Bill,
Let me try to clarify my question slightly by giving the classification of pairs $\left(t^{\prime}, C\right)$ in the case G is the simply-connected form of C_{2}. Then $G^{\widehat{0}}$ is the adjoint form of $B_{2}\left(=C_{2}\right)$, that is the quotient of $\operatorname{Sp}(2)$ by its centre.

Up to conjugacy these are the following possibilities for X.
(i) $X=0$
(ii) $\operatorname{Rank} X=1$, then we may take

$$
X=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
& & & \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(iii) $\operatorname{Rank} X=2$, then we may take

$$
X=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
& & & \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

(iv) Rank $X=3$, then we may take

$$
X=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
& & & \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Let's look for the corresponding \widehat{t}, up to conjugacy.
(i) \widehat{t} is any diagonal matrix (modulo ± 1) up to the action of the Weyl group. If $\widehat{\lambda}=\widehat{\lambda}(t)$ is defined by

$$
|\lambda(t)|=q^{+\langle\lambda, \widehat{\lambda}\rangle} \quad \text { (I worry about the sign) }
$$

define $\chi=\chi(\widehat{t})$ by

$$
\chi(t)=\widehat{\lambda}(\widehat{t})
$$

The representation associated to $(\widehat{t}, 0)$ are the constituents of $\operatorname{PS}(\chi)$ which contain the trivial representation of a good maximal compact.

Example. Let $\widehat{\alpha}(\widehat{t})=q$ for every simple positive root $\widehat{\alpha}$. Then if δ is one-half the sum of the positive roots of G,

$$
\chi(t)=q^{\langle\delta, \widehat{\lambda}(t)\rangle}=|\delta(t)|
$$

so that the representation corresponding to $(\widehat{\lambda}, 0)$ in this case is the trivial representation. (ii) one possible choice of \widehat{t} is

$$
\left(\begin{array}{llll}
1 & & & \\
& q^{1 / 2} & & \\
& & 1 & \\
& & & q^{-1 / 2}
\end{array}\right)
$$

By basic general facts any other possible \widehat{t} is conjugate to an element in the normalizer of

$$
\left(\begin{array}{cccc}
* & 0 & * & 0 \\
0 & * & 0 & 0 \\
* & 0 & * & 0 \\
0 & 0 & 0 & *
\end{array}\right)
$$

Any element in the normalizer of this group which maps X into a multiple of itself lies in the group. Thus up to conjugacy we may take

$$
\widehat{t}=\left(\begin{array}{llll}
a & & & \\
& \pm q^{1 / 2} & & \\
& & a^{-1} & \\
& & & \pm q^{-1 / 2}
\end{array}\right)
$$

Replacing a by a^{-1} does not change the conjugacy class of (\widehat{t}, X). Recall also that \widehat{t} and $-\widehat{t}$ are to be identified. Consider the parabolic subgroup of C given by

$$
\begin{aligned}
& P=\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right) \\
& H=\left(\begin{array}{llll}
* & * & & 0 \\
* & * & & \\
& & * & * \\
0 & & * & *
\end{array}\right)
\end{aligned}
$$

Note: both G and $G^{\widehat{0}}$ have been taken in the C_{2} form. Thus we have to be careful about the pair in between L and \widehat{L}.

$$
\begin{array}{lll}
L=\mathbf{Z} \oplus \mathbf{Z} & \Delta: \alpha=(1,-1) & \beta=(0,2) \\
\widehat{L} \subseteq \mathbf{Z} \oplus \mathbf{Z} & \widehat{\Delta}: \widehat{\beta}=(1,-1) & \widehat{\alpha}=(0,2)
\end{array}
$$

$$
\begin{aligned}
(x, y) \in L \quad(u, v) \in \widehat{L} \quad\langle(x, y),(u, v)\rangle & =\frac{v(x-y)}{2}+u\left(\frac{x+y}{2}\right) \\
& =\frac{u+v}{2} \cdot x+\frac{u-v}{2} \cdot y
\end{aligned}
$$

Thus \widehat{L} is associated to the following character:

$$
\begin{gathered}
t=\left(\begin{array}{llll}
\alpha & & & \\
& \beta & & \\
& & \alpha^{-1} & \\
& & & \beta^{-1}
\end{array}\right) \quad \begin{array}{l}
\widehat{\lambda}(t)=(m+n, m-n) \\
|\alpha|=q^{+m} \\
\\
\\
\chi(t)=a^{m+n} \\
q^{\frac{1}{2}(m-n)}
\end{array}
\end{gathered}
$$

Since

$$
M=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & A^{\prime-1}
\end{array}\right)\right\} \xrightarrow{\sim}\{A\}=\mathrm{GL}(2)
$$

and since χ is a character which defines a special representation σ of GL(2), we may induce σ (with the usual modifications) from P up to G. If we take $|a|=1$, the representation associated to (\widehat{t}, X) should be any constituent of the result-which is unitary. Otherwise we may choose $|a|>1$ and then peel off a representation from the top as for real groups. This would then be the representation associated to (\widehat{t}, X).
(iii) One possible choice of \widehat{t} is

$$
\left(\begin{array}{llll}
q^{1 / 2} & & & \\
& q^{-1 / 2} & & \\
& & q^{-1 / 2} & \\
& & & q^{1 / 2}
\end{array}\right)
$$

Any possible choice of \widehat{t} is conjugate to something in the normalizer of

$$
\left\{\left(\begin{array}{llll}
a & & & \\
& b & & \\
& & a^{-1} & \\
& & & b^{-1}
\end{array}\right)\right\}
$$

The possible choices of \widehat{t} are of the following types
(a)

$$
\widehat{t}=\left(\begin{array}{llll}
a q^{1 / 2} & & & \\
& a q^{-1 / 2} & & \\
& & a^{-1} q^{-1 / 2} & \\
& & & a^{-1} q^{1 / 2}
\end{array}\right)
$$

(b)

$$
\widehat{t}=\left(\begin{array}{cccc}
& & & a q^{1 / 2} \\
& & -a q^{-1 / 2} & \\
& \frac{q^{1 / 2}}{a} & & \\
\frac{-q^{1 / 2}}{a} & & &
\end{array}\right)
$$

Any two two matrices in (b) are conjugate to each other by something which centralizes X. Thus they should yield exactly one representation which should be square-integrable. Notice that in (i), (ii), (iii)(a) we can find a Levi factor $M^{\widehat{0}}$ of a proper parabolic $P^{\widehat{0}}$ such that $\widehat{t} \in M^{\widehat{0}}$ and X lies in the Lie algebra of $M^{\widehat{0}}$. This is however not possible for (iii)(b).

Look at (iii)(a). a and a^{-1} may be interchanged. Choose the following parabolic of G.

$$
\begin{aligned}
& P=\left(\begin{array}{llll}
* & * & * & * \\
0 & * & * & * \\
& & * & \\
& * & * & *
\end{array}\right) \\
& M=\left(\begin{array}{llll}
* & & & \\
& * & & * \\
& & * & \\
& * & & *
\end{array}\right)
\end{aligned}
$$

A torus in M is

$$
\left(\begin{array}{llll}
\alpha & & & \\
& \beta & & \\
& & \alpha^{-1} & \\
& & & \beta^{-1}
\end{array}\right)
$$

\widehat{t} defines the following quasi-character. $\quad|\alpha|=q^{m} \quad|\beta|=q^{n}$

$$
\begin{aligned}
& \widehat{\lambda}(t)=(m+n, m-n) \\
& \chi(t)=a^{2 m} q^{n}
\end{aligned}
$$

This character defines a special representation of M. Proceed now as in (ii).
(iv) By general facts there is only one possibility for \widehat{t}.

$$
\widehat{t}= \pm\left(\begin{array}{llll}
q^{3 / 2} & & & \\
& q^{1 / 2} & & \\
& & q^{-3 / 2} & \\
& & & q^{-1 / 2}
\end{array}\right)
$$

The corresponding representation is the Steinberg representation. Again (\widehat{t}, X) is contained in a Levi factor of no proper parabolic.

Yours,
Bob

Compiled on July 3, 2024.

