Dear Harish-Chandra,
Thank you for paper No. 1. I have been slow in responding to your letter because there is something I want to mention to you that I had to clarify it for myself.

Unfortunately I do not have my notes for the talks I gave in $62 / 63$ with me so I cannot be sure exactly what I did prove then. Let me tell you what I still remember how to prove. Suppose G is connected, γ is regular, the Cartan subalgebra j which γ centralizes is non-compact, and the integral

$$
\begin{equation*}
\int_{G_{\gamma} \backslash G} f\left(g^{-1} \gamma g\right) d \bar{g} \tag{a}
\end{equation*}
$$

is absolutely convergent. These are the conditions of which I am not sure; besides they could be weakened or at least changed by applying results available at the time and Th 3 of your paper No. 5 (Inv. Eig.-Dist. on a S.S.L.G) $]^{1}$ however it was also necessary to suppose (and this is the real weakness of my result) that f is a finite linear combination of functions of the form $(\pi(g) \phi, \phi)$ where π is an irreducible integrable representation of G and ϕ and ψ transform according to some finite-dimensional representation of K. The conclusion was of course that under these conditions the integral (a) vanished. As I recall the proof was as follows.

Let \mathfrak{a} be the non-compact part of j, let A be the group with Lie algebra \mathfrak{a} and as usual let $G=A N M K$. It is enough to show that

$$
\int_{N} f(n g) d n=0 \quad \text { for all } g \in G
$$

and it is not hard to show that this is a consequence of the vanishing almost everywhere of

$$
\begin{equation*}
\int_{G} \varphi(g h) f(h) d h \tag{b}
\end{equation*}
$$

for all infinitely differentiable functions φ on $N \backslash G$ with compact support. If $f(g)=(\pi(g) \phi, \phi)$ this will follow if it is shown that π does not occur discretely in the regular representation of G on $L^{2}(N \backslash G)$. To show this one shows that the Casimir operator has no eigenfunctions in $L^{2}(N \backslash G)$ and if this is done by utilizing the Fourier transform with respect to A, which acts on $N \backslash G$ to the left. I once mentioned this procedure to you and you indicated that you were familiar with it.

Finally I should like to make a comment, which might interest you, about the kind of integrals which occur in the process of getting a trace formula. If

$$
\lambda(f) \phi(g)=\int_{G} \phi(g h) f(h) d h \quad\left(\phi \in L^{2}(\Gamma \backslash G)\right)
$$

[^0]the problem is to express the trace $T(f)$ of the restriction of $\lambda(f)$ to the space of cusp forms in terms of $T_{\pi}(f)$, or better $\pi(f), \pi$ irreducible and unitary. $T(f)$ is of course an invariant "distribution" and if $\Gamma \backslash G$ one is led to express it in terms of integrals (a), also invariant, and the problem is to calculate the Fourier transforms of the latter distributions. If, however, $\Gamma \backslash G$ is not compact the process envisaged by Selberg is such that one is led to the problem of expressing certain elementary but not invariant "distributions" in terms of the various $\pi(f)$. I am still unable to reduce the contribution from the non-semi-simple elements to the trace form to the elementary form; however, I believe I am now in a position to reduce the contribution from the semi-simple elements to an elementary form. Let me describe to you the kind of integral that results. To understand the following replace percuspidal by minimal parabolic/Q.

Let P be a percuspidal subgroup, let \mathfrak{a} be a split component of P, and let Ω be the Weyl group of \mathfrak{a} (normalizer/centralizer). A distinguished subspace of \mathfrak{a} is a subspace defined by the vanishing of a subset of the set of simple roots. If \mathfrak{a}_{1} and \mathfrak{a}_{2} are two distinguished subspaces $\Omega\left(\mathfrak{a}_{1}, \mathfrak{a}_{2}\right)$ is the set of all linear transformations from \mathfrak{a}_{1} to \mathfrak{a}_{2} obtained by restricting elements of Ω to \mathfrak{a}_{1}. \mathfrak{a}_{1} and \mathfrak{a}_{2} are called associate if $\Omega\left(\mathfrak{a}_{1}, \mathfrak{a}_{2}\right)$ is not empty. To each distinguished subspace there corresponds a cuspidal (read parabolic/Q) subgroup. Let \mathfrak{a}^{0} be a distinguished subspace; let $\mathfrak{a}^{1}, \ldots, \mathfrak{a}^{r}$ be the distinguished subspaces associate to \mathfrak{a}^{0}. Let $P^{i}, 0 \leqslant i \leqslant r$, be the cuspidal subgroup corresponding to \mathfrak{a}^{i}; if A^{i} is the connected group with Lie algebra \mathfrak{a}^{i} then $P^{i}=A^{i} S^{i}\left(S^{i}=M^{i} N^{i}\right.$ is a normal subgroup of $\left.P^{i}\right)$. Let K be a maximal compact subgroup of G (suppose G is semi-simple with finite centre) and suppose there is a Cartan involution with $\theta(H)=-H, H \in \mathfrak{a}, \theta(X)=X, X \in k$.

Suppose $\sigma \in \Omega\left(\mathfrak{a}^{0}, \mathfrak{a}^{i}\right)$; let $s(\sigma)$ be a representative of σ in the normalizer of \mathfrak{a}. If $s(\sigma) g=b s k$, $b \in A^{i}, s \in S^{i}, k \in K$ let $H_{\sigma}(g)$ in \mathfrak{a}^{0} be such that

$$
\exp H \sigma(g)=s^{-1}(\sigma) b^{-1} s(\sigma)
$$

$H_{\sigma}(g)$ depends only on σ and g. The points $H_{\sigma}(g), \sigma \in \bigcup_{i=1}^{r} \Omega\left(\mathfrak{a}^{0}, \mathfrak{a}^{i}\right)$ are the vertices of a convex polyhedron in \mathfrak{a}^{0}. Let the volume of this polyhedron be $\xi(g) . \xi(g)$ is a function on $A^{0} M^{0} \backslash G$. Suppose γ is such that $A^{0} \subseteq G_{\gamma} \subseteq A^{0} M^{0}$. The integral I want to draw to your attention is

$$
\int_{G_{\gamma} \backslash G} f\left(g^{-1} \gamma g\right) \xi(g) d \bar{g} .
$$

Yours truly,
Bob Langlands

Compiled on December 22, 2023.

[^0]: ${ }^{1}$ Invariant eigendistributions on a semisimple Lie group, 1964, Trans. Am. Math. Soc. 119:457-508

