
October 8, 1980

Dear Bill,

First of all congratulations to you and Yuko go on the birth of your daughter.
Part of the notes for my lectures in Paris has been written out and typed, but the technical

part remains. I have been working on it since I came to Bonn, but only intermittently and it
is advancing rather slowly. I could send you what is ready, but it is probably best to wait
until I am finished and then to send everything. There is a possibility that the notes will be
typed and bound like the notes from the Gérardin-Labesse seminars and distributed by the
University of Paris.

I hadn’t intended when after seeing Thompson’s book in your office, I took it up to read to
spend much time studying statistical mechanics, but because it is related to other questions
which I had wanted to understand and because there is a great deal of solid mathematical
literature available, for example the notes of Ruelle or of Georgii, I have worked on it a fair
amount and I’m beginning to understand some things. But I am far from a mastery of the
subject.

As you probably know the central mathematical object in the theory is a convex hypersurface
of codimension 1 in a linear space. The linear parameters are βU , βµ, and βp. Here β is the
inverse temperature, U runs over the possible interactions, µ is the chemical potential for
gases and the magnetic field for magnetic lattices, p is the pressure. As far as I can tell, µ is
a purely theoretical . . . [Rest of page missing.]

We are interested in the points at which the surface is not smooth because there are points
at which a phase transition takes place. What is fascinating to a mathematician is that
there appear to be severe restraints on the structure of the surface in the neighborhood of a
singular point. There are conjectures and, I believe, a vast amount of experimental evidence,
but so far as I see no theorems.

Suppose for example that there is only one possibility for U so that the linear parameters
are β, ν = βµ, and q = βp. Then the hypersurface is a surface of three dimensions, and is
given by writing q as a convex function of β and ν, β > 0.
This function frequently takes a special form locally. There is a value β0 > 0 so that, for

β > β0, but close to β0, and ν close to 0, one has

q(ϵ, ν) = A0ϵ
2−α′

+ A1ϵ
β|ν|+ A2ϵ

−γ′
ν2 + higher order terms in ν

Here A0, A1, A2 are smooth non-vanishing functions and ϵ = β0 − β. Here α′, β (the
bar is to distinguish it from the inverse temperature; I’m not responsible for the conflicting
notation), and γ′ are critical exponents. They are defined in a far less transparent but
physically more meaningful manner in Stanley, Introduction to Phase Transitions + Critical
Phenomena. They are all non-negative and β > 0, 2 > α.
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Compute the matrix of second order partial derivatives. ∂2q
∂ϵ2

∂2q
∂ϵ ∂ν

∂2q
∂ν ∂ϵ

∂2q
∂ν2


to obtain at ν = 0 (

(2− α′)(1− α′)A0ϵ
−α′ ±βA1ϵ

β−1

±βA1ϵ
β−1 2A2ϵ

−γ′

)
It must be non-negative definite because of convexity. Letting ϵ → 0 we see that this can be
so only if

α′ + γ′ ⩾ 2− 2β

This is the Rushbrooke inequality. It is believed to be an equality, but no theorem is available,
not even for specific models, such as the two-dimensional Ising model.
At the risk of making this letter so long that you won’t even begin to read it I give you

one other example. The surface introduced above is often also such that on the line ϵ = 0 it
has the form

q(0, ν) = B0(ν)ν
1+δ
δ δ > 0

Here ν is another critical exponent and B0 is continuous and non-zero at ν = 0.
This q is now given in a set of the form

Above this set it looks roughly like

Otherwise there is no sharp bend.
Suppose we join the point (ϵ, 0) to the point (0, ν), ν > 0 by a segment and then take a

point
(
xϵ, (1− x)ν

)
on this segment. For x close to 1 we may use convexity to infer that

xA0(ϵ, 0)ϵ
2−α′

+ (1− x)B0(0, ν)ν
1+δ
δ ⩾ A0

(
xϵ, (1− x)ν

)
x2−α′

ϵ2−α′

+ A1

(
xϵ, (1− x)ν

)
xβ(1− x)ϵβν + A2

(
xϵ, (1− x)ν

)
x−γ′

(1− x)2ϵ−γ′
γ2

+O(1− x)3

We expand A0

(
xϵ, (1− x)ν

)
in powers of 1−x, drop the term γ on both sides independent

of 1− x, then divide by 1− x, and finally let 1− x → 0 to obtain an inequality in ϵ and ν. It

is valid for small ϵ and ν. Thus we may replace ϵ by λ
1

2−α′ ϵ and ν by λδ/1+δν, λ > 0. The
result is an inequality of the form

Cλ ⩾ λ
(
Dλ

1
2−α′ + Eλδ/1+δ + F

)
+Gλ

β
2−α′+

δ
1+δ

The coefficients depend on ϵ and ν and G > 0. Letting λ → 0 we see that this inequality is
possible only if

β

2− α′ +
δ

1 + δ
⩾ 1
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A little juggling and this becomes

α′ + β(1 + δ) ⩾ 2,

which is the Griffiths inequality, believed to be an equality.
Since the critical exponents turn out to be experimentally measurable, it is of considerable

interest to have some theoretical understanding of the circumstances under which the surface
has the form described above, as well as a real proof that the equalities are satisfied.

But I won’t keep you any longer.

[Additional pages are unavailable.]
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