Dear Professor Harish-Chandra,

Thank you very much for your kindness in allowing me to read your paper on spherical functions. I have waited until now to return it because I wanted to send you my paper on automorphic forms at the same time. If you don't mind I would like to ask you question.

Suppose G is semi-simple (with finite center for simplicity) and K a maximal compact subgroup. Let $\sigma(K)$ be a matrix representation of K and $F(g_1, q_2)$ a function on $G \times G$ such that $F(g_1q, q_2g) = F(g_1, g_2)$ and $F(k_1g_1, k_2g_2) = \sigma(k_1)F(g_1, q_2) = \sigma(k_1)F(g_1, q_2)\sigma^{-1}(k_2)$. In order to apply the Selberg trace formula to concrete problems one has to be able to express

$$\phi_F(\gamma) = \int_{G \setminus G_{\gamma}} \operatorname{tr}(F(g\gamma g^{-1}, 1)) ds_{\gamma}$$

in terms of the "Fourier transform" of F. $\gamma = \exp(H)$ is semi-simple and G_{γ} is the centralizer of γ in G. If π is a unitary representation of G let $\{x_{\ell}^k\}$, $1 \leq \ell \leq d(\sigma)$, $1 \leq k \leq d(\pi, \sigma)$ be vectors such that, for each k, $(x_1^k, \ldots, x_{d(\sigma)}^k)$ transform under $\pi(k)$ according to σ . Thus

$$\int_{G} \sum_{\ell=1}^{d(\sigma)} \overline{F}_{i\ell}(1,g) \pi^{*}(g) x_{\ell}^{k} dg = \sum_{j} \overline{\pi}_{jk}(F) x_{i}^{j}.$$

 $(\pi_{jk}(F))$ is the Fourier transform of F at π . If there is a Plancherel formula then

$$F_{pq}(g,1) = \int \operatorname{tr}(\pi(k)\omega_{pq}(g,\pi,\sigma)) d\omega(\pi).$$

where the $(\omega_{pq}(g,\pi,\sigma))$ are a kind of elementary spherical function. Roughly speaking, $\phi_F(\gamma)$ is a distribution on the functions $\pi(F)$. (π varying over the representations occurring in the Plancherel formula.) It will be necessary to prove that this distribution is a function so that

$$\phi_F(\gamma) = \int \operatorname{tr}(\pi(F)T(\pi,\gamma)) d\mu(\pi).$$

where for convenience ω is replaced by a measure μ simpler than the Plancherel measure. For the applications I have in mind $\pi(F)$ can be given explicitly so the problem is to determine $T(\pi, \gamma)$ explicitly. For the discrete series you described in 1956 this is essentially the problem discussed in the paper I am sending you. I have an idea, which I will describe in a moment, for calculating it for the various continuous series. However there is no point in my trying to carry this through if, as is quite possible, you already know what $T(\pi, \gamma)$ is. I would appreciate it if, when I come to Columbia, you could tell me whether or not this is so.

It is enough to calculate $\phi_F(\gamma)$ when γ is regular so that G_{γ} can be replaced by the connected component of the identity in the centralizer B of a Cartan subalgebra j. Also

 $\phi_F(\gamma)$ can be replaced by

$$\psi_F(\gamma) = \prod_{\alpha \in P} \left(e^{\frac{1}{2}\alpha(H)} - e^{-\frac{1}{2}\alpha(H)} \right) \phi_F(\gamma).$$

If p is a polynomial on j invariant under the Weyl group then

$$\partial(p)\psi_F(\gamma) = \phi_{Z_pF}(\gamma)$$
 (formula for semi-simple groups).

But $Z_p f(g,1) = \int \operatorname{tr}(\phi(K) Z_p \omega(g,\pi,\sigma)) d\mu(\pi)$. For each π there is H_{π} so that

$$Z_p\omega(g,\pi,\sigma)=p(H_\pi)\omega(g,\pi,\sigma).$$

Consequently

$$\partial(p)T(\pi,\gamma) = p(H_{\pi})T(\pi,\gamma)$$

and

(b)

$$T(\pi, \gamma) = \sum_{s \in W} c(s, \pi) e^{\langle sH_{\pi}, H \rangle}.$$

It should be enough to determine $c(s,\pi)$ when B is compact. There are a number of boundary conditions that $c(s,\pi)$ must satisfy. These are probably no use for the discrete series but then $T(\pi,\gamma)$ is closely related to the trace. It is to be hoped however that for the principal series they will determine $c(\pi, \gamma)$. Then one will have to combine the two extremes to obtain $c(\pi, \gamma)$ for the other representations. The boundary conditions that I can see at present are

- (i) $T(\pi, \gamma)$ is skew-symmetric under the Weyl group of K_c if $j \subseteq k$.
- (ii) According to note at the end of the last 1957 paper in the American Journal $c_1 = \cdots = c_r$. The value of the Plancherel measure itself would give another boundary condition but it is to be hoped that it is not necessary to use this.
- (iii) For brevity I will be a bit careless in describing this condition. If $G_0 = SL(2, \mathbf{R})$ and $B_0 = \{u_\theta\}, B_{1,0} = \{h_t\}$ in the notation of your note on the Plancherel formula then

$$\lim_{t \to 0} \sinh t \int_{G_0 \setminus B_{1,0}} f(g_0 h_t g_0^{-1}) = c \lim_{\theta \to 0} \sin \theta \left\{ \int_{G \setminus B_0} \left\{ f(g u_\theta g^{-1}) + f(g u_{-\theta} g^{-1}) \right\} \right\}$$

Suppose $\gamma \in B$ is semi regular and is contained in a non-compact B_1 . Then there is a G_0 (or a covering group of G_0) contained in the centralizer of γ . Choose $\gamma' \in G_0 \cap B$ so that $\gamma \gamma'$ is regular and $\gamma'' \in G_0 \cap B_1$ so that $\gamma \gamma''$ is regular; then

(a)
$$\int_{G\backslash B} \operatorname{tr} \left\{ F(g\gamma\gamma''g^{-1}, 1) + F(g\gamma\gamma'^{-1}g^{-1}, 1) \right\}$$

$$= c \int_{G\backslash G_{\gamma}} ds_{\gamma} \int_{G\backslash B_{0}} \operatorname{tr} \left\{ F(g\gamma g_{0}\gamma' g_{0}^{-1}g^{-1}, 1) + F(g\gamma g_{0}\gamma'^{-1}g_{0}^{-1}g^{-1}, 1) \right\}$$
(b)
$$\int_{G\backslash B_{1}} \operatorname{tr} \left\{ F(g\gamma\gamma''g^{-1}, 1) \right\} = c \int_{G\backslash G_{\gamma}} ds_{\gamma} \int_{G\backslash B_{1,0}} \operatorname{tr} \left\{ F(g\gamma g_{0}\gamma''g_{0}^{-1}g^{-1}, 1) \right\}$$

Multiply (a) and (b) by the appropriate factors and send
$$\gamma'$$
, γ'' to 1. Then the right hand sides will differ only by a constant. If we use induction on the dimension of j the left hand

sides will differ only by a constant. If we use induction on the dimension of j the left hand side of (a) can be assumed known in terms of $\pi(F)$ and the left-hand side of (b) is expressed in terms of $c(s,\pi)$.

The simplest example is $SL(2, \mathbf{R})/\{\pm 1\}$. Then if $d\mu(\pi) = d\lambda$, $\pi = z_{\lambda}^{+}$.

$$\sin \theta / 2 \ T(z_{\lambda}^+, u_{\theta}) = c_1 e^{\lambda \theta} + c_2 e^{-\lambda \theta}$$

The first condition gives nothing. The second and third give

$$\lambda(c_1 - c_2) = -\lambda(c_1 e^{2\pi\lambda} - c_2 e^{-2\pi\lambda}); \quad e_1(1 + e^{2\pi\lambda}) + c_2(1 + e^{-2\pi\lambda}) = \alpha.$$

 α is a constant. Solving we obtain $c_1 = \frac{e^{-\pi\lambda}}{4\cosh\pi\lambda}\alpha$, $c_2 = \frac{e^{\pi\lambda}}{4\cosh\pi\lambda}\alpha$ so that the Plancherel measure is $\beta\lambda\frac{\sinh\pi\lambda}{\cosh\pi\lambda}$. These values of c_1 and c_2 agree with the formula in Selberg's paper. I have worked out other examples but at present have no general way of utilizing these

boundary conditions.

Yours truly,

R. P. Langlands

Compiled on November 17, 2025.