Dear Bill,
I have been ruminating further along the lines of our discussion and I now believe I can analyze the formal aspects of the situation and reduce everything to three specific representation-theoretic problems. Since we are leaving for Montreal today I don't have time to describe the analysis; that I shall postpone to our return. However let me pose the two problems to you now to spur you into solving them. I pose the first for groups quasi-split and split over an unramified extension. You may prefer, at the moment, to treat it only for Chevalley groups.

1. Does every irreducible factor of a unitary unramified principal series contain the trivial representation of some special maximal compact?

Of this problem you are of course already aware. It means that the group

$$
C=\widehat{L}\left(T_{\mathrm{ad}}^{0}\right) / \operatorname{Im} \widehat{L}\left(T^{0}\right)
$$

acts transitively on each Π_{φ}. Suppose χ is the character of C trivial on the subgroup C_{0} of C acting trivially on Π_{φ}. Choose a special maximal compact K^{0} and hence $\pi^{0} \in \Pi_{\varphi}$. If $\zeta_{1}, \ldots, \zeta_{r}$ are the values taken by χ set

$$
\pi^{i}=\sum_{\substack{c \in C_{0} \backslash C \\ \chi(c)=\zeta_{i}}} c \pi^{0}
$$

so that

$$
\begin{equation*}
\pi_{\varphi}=\bigoplus \pi^{i} \tag{*}
\end{equation*}
$$

Suppose M is a Levi factor of a $P S G$ of G over F. Let S^{0} be T^{0} regarded as a $C S G$ of M. We have

If χ a character of $\widehat{L}\left(T_{\mathrm{ad}}^{0}\right)$, can be obtained by pulling back a character of $\widehat{L}\left(S_{\mathrm{ad}}^{0}\right)$ and if τ_{φ} is the principal series of M corresponding to φ so that π_{φ} is obtained from τ_{φ} buy a normalized induction, then the decomposition (*) as a consequence of a corresponding decomposition

$$
\tau_{\varphi}=\bigoplus \tau^{i}
$$

I shall try to convince you in a later letter that, given χ, one can choose M so that $M_{\text {ad }}$ is isomorphic over F to a product of groups of the form

$$
\operatorname{Res}_{K / F} \operatorname{PSL}(m)
$$

with K / F unramified.

These comments may be a help in solving the first problem. They also form an introduction to the second.

Take n unramified extensions $K_{i} 1 \leqslant i \leqslant n$, of F and take unramified extensions E_{i} / K_{i} of degrees m_{i}. Choose the basis of $O_{E_{i}}$ over $O_{K_{i}}$ (also one of E_{i}) and use it to imbed E_{i}^{\times} in $\mathrm{GL}\left(m_{i}, K_{i}\right)$. Let G be a closed subgroup of $\prod_{i} \mathrm{GL}\left(m_{i}, K_{i}\right)$ containing

$$
\left\{g \mid \eta(g) \in \prod K_{i}^{m_{i}}\right\}
$$

Here

$$
\eta: g \rightarrow \prod \operatorname{det} g_{i} \in \prod K_{i}^{m_{i}} .
$$

Let χ be a character of $\prod K_{i}^{\times}$trivial on $\eta(G)$ and such that the kernel of χ in K_{i}^{\times}is $\mathrm{Nm} E_{i}^{\times}$
Let π be a unitary unramified principal series representation of G and let Π be the set of irreducible components of its restrictions to G.

$$
H=\prod K_{i}^{\times} / \eta(G)
$$

acts on Π. Let its kernel be H^{0}.
2. If $m=1$ and $G=K^{\times} \mathrm{SL}(m, K)$ then the inverse image of H^{0} in K^{\times}is $\{\alpha|m| o(\alpha)\}$ if and only if π is a principal series representation corresponding to a character

$$
\left(\begin{array}{cccc}
\alpha_{1} & & & \\
& \ddots & & \\
& & \ddots & \\
& & & \alpha_{m}
\end{array}\right) \rightarrow \nu\left(\alpha_{1}, \ldots, \alpha_{m}\right) \zeta^{o\left(\alpha_{2}\right)+2 o\left(\alpha_{2}\right)+\cdots+(m-1) o\left(\alpha_{m}\right)}
$$

Here $o(\alpha)$ is the order of α.
Anyhow suppose H^{0} is contained in the kernel of χ. Let $\pi^{0} \in \Pi$ be the representation containing the trivial representation of G in $\prod_{i} \mathrm{GL}\left(m, O_{K_{i}}\right)$.

Form

$$
\Theta=\sum_{H^{0} \backslash H} \chi(h) \Theta_{h \pi^{0}} .
$$

Let T be the set of all $g=\prod g_{i}$ in G with $g_{i} \in E_{i}^{\times}$. It is clear that Θ, which one has to prove is a function (this is known only in characteristic 0), has support in $\bigcup_{g \in \Pi \mathrm{GL}\left(m_{i}, K_{i}\right)} g^{-1} T g$.

It is clear that

$$
\Theta\left(\gamma^{w}\right)=\Theta\left(w^{-1} \gamma w\right)=\chi(\eta(w))^{-1} \Theta(\gamma)
$$

3. Find a formula for $\Theta(\gamma)$ when $\gamma \in T$ is regular.

A suggestion
Let

$$
\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right)
$$

and fix

$$
\gamma^{0}=\left(\gamma_{1}^{0}, \ldots, \gamma_{r}^{0}\right) \quad E_{i}=K_{i}\left[\gamma_{i}^{0}\right] .
$$

For each i, χ defines a character χ_{i} of K_{i}^{\times}and of $\mathfrak{G}\left(E_{i} / K_{i}\right)$

$$
\delta_{j}=\frac{\sum_{\tau\left(\mathfrak{G}\left(E_{i} / K_{i}\right)\right)} \chi_{i}(\tau) \tau\left(\gamma_{i}\right)}{\sum \chi_{i}(\tau) \tau\left(\gamma_{i}^{0}\right)} \in K_{i}^{\times}
$$

if γ is regular. We may introduce

$$
\prod_{x_{i}\left(\delta_{i}\right)} .
$$

Then

$$
\Theta(\gamma)=c \prod \chi_{i}\left(\delta_{i}\right)
$$

where c is a constant involving orders of Weyl groups and Gaussian sums for the characters χ_{i}.
I hope to hear from you soon,
Bob

Compiled on December 22, 2023.

