Late June 1974

Dear Bill,

I have been ruminating further along the lines of our discussion and I now believe I can analyze the formal aspects of the situation and reduce everything to three specific representation-theoretic problems. Since we are leaving for Montreal today I don't have time to describe the analysis; that I shall postpone to our return. However let me pose the two problems to you now to spur you into solving them. I pose the first for groups quasi-split and split over an unramified extension. You may prefer, at the moment, to treat it only for Chevalley groups.

1. Does every irreducible factor of a unitary unramified principal series contain the trivial representation of some special maximal compact?

Of this problem you are of course already aware. It means that the group

$$C = \widehat{L}(T_{\rm ad}^0) / \operatorname{Im} \widehat{L}(T^0)$$

acts transitively on each Π_{φ} . Suppose χ is the character of C trivial on the subgroup C_0 of C acting trivially on Π_{φ} . Choose a special maximal compact K^0 and hence $\pi^0 \in \Pi_{\varphi}$. If ζ_1, \ldots, ζ_r are the values taken by χ set

$$\pi^{i} = \sum_{\substack{c \in C_0 \setminus C\\ \chi(c) = \zeta_i}} c \pi^{0}$$

so that

(*)

Suppose M is a Levi factor of a PSG of G over F. Let S^0 be T^0 regarded as a CSG of M. We have

 $\pi_{\varphi} = \bigoplus \pi^i.$

$$\begin{array}{ccc} \widehat{L}(T^0) & \longrightarrow & L^1(T^0_{\mathrm{ad}}) \\ & & & \downarrow^{(\mathrm{surjective})} \\ \widehat{L}(S^0) & \longrightarrow & \widehat{L}(S^0_{\mathrm{ad}}) \end{array}$$

If χ a character of $\widehat{L}(T^0_{ad})$, can be obtained by pulling back a character of $\widehat{L}(S^0_{ad})$ and if τ_{φ} is the principal series of M corresponding to φ so that π_{φ} is obtained from τ_{φ} buy a normalized induction, then the decomposition (*) as a consequence of a corresponding decomposition

$$\tau_{\varphi} = \bigoplus \tau^i.$$

I shall try to convince you in a later letter that, given χ , one can choose M so that M_{ad} is isomorphic over F to a product of groups of the form

$$\operatorname{Res}_{K/F} \operatorname{PSL}(m)$$

with K/F unramified.

These comments may be a help in solving the first problem. They also form an introduction to the second.

Take *n* unramified extensions $K_i \ 1 \leq i \leq n$, of *F* and take unramified extensions E_i/K_i of degrees m_i . Choose the basis of O_{E_i} over O_{K_i} (also one of E_i) and use it to imbed E_i^{\times} in $\operatorname{GL}(m_i, K_i)$. Let *G* be a closed subgroup of $\prod_i \operatorname{GL}(m_i, K_i)$ containing

$$\left\{g \mid \eta(g) \in \prod K_i^{m_i}\right\}$$

Here

$$\eta: g \to \prod \det g_i \in \prod K_i^{m_i}.$$

Let χ be a character of $\prod K_i^{\times}$ trivial on $\eta(G)$ and such that the kernel of χ in K_i^{\times} is Nm E_i^{\times}

Let π be a unitary unramified principal series representation of G and let Π be the set of irreducible components of its restrictions to G.

$$H = \prod K_i^{\times} / \eta(G)$$

acts on Π . Let its kernel be H^0 .

2. If m = 1 and $G = K^{\times}SL(m, K)$ then the inverse image of H^0 in K^{\times} is $\{\alpha \mid m \mid o(\alpha)\}$ if and only if π is a principal series representation corresponding to a character

$$\begin{pmatrix} \alpha_1 \\ & \ddots \\ & & \ddots \\ & & & \alpha_m \end{pmatrix} \to \nu(\alpha_1, \dots, \alpha_m) \zeta^{o(\alpha_2) + 2o(\alpha_2) + \dots + (m-1)o(\alpha_m)}$$

Here $o(\alpha)$ is the order of α .

Anyhow suppose H^0 is contained in the kernel of χ . Let $\pi^0 \in \Pi$ be the representation containing the trivial representation of G in $\prod_i \operatorname{GL}(m, O_{K_i})$.

Form

$$\Theta = \sum_{H^0 \setminus H} \chi(h) \Theta_{h\pi^0}.$$

Let T be the set of all $g = \prod g_i$ in G with $g_i \in E_i^{\times}$. It is clear that Θ , which one has to prove is a function (this is known only in characteristic 0), has support in $\bigcup_{g \in \prod \operatorname{GL}(m_i, K_i)} g^{-1}Tg$.

It is clear that

$$\Theta(\gamma^w) = \Theta(w^{-1}\gamma w) = \chi(\eta(w))^{-1}\Theta(\gamma)$$

3. Find a formula for $\Theta(\gamma)$ when $\gamma \in T$ is regular. A suggestion Let

$$\gamma = (\gamma_1, \ldots, \gamma_r)$$

and fix

$$\gamma^0 = (\gamma_1^0, \dots, \gamma_r^0) \qquad E_i = K_i[\gamma_i^0].$$

For each i, χ defines a character χ_i of K_i^{χ} and of $\mathfrak{G}(E_i/K_i)$

$$\delta_j = \frac{\sum_{\tau \left(\mathfrak{G}(E_i/K_i) \right)} \chi_i(\tau) \tau(\gamma_i)}{\sum \chi_i(\tau) \tau(\gamma_i^0)} \in K_i^{\times}$$

if γ is regular. We may introduce

 $\prod \chi_i(\delta_i).$

Then

$$\Theta(\gamma) = c \prod \chi_i(\delta_i)$$

where c is a constant involving orders of Weyl groups and Gaussian sums for the characters χ_i .

I hope to hear from you soon, Bob

Compiled on May 7, 2024.