Bill,

Let me try to clarify my question slightly by giving the classification of pairs (t', C) in the case G is the simply-connected form of C_2 . Then G^0 is the adjoint form of $B_2(= C_2)$, that is the quotient of $Sp(2)$ by its centre.

Up to conjugacy these are the following possibilities for X .

- (i) $X = 0$
- (ii) Rank $X = 1$, then we may take

$$
X = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

(iii) Rank $X = 2$, then we may take

$$
X = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}
$$

(iv) Rank $X = 3$, then we may take

$$
X = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}
$$

Let's look for the corresponding \hat{t} , up to conjugacy.

(i) \hat{t} is any diagonal matrix (modulo ± 1) up to the action of the Weyl group. If $\hat{\lambda} = \hat{\lambda}(t)$ is defined by

 $|\lambda(t)| = q^{+\langle \lambda, \lambda \rangle}$ (I worry about the sign)

define $\chi = \chi(\widehat{t})$ by

$$
\chi(t) = \lambda(t).
$$

The representation associated to $(\tilde{t}, 0)$ are the constituents of PS(χ) which contain the trivial representation of a good maximal compact.

Example. Let $\hat{\alpha}(\hat{t}) = q$ for every simple positive root $\hat{\alpha}$. Then if δ is one-half the sum of the positive roots of G ,

$$
\chi(t) = q^{\langle \delta, \widehat{\lambda}(t) \rangle} = |\delta(t)|
$$

so that the representation corresponding to $(\lambda, 0)$ in this case is the trivial representation. (ii) one possible choice of \hat{t} is

$$
\begin{pmatrix} 1&&&\\ &q^{1/2}&&\\ &&1&\\ &&&q^{-1/2} \end{pmatrix}
$$

By basic general facts any other possible \hat{t} is conjugate to an element in the normalizer of

$$
\begin{pmatrix}\n* & 0 & * & 0 \\
0 & * & 0 & 0 \\
* & 0 & * & 0 \\
0 & 0 & 0 & * \n\end{pmatrix}
$$

Any element in the normalizer of this group which maps X into a multiple of itself lies in the group. Thus up to conjugacy we may take

$$
\hat{t} = \begin{pmatrix} a & & & \\ & \pm q^{1/2} & & \\ & & a^{-1} & \\ & & & \pm q^{-1/2} \end{pmatrix}
$$

Replacing a by a^{-1} does not change the conjugacy class of (\hat{t}, X) . Recall also that \hat{t} and $-\hat{t}$ are to be identified. Consider the parabolic subgroup of C given by

$$
P = \begin{pmatrix} * & * & * & * \\ * & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \\ * & * & 0 & * \\ * & * & 0 & * \\ 0 & * & * & * \end{pmatrix}
$$

Note: both G and G^0 have been taken in the C_2 form. Thus we have to be careful about the pair in between L and \widehat{L} .

$$
L = \mathbf{Z} \oplus \mathbf{Z}
$$

\n
$$
\hat{L} \subseteq \mathbf{Z} \oplus \mathbf{Z}
$$

\n
$$
\Delta : \alpha = (1, -1) \quad \beta = (0, 2)
$$

\n
$$
\hat{\Delta} : \hat{\beta} = (1, -1) \quad \hat{\alpha} = (0, 2)
$$

$$
(x, y) \in L \quad (u, v) \in \widehat{L} \qquad \left\langle (x, y), (u, v) \right\rangle = \frac{v(x - y)}{2} + u\left(\frac{x + y}{2}\right)
$$

$$
= \frac{u + v}{2} \cdot x + \frac{u - v}{2} \cdot y
$$

Thus \widehat{L} is associated to the following character:

$$
t = \begin{pmatrix} \alpha & & \\ & \beta & \\ & & \alpha^{-1} \\ & & \beta^{-1} \end{pmatrix} \qquad \widehat{\lambda}(t) = (m + n, m - n)
$$
\n
$$
|\alpha| = q^{+m} \quad |\beta| = q^{+n}
$$
\n
$$
\chi(t) = a^{m+n} q^{\frac{1}{2}(m-n)}
$$

Since

$$
M = \left\{ \begin{pmatrix} A & 0 \\ 0 & A'^{-1} \end{pmatrix} \right\} \xrightarrow{\sim} \{A\} = GL(2)
$$

and since χ is a character which defines a special representation σ of GL(2), we may induce σ (with the usual modifications) from P up to G. If we take $|a| = 1$, the representation associated to (\hat{t}, X) should be any constituent of the result—which is unitary. Otherwise we may choose $|a| > 1$ and then peel off a representation from the top as for real groups. This would then be the representation associated to (\hat{t}, X) .

(iii) One possible choice of \hat{t} is

$$
\begin{pmatrix} q^{1/2} & & & \\ & q^{-1/2} & & \\ & & q^{-1/2} & \\ & & & q^{1/2} \end{pmatrix}
$$

Any possible choice of \hat{t} is conjugate to something in the normalizer of

$$
\left\{ \begin{pmatrix} a & & & \\ & b & & \\ & & a^{-1} & \\ & & & b^{-1} \end{pmatrix} \right\}
$$

The possible choices of \widehat{t} are of the following types

(a)

$$
\hat{t} = \begin{pmatrix} aq^{1/2} & & & \\ & aq^{-1/2} & & \\ & & a^{-1}q^{-1/2} & \\ & & & a^{-1}q^{1/2} \end{pmatrix}
$$

(b)

$$
\hat{t} = \begin{pmatrix} aq^{1/2} \\ a \frac{q^{1/2}}{a} \end{pmatrix}
$$

Any two two matrices in (b) are conjugate to each other by something which centralizes X . Thus they should yield exactly one representation which should be *square-integrable*. Notice that in (i), (ii), (iii)(a) we can find a Levi factor M^0 of a proper parabolic P^0 such that $\hat{t} \in M^0$ and X lies in the Lie algebra of M^0 . This is however not possible for (iii)(b).

Look at (iii)(a). a and a^{-1} may be interchanged. Choose the following parabolic of G.

∗ ∗ 0 ∗

∗

∗

 α^{-1}

∗ ∗ ∗ ∗

 \setminus

 $\begin{array}{c} \hline \end{array}$

 \setminus

 $\begin{array}{c} \hline \end{array}$

∗ ∗ ∗

∗ ∗

∗

 β^{-1}

∗

 \setminus

 $\left| \cdot \right|$

 $\sqrt{ }$

 $\begin{array}{|c|c|} \hline \rule{0pt}{12pt} \rule{0pt}{2.5pt} \rule{0pt}{2.5$

 $\sqrt{ }$

∗

 $\begin{array}{|c|c|} \hline \rule{0pt}{12pt} \rule{0pt}{2.5pt} \rule{0pt}{2.5$

β

 $P =$

 $M =$

 $\sqrt{ }$

α

 $\overline{}$

A torus in M is

 \hat{t} defines the following quasi-character. $|\alpha| = q^m$ $|\beta| = q^n$

$$
\widehat{\lambda}(t) = (m + n, m - n)
$$

$$
\chi(t) = a^{2m} q^n
$$

This character defines a special representation of M. Proceed now as in (ii).

(iv) By general facts there is only one possibility for \hat{t} .

$$
\hat{t} = \pm \begin{pmatrix} q^{3/2} & & & \\ & q^{1/2} & & \\ & & q^{-3/2} & \\ & & & q^{-1/2} \end{pmatrix}
$$

The corresponding representation is the Steinberg representation. Again (\widehat{t}, X) is contained in a Levi factor of no proper parabolic.

Yours, Bob

Compiled on November 12, 2024.