
December, 1974

Dear Deligne:

This letter contains the promised proof of the identity connecting the zeta-function of a
Shimura variety and what I have called Artin-Hecke L-functions, namely the L-functions
associated to automorphic forms. I can of course only carry out the proof for the multiplicative
group of a totally indefinite quaternion algebra over a totally real field. What I shall do in
fact is carry out the analytic part of the proof for the multiplicative group of any quaternion
algebra over a totally real field assuming that my conjectures about the structure of the set
of geometric points over finite fields are valid. For a proof of these conjectures in the case
of a totally indefinite algebra I rely for the moment on my letter to Rapoport, admittedly
a rather shaky support. For calculations which are not worth repeating I shall rely on my
Antwerp report and on my letter to you of October, 1973.

I begin by recalling the general situation.

• G/Q is given. Take it to be connected.
• h : S → G over R.
•

z GL(1)

(z, 1) GL(1)×GL(1) S G

h0

∼
h

over C

• My h is the inverse of yours.
• The associate group in Galois form

Ǧ = Ǧ0 ×G(Q/Q).

In Ǧ0 have Borel B̌0 and a Cartan subgroup Ť of B̌0, both normalized by G(Q/Q). h0

yields an orbit under the Weyl group in the cocharacters of a CSG of G and hence an orbit

{µ̌} = {h0} in the set of characters of Ť and thus an irreducible representation r0 of Ǧ
0
.

G(Q/E) is the stabilizer of ρ0 in G(Q/Q). Extend r0 to Ǧ0×G(Q/E) by letting the elements
of [2] G(Q/E) act trivially on the highest weight vector. Then extend to a representation r
of Ǧ by induction.

Let M be the centralizer of h(S). M is the Levi factor of a parabolic. Let T be a CSG of M
and hence of G. ΩG and ΩM are the Weyl groups of T in G and M respectively. ΩǦ0 and ΩM̌0

also can be easily defined.

Lemma (proof omitted).

(i) The degree of r is

[E : Q] deg r0 = [E : Q][ΩG : ΩM ].
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(ii) The stabilizer of the dominant weight of r0 in ΩǦ0 is ΩM̌0 and ΩǦ0 acts transitively
on the weights of r0. Observe that the E introduced above is the field over which the
Shimura variety SK is conjectured to be defined. Here

SK(C) = G(Q)\G(A)/M(R)K K ⊆ G(Af ).

Let s be a representation of G overQ. I assume s is absolutely irreducible. As a consequence,
s is trivial on the maximal anoisotropic torus in Z, the centre of G. As usual if the Shimura
conjecture is valid s defines a sheaf Fs over SK in the étale topology. I am in this letter
always going to assume that SK is proper over E. We are interested in the Hasse-Weil
zeta-function L(z, SK ,Fs) as a formal, not as an analytic, object.

Let χ∞ being an infinitely differentiable function in G(R) with support which is compact
modulo Z0(R) so that

(i)
χ∞(zg) = s(z)χ∞(g) z ∈ Z0(R).

s(z) is here to be regarded as a scalar.
(ii) If A is a CSG of G over R not conjugate over R to a CSG of M and if γ ∈ A is

regular then [3] ∫
A(R)\G(R)

χ∞(g−1γg) dg = 0.

(iii) If A is a CSG of M over R and if γ ∈ A is regular in G then∫
A(R)\G(R)

χ∞(g−1γg) dg =

∣∣ΩG(R)
∣∣∣∣ΩG(C)
∣∣ trace s(γ)

meas
(
Z0(R)\A(R)

) .
Here ΩG(C) is the Weyl group of T in G(C) and ΩG(R) the Weyl group in T (R).

If π∞ is an irreducible representation of G(R) with

π∞(z) = s(z)−1 z ∈ Z0(R)

set

π∞(χ∞) =

∫
Z0(R)\G(R)

χ∞(g)π∞(g) dg

and set
m(π∞) = trace(π∞)(χ∞).

Observe that no one has yet written out a proof of the existence of χ∞. That it exists is
not completely obvious. However, its existence in general should follow from some work that
Harish-Chandra is now carrying out. For the groups in which I will eventually be concerned
in this letter there is no problem.
Extend s(z), x ∈ Z0(R) to a homomorphism s : G(A) → R+ trivial on G(Q). We are

interested in the space of measurable functions φ on G(Q)\G(A) satisfying

(i)

φ(zg) = s(z)−1φ(g) z ∈ Z0(R)

and

φ(zg) = φ(g) z ∈ Z(Af ) ∩K

[4]

(ii)

∫
Z0(A)G(Q)\G(A)

s(z)2
∣∣φ(g)∣∣2 dg < ∞
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if Z0(A) = Z0(R)
(
Z(Af ) ∩K

)
. The action R of G(A) on this space is the direct sum of

irreducible representations.

R =
⊕

π.

All products below are taking over the constituents of R with multiplicity taken into account.
If π = π∞ ⊗ πf let m(πf , K) be the multiplicity with which the trivial representation of K

occurs in πf . Set
m(π, s,K) = m(π∞)m(πf , K).

Let
q = dimSK .

The groups we shall be considering satisfy the following condition:

If F ⊇ Q is a field and if γ, γ′ are regular in G(F ) and conjugate in G(F ) then they are
conjugate in G(F ).

This assumption is very restrictive and guarantees that phenomena connected with L-
indistinguishability do not occur. If it is satisfied m(π, s,K) should always lie in Z and we
should have

(∗) L(z, SK ,Fs) =
∏
π

L

(
z − q

2
, π, r

)m(π,s,K)

Before I begin the proof of this for the groups mentioned, let me hint at the type of
modification it will require in general. By the way, I apologize for talking all the time about
L-indistinguishability and yet giving you so little in the way of concrete results. Diana
Shelstad and I have been trying to [5] analyze the phenomenon over R in what we hope will
be a definitive way, especially in regard to applications to the trace formula. We are still
having difficulty formulating correct general statements, let alone proving them, but I believe
we are on the right track.

Suppose T is a torus in G over Q and κ is a character of H−1
(
Ľ(T )

)
. Here we use the

fact that G(Q/Q) acts on
Ľ(T ) = Hom

(
GL(1), T

)
.

Recalling the definition of associate group yields an isomorphism (not unique)

Ľ(T ) ≃ L(Ť ).

Use it to identify the two groups. Let Ȟ0 ⊆ Ǧ0 be the subgroup of Ǧ0 generated by Ť and
the one-parameter subgroups corresponding to those α̌ with κ(α̌) = 1. Write the action of σ
on Ľ(T ), and hence, because of the above identification, on Ť as ω1(σ)ω2(σ) where ω2(σ)
is inner with respect to Ȟ0 and ω1(σ) is outer, that is, leaves the set of roots of Ť in Ȟ0

positive with respect to some given order fixed. σ → ω1(σ) yields an action of G(Q/Q) in
the Dynkin diagram of Ȟ0 and we can construct an associate group Ȟ. Assume for simplicity
that Ȟ0 ↪→ Ǧ0 extends to Ȟ ↪→ Ǧ. This is by no means always so even if one replaces Galois
groups by Weil groups. If it is not so, then complications arise which I am only beginning to
understand.
Anyhow, as you know, Ȟ ↪→ Ǧ is it supposed to lead to maps π′ → π from automorphic

forms on H, the quasi-split group with Ȟ as associate group, to automorphic forms on G. This
is a rather complicated phenomenon. Fortunately as far as Shimura varieties are concerned it
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will be enough to have certain local information; the needed global facts will follow. The
local information is still missing in general. Also r, a representation of Ǧ, pulls back to a
representation r′ of Ȟ. Although r is usually irreducible, [6] r′ is usually reducible, and one
can always pick out a certain component r′0 of r′. Now

L(z, π, r) = L(z, π′, r′)

and L(z, π′, r′0) is a factor of L(z, π′, r′). In the case of a general Shimura variety the
formula (∗) will probably have to be modified to include factors L(z, π′, r′0). All this lies in
the future.

At the moment I can, as I told you, only verify (∗) for almost all places, namely those for
which

K = KpKp Kp ⊆ G(Ap
f ), Kp ⊆ G(Qp)

where Kp is a special maximal compact. To do this and take logarithms of both sides and
look at the summand corresponding to the local factor at p.

Consider the right side first. Only those π occur for which πp contains the trivial represen-
tation. For such π

m(πf , K) = m(πp
f , K

p)

and

L

(
z − q

2
, πp, r

)
=

1

det

(
1− r(g(πp))

pz−q/2

)
if g(πp) is the conjugacy class of Ǧ defined by πp as in my Washington lecture.

logL

(
z − q

2
, πp, r

)
=

∞∑
n=1

1

npnz
pnq/2 trace r

(
g(πp)

)n
.

One of the main points of my Washington lectures was that there exists a homomorphism χ
from the representation ring of Ǧ (with a suitably restricted class of representations) to the
Hecke algebra of G(Qp) with respect to Kp. Then [7]

pnq/2 trace rn
(
g(πp)

)n
= traceπp

(
χ(pnq/2r[n])

)
.

Here r[n] has I hope the obvious meaning. It is an appropriate polynomial in the symmetric
powers of r, the polynomial being defined by Newton’s formulae. Note that r[n] is additive
in r.
The local factor on the left side will be a product over the primes of E dividing p. Its

logarithm will then be a sum. The corresponding decomposition of the right-hand side is
furnished by a decomposition of r, now regarded as a representation of the local associate
group. For the local associate group one replaces G(Q/Q) by G(Qp/Qp). The induced
representation decomposes into a direct sum corresponding to the double coset decomposition

G(Q/E)\G(Q/Q)/G(Qp/Qp).

Each double coset also defines a prime of E dividing p. Let rp be the restriction of r to the
local associate group

rp =
⊕

rp(i).
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I want to show that

(∗∗)
∑
π

m(π, s,K) logL

(
z − q

2
, πp, rp(i)

)
= logLpi(z, Sk,Fs)

if pi is the prime corresponding to the ith double coset. With no loss of generality I may
assume I am dealing with the coset containing the identity. p will be the corresponding prime.

If g = g∞gpgp; g
p ∈ G(Ap

f ), gp ∈ G(Qp), χp is the characteristic function of Kp divided by

its measure, and χ
(n)
p = χ

(
pnq/2rp(i)

[n]
)
set

χ(n)(g) = χ∞(g∞)χp(gp)χ(n)
p (gp).

[8] The coefficient of 1/npnz on the left of (∗∗) is
traceR(χ(n)).

This one computes by means of the Selberg trace formula. Proceeding as usual (cf. Antwerp),
we obtain∑

traceµ(γ)
measZ0(A)\Gγ(A)

measZ0(A)\G′
γ(A)

·

{∫
Gγ(A

p
f )\G(Ap

f )

χp(gγg−1) dg

}{
ϵ(γ)

∫
Gγ(Qp)\G(Qp)

χ(n)
p (gγg−1) dg

}
.

The sum is over conjugacy classes in G(Q) ∩ Z0(A)\G(Q) which are conjugate in G(R) to
an element of M(R). G′

γ is the twisted form of Gγ over R with anisotropic derived group.

ϵ(γ) is 1 if γ is not central. Otherwise it is (−1)d if d is the number of real places at which
the quaternion algebra splits. Gγ is of course the centralizer of γ.
It is clear that we have to be able to handle the orbital integrals∫

Gγ(Qp)\G(Qp)

χ(n)
p (gγg−1) dg.

As I shall point out in the moment this is easy if γ is regular and lies in a CSG with maximal
split part. Otherwise it is a difficult problem. Of course in the present case G(Qp) is, since
we are only working at good p, a product of GL(2)’s over unramified extensions of Qp; so
that all the necessary computations have been carried out my Antwerp report. These I put
together in the form needed for the present purposes in my letter of October, 1973 to which I
refer you. If you find that letter too laconic let me know and I will amplify.

That the integrals are easily computed when γ is regular and lies in a CSG with maximal
split part is a consequence of the definitions of my Washington lecture. If T is such a CSG
there is a homomorphism

λ̌ : T (F ) → L(Ť )

[9] with ∣∣λ(γ)∣∣ = p−⟨λ,λ̌(γ)⟩ λ ∈ L(T )

λ̌(γ) is always invariant under G(Q/Q). If σ is the Froebenius, t ∈ Ť (C), and X is an
element of the representation ring of Ǧ then

traceX(t× σ) =
∑

a(λ̌)λ̌(t) t× σ ∈ Ǧ
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where the sum runs over the invariant elements in Ľ(T ). The coefficients a(λ̌) depend on X.
If f = χ(X) then ∏

α>0

∣∣1− α(x)
∣∣∣∣α(x)∣∣−1/2

∫
T (Qp)\G(Qp)

f(gγg−1) dg

is equal to

c(G)a
(
λ̌(γ)

)
.

c(G) is a constant which depends on G alone.
Let κ be the residue field of E at p. I shall first explain the conjectures about the

structure of SK(κ) mean in the present circumstances, then I shall review what I said in my
old letter about the combinatorial facts to be proved, then I shall carry out the necessary
combinatorial analysis. I first of all correct (once again!) the definition of equivalence of two
pairs (γ1, h

0
1), (γ2, h

0
2) of Frobenius type. The relations

γm
2 = gγm

1 g−1

on p. 20 and on p. 21 of my Rapoport letter should only hold modulo the centre

γm
2 = zgγm

1 g−1 z ∈ Z(Q).

Moreover I should not pass to the direct limit. The spaces [10]

H(Q)\G(Ap
f )×X/Kp

make sense but
H(Q)\G(Ap

f )×X

does not. I am consistently confused about the anisotropic part of the centre.
Suppose (γ, h) is of Frobenius type. Then γ is elliptic at infinity. There are two possibilities:

(i) No power of γ lies in F , the totally real field over which the quaternion algebra is
given. In this case F (γ) is a totally imaginary quadratic extension F ′ of Q.

(ii) Some power of γ lies in F .

Recall that we fix
E ⊆ Q ⊆ C

⊆
Qp

.

The imbedding E ↪→ Qp is to define p. The imbeddings of F in Q or C are parameterized
by the homogeneous space

G(Q/Q)\G(Q/F ).

We write this set as
×× · · ·× ◦ · · · ◦× · · · .

A cross represents a place at which the algebra splits; a circle a place at which it does not.
We break it up into orbits under the Frobenius

× · · · ◦ · · · ×︸ ︷︷ ︸
n1

;× · · · ◦ · · · ×︸ ︷︷ ︸
n2

; · · · .

Let ni be the number of elements in the ith orbit. For concreteness, [11] suppose the Frobenius
operates cyclically on each of the orbits. Let n =

∑
ni. The cocharacter µ̌ determined by h0
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has n coordinates which we take, with an obvious notation, to be integral diagonal matrices.
At an unmarked point (◦)

µ̌j =

(
0 0
0 0

)
.

At a marked point (×)

µ̌j =

(
1 0
0 0

)
or

(
0 0
0 1

)
.

Let
ν̌ = Nm µ̌

where the norm is taken say with respect to a large extension kp of degree m. Let bi be the
number of marked points in the ith orbit. Then ν̌j depends only on the orbit to which j
belongs.

ν̌j =

(
ki 0
0 k′

i

)
with

ki + k′
i =

mbi
ni

.

If F ′ is not split at the prime of F corresponding to the ith orbit, then ki = k′
i. If some power

of γ lies in F then ki = k′
i for all i. It follows easily that if we are truly dealing with case (i)

then the field F ′ is split at at least one prime dividing p. Moreover, ki ̸= k′
i for at least one i.

The condition on equivalence of (γ1, h
0
1), (γ2, h

0
2) away from p just [12] means, for the

groups under consideration, that γ1 and γ2 are conjugate modulo the centre. To see what the
condition at p means we find the F defined on p. 24 of the Rapoport letter. In the meantime
I have begun to denote this F by the new name b. Let me do so here also. The construction
of b is such that it respects any decomposition of G into a product over Qp. Thus with no
loss of generality I may assume there is only one orbit.

(a) Suppose we are in case (i) and F ′ splits over F . We may take kp unramified. Then b
is of the form

b =
(
b(1), . . . , b(n)

)
b(i) =

(
∗ 0
0 ∗

)
.

We are interested in b modulo the relation b ∼ cbσ(c−1). This means that the only
invariants are the absolute values of the diagonal elements of∏

i

b(i).

Take w = (1, σ) in the Weil group as on p. 14 of the Appendix and use bw to define b.
Then bw = aσ and

b(1) =

(
pαi+1 0

0 pβi+1

)
µ̌i+1 =

(
αi+1 0
0 βi+1

)
.

Thus ∏
b(i) =

(
pk 0

0 pk
′

)
.

Here k = k1 (there is now only one orbit) is the number of µ̌j of the form ( 1 0
0 0 ).
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(b) Suppose we are in case (i) and F ′ does not split over F or we are in case (ii). In the
second case we have to pick an anisotropic CSG to define [13] b. This is just the same
as picking a field F ′ which does not split at p. So we can treat both cases uniformly,
let k be the completion of the maximal unramified extension of Qp and let k′ be the
composite of F ′ and k. Let n′ = n if F ′ is ramified and n′ = 2n if E is unramified
at p. We write the elements of (F ′ ⊗Qp k)

k as

d =
(
d(1), . . . , d(n′)

)
d(i) ∈ k′.

The action of the Frobenius on the second factor of F ′ ⊗ k is given by(
d(1), . . . , d(n′)

)
→
(
σn′

d(n′), d(1), . . . , d(n− 1)
)
.

σn′
is understood to be extended to k′ so that it acts trivially on F ′. Thus if

b =
(
b(1), . . . , b(n′)

)
all that matters is

b′ =
∏

b(i)

modulo the equivalence b′ ∼ cbσn′
(c−1). Thus only |b′| matters or rather

∣∣λ(b)∣∣ if λ is
a character of the CSG corresponding to F ′ defined over Qp. Any such character is a
multiple of

λ0 =

((
1 0
0 1

)
, . . . ,

(
1 0
0 1

))
.

As on p. 24 of the Rapoport letter∣∣λ(b)∣∣ = p−⟨λ,µ̌⟩.

In particular [14] ∣∣λ0(b)
∣∣ = p−⟨λ0,µ̌⟩ = p−b

if b is the number of marked places.

We now return to the original situation, that is, p is once again not assumed to remain
prime in F . The equivalence classes of Frobenius pairs (γ, h0) can now be described.

(i) Let F ′ be a totally imaginary quadratic extension of F which splits over at least one
prime of F dividing p. Let S be a nonempty subset of the primes dividing p at which
E splits so that bi is even outside of S. For each pi ∈ S let ki ⩾ 0, k′

i ⩾ 0, with
ki ̸= k′

i be integers so that ki + k′
i = bi, the number of marked places in the ith orbit.

To this data corresponds an equivalence class of type (i). All equivalence classes of
type (i) are obtained in this way. Because of the automorphism of F ′ over F the

classes corresponding to
(
F ′,
{
(ki, k

′
i)
})

and
(
F ′,
{
(k′

i, ki)
})

are the same.

(ii) There is one class of type (ii).

Notice that this corresponds exactly to the grouping of terms in my old letter. However, in
the letter I took ki ⩽ bi/2 so that I had to introduce the multiplicity 2s−1 if |S| = s.

Let me come to the construction of X. The F0 referred to on p. 25 of the Rapoport letter
is given by

g → bσ(g)

if g ∈ G(k) represents a point of X ′′. Observe that in the definition of X, y′ should be F0x
′

not F r
0x

′. You might find the enclosed lecture useful; it does not contain so many annoying
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slips. In the lecture F0 is denoted F . Let me use this notation here also except that I make
F boldface, thus F. The construction of X respects products so I may as well work again at
one fixed prime dividing p. Denote the X ′′ of the Rapoport letter by H as in the lecture. If
σ is the ring of integers in k, the maximal unramified extension of Qp then a point of H is
just an n-tuple [15]

(M1, . . . ,Mn)

of two-dimensional σ-lattices. We may so arrange matters that the action of the Frobenius σ
is

σ : (M1, . . . ,Mn) → (σMn,
σM1, . . . ,

σMn−1) (n = ni).
σMj is obtained from Mj by letting σ act on the coordinates of its elements. We may suppose

b = (d, 1, . . . , 1)

so that
F : (M1, . . . ,Mn) → (d σMn,

σM1, . . . ,
σMn−1).

If we are working with an equivalence class of the first type and pi ∈ S we may diagonalize
F ′ and take

d =

(
pk 0

0 pk
′

)
k ̸= k′.

In this case Gi = G
0

i is the torus corresponding to F ′ in Gi (the ith factor of G over FQp).

Otherwise G
0

i = Gi. If F
′ splits over pi then

d =

(
pbi/2 0

0 pbi/2

)
Consequently Gi is also Gi. If we are dealing with a prime pi at which E does not split or we
are dealing with case (ii) only the order of det d matters. This order is bi. Thus Gi is Gi or
the multiplicative group of a quaternion algebra over Fpi according as bi is even or odd. This
all fits in perfectly with my old letter. In these cases in which only the order of d matters I
take [16]

d = pnI or d = pn
(
0 1
p 0

)
.

This is mostly just to be definite.
Let M i be the image of Mi in the Bruhat-Tits building of SL(2). Thus M i is Mi up to

similarity. Define Mi, i ∈ Z by the periodicity condition

Mi+n = d−1Mi

M ∈ H defines a point of X if and only if M i = σ(Mi−1) when i is an unmarked point (◦)
and M i, σ(Mi−1) are joined by an edge when i is a marked point (×).
Before analyzing X more carefully let’s recall what we need to know. Just as in the

Antwerp report the Lefschetz formula comes down to looking at the action of powers Fm of F
on sheaves over the discrete spaces

YK = H(Q)\G(Ap
f )×X/Kp.

A lemma similar to those proved in §5 of the Antwerp report, the result of which is summarized
on the fourth line of p. 9 of my old letter, shows that it is all a matter of computing certain
class functions φm(γ) on G(Qp). By the way, the sum on p. 9 just mentioned is over conjugacy
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classes in H. If you have any trouble deriving this formula, I would be glad to give further
details. I also remark that m > 0 is to be such that the Frobenius element σm lies in G(Q/E).
Thus a cyclic shift by m takes a marked place to a marked place.

Since I have changed the action of G(Qp) in X from right to left let me redefine φm(γ). If
x ∈ X, set

Tm
x =

{
g ∈ G(Qp)

∣∣∣ Fmx = gx
}

and let δmx be the characteristic function of Tm
x . If {xi} is a set of representatives for the

orbits of G(Qp) in X set [17]

φm(γ) =
∑
i

1

measGxi
(Qp)

∫
Gγ(Qp)\G(Qp)

δmxi
(h−1γh) dh.

It will follow from what we do below that integrals are finite and that for a given m all
but finitely many δmxi

are identically zero. It is, however, not in general true, contrary to an
assertion of the letter, that there are only finitely many orbits.

As explained rather briefly in the letter all we have to do is show that the functions φm(γ)
can be given explicitly by certain formulae. The factorization of G and of G over Qp leads to
a factorization

φm(γ) =
∏
i

φm
i (γi).

It is enough to describe the formulae for the φm
i . I repeat them below for convenience.

I find my notes a little difficult to decipher so I will not try to develop a method which
will apply uniformly, but rather use the same decomposition into cases as in the letter. This
will make the exposition longer, but perhaps more digestible.

There are some general remarks to be made. A point in X is given by a sequence of lattices,
Mj, j ∈ Z, satisfying

(i) σ(M j−1) = M j if i is unmarked.
(ii) σ(M j−1) and M j are joined by an edge if i is a marked point.
(iii) dMj+ni

= Mj.

After writing down these properties I realize they are insufficient. What is missing is
the condition coming from the abelian part which I said on p. 25 of the Rapoport letter I
could not remember. For a torus the reciprocity map at a place p of E with a uniformizing
parameter ϖ(= p) is given by ϖ → t with [18]

λ(t) =
∏

G(Qp/Ep)\G(Qp/Qp)

ϖ⟨τλ,µ̌⟩

if we are dealing with a prime at which everything is unramified. If

r = [Ep : Qp]

then

t =
r−1∏
j=0

ϖσj µ̌.

On the other hand if w0 = (1, σ) belongs to the Weil group then

bw0 =
r−1∑
j=0

σσjµ̌⊗ aσ,σj
= µ̌⊗ϖ = ϖµ̌
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and

bw0r =
r−1∏
j=0

ϖσj µ̌.

This will of course establish the validity of my conjecture for tori. It also shows what condition
is missing.

If x is the point of H represented by g and λ is a rational character of G over k then∣∣λ(g)∣∣ = |λ|(x)
depends only on x. The extra condition to be imposed for x to lie in X is that

|λ|(Fx)

|λ|(x)
= |p⟨λ,µ̌⟩|

for all such λ. The reason that the omission of this condition caused no embarrassment in
the Rapoport letter is that it actually appeared surreptitiously in the assertion on p. 53 that

the difference between the orders of eM̂ and eFM̂ is a(e).
[19] In the present case it allows (i) and (ii) to be strengthened to:

(i′) σ(Mj−1) = Mj if j is unmarked.
(ii′) Mj ⫌ σ(Mj−1) ⫌ pMj otherwise.

It will be simpler if we dispose immediately of the trivial case that there are no marked
points in the orbit. Then Gi(Qp) = GL(2, Fpi) and all the Mi are determined by M0 which
must be a lattice over Fpi . There is only one orbit. A representative x0 is obtained by taking
M0 as the lattice V of all integral vectors. Then Tm

x0
= GL(2,Opi) and

φm
i (γ) =

1

measGL(2,Opi)

∫
GL(2,Fpi )γ\GL(2,Fpi )

δmx0
(h−1γh) dh.

This is the function demanded by the trace formula. In the letter I gave explicit formulae for
the integral, but they are not always necessary.

We begin with classes of type (i) taking ki ≠ k′
i. Let ℓi be the greatest common divisor of

m and ni and let
bi
ai

=
ni

ℓi
.

Notice that if we take the orbits of σm in the ith orbit under σ then such an orbit consists
entirely of marked or entirely of unmarked points. The number of orbits consisting of marked
points is ai. If ni/ℓi|ki, let η be the characteristic function of those

γ =

(
α 0
0 β

)
in Gi(Qp) for which

|α| = |pmki/ni| |β| = |pmk′i/ni |.
Then [20]

measGi(Zp)φ
m
i (γ) =


0 ni/ℓi ∤ ki
ai di = min{ki, k′

i}(
aiki
bi

)pmdiη(γ)

ni/ℓi|ki

is the form predicted for φm
i on p. 9 of the old letter. Gi(Zp) has I hope an obvious meaning.
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Let
x = {Mj}.

and set
Lj = σ−j(Mj).

Then
dLj+ni

= σ−ni(Lj).

If
Fmx = x′ = {M ′

j}
then

M ′
j = σm(Mj−m)

and
L′
j = Lj−m.

We suppose the torus Ti defined by F ′ in Gi is the group of diagonal matrices. If γ ∈ Tm
x

then [21]
Lj−m = γLj.

Let Lj be the image of Lj in the Bruhat-Tits building of SL(2, k). Since Lj = Lj−1 or Lj

and Lj−1 are joined by an edge the sequence {Lj} defines a path, perhaps infinite, in this
Bruhat-Tits building. Consider the apartment A of the building corresponding to the diagonal
matrices. Amongst all the Lj there is one Lj0 whose distance from this apartment is minimal.
Since σ−j0(γ) is also a diagonal matrix, as is d,

ρ(Lj0 , A) = ρ(Lj0−m, A) = ρ(Lj0+ni
, A).

Picture

N0

Lj0
Lj0−ni

dσn(N0) = dN0

Closest point to Lj0

A
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Because the Bruhat-Tits building is a tree we conclude that Lj0 ∈ A. Observe that if
Lj ∈ A, so is Lj−m and Lj+ni

, and hence so is Lj+ℓi . Since we are only interested in orbits
under Gi(Qp) we may always assume that for at least one j0, Lj0 is the standard lattice V of
integral vectors. Observe that

Lj0−mni
= dmLj0 = γniLj0

and
dmγ−nj

stabilizes V . Thus [22]

|α| = |pmki/ni| |β| = |pmk′i/ni |.
Also mki/ni must be integral so ni/ℓi|ki.

The skeleton will be the set of all j such that Lj ∈ A. Observe that for all j

dm/ℓiσmni/ℓi(Lj) = Lj−mni/ℓi = γni/ℓiLj

or

(1) σmni/ℓi(Lj) = d−m/ℓiγni/ℓiLj.

If um+ vni = ℓi then

Lj−ℓi = Lj−um−vni
= γuLj−vni

= γudvσvni(Lj)

or

(2) Lj−ℓi = γudvσvni(Lj).

From (1) and (2) we deduce conversely

Lj−ni
= Lj−ni

ℓi
ℓi
= γuni/ℓidvni/ℓiσvn2

i /ℓi(Lj)

= dγuni/ℓid−mu/ℓiσ
ni−um

ℓi
ni(Lj)

= dσni(Lj)

and [23]

Lj−m = Lj−m
ℓi
ℓi = γum/ℓidvm/ℓiσvnim/ℓi(Lj)

= γγ−vni/ℓidvm/ℓiσvnim/ℓi(Lj)

= γLj.

If we manage to define the chain for ℓi + 1 consecutive values of j so that (1) is satisfied, so
that the periodicity condition (2) is satisfied for the two end points and so that the conditions

(i′) Lj−1 = Lj if j is unmarked.
(ii′) Lj ⫌ Lj−1 ⫌ pLj if j is marked.

are satisfied for all j but the first, where they are inapplicable, then we can extend by
periodicity to obtain a point of X. Actually it is enough to arrange the barred form of these
two conditions for once Lj0 is fixed there will be a unique lifting.
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Before proceeding further there are two general remarks to be made about the functions

φm(γ) =
∑ 1

measGx

∫
Gγ(Qp)\G(Qp)

δmx (h
−1γh) dh

=
∑ 1

measGx

∑
Gγ(Qp)\G(Qp)/Gx

δmhx(γ)meas
(
Gγ(Qp)\Gγ(Qp)hGx

)
If Gγ,x is the stabilizer of x in Gγ then

meas
(
Gγ(Qp)\Gγ(Qp)hGx

)
measGx

=
1

measGγ,hx

.

[24] Thus φm(γ) is the sum over the orbits of Gγ(Qp) of

δmx (γ)

measGγ,x

.

Fix γ and consider the set U of all x for which δmx (γ) = 1. Suppose U ′ ⊆ U and G0, an
open subgroup of Gγ(Qp), are such that

(i) Every orbit in U meets U ′.
(ii) If x and y in U ′ lie in the same orbit of Gγ(Qp) then x = gy, g ∈ G0.
(iii) For all x ∈ U ′, Gx is a subgroup of G0.

Then ∑ δmx (γ)

measGγ,x

=
|U ′|

measG0

if |U ′| is the cardinality of U ′.
In the case we are treating at present U ′ can be taken as follows. In each subset X which

appears as a rational skeleton we fix a j0 = j0(X). U ′ is the set of all x = {Mi} ∼ {Li} such
that Lj0 is the standard lattice V if j0 = j0(X), X the skeleton of x.

Observe that if

γudv =

(
α′ 0
0 β′

)
then

|α′| =
∣∣∣∣pℓikini

∣∣∣∣ |β′| =
∣∣∣∣pℓik′

i

ni

∣∣∣∣.
Thus the condition (2) demands that the path in A formed from the Lj with j in the rational
skeleton joins the points Lj0 , Lj0+ℓi whose distance apart is [25]∣∣∣∣ ℓini

(ki − k′
i)

∣∣∣∣ = e.

If f is the number of marked points in the skeleton between j0 and j0 + ℓi − 1 inclusive the
length of the path is f . Observe that this subpath is obtained from the original path simply
by discarding all edges not in A. Let N e

f be the number of paths in A of length f joining two
points whose distance apart is e.
To simplify I may as well discard all unmarked places. They obviously play no role.

However, I must then replace ui by bi and ℓi by ai. I do this and now suppose all places
are marked. Suppose X is the rational skeleton of x. X has f elements (in an interval of
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length ai of course) and ai − f = 2c is even. I want to introduce a set with c+ f elements.
Let r be the number of gaps that occur when the points not in the rational skeleton are
removed. The length of each gap is even. Let the lengths be 2s1, . . . , 2sr.

Example

A

e = 1 f = 3
r = 2

s1 = 4 s2 = 1

I refer to the r subpaths as digits. Let T0 be the tree formed by the non-negative real numbers
with non-negative reals as vertices. To each digit I associate a path in T0 beginning and
ending at zero. The length of the path will be 2si. I make the definition by example. Consider
the first digit in the above example. The associated path goes directly out to three, then
back to two, then out to three, then directly back to zero. Thus to each edge of the [26] digit
corresponds an edge of the path in T0. The edge of the digit will be called progressive or
retrogressive according as the edge in T0 in leading away or towards 0. To the points of the
skeleton we add all points j such that Lj , Lj+1 are joined by a progressive edge. The new set
has c+ f elements. Call it the frame Y.
Observe that f = e + 2f ′ and that c + f = c′ + f ′ + e if ai = 2c′ + e. Supposed we are

given a subset Y with c′ + f ′ + e elements f ′ ⩾ 0. (We always work modulo ai.) Set

Nj1,j2 =

j2∑
j=j1

ϵj j2 ⩾ j1

where ϵj is 1 or −1 according as j lies or does not lie in Y . Set

X =
{
j1
∣∣ Nj1,j2 ⩾ 0 for j2 ⩾ j1

}
.

Observe this process does in fact allow us to pass back from the frame to the skeleton. I
claim that in general X, which I may call the skeleton of Y , is not empty. I use induction
on c′. Y is not empty for c′ + e > 0. Choose j1 ∈ Y . If j1 ∈ X we are done. Otherwise there
is a smallest j2 such that Nj1,j2 < 0. Then j2 > j1 + 1 for Nj1,j1 = 1. Also Nj1,j2−1 = 0 so
j2 − j1 − 1 even. Discard j1, . . . , j2 − 1. We obtain a set with ai − (j2 − j1)− 1 elements a
subset Y ′ with c′− (j2− j1− 1)+ e/2 elements, because exactly half of the discarded elements
lie in Y . Since j2 < j1 + ai we may apply a induction, for our assertion is clear if c′ = 0 or
e = 0, c′ = 1. The skeleton of Y ′ is clearly contained in the skeleton of Y . The index j1 will
be called an extremity of the skeleton if it lies in the skeleton and Nj1,j2 = 0 for some j2 ⩾ j1.
The skeleton does have extremities unless f ′ = c′ for if j1 lies in the skeleton and is not an
extremity then j1 + 1 also lies in the skeleton.



16 LETTER TO PIERRE DELIGNE—DECEMBER 1974

We shall also call the subset Y a frame. We associate to a frame: [27]

1. The skeleton.
2. The number r of extremities.
3. To each extremity jα the number 2sα chosen to be minimal so that

Njα,jα+2sα−1 = 0.

4. The spine, which is obtained from the skeleton by discarding the extremities.

I claim that the spine contains 2f ′ + e points. This is clear if f ′ = c′; otherwise we proceed
by induction. Let jα be an extremity. Remove jα, jα + 1, . . . , jα + 2sα − 1. If 2sα = 2c′ + e
the result is clear. Otherwise ai is replaced by ai − 2sα, and r is reduced by 1, for no new
extremities are introduced and the spine is unchanged. It follows by induction that

ai = 2f ′ + e+
∑

2sα

and that the spine contains 2f ′ + e points.
Suppose we have a frame and a given path joining Lj0 and Lj0+ai corresponding to its

skeleton. We ask ourselves how many elements of U ′ correspond to this frame and this path.
It is a matter of counting the number of possible digits corresponding to a given gap of
length 2sα. For the retrogressive edges there is no choice; in them we are just retracing our
path.

Set
B = d−m/ℓiγni/ℓi .

Suppose a given lattice L satisfies

BL = σmni/ℓi(L).

[28] Then how many L′ with L ⫌ L′ ⫌ pL are there with BL′ = σmni/ℓi(L)? Since
σmni/ℓi(B) = B we can regard the map λ → B−1σmni/ℓi(λ) as defining a vector space
structure on L/pL over the field with pmni/ℓi elements. Since there is only one such structure
it follows that there are pmni/ℓi + 1 possibilities for L′. At a progressive edge we pass from
such an L to such an L′. Since the only thing we cannot do at a progressive edge is turn
back, this yields pmni/ℓi possibilities. However, at the first of the progressive edges there are
two forbidden directions, those which lie in A. Since ni/ℓi = bi/ai we conclude that

(3) |U ′| =
∑1− 1

p
mbi
ai

r

p
mbi
ai

s
N e

f .

Here the sum is over all subsets of the integers modulo ai with at least c′ + e elements. If the
number of elements is c′ + f ′ + e then f = 2f ′ + e and s =

∑r
α=1 sα. What we have to do is

show that

|U ′| =
(

ai
aiki
bi

)
pmdi di = min{ki, k′

i}.

With no loss of generality we may suppose ki ⩽ k′
i so that c′ = aiki/bi. For the sake of later

applications we now allow the possibility that ki = k′
i. This means e = 0.

The expression (3) is equal to

c′∑
j=0

∑
r⩾j

(
r

j

)
(−1)jN e

ai−2s

pmbi/ai(s−j).
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The inner sum is over all Y for which r ⩾ j. To prove that it has the correct value we
perform a preliminary reduction. Suppose we have a frame with [29] ai − s elements and the
corresponding r ⩾ j. Then s ⩾ j. We can construct

(
r
j

)
subsets with ai − (s− j) = ai − s+ j

elements as follows. Take a subset {1, . . . , r} with j elements. For each α in this subset
consider the gap jα, . . . , jα + 2sα − 1 and for each α add jα + 2sα − 1 to the subset. The new
subset will have ai − s+ j elements. Moreover the added points will not be extremities, for if
j lies in the skeleton of the old it lies in the skeleton of the new and j − 1 is certainly no
extremity. Moreover for each α in the subset jα is an extremity of the old frame but not of
the new.

We ask ourselves the following question: How often is a given frame with ai−s+ j elements
obtained by the above procedure? Of course the procedure yields the frame together with j
distinguished elements of the skeleton which are not extremities. The spine has ai − 2s+ 2j
elements. Also these j points of the spine are each separated by some other point of the spine.
Suppose we start with such a situation. Remove the j distinguished points. The result is still
a frame. Any point in the skeleton of this new frame was in the skeleton of the old because
the numbers Nj1,j2 are reduced by removing points of the original frame. Since the j points
were not extremities they were followed by points in the old skeleton. Moreover because any
two distinguished points are separated the succeeding point is not distinguished. In fact,
because there is a point of the spine between any two distinguished points, the succeeding
point is also in the new skeleton. Thus the j points are the final points of the gaps in which
they lie in the new frame. What we have shown is that the original procedure yields a frame
with ai − s+ j elements and any j separated points in its spine. Let Su,j be the number of
ways of selecting j separated points from a cyclic set with u elements.

The sum (3) is thus equal to

c′∑
s=0

s∑
j=0

(
ai

s− j

)
(−1)jN e

ai−2sSai−2(s−j),jp
mbi/ai(s−j)

[30] because the number of subsets with ai − (s − j) elements is
(

ai
s−j

)
. This sum may be

rewritten as
c′∑

j=0

s∑
j=0

(
ai
j

)
(−1)s−jN e

ai−2sSai−2j,s−jp
mbi
ai

j
.

What we have to show is that

(4)
c′∑

s=j

(−1)s−jN e
ai−2sSai−2j,s−j =

{
0 j ̸= c′

1 j = c′
.

Taking the sum over s− j rather than j so that j → 0, c′ → c− j, ai → ai − 2j we see that
this follows from §5 of the appendix.

I next treat the case that Gi(Qp) = GL(2, Fpi). This time one of the conditions on x = {Lj}
is that

Lj = dσni(Lj+ni
).

Since d is a scalar this implies
Lj = σni(Lj).

Recalling that the Bruhat-Tits building is a tree, one deduces immediately that at least one
of the points Lj, and hence one of the Lj, is defined over Fpi . The skeleton is the set of all
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j for which Lj is defined over Fpi . If j lies in the skeleton and j′ is the first index in the
skeleton to follow it then either j′ = j + 1 or Lj′ = Lj , for the path of shortest length joining
Lj′ to Lj must lie in the path defined by x.
I first treat the case that γ is a scalar. I introduce a set U ′ as before. In each possible

skeleton X we fix an index j0 = j0(X). A point x will lie in U ′ if γ ∈ Tm
x and Lj0 is the

standard lattice V if j0 = j0(X), for X the skeleton of x. The desired value of φm
i (γ) is given

on p. 11 of the [31] old letter. Since

measG′(γ, Fpi)\G′(Fpi)

measG′(Opi)
=

q − 1

measGL(2, Opi)

if q = pni we see that we have to show that |U ′| = 0 unless

γ =

(
α 0
0 α

)
|α| = |pmbi/2ni |

and ai is even when it should be(
ai
ai/2

)
pmbi/2 − (q − 1)

ai/2−1∑
j=0

(
ai
j

)
pmbi/2.

The analysis proceeds pretty much as before so I do not repeat it in detail. The only
difference is that the path associated to the skeleton is a closed path in a tree in which every
vertex lies on q + 1 edges and that the initial edge of a digit cannot be rational over Fpi so
that there are q + 1 forbidden directions. Thus (3) is replaced by

|U ′| =
∑(

1− q

pmbi/ai

)r

pmbi/aiNc′−s

if Nc′−s is the number of closed paths with a given origin in a tree in which every vertex lies
on q + 1 edges, ai is now 2c′. Proceeding as before we see that the right side equals

c′∑
s=0

s∑
j=0

(
ai
j

)
(−1)s−jqs−jNc′−sSai−2j,s−jp

mbi
ai

j
.

What we must do is show that [32]

c′∑
s=j

(−1)s−jqs−jNc′−sSai−2j,s−j =

{
1 j = c′

−(q − 1) j < c′

This is done in §6 of the appendix.
Now suppose γ is not a scalar. The expected value of φm

i (γ) for γ elliptic is given on p. 10
of the old letter. It is 0 unless p−mai/ℓi Nm γ is a unit. Set q0 = −1 if γ is unramified and
q0 = 0 if γ is ramified. I observe that

measG′(γ, Fpi)\G′(Fpi)

measG′(Opi)
=

−(q0 − 1)

measG′(γ,Opi)
.

Here G′(Opi) is the group of units in the quaternion algebra over Fpi and G′(γ,Opi) is the
group of units in the field generated by γ over Fpi . The notation is unfortunately rather
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inadequate. The expression (1) on p. 10 of the letter is then

(5)
−(q0 − 1)

measG′(γ,Opi)

∑
0⩽j<ai/2

(
ai
j

)
p

mbi
ai

j
.

The expressions (α) and (β) are simply

(6)
1

measGL(2, Opi)

∫
Gi(γ,Qp)\Gi(Qp)

η(g−1γg) dg

if η is the characteristic function of

pmai/2ℓiGL(2, Opi) = pmai/2ℓiGi(Zp).

Recall that
Gi(Qp) = GL(2, Fpi).

[33] The expression (6) is equal to

(7)
∑ 1

meas
(
Gi(γ,Qp) ∩ hGi(Zp)h−1

) .
The sum is over those double cosets Gi(γ,Qp)hGi(Zp) for which

h−1γh ∈ pmai/2ℓiGi(Zp).

Thus φm
i (γ) is to be (5) if ai is odd and the sum of (5) and

(8)

(
ai
ai/2

)
pmbi/2

times (7) if ai is even provided of course p−mai/ℓi Nm γ is a unit. (In the letter I wrote pmai/2

instead of pmbi/2. This was a slip.)
If γ is hyperbolic at pi we set q0 = 1. Then (ii) of the old letter is simply demanding that

φm
1 (γ) be the sum of (5) and of (7) times (8). Of course (5) will be 0. Moreover (7) will be 0

unless

γ =

(
α 0
0 β

)
|α| = |β| = |pmai/2ℓi |.

The two periodicity conditions are

σmni/ℓi(Lj) = d−m/ℓiγn/ℓi(Lj)

Lj−ℓi = γudvσvni(Lj).

They guarantee that σm
1 (γ) will be 0 unless |Nm γ| = |pmai/ℓi | and both eigenvalues of γ have

the same absolute value.
We may introduce the skeleton as before. If j belongs to the skeleton consider the

stabilizer Gj of Lj in GL(2, Fpi)γ, the stabilizer of γ in GL(2, Fpi). Gj is the group of units
in some order of Fpi(γ) which contains [34] Opi , so it makes sense to speak of the set of j for
which Gj is maximal. This set I call the reduced skeleton. If j1 lies in the reduced skeleton
and j2 is the first point in the reduced skeleton to follow it then either Lj1 = Lj2 or j2 = j1+1
because Gj1 = Gj2 stabilizes the path of shortest length joining Lj1 and Lj2 .
I want to associate an “apartment” to γ in the Bruhat-Tits building of SL(2, Fpi).

GL(2, Fpi)γ may be identified with the multiplicative group of Fpi(γ). Replacing γ by
a conjugate if necessary I may assume that GL(2, Opi)γ is the group of units in Fpi(γ). Let
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V be the point in the Bruhat-Tits building associated to the standard lattice. Taking all
translates of V by GL(2, Fpi)γ together with the edges joining any two neighboring points of
this set I obtain what I shall call here the “apartment” belonging to γ. It is easily seen to be
a connected tree in which every vertex lies in q0 + 1 edges.
The stabilizer of the lattice hV , h ∈ GL(2, Fpi) in GL(2, Fpi)γ is determined by the

double coset GL(2, Fpi)γhGL(2, Opi) and, as one verifies by analyzing the three possible cases
separately, the stabilizer in turn determines the double coset.

Choose a set of double coset representatives h. Set

H(h) = GL(2, Fpi)γ ∩ hGL(2, Opi)h
−1.

For each possible reduced skeleton X choose an index j0 = j0(X) in it. Let U ′(h) be the
set of all x ∼ {Li} for which γ ∈ Tm

x , for which the stabilizer of Lj in GL(2, Fpi)γ is H(h)
if j lies in the reduced skeleton, and for which Lj0 = V if j0 = j0(X) and X is the reduced
skeleton of x. [35] Using an argument introduced earlier one sees that

φm
1 (γ) =

∑
h

∣∣U ′(h)
∣∣

measU(h)
.

As before when calculating the right side I may suppose bi = ni.
Suppose 1 is not in the double coset containing h but j, j + 1 are two consecutive points

in the reduced skeleton. Then Lj, Lj+1 are a distance 1 apart and are the same positive
distance from the apartment. This is impossible. Thus for such an h the path associated to
the reduced skeleton must be a point. Thus the path which is of length ai is closed so ai is
even. Analyzing the possible paths as before and observing that the only forbidden direction
for the initial edge of a digit is that which moves into the apartment, we see that∣∣U ′(h)

∣∣ = ( ai
ai/2

)
pmbi/2

for the total number of progressive edges is s = ai/2. This result is to be compared with
(7) and (8).

All we have left to do is show that
∣∣U ′(1)

∣∣ is equal to
−(q0 − 1)

∑
0⩽j<ai/2

(
ai
j

)
p

mbi
ai

j
+

{
0 ai odd(

ai
ai/2

)
pmbi/2 ai even

.

Let e be the distance between Lj and γudv(Lj) for j in the reduced skeleton. e is 0 if q0 = ±1
and is 0 or 1 if q0 = 0. Since

|det γudv| = |pai |
we must have ai = 2c′ + e. Also e must be 0 if q0 = ±1. Anyhow the analysis which led to (3)
shows that [36] ∣∣U ′(1)

∣∣ =∑(
1− q0

pmbi/ai

)r

p
mbi
ai

s
N e

f (q0)

if N e
f (q0) is the number of paths of length f in the apartment associated to γ which join two

points a distance e apart. The sum is again over all subsets with at least c′ + e elements
modulo ai. That the sum has the correct value is clear for q0 = 0. For q0 = 1 this follows
from §5 of the appendix as before. For q0 = −1, one uses the argument used when discussing
scalar matrices, except that q0 replaces q, to deduce it from §6 of the appendix.
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Finally I must consider the case that Gi(Qp) is G′(Fpi) the multiplicative group of the
quaternion algebra over Fpi . Then d is a scalar times(

0 1
p 0

)
.

Now I single out the tree T1 in the Bruhat-Tits building for SL(2, k) formed by V , the standard
lattice, dV , and the edge joining them. Given x ∼ {Lj} choose Lj so that the distance from
Lj and T1 is minimal

Picture

V dV = dσni(V )

Lj

dσni(Lj)

or

dV V

Lj

dσni(Lj)

We conclude that Lj ∈ T1.
We now define the skeleton as the set of j for which Lj ∈ T1. If γ is a scalar we define U ′

about as before by demanding that Lj0 = V for a certain j0. If q0 is taken to be 0, the by
now familiar analysis shows that [37]

|U ′| =
∑

(1− q0/p
mbi/ai)rp

mbi
ai

s
N e

f (0)

provided U ′ is not empty. Since N e
f (0) = 1,

|U ′| =
∑

0⩽j<ai/2

(
ai
j

)
p

mbi
ai

j

as required.
If γ is regular and ramified then Gi(γ,Qp) = G′(γ, Fpi) acts transitively on T1 so we can

define U ′ in the same way and find the same value for its cardinality. Since

(9)
measG′(γ, Fpi)\G′(Fpi)

measG′(Opi)
=

1

measG′(γ,Opi)

this gives the value for φm
i demanded on p. 10 of the old letter.

If γ is regular and unramified, the left side of (9) is equal to

2

measG′(γ,Opi)
.

However, this time G′(γ,Opi) does not act transitively on
{
L
∣∣∣ L = V or dV

}
, so we can

only demand that Lj0 is either V or dV . This accounts for the factor 2. Otherwise we proceed
as before.
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That does it. It has not been very elegant, but it was not intended to be. All I wanted to
do was verify that the method works to give new results. The elegance will I hope come later.

All the best,
R. Langlands
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Appendix

I shall verify here various combinatorial facts used in the letter.

1. Consider the infinite tree T0 formed from the non-negative integral points in the line and
the edges joining them. Let ℓ0 = 1 and if n > 0 let ℓn be the number of paths of length 2n
beginning and ending at 0 but not passing through 0 anywhere else. Set

φ(t) =
∞∑
n=1

ℓnt
n.

Then

ℓn =
(2n− 2)!

(n− 1)!n!
and

φ(t) =
1 =

√
1− 4t

2
.

Only the second statement needs to be verified. Clearly

ℓn+1 =
∞∑
r=1

∑
k1+···+kr=n

ki>0

ℓk1ℓk2 · · · ℓkr .

Thus
∞∑
r=1

φ(t)r =
∞∑
n=2

ℓnt
n−1 =

φ(t)

t
− 1

so
φ(t)

1− φ(t)
=

φ(t)

t
− 1

or
φ(t)2 = φ(t) + t = 0.

This gives the result. [2]

2. Consider a connected tree on which every vertex lies on q + 1 edges, q ⩾ −1. The
number Nn of paths of length 2n beginning and ending at a given point is the coefficient
of tn in

1− (q + 1)φ(qt)

1− (q + 1)2t
.

To each path we are going to associate a path of length 2n in T0 beginning and ending at 0.
This path is defined as follows. If 0 ⩽ k ⩽ 2n let the path of minimal length in the tree
which connects the kth vertex of the given path to the initial point have nk edges. Since
nk+1 = nk ± 1 and n0 = n2n = 0 the sequence {nk} defines a path in T0. This new path can
be decomposed into a sequence of r paths of length 2k1, . . . , 2kr with k1 + k2 + · · ·+ kr = n,
each of which begins and ends at 0 but does not otherwise pass through 0. k1, . . . , kr will be
called type of the original path.

There are clearly (
1 +

1

q

)r

qnℓk1 · · · ℓkr
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paths of type k1, . . . , kr. Thus
∞∑
n=0

Nnt
n =

∞∑
r=0

(
1 +

1

q

)r

φ(qt)r =
1

1−
(
1 + 1

q

)
φ(qt)

.

But {
1−

(
1 +

1

q

)
φ(qt)

}{
1− (q + 1)φ(qt)

}
= 1−

(
q + 2 +

1

q

)
φ(qt)

+

(
1 +

1

q

)
(q + 1)φ2(qt)

= 1 +
(q + 1)2

q

{
φ2(qt)− φ(qt)

}
= 1− (q + 1)2t.

[3]

3.

Nn =
n∑

j=0

(2n)! (2n− 2j + 1)

j! (2n− j + 1)!
qj.

Denote the right side by Mn and consider(
1− (q + 1)2t

)( ∞∑
n=0

Mnt
n

)
.

We have to show that it is equal to 1− (q + 1)φ(qt). We compare the coefficients of tn. For
n = 0 they are clearly equal. Otherwise we have to show that

(q + 1)qn
(2n− 2)!

n! (n− 1)!
= (q + 1)2Mn−1 −Mn.

The coefficient of qn+1 on the right is

(2n− 2)!

(n− 1)!n!

and the coefficient of qn is

(2n− 2)! 3

(n− 2)! (n+ 1)!
+

2(2n− 2)!

(n− 1)!n!
− (2n)!

n! (n+ 1)!

= − (2n− 2)!

n! (n+ 1)!

{
3(n− 1)n+ 2n(n+ 1)− 2n(2n− 1)

}
=

(2n− 2)!

(n− 1)!n!

We have to show that the coefficients of all other powers of q on the right are 0. The coefficient
of q for n > 1 is

2 +
(2n− 2)! (2n− 3)

(2n− 2)!
− (2n)! (2n− 1)

(2n)!
= 2 + (2n− 3)− (2n− 1) = 0.
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If 2 ⩽ j < n the coefficient of qj is

(2n− 2)! (2n− 2j − 1)

j! (2n− j − 1)!
+

2(2n− 2)! (2n− 2j + 1)

(j − 1)! (2n− j)!

+
(2n− 2)! (2n− 2j + 3)

(j + 1)! (2n− j + 1)!
− (2n)! (2n− 2j + 1)

j! (2n− j + 1)!
.

Removing the common factor
(2n− 2)!

j! (2n− j + 1)
.

We obtain [4]

(2n− 2j − 1)(2n− j)(2n− j + 1) + 2j(2n− 2j + 1)(2n− j + 1)

+ (2n− 2j + 3)j(j − 1)− 2n(2n− 1)(2n− 2j + 1)

which upon simplification turns out to be 0.

4. Let T be the tree obtained from the real line by taking the integers as vertices. Suppose
e ⩾ 0 and f = 2f ′ + e. Let N e

f be the number of paths of length f in T joining 0 to e. Then

∞∑
f ′=0

N et
f f ′ =

φ(t)e

(1− 4t)1/2
.

This is seen by observing that the left side is(
∞∑
n=0

Nnt
n

)(
∞∑
n=0

ℓnt
n

)e

if Nn is calculated for q = 1. But then
∞∑
n=0

Nnt
n =

1

(1− 4t)1/2
.

5. Consider a cyclic set with u elements. Suppose 2j ⩽ u. Let Su,j be the number of ways
of selecting j objects from the set so that any two are separated.

Example. S6,2 = 9

×◦×◦◦◦: cyclic permutations give 6 possibilities

×◦◦×◦◦: cyclic permutations give 3 possibilities

Total = 9.

In general

Su,j =
u(u− j − 1)!

j! (u− 2j)!
.

This is clear if j = 0 or 1. Thus we only need to prove it for u ⩾ 4. Let Tu,j be the number of
ways of choosing j objects from u objects, labeled 1, . . . , u and not taken cyclically, so that
any two of the j objects are separated. [5]

Example. T4,2 = 3
×◦◦× ◦×◦× ◦×◦×.
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Clearly

Su,j =
u

j
Tu−3,j−1

so we show that

Tu,j =
(u− j + 1)!

j! (u− 2j + 1)!
.

Suppose we have chosen j points from the set {1, . . . , u} so that they are separated.
Consider the first j − 1 of these points. If they are i1, . . . , ij−1 remove i1 + 1, . . . , ij−1 + 1
from the set {1, . . . , u} to obtain a totally ordered set with u− j + 1 elements together with
a subset of j elements.

Example.
×◦◦×◦× → ×◦××.

To reverse the procedure when we start from a totally ordered set of u− j + 1 elements, j
of which are marked (×) and the rest of which are unmarked, we just insert an extra circle
immediately to the right of the first j − 1 crosses. Thus

×××× → ×◦×◦×◦×.

The formula for Tu,j follows immediately.

6. Suppose a = 2c+ e, then

(∗)
c∑

s=0

(−1)sN e
a−2sSa,s =

{
0 0 ̸= c

1 0 = c
.

[6] All we need to do is interpret the sum correctly. Suppose we are given a linearly ordered
points with s distinguished points iα among them, so that any two distinguished points are
separated by undistinguished points. Remove the s distinguished points together with the
points iα + 1 immediately following them (cyclically)

◦×◦◦×◦◦×◦ → ◦××◦××◦×× → ◦ ◦ ◦.
There are a − 2s points left. Suppose we have a path of length a − 2s joining 0 to e in T .
There is an obvious indexing of the edges of this path by the remaining a− 2s points. The ith
edge is indexed by the ith remaining points. We now extend the path to a path of length a.
If iα is not the final point we add a segment of length two to the path by starting at the

final vertex of the edge indexed by iα − 1, proceeding one step to the right and then one step
to the left. We do this for each such iα. If iα is the final point we add to the path an initial
segment starting at 0, going to −1, and then back to 0.

The sum in which we are interested is obtained by taking the sum over all paths of length a
of the sum over s from 0 to c of (−1)s times the multiplicity with which the path is obtained
by the above process. Consider a given path. Let k be the number of segments in the path
consisting of moving once to the right and then once back to the left. The contribution to
the sum from subsets which do not contain the final element of the set of a elements is

k∑
s=0

(−1)s
(
s

k

)
=

{
0 k > 0

1 k = 0
.

Thus the only path for which this sum is not 0 is the one which starts at 0, moves a distance c
to the left, and then moves directly back to e. The other subsets only yield a non-zero result
for a path which begins at 0, moves to −1, then back to 0 and continues from there. If c = 0
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there is [7] no such path and the sum (∗) is 1. Otherwise the argument just given shows that
the contribution to the sum for a given path from subsets containing the final element is 0
unless the path starts at 0, moves to −1, moves back to 0, then directly out to −(c− 1), and
finally back to 0. The contribution for this path is −1. Thus the sum (∗) is 0.

7. For any q ⩾ −1 consider

(∗∗)
n∑

s=0

(−1)sqsNn−sS2n,s

where Nn−s is computed with respect to q. I claim that this is sum is 1 if n = 0 and that it
is −(q − 1) otherwise. Since this is easy to see for q = −1, I suppose q ⩾ 0.
If n = 0 the sum is clearly 1. For n = 1 we obtain

N1 − 2qN0 = (1 + q)− 2q = −q + 1.

The expression (∗∗) is in fact a polynomial of degree n in q. Let 0 ⩽ r ⩽ n. The coefficient
of qr is

r∑
s=0

(−1)s
2n(2n− s− 1)!

s! (2n− 2s)!
· (2n− 2s)! (2n− 2r + 1)

(r − s)! (2n− s− r + 1)!
.

It is easily verified that the sum is 1 if r = 0 and −1 if r = 1. All we have to do is show that
it is 0 for r ⩾ 2. We rewrite it as

(2n− 2r + 1)2n

r!

r∑
s=0

(−1)s
r!

s! (r − s)!
(2n− s− 1) · · · (2n− s− r + 2).

We may ignore the initial factor. The sum in this expression is the value at t = 1 of

dr−2

dtr−2

{(
1− 1

t

)r

t2n−1

}
and that is 0.
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