Princeton, N.J.
Dear Professor Harish-Chandra,
Thank you very much for your kindness in allowing me to read your paper on spherical functions. I have waited until now to return it because I wanted to send you my paper on automorphic forms at the same time. If you don't mind I would like to ask you question.

Suppose G is semi-simple (with finite center for simplicity) and K a maximal compact subgroup. Let $\sigma(K)$ be a matrix representation of K and $F\left(g_{1}, q_{2}\right)$ a function on $G \times G$ such that $F\left(g_{1} q, q_{2} g\right)=F\left(g_{1}, g_{2}\right)$ and $F\left(k_{1} g_{1}, k_{2} g_{2}\right)=\sigma\left(k_{1}\right) F\left(g_{1}, q_{2}\right)=\sigma\left(k_{1}\right) F\left(g_{1}, q_{2}\right) \sigma^{-1}\left(k_{2}\right)$. In order to apply the Selberg trace formula to concrete problems one has to be able to express

$$
\phi_{F}(\gamma)=\int_{G \backslash G_{\gamma}} \operatorname{tr}\left(F\left(g \gamma g^{-1}, 1\right)\right) d s_{\gamma}
$$

in terms of the "Fourier transform" of $F . \gamma=\exp (H)$ is semi-simple and G_{γ} is the centralizer of γ in G. If π is a unitary representation of G let $\left\{x_{\ell}^{k}\right\}, 1 \leqslant \ell \leqslant d(\sigma), 1 \leqslant k \leqslant d(\pi, \sigma)$ be vectors such that, for each $k,\left(x_{1}^{k}, \ldots, x_{d(\sigma)}^{k}\right)$ transform under $\pi(k)$ according to σ. Thus

$$
\int_{G} \sum_{\ell=1}^{d(\sigma)} \bar{F}_{i \ell}(1, g) \pi^{*}(g) x_{\ell}^{k} d g=\sum_{j} \bar{\pi}_{j k}(F) x_{i}^{j} .
$$

$\left(\pi_{j k}(F)\right)$ is the Fourier transform of F at π. If there is a Plancherel formula then

$$
F_{p q}(g, 1)=\int \operatorname{tr}\left(\pi(k) \omega_{p q}(g, \pi, \sigma)\right) d \omega(\pi)
$$

where the $\left(\omega_{p q}(g, \pi, \sigma)\right)$ are a kind of elementary spherical function. Roughly speaking, $\phi_{F}(\gamma)$ is a distribution on the functions $\pi(F)$. (π varying over the representations occurring in the Plancherel formula.) It will be necessary to prove that this distribution is a function so that

$$
\phi_{F}(\gamma)=\int \operatorname{tr}(\pi(F) T(\pi, \gamma)) d \mu(\pi)
$$

where for convenience ω is replaced by a measure μ simpler than the Plancherel measure. For the applications I have in mind $\pi(F)$ can be given explicitly so the problem is to determine $T(\pi, \gamma)$ explicitly. For the discrete series you described in 1956 this is essentially the problem discussed in the paper I am sending you. I have an idea, which I will describe in a moment, for calculating it for the various continuous series. However there is no point in my trying to carry this through if, as is quite possible, you already know what $T(\pi, \gamma)$ is. I would appreciate it if, when I come to Columbia, you could tell me whether or not this is so.

It is enough to calculate $\phi_{F}(\gamma)$ when γ is regular so that G_{γ} can be replaced by the connected component of the identity in the centralizer B of a Cartan subalgebra j. Also
$\phi_{F}(\gamma)$ can be replaced by

$$
\psi_{F}(\gamma)=\prod_{\alpha \in P}\left(e^{\frac{1}{2} \alpha(H)}-e^{-\frac{1}{2} \alpha(H)}\right) \phi_{F}(\gamma) .
$$

If p is a polynomial on j invariant under the Weyl group then

$$
\partial(p) \psi_{F}(\gamma)=\phi_{Z_{p} F}(\gamma) \quad \text { (formula for semi-simple groups). }
$$

But $Z_{p} f(g, 1)=\int \operatorname{tr}\left(\phi(K) Z_{p} \omega(g, \pi, \sigma)\right) d \mu(\pi)$. For each π there is H_{π} so that

$$
Z_{p} \omega(g, \pi, \sigma)=p\left(H_{\pi}\right) \omega(g, \pi, \sigma)
$$

Consequently

$$
\partial(p) T(\pi, \gamma)=p\left(H_{\pi}\right) T(\pi, \gamma)
$$

and

$$
T(\pi, \gamma)=\sum_{s \in W} c(s, \pi) e^{\left\langle s H_{\pi}, H\right\rangle}
$$

It should be enough to determine $c(s, \pi)$ when B is compact. There are a number of boundary conditions that $c(s, \pi)$ must satisfy. These are probably no use for the discrete series but then $T(\pi, \gamma)$ is closely related to the trace. It is to be hoped however that for the principal series they will determine $c(\pi, \gamma)$ Then one will have to combined the two extremes to obtain $c(\pi, \gamma)$ for the other representations. The boundary conditions that I can see at present are
(i) $T(\pi, \gamma)$ is skew-symmetric under the Weyl group of K_{c} if $j \subseteq k$.
(ii) According to note at the end of the last 1957 paper in the American Journal $c_{1}=$ $\cdots=c_{r}$. The value of the Plancherel measure itself would give another boundary condition but it is to be hoped that it is not necessary to use this.
(iii) For brevity I will be a bit careless in describing this condition. If $G_{0}=\mathrm{SL}(2, \mathbf{R})$ and $B_{0}=\left\{u_{\theta}\right\}, B_{1,0}=\left\{h_{t}\right\}$ in the notation of your note on the Plancherel formula then

$$
\lim _{t \rightarrow 0} \sinh t \int_{G_{0} \backslash B_{1,0}} f\left(g_{0} h_{t} g_{0}^{-1}\right)=c \lim _{\theta \rightarrow 0} \sin \theta\left\{\int_{G \backslash B_{0}}\left\{f\left(g u_{\theta} g^{-1}\right)+f\left(g u_{-\theta} g^{-1}\right)\right\}\right\}
$$

Suppose $\gamma \in B$ is semi regular and is contained in a non-compact B_{1}. Then there is a G_{0} (or a covering group of G_{0}) contained in the centralizer of γ. Choose $\gamma^{\prime} \in G_{0} \cap B$ so that $\gamma \gamma^{\prime}$ is regular and $\gamma^{\prime \prime} \in G_{0} \cap B_{1}$ so that $\gamma \gamma^{\prime \prime}$ is regular; then

$$
\begin{align*}
& \int_{G \backslash B} \operatorname{tr}\left\{F\left(g \gamma \gamma^{\prime \prime} g^{-1}, 1\right)+F\left(g \gamma \gamma^{\prime-1} g^{-1}, 1\right)\right\} \tag{a}\\
&=c \int_{G \backslash G_{\gamma}} d s_{\gamma} \int_{G \backslash B_{0}} \operatorname{tr}\left\{F\left(g \gamma g_{0} \gamma^{\prime} g_{0}^{-1} g^{-1}, 1\right)+F\left(g \gamma g_{0} \gamma^{\prime-1} g_{0}^{-1} g^{-1}, 1\right)\right\}
\end{align*}
$$

$$
\begin{equation*}
\int_{G \backslash B_{1}} \operatorname{tr}\left\{F\left(g \gamma \gamma^{\prime \prime} g^{-1}, 1\right)\right\}=c \int_{G \backslash G_{\gamma}} d s_{\gamma} \int_{G \backslash B_{1,0}} \operatorname{tr}\left\{F\left(g \gamma g_{0} \gamma^{\prime \prime} g_{0}^{-1} g^{-1}, 1\right)\right\} \tag{b}
\end{equation*}
$$

Multiply (a) and (b) by the appropriate factors and send $\gamma^{\prime}, \gamma^{\prime \prime}$ to 1 . Then the right hand sides will differ only by a constant. If we use induction on the dimension of j the left hand side of (a) can be assumed known in terms of $\pi(F)$ and the left-hand side of (b) is expressed in terms of $c(s, \pi)$.

The simplest example is $\operatorname{SL}(2, \mathbf{R}) /\{ \pm 1\}$. Then if $d \mu(\pi)=d \lambda, \pi=z_{\lambda}^{+}$.

$$
\sin \theta / 2 T\left(z_{\lambda}^{+}, u_{\theta}\right)=c_{1} e^{\lambda \theta}+c_{2} e^{-\lambda \theta}
$$

The first condition gives nothing. The second and third give

$$
\lambda\left(c_{1}-c_{2}\right)=-\lambda\left(c_{1} e^{2 \pi \lambda}-c_{2} e^{-2 \pi \lambda}\right) ; \quad e_{1}\left(1+e^{2 \pi \lambda}\right)+c_{2}\left(1+e^{-2 \pi \lambda}\right)=\alpha
$$

α is a constant. Solving we obtain $c_{1}=\frac{e^{-\pi \lambda}}{4 \cosh \pi \lambda} \alpha, c_{2}=\frac{e^{\pi \lambda}}{4 \cosh \pi \lambda} \alpha$ so that the Plancherel measure is $\beta \lambda \frac{\sinh \pi \lambda}{\cosh \pi \lambda}$. These values of c_{1} and c_{2} agree with the formula in Selberg's paper.

I have worked out other examples but at present have no general way of utilizing these boundary conditions.

Yours truly,
R. P. Langlands

Compiled on July 3, 2024.

