of λ will inevitably seem arbitrary at this stage. It can only be justified by

the global theory. However it is so far as I can see the only one compatible with the global
form of the Washington [8] problems.
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In order to be able to consider only the case F = R, I explain how the associated group
behaves under restriction of scalars. This I might as well do in general. Take E to be a finite
separable extension of the field F . Let {ω1, . . . , ωn} be a basis of E/F and let {η1, . . . , ηm}
be the different imbeddings of E in F . We regard E as defining an algebra over F in the
sense of algebraic geometry. Let

ψ :
⊕

e(η)→
∑

λiωi

where
e(η) =

∑
λiω

η
i

be the standard isomorphism of E with the direct sum of n copies of the one-dimensional
algebra defined by F . In the above sum η runs over {η1, . . . , ηm}. (ωηi ) will stand for the
matrix with rows indexed by i and columns indexed by η. Since(

e(η)
)
= (λi)(ω

η
i )

[9] we have
(λi) =

(
e(η)

)
(ωηi )

−1.

Let σ ∈ G(F/F ). Since
ψσ
(
e(η)σ

)
= (λσi )

and (
e(η)σ

)
= (λσi )(ω

ησ
1 )

the map ψ−σψ is defined by(
e(η)

)
→
(
e(η1)

)
(ωη1i )(ωησi )−1 =

(
e(ησ)

)
which is just a permutation of the coordinates.

Now let H be a group over E and G the group over F obtained by the restriction of
scalars. For each η let H(η) be the group over Eη defined by transport of structure. Let H ′

be a split group, which we may suppose is defined over F , so that H and H ′ are isomorphic
over a finite Galois extension of E. Fix an imbedding E → F and regard—take E to be
F so that the given isomorphism φ : H ′ → H may be taken to be defined over a finite
separable extension [10] of F in F . Moreover {η1, . . . , ηn} may be identified with the coset
space G(F/E)\G(F/F ).

The map ψ introduced earlier also defines an isomorphism
∏
H(η)→ G. Since H ′(η) = H ′

we may consider the compositum φ1 of∏
H ′ ∏

H(η) G
∏
φη ψ

.

To be more precise we have to take a set F of coset representatives for G(F/E)\G(F/F )
and define φ1 by ∏

H ′ ∏
H(η) G

∏
φτ ψ

.

The associated group is defined by a homomorphism σ → d(σ) of G(F/F ) into the
group Γ

(∏
H ′) of automorphisms of the group of rational characters of a Cartan sub-

group of
∏
H ′. d(σ) is the compositum of σ → φ−σ

1 φ1 and the standard map of the group of
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rational automorphisms of G into Γ(G). Let c(σ), σ ∈ G(F/E) be the corresponding map
for E. [11]

φ−1
1 φσ1 =

(∏
τ

φ−τ

)
ψ−1ψσ

(∏
φτσ
)

Let τσ = δτ (σ)τ
′ with δτ (σ) ∈ G(F/E) and τ ′ ∈ F . Then

φτσ = φτ
′
(φ−1φδτ (σ))τ

′
.

One sees easily that

(ψ−1ψσ)
(∏

φτ
′
)
=
(∏

φτ
)
(ψ−1ψσ).

Since H ′ is split over F , (φ−1φδτ (σ))τ
′
has the same image in Γ(H ′) as φ−1φδτ (σ). Thus

d(σ) =

(∏
τ

c
(
δτ (σ)

))
B(σ)

where B(σ) simply permutes the coordinates, replacing the coordinate at η by the coordinate
at ησ.

Ĥ is a semi-direct product Ĥ0 ×G(K/E) where K is a sufficiently large Galois extension
of E, which we may suppose Galois over F . The action c(σ) of G(K/E) on H0 is determined
by σ → c(σ). It follows from the preceding discussion and the definition of the associated

group that Ĝ is a semi-direct product Ĝ0 × G(K/F ) with Ĝ0 =
∏

τ∈F Ĥ0. The action

of G(K/F ) is [12] given by
∏
ĉ
(
δτ (σ)

)
B(σ).

There is of course an injectionWK/E ↪→ WK/F of Weil groups. A variant of Shapiro’s lemma

is going to give us a one:one correspondence between classes of homomorphisms WK/E → Ĥ

and WK/F → Ĝ. Since G(F ) = H(E) all reasonable conjectures and assertions are invariant
under restriction of scalars. This is in particular true of the considerations needed later
in this letter so I will be able to take F = R. I continue for a moment with the general
situation. Let WK/F be a disjoint union

⋃
v∈U vWK/F . I suppose F is of the projection

of U in G(K/F ). Note that we are taking K so large that the previous discussion could be
carried out with F replaced by K. Set vw = dv(w)v

′ with dv(w) ∈ WK/E, v
′ ∈ U. Then

dv(w1w2) = dv(w1)dv′(w2). Let φ : WK/E → Ĥ and write φ(w) = a(w)× σ(w). σ(w) is the
[13] image of w in G(K/E). Then a(w1w2) = a(w1)σ(w1)

(
a(w2)

)
. Define ψ : WK/F → Ĝ by

ψ(w) =
∏
v

a
(
dv(w)

)
× σ(w)

Then

ψ(w1)ψ(w2) =

(∏
v

a
(
dv(w1)

))σ(w1)

(∏
v

a
(
dv(w2)

))× σ(w1w2).

Since

σ(w1)

(∏
v

a
(
dv(w2)

))
=
∏
v

σ
(
dv(w1)

)(
a
(
dv′(w2)

))
we have

ψ(w1)ψ(w2) = ψ(w1w2).
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Replacing φ by h−1φh, h ∈ Ĥ0, means we replace a(w) by h−1a(w)σ(h), if σ = σ(w). Then
ψ(w) is replaced by ∏

v

h−1a
(
dv(w)

)
σ
(
dv(w)

)
(h)× σ(w)

which is (∏
h
)−1

ψ(w)
(∏

h
)

which is equivalent to the original ψ. If(∏
h0

)−1

ψ(w)
(∏

hv

)
= ψ′(w)

[14] where ψ′ is associated to φ′ then

h−1
v a
(
dv(w)

)
σ
(
dv(w)

)
(hv′) = a′

(
dv(w)

)
for all w and v. Take w = v−1w1v with w1 ∈ G(K/E) to see that

h−1
v a(w1)σ(w1)hv = a′(w1)

Thus φ and φ′ are also equivalent. To finish up, I have to show that every ψ is equivalent to
an induced homomorphism. Let

ψ(w) =

(∏
v

bv(w)

)
× σ(w).

Then
bv(w1w2) = bv(w1)σ

(
dv(w1)

)
bv′(w2).

Fix av0 and consider (hv) =
(
bv(v

−1v0)
)
. Then(∏

v

h−1
v

)
ψ(w)

(∏
v

h(v)

)
=
∏
v

b−1
v (v−1v0)bv(w)σ

(
dv(w)

)(
bv′(v

−1v0)
)
× σ(w)

Define φ(w) = a(w)× σ(w), w ∈ WK/E, by a(w) = bv0(v
−1
0 wv0). I have only to check that

b−1
v (v−1v0)bv(w)σ

(
dv(w)

)
bv′(v

′−1
v0) = a

(
dv(w)

)
or that [15]

bv(w)σ
(
dv(w)

)(
bv′(v

′−1
v0)
)
= bv(v

−1v0)bv0
(
v−1
0 dv(w)v0

)
.

Both sides are equal to bv
(
v−1dv(w)v0

)
= bv(wv

′−1v0).
While on this theme let me remark a formal property of L-functions. Suppose µ is a

representation of Ĥ on V . Define λ, a representation of Ĝ on
⊕

τ V by

λ

(∏
τ

gτ × σ

)(⊕
vτ

)
=
⊕

µ(gz)µ
(
δτ (σ)

)
vτ ′ .

If we apply λ
(∏

τ gτ × σ
)
to the left side we obtain, if τ ′σ = δτ ′(σ)τ

′′.⊕
µ(gτ )µ

(
δτ (σ)

)
µ
(
gτ ′(σ)

)
µ
(
δτ ′(σ)

)
vτ ′′ .

Since (∏
τ

gτ × σ

)(∏
τ

gτ × σ

)
=
∏
τ

gτδτ (σ)(gτ ′)× σσ
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and
δτ (σ)δτ ′(σ) = δτ (σσ).

λ is in fact a representation. Moreover

λ ◦ ψ = Ind(WK/F ,WK/E, µ ◦ φ)
because [16]

λ ◦ ψ(w)
(⊕

vτ

)
= λ

(∏
v

a
(
dv(w)

)
× σ(w)

)(⊕
vτ

)
=
⊕

µ
(
a
(
dv(w)

))
µ
(
σ
(
dv(w)

))
vτ ′

=
⊕

µ
(
a
(
dv(w)

))
× σ

(
dv(w)

)
vτ ′

=
⊕

µ
((
dv(w)

)
vτ ′
)

This means that the L-functions do not change upon restriction of scalars, provided µ is
replaced by λ.
I return now the question of defining Π(G) → Φ(G). I may suppose F = R. I shall

eventually proceed by associating to each {φ} ∈ Φ(G) a non-empty, finite subset of Π(G).
Afterwards, I will show that these sets are mutually disjoint with union Π(G).

Consider the Zariski-closureH of φ(WC/F ) in Ĝ. It is algebraic and supersolvable. Moreover

every element of H is semi-simple. To see this imbed Ĝ in some GL(n,C). The elements
of φ(C×) simultaneously diagonalized. Thus every element in the Zariski-closure H0 of φ(C

×)
is semi-simple. But H2 ⊆ H0. By Theorem 5.16 of Springer-Steinberg’s article in Lecture

Notes #131 [17] H normalizes a torus in Ĝ0 which we may take to be T̂ (the standard

maximal torus). The action of φ(C×) on T̂ must be trivial so φ(C×) ⊆ T̂ . Let s be an

element of WC/R not in C× such that s2 = −1. Let ω be the image of φ(s) in N(T̂ )/T̂ ,

where N(T̂ ) is the normalizer of T̂ in Ĝ. ω is an involution.

Ĝ0 = Ĝ1
0 · Ẑ1

0 where Ĝ1
0 is semi-simple and Ẑ1

0 is a torus and Ĝ1
0 ∩ Ẑ1

0 is finite. L̂1 is the

group of rational characters of T̂ 1 = T̂ ∩ Ĝ1
0 and L̂0 is the group of rational characters of Ẑ0.

L̂, the group of rational characters of T̂ is contained in L̂1⊕ L̂0 and L̂⊗R = L̂1⊗R⊕ L̂0⊗R.

ω acts on L̂ ⊗ R. Suppose it has a fixed point λ̂. After conjugation we may suppose

that λ̂ lies in the closure of the positive Weyl chamber, ie. ⟨α, λ̂⟩ ⩾ 0 if α > 0. Then{
α ∈ Φ(T̂ , Ĝ0)

∣∣∣ ⟨α, λ̂⟩ ⩾ 0
}
defines a parabolic subgroup fixed by φ(WC/R).

We begin with the case that φ(WC/R) is contained in no proper [18] parabolic subgroup

of Ĝ. Then λ̂ must lie in L̂0⊗R and ω must act on T̂ 1 as t→ t−1. Let G1 be the semi-simple

part of G. I claim that if ω acts on T̂ 1 as t → t−1 then G1(R) has a compact Cartan
subgroup. If σ is the non-trivial element in G(C/R) then G and hence G1 is determined
by an automorphism aσ of a split group G′ (or G′

1). aσ determines an element ωσ of Γ(G′),
then the lattice of rational characters of a Cartan subgroup of G′, ωσ actually leaves the set
of simple roots, with respect to a predetermined order, invariant and acts on the Dynkin

diagram. As explained in the Washington notes ωσ determines an automorphism of Ĝ0 and

by definition (1× σ)(ĝ × 1)(1× σ−1) = ωσ(ĝ)× 1 in Ĝ. Since φ(s) is of the form ĥ× σ, we
conclude that the automorphism of Ĝ1 fixing T̂ 1 and taking each root to its negative differs
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from ωσ by an inner automorphism. ωσ also determines an automorphism of G′ (the “straight
extension” in Freudenthal-de Vries). It differs from aσ by an inner automorphism. Thus [19]
there is an automorphism of G′

1 which differs from aσ, which we can assume takes a given
Cartan subgroup T ′ to itself, by an inner automorphism and takes t in T ′

1 to t−1.
aσ is determined by ψ : G′ → G, aσ = ψ−σψ. We may suppose that if T1 = φ(T ′

1) then
T1(R) contains a maximal torus (in the sense of Lie groups) of G1(R). We may also regard G
as arising from G′ by a twist with respect to aσ. Let bσ be the twist which gives the compact
form. We may suppose bσ leaves T ′ fixed and sends t→ t−1. Then, if we restrict to G′

1, aσb
−1
σ

is inner. On the other hand we may actually assume (Freudenthal-de Vries, Theorem 51.9)
that aσb

−1
σ leaves a chamber invariant. Thus the action of aσb

−1
σ on G′

1 must be given by an
element of T ′

1. In particular aσ and bσ define the same twisting of T ′
1 and T1(R) is compact.

As you can imagine the discrete series will soon come into play. Unfortunately, because of
the appearance of one-half the sum of the positive roots, some preliminaries are required.
It is at this point, trivial as it appears, there is something to be understood. (I don’t yet
understand however.)

[20] Let

M̂ =
{
λ̂ ∈ L̂

∣∣∣ ω(λ̂) = −λ̂}
and let N̂ = L̂/M̂ . We have the exact sequence

0 Ĥ L̂ N̂ 0

and its dual

0 N L M 0 .

Choosing any splitting M → L of the second sequence, we obtain ω as a matrix(
I A
0 −I

)
For this we regard the elements of L as column vectors and those of L̂ as row vectors. A
maybe supposed of the form 

α1 0 0 0
0 α2 0

0 α∗ 0 0
0 0
0 0


Let the elements of T ′(C) be represented by (u, ·) = (u1, . . . , up, v1, . . . , vq). Then [text cut
off] acts by

(u, v)→ (u, u+Av−1).

[21] Thus T (R) is defined by

u = u

vv = u+A
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Thus each ui is real and ui is positive if i ⩽ r and αi is odd. Let C be defined by C ={
t ∈ T

∣∣ λ(t) = 1 if ω(λ) = −λ
}
. Then C is central and C(R) is defined by vi = 1 if i > r,

u
αi/2
i = vi if αi even. u

αi
i = v2i if αi odd.

Let G0(R), G0
1(R), and T 0(R) be the topological connected components of G(R), G1(R),

and T (R) respectively. I point out that T is now ψ(T ′). T 0(R) corresponds to those
(u, v) for which ui > 0 for all i. G0(R) = G0

1(R)T 0(R) and T (R) = T 0(R)C(R). Set

G̃(R) = G0(R)T (R) = G0(R)C(R). If g ∈ C(R) it is congruent modulo G0
1(R) to an

element in the normalizer of T1(R), a connected torus. Thus g determines a unique element
of Ω1\Ω. Ω is the Weyl group of

{
G(C), T (C)

}
and Ω1 is the Weyl group of

{
G0

1(R), T1(R)
}
.

We obtain a map G0
1\G(R)→ Ω1\Ω. Suppose g maps to the trivial coset. Multiplying on

the left [22] by an element of G0
1(R) we may suppose it centralizes T1(R) and hence T 0(R).

Since T 0(R) is Zariski-dense in T , it lies in T (R). Thus the inverse image of the trivial coset

is G̃(R).
An irreducible admissible representation π0 of G0(R) together with a quasi-character χ

of C(R) such that χ(t)I = π(t), t ∈ C(R) ∩G0(R) determine a representation π̃ of G̃(R). If
π0 or rather its restriction to G0

1(R) lies in the discrete series then the formula for the character
of π on T1(R) shows that when h1 and h2 are in G(R) the representations g → π̃(h−1

1 gh1)

and g → π̃(h−1
2 gh2) are equivalent only if h−1

1 h2 ∈ G̃(R). Thus

π = Ind
(
G(R), G̃(R), π̃

)
is irreducible.
What we must do now is return to φ : WC/R → Ĝ and to show how it determines a

representation π0 in the discrete series and a compatible quasi-character χ. Recall that we

have arranged matters in such a way that φ(C×) ⊆ T̂ . If λ̂ ∈ L̂ let

λ̂
(
φ(z)

)
= z⟨µ,λ̂⟩z⟨µ,λ̂⟩

[23] with µ, ν in L⊗C and µ− ν in L. Then

z⟨µ,λ̂⟩z⟨ν,λ̂⟩ = λ̂
(
φ(z)

)
= ω−1λ̂

(
φ(z)

)
= z⟨ωµ,λ̂⟩z⟨ων,λ̂⟩

so ν = ωµ and µ = ων. Also

λ̂
(
φ(s)2

)
= λ̂

(
φ(−1)

)
= (−1)⟨µ−ν,λ̂⟩.

Replacing φ by Ad ĥ◦φ if necessary we may suppose that Reµ lies in the closure of a positive
Weyl chamber (with respect to some order).

Let δ be one-half the sum of the positive roots with respect to this order. I shall show in a
moment that

(1) λ̂
(
φ(s)2

)
= (−1)⟨2δ,λ̂⟩ = (−1)⟨δ−ωδ,λ̂⟩ λ̂ ∈ M̂.

Thus
〈
µ− δ − ω(µ− δ), λ̂

〉
is even for all λ̂ ∈ M̂ and

(µ− δ)− ω(µ− δ)
2

∈ L⊕N ⊗C

and

µ− δ = (µ− δ)− ω(µ− δ)
2

+
(µ− δ) + ω(µ− δ)

2
∈ L+ (N ⊗C).
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It follows readily that

exp
(
H + ω(H)

)
→ e(µ−δ)(H+ω(H))

[24] is a well-defined quasi-character ϵ of T 0(R). Indeed if exp
(
H + ω(H)

)
= 1 then

λ
(
H + ω(H)

)
∈ 2πiZ for all λ ∈ L. In particular H + ω(H) is purely imaginary; so

ω
(
H + ω(H)

)
= −ω

(
H + ω(H)

)
= −

(
H + ω(H)

)
. Thus if µ− δ = µ1 + µ2 with µ1 ∈ L,

µ2 ∈ N ⊗C then

(µ− δ)
(
H + ω(H)

)
= µ1

(
H + ω(H)

)
∈ 2πiZ.

I observe next that ⟨µ, α̂⟩ ≠ 0 for all roots α̂. Suppose the contrary. Since the projection
of µ on L1⊗R, where L1 is the lattice of rational characters of T1, is real and Reµ lies in the
closure of a positive Weyl chamber we may suppose α̂ is simple. Let Xα̂ be the corresponding

root vector. Let Uα̂ = Xα̂ + φ(s)(Xα̂) and let Wα̂ be the set of U in the Lie algebra of T̂ for
which α̂(U) = 0. Then Wα̂ +CUα̂ is the Lie algebra of a Cartan subgroup containing φ(C×).
Wα̂ is invariant under φ(s) and φ(s)(Uα̂) = φ(s)Xα̂ + α̂

(
φ(s)2

)
Xα̂ = Uα̂. It is clear that φ(s)

takes this Cartan subgroup to itself but does not take every positive root to its negative. We
know that this is [25] incompatible with our assumption that φ(WC/R) is contained in no
proper parabolic subgroup.

If Z1 is the centre of G then G0(R) = G0
1(R)Z0

1 (R). Since µ− δ ∈ L the projection µ1 of µ
on L1 defines not merely one but several discrete series ππµ1 , τ ∈ Ω, the character of πτµ1
on T1(R) is

χτµ1(expH) = (−1)mϵ(τµ1)
∑
σ∈Ω1

sgnσ expστµ1(H)∏
α>0

(
exp α(H)

2
− exp

(
−α(H)

2

)) .
which equals

(−1)mϵ(τµ1)
∑
σ∈Ω1

sgnσ expστ(µ1 − δ)(H) exp(στδ − δ)(H)∏
α>0

(
1− exp

(
−α(H)

))
πτµ1 extends to a representation π0 of G0(R) with character

(−1)mϵ(τµ1)
∑
σ∈Ω1

sgnσ expστ(µ− δ)(H) exp(στδ − δ)(H)∏
α>0

(
1− exp

(
−a(H)

))
for H in the Lie algebra of T 0(R), ie. H = H1 + ω(H1) with H1 in the Lie algebra of T ′(C).

[26] If e is the number of cosets in Ω1\Ω lying in the image of G(R) we now just about know
how to associate to each class {φ} such that φ(WC/R) is contained in no proper parabolic

subgroup of Ĝ several, to be exact [Ω : Ω1]/e irreducible admissible representations of G(R),
the restriction of each of which to G0

1(R), is the direct sum of e distinct discrete series
representations.
To completely verify this we have to prove (1), to define the quasi-character χ of C(R),

and to prove that the choices made during the construction have no effect on the result.
To construct χ is easy. If M ′ = {λ ∈M | ωλ = −λ } and N ′ = L/M ′ then N ′ is the group

of rational characters of C. We have an exact sequence

0 N̂ ′ L̂ M̂ ′ 0
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which yields

T̂ → Ĉ0

if Ĉ0 is the connected component of Ĉ0, the associated group of C. Since

N̂ =
{
λ̂ ∈ L̂

∣∣∣ ωλ̂ = λ̂
}

and λ̂
(
φ(s)2

)
= (−1)⟨µ−ωµ,λ̂⟩, the image of [27] φ(s)2 in Ĉ0 is 1. Thus φ determines

ψ : WC/F → Ĉ. The construction of “Representations of abelian algebraic groups” determines
χ from ψ. I recapitulate the construction for the ground field R, which is much simpler
than the general local field and is, besides, the field under discussion. Take an element

x : w → x(w) in H1(WK/F , N̂
′). Note in particular that x(w) = 0 for all but a finite number

of w. H1(WK/F , N̂
′) is isomorphic to C(R). The isomorphism, constructed in the notes just

mentioned, is such that if x corresponds to t then

λ(t) =

 ∏
w=a×1

a⟨λ,x(w)⟩a⟨λ,ωx(w)⟩

 ∏
w=a×s

a⟨λ,x(w)⟩(−a)⟨λ,ωx(w)⟩
 λ ∈ N ′.

The set Φ(C) is H1
cont(WK/F , Ĉ0). The natural pairing

H1(WK/F , Ĉ0)×H1(WK/F , N̂
′)→ C×

associates to each {ψ} in Φ(C) a quasi-character χ of C(R). Take in particular x(w) = 0
unless w is of the form a× 1. Then the pairing gives∏

w=(a×1)

x(w)
(
ψ(w)

)
which, since x(w)

(
a(w)

)
equals, in the notation used above, a⟨µ,x(w)⟩a⟨ωµ,x(w)⟩ [28] is equal

to  ∏
w=a×1

a

⟨µ,x(w)⟩ ∏
w=a×1

a⟨µ,ωx(w)⟩


which, if we define H(w) by

a⟨λ,x(w)⟩ = eλ
′(H(w))

if λ′ ∈ L maps to λ in N ′, is equal to, because δ ∈M ′ ⊗R.

eµ(H+ω(H)) = e(µ−δ)(H+ω(H))

for
H =

∑
w=a×1

H(w).

This shows that π(t) = χ(t)I for t in the connected component C0(R) of C(R). But the
centralizer of T1(R) in G0

1(R) is connected and is therefore equal to T1(R)Z0
1(R) = T 0(R).

Thus C(R) ∩G0(R) = C(R) ∩ T 0(R) = C0(R).
Now I come to (1). It is a delicate point and it shows that we have been lucky in our

definition of the associated group. Let r be any element in the normalizer of T̂ projecting to
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the non-trivial element σ of G(C/R) and such that rtr−1 = φ(s)tφ(s)−1 = ω(t), t ∈ T̂ . If
t ∈ T̂

(tr)2 = tω(t)r2

[29] and

λ̂
(
tω(t)

)
= λ̂(t)ωλ̂(t) = 1 λ̂ ∈ M̂.

Since φ(s) is of the form tr we see that λ̂
(
φ(s)

)2
depends only on ω. We could take r = n×σ

where n lies in the normalizer of T̂ in Ĝ1
0 and it takes positive roots to negative roots.

Then r2 = nσ(n) × σ2 = nσ(n) × 1. In other words for the proof we may as well work

in Ĝ1
0 ×G(C/R) which is itself an associated group. Moreover we may as well suppose that

Ĝ1
0 is simply-connected and, since it will be a product, simple.

Let β̂ be the top root as defined in Freudenthal-de Vries. Then σ(eβ̂) = ηeβ̂ with η = ±1.
eβ̂ is a root vector. σ is the non-trivial element of G(C/R). It acts on Ĝ1

0 as described in the

Washington lectures, ie. by taking the straight extension (in the sense of Freudenthal-de Vries)
of the automorphism of the Dynkin diagram defined by σ. For groups admitting no outer

automorphisms σ of course acts trivially and η = 1. In general I claim that if β̂ =
∑
niα̂i is

the expression of β̂ as a sum of simple roots and ℓ is one-half the sum of those [30] ni for

which αi ̸= σαi, and (αi, σαi) ̸= 0 then η = (−1)ℓ. This statement is not true for β̂ alone but
for any positive root γ̂ =

∑
miα̂i invariant under σ. η of course must be replaced by η(γ̂)

where σ(eγ̂) = η(γ̂)eγ̂. I prove it by induction on
∑
mi. Choose α̂j so that (γ̂, α̂j) > 0. If

α̂k = σ(α̂j) then (γ̂, α̂k) = (γ, α̂j). If α̂k = α̂j then γ̂
′ = γ̂ − α̂j is also a root and

eγ̂ = [eα̂j
, αγ̂′ ]

so η(γ̂) = η(γ̂′). (N.B. by construction η(α̂j) = 1). If α̂k ̸= α̂j and (α̂j, α̂k) = 0 then
[eα̂j

, eα̂k
] = 0. Take γ̂′ = γ̂ − α̂j − α̂k. It is a root and

eγ̂ =
[
eα̂j

[eα̂k
, eγ̂′ ]

]
=
[
eα̂k

[eα̂j
, eγ̂′ ]

]
so η(γ̂) = η(γ̂′). If (α̂j, α̂k) ̸= 0 then α̂ = α̂j + α̂k is a root and eα̂ = [eα̂j

, êαk
]. Thus

η(eα̂) = −1. Take γ̂′ = γ̂ − α̂; then eγ̂ = [eα̂, eγ̂′ ] so η(γ̂) = −η(γ̂′).
Since (β̂, α̂) ⩾ 0 for all positive roots, every route perpendicular to β̂ is a linear combination

of simple roots perpendicular to it. Let Ĥ0 be the group [31] corresponding to the Lie algebra

generated by
{
eα̂

∣∣∣ (α̂, β̂) = 0
}
and let Ĵ0 be the group corresponding to the algebra spanned

by eβ̂, e−β̂ and [eβ̂, e−β̂]. Both groups are invariant under G(C/R) and they commute with

each other. Let n1 be an element of Ĥ0 normalizing T̂ which takes positive roots of Ĥ0

to negative roots and let n2 be an element of Ĵ0 normalizing T̂ and taking β̂ to −β̂. If

(α̂, β̂) ̸= 0 and α̂ ̸= β̂ then n2(α̂) < 0. If not n2(α̂) = α̂ − 2(α̂,β̂)

(β̂,β̂)
β̂ would be positive and

β̂ − α̂ ⩽ 2(α̂,β̂)

(β̂,β̂)
β̂ − α̂ would be negative. This is impossible since β̂ is a top root. Take

n = n1n2 = n2n. Then n normalizes T̂ and takes every positive root to a negative root. Note

that if (α̂, β̂) > 0 then (n2α̂, β̂) > 0. Thus Adn1 ◦ σ takes every positive root of Ĥ0 to its

own negative and Ĥ = Ĥ0 × G(C/R) ⊆ Ĝ1 is a group to which an induction assumption
may be applied.

λ̂
(
nσ(n)

)
= λ̂

(
n, σ(n1)

)
λ̂
(
n2σ(n2)

)
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and, by induction

λ̂
(
n, σ(n1)

)
= (−1)

∑
α̂>0

(α̂,β̂)=0

⟨α,λ̂⟩

.

[32] Note that ⟨α, λ̂⟩ = λ̂(Hα̂) so the left side has the same meaning for Ĥ as for Ĝ1. Now

Ĵ0 is covered by SL(2,C) and we may suppose n1 ←
(

0 1
−1 0

)
. Then

n1σ(n1)↔ η

(
−1 0
0 −1

)
=

(
(−1)ℓ+1

(−1)ℓ+1

)
if ℓ has its previous meaning. Thus

λ̂
(
n2σ(n2)

)
= (−1)(ℓ+1)⟨β,λ̂⟩.

It remains to show that
ℓ⟨β, λ̂⟩ ≡

∑
α̂>0
α̂ ̸=β̂

(α̂,β̂)̸=0

(α, λ̂) (mod 2).

Let ν be the permutation of the set of positive roots α̂ given by Adn1 ◦ σ. ν may also be
regarded as a permutation of the α and

ν(α) = “−Adn2(α)” =
2(α, β)

(β, β)
β − α.

If α̂ is in the set over which the last sum is taken then α ̸= ν(α) and α+ ν(α) = 2(α,β)
(β,β)

β. Set

ℓ′ =
∑

α̂>0
α̂ ̸=β̂

(α̂,β̂)̸=0

(α,β)
(β,β)

. We have to show ℓ ≡ ℓ′ (mod 2). Clearly [33]

ℓ′ + 1 =
∑
α>0

(α, β)

(β, β)
= ⟨δ, β̂⟩ =

∑
mi

δ = 1

2

∑
α>0

α


if β̂ =

∑
miα̂i is the expression of β̂ as a linear combination of simple roots.

At this point I must, unfortunately, but I see no way out at the moment, use classification.∑
mi is the altitude of β̂. Freudenthal and de Vries give a list of the altitudes of the top

roots (p. 534). This altitude is odd except in the case of Am, m even. Thus ℓ′ is even except
in this case when it is odd. On the other hand the structure of the Dynkin diagrams of
all other groups is such that no automorphism of them even take a root into another root
distinct from and yet not orthogonal to itself. Thus for these ℓ is also even. For Am, m even
the automorphism of the Dynkin diagram coming into question is the flip. It interchanges
one pair of nm-perpendicular roots. Since these enter into the top root with coefficient 1, ℓ is
odd in this case and we are done.

Since ⟨µ, α̂⟩ ̸= 0 for all roots α̂, the Cartan subgroup containing φ(C×) is unique and µ is
determined up to the action of the Weyl group. This shows that the set of representations
associated to the class {φ} is well-defined.

[34] Suppose we have an irreducible admissible representation π of G(R). It is more a less
clear, on the basis of standard theorems, that π|G0

1(R) is the direct sum of finitely many
irreducible admissible representations, which are permuted amongst themselves by the action
of G(R) on G0

1(R). If one belongs to the discrete series, they all do.
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I claim that if this is the case then the class of π′ corresponds to a {φ} such that φ(WC/R)

is contained in no proper parabolic subgroup. The restriction of π to G̃(R) is also the sum
of finitely many irreducible representations. Let one of them be π̃. On T 0(R)C(R) the
character of π̃ has the form

±
∑
τ∈Ω1

sgn τϵ
(
τ(t)

)
− δτ (t)∏

α>0

(
1− α−1(t)

)
with δτ = τδ − δ. We have to construct φ from ϵ.

Write
ϵ(expH) = exp ν(H)

[35] or better

ϵ
(
expH + ω(H)

)
= exp ν

(
H + ω(H)

)
.

If λ
(
H + ω(H)

)
∈ 2πiZ for all λ ∈ L then ν

(
H + ω(H)

)
∈ 2πiZ. Consider such an

H1 = H + ω(H). ω(H1) = H1 because H1 = H + ω(H) and H1 = −H1 because λ(H1) is

purely imaginary for all λ. Thus H1 is purely imaginary, and lies in 2πi(M̂ ⊗R). Otherwise
it is arbitrary. We conclude that ν ∈ L+N ⊕C. Set µ = ν + δ. Then

µ− ωµ = ν − ων + 2δ ∈ L.
We define φ in C× by

λ̂
(
φ(z)

)
= z⟨µ,λ̂⟩z⟨ωµ,λ̂⟩

In particular

λ̂
(
φ(−1)

)
= (−1)⟨µ−ωµ,λ̂⟩ = (−1)⟨2δ,λ̂⟩(−1)⟨ν−ων,λ̂⟩.

If λ̂ ∈ M̂ then (−1)⟨ν−ων,λ̂⟩ = (−1)⟨2ν,λ̂⟩ = 1.
To define φ completely we have to define φ(s). It will be of the form tn× σ. Then [36]

φ(s)2 = tω(t)nσ(n)× 1.

There are two conditions to be satisfied.

(2) (−1)⟨µ−ωµ,λ̂⟩ = λ̂
(
φ(s)2

)
= λ̂

(
tω(t)

)
λ̂
(
nσ(n)

)
.

Moreover the image of t in Ĉ0 is specified by the theory in “Representations of abelian
algebraic groups.” Choose t0 so that the second condition is satisfied and set t = t0t1 where

λ̂(t1) = 1 of λ̂ ∈ N̂ ′. The condition (2) is then automatically satisfied for λ̂ in N̂ ′.

If t2 ∈ T̂ and λ(t2) = 1 for λ̂ ∈ N̂ ′ then λ̂
(
t2ω(t2)

)
= (ωλ̂ + λ̂)(t2) = 1 for all λ̂ and

ω(t2) = t−1
2 . We can always choose t2 so that t22 = t1. Then

t−1
2 (t1t0n× σ)t2 = t0n× σ.

Thus the conjugacy class of t1t0n× σ is independent of t1. Since λ̂
(
nσ(n)

)
depends only on

the restriction of λ̂ to T̂1 it equals (−1)⟨2ρ,λ̂⟩. We need to show that

(−1)⟨ν−ων,λ̂⟩ = λ̂
(
tω(t)

)
.

The right side is (λ̂+ ωλ̂)(t) and, since λ̂+ ωλ̂ ∈ N̂ ′, it is by definition the value of ϵ at the
element of C(R) defined by [37]

λ(c) = (−1)⟨λ,λ̂+ωλ̂⟩
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Thus if H = π · λ̂ (L̂⊗C may be identified with the Lie algebra of T (C))

e = exp
(
H − ω(H)

)
= exp

(
H + ω(H)

)
and

ϵ(c) = exp ν
(
H + ω(H)

)
= expπi⟨ν, λ̂− ωλ̂⟩ = (−1)⟨ν,λ̂−ωλ̂⟩.

With this we are done. I will save the rest of the definition for another letter. Let me remark
however two problems which are of some importance for the trace formula. A graduate
student at Yale, Diana Shelstad, is supposed to be working on these problems. I haven’t
heard from her for some time so I don’t know how far along she has come. Suppose G1 and

G2 are two groups over R and Ĝ1 = Ĝ2. Suppose φ : WC/R → Ĝ1 = Ĝ2 and φ(WC/R) is
contained in no proper parabolic subgroup. Let Πφ(Gi) be the finite set of classes in Π(Gi)
corresponding to φ. Let χφi be the sum of the characters of the classes in Πφ(Gi). Let
ψ : G1 → G2 be defined over the finite Galois extension [38] K (ie in our context C) and
such that ψ−σψ is inner for all σ ∈ G(K/F ) (ie G(C/R)). Suppose φ : T1 → T2 where Ti is
a Cartan subgroup of Gi over F (= R) and φ restricted to T1 is defined over F . Is there an
equality

χφ1 (t) = cχφ2
(
ψ(t)

)
t ∈ T1(F )

where c is a constant depending, most optimistically, only on G1 and G2, but perhaps also
on T1, T2, and φ. Observe that the question is non-trivial even when G1 = G2 and ψ is

inner. Observe also that Ĝ1 and Ĝ2 may be identified only after ψ is chosen up to an inner
automorphism.

I look forward to seeing you next year.

All the best,
Bob
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