Dear Lang,
It occurred to me after I sent you the last letter that it would be worthwhile to see if the considerations in it agreed with Serre's suggestions about the form of the Γ-factor. I just want to explain now that as far as the matter can be checked formally everything is alright.

I had better explain first in more detail, at least for a group over \mathbf{R}, how one goes about defining the dual group and, in the cases of interest to us, local zeta-functions corresponding to representations of this group.
\widetilde{G} will be a semi-simple Lie group over \mathbf{C} with Lie algebra $\widetilde{\mathfrak{g}}$ and fixed Cartan subalgebra $\widetilde{\mathfrak{h}}$. Fix also an order on the roots and hence a positive Weyl chamber. Choosing a Chevalley basis with root vectors e_{α} we obtain a real (even rational) structure on $\widetilde{\mathfrak{g}}$ and hence on \widetilde{G}. Let C_{0} be the complex anti-linear involution on $\widetilde{\mathfrak{g}}$ with respect to this structure. C_{0} determines the split real structure on $\widetilde{\mathfrak{g}}$ of \widetilde{G}. Any other real structure can be obtained by an involution C which maps $\widetilde{\mathfrak{h}}$ into itself. $C=I C_{0}$ where I is an automorphism of $\widetilde{\mathfrak{g}}$. The real structure is inner or outer according as I is inner or outer. Let L_{+}be the lattice of weights of $\widetilde{\mathfrak{h}}$ - (or $\widetilde{\mathfrak{g}}$), L_{-}the sublattice generated by the roots and L, where $L_{-} \subseteq L \subseteq L_{+}$, the weights of \widetilde{g} which actually define weights of $\widetilde{G} . \alpha$ denotes a root. We have the following scheme

α	$\widehat{\alpha}$
\cap	\cap
L_{-}	$\widehat{L}_{-}=\operatorname{Hom}\left(L_{+}, \mathbf{Z}\right)$
$\cap \cap$	\cap
L	$L=\operatorname{Hom}(L, \mathbf{Z})$
$\cap \cap$	\cap
L_{+}	$L_{+}=\operatorname{Hom}\left(L_{-}, \mathbf{Z}\right)$

We may suppose that $\widehat{\alpha}$ is simple or positive only when α is. There is a semi-simple Lie algebra $\widehat{\mathfrak{g}}$ and a corresponding group \widehat{G}_{0} and Cartan subalgebra $\widehat{\mathfrak{h}}$ for which the roofed objects have the same significance as the unroofed for $\widetilde{\mathfrak{g}}, \widetilde{G}$, and $\widetilde{\mathfrak{h}}$. The Weyl groops of $\widehat{\mathfrak{h}}$ in $\widehat{\mathfrak{g}}$ and $\widetilde{\mathfrak{h}}$ in $\widetilde{\mathfrak{g}}$ are isomorphic $(\sigma \leftrightarrow \widehat{\sigma})$ in such a way that $\langle\sigma \lambda, \widehat{\sigma} \hat{\lambda}\rangle=\langle\lambda, \widehat{\lambda}\rangle . \widehat{G}_{0}$ is the connected component of the dual group for any real form G of \widetilde{G}. Let G be determined by the involution $C=I C_{0} . I$ is the product of an inner automorphism normalizing $\widetilde{\mathfrak{h}}$ and an outer automorphism permuting the positive simple roots of $\tilde{\mathfrak{h}}$. Every such permutation naturally determines a permutation of the positive simple $\widehat{\alpha}$ and hence an automorphism of \widehat{G}_{0} (called the straight extension in Freudenthal-de Vries). We take \widehat{G} to be the corresponding split extension of \widehat{G}_{0} so that $\left[\widehat{G}: \widehat{G}_{0}\right]=2$ and $\widehat{G}=\widehat{G}_{0} \cup \omega \widehat{G}_{0}$ where $\omega^{2}=1$ (I note that two forms which differ by an inner twisting have the same dual group. I also observe that, according to
the definitions of my Washington lecture, \widehat{G} is not uniquely determined-if G is inner one is free to take $\widehat{G}_{0}=\widehat{G}$-however the present choice is here convenient.) ω corresponds to an automorphism of the Dynkin diagram and therefore also to a permutation of the highest weights $\widehat{\lambda} \rightarrow \omega \widehat{\lambda}$. Let $\widehat{\sigma}_{0}$ be an irreducible representation of \widehat{G}_{0} with highest weight $\widehat{\lambda}$. Then $\widehat{\sigma}_{0}\left(\omega g \omega^{-1}\right)$ has highest weight $\omega \widehat{\lambda}$. If $\widehat{\lambda}=\omega \widehat{\lambda}$ there is an A such that

$$
A \widehat{\sigma}_{0}(g) A^{-1}=\widehat{\sigma}_{0}\left(\omega g \omega^{-1}\right)
$$

A takes the vector corresponding to λ to a scalar multiple of itself. We may suppose that this scalar is ± 1 so that $A^{2}=1$. Setting $\widehat{\sigma}(g)=\widehat{\sigma}_{0}(g)$ and $\widehat{\sigma}(\omega)=A$ we obtain a representation $\widehat{\sigma}$ of \widehat{G} (that with highest weight $\widehat{\lambda}$.) If $\widehat{\lambda} \neq \omega \widehat{\lambda}$ set

$$
\begin{aligned}
& \widehat{\sigma}(g)=\left(\begin{array}{cc}
\widehat{\sigma}_{0}(g) & 0 \\
0 & \widehat{\sigma}_{0}\left(\omega g \omega^{-1}\right)
\end{array}\right) \quad g \in \widehat{G}_{0} \\
& \widehat{\sigma}(\omega)= \pm\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right) .
\end{aligned}
$$

$\widehat{\sigma}$ is irreducible and is said to have the highest weight $\widehat{\lambda}$ (or $\omega \widehat{\lambda}$). These are the only representations of \widehat{G} we need to consider.

We are interested at first in the case that $G=G_{\text {un }}$ is the compact form. Then the effect of I is to take every root into its negative. $G_{\text {un }}$ is inner if and only if this can be effected by an element of the Weyl group. When $G=G_{\text {un }}$ then $\widehat{\mu}$ is a root of $\widehat{\sigma}$ only when $-\widehat{\mu}$ is also. Moreover $\omega \widehat{G}_{0}$ contains an element ϵ which normalizes $\widehat{\mathfrak{h}}$ and sends roots to their negatives. ϵ is determined up to conjugacy by an element of $\exp \widehat{\mathfrak{h}}=\widehat{T}_{0}$.

I want to describe how in accordance with the suggestions of my Washington lecture the irreducible representations of $G_{\text {un }}$ correspond to certain homomorphisms of the Weil group $W_{\mathbf{C} / \mathbf{R}}$ into \widehat{G}. Let $W_{\mathbf{C} / \mathbf{R}}=\mathbf{C}^{\times} \cup \delta \mathbf{C}^{\times}$where $\delta^{2}=-1$. I consider only homomorphisms τ which map \mathbf{C}^{\times}into \widehat{T}_{0} and δ into ϵ. If $\widehat{\mu}$ belongs to \widehat{L} and $\xi_{\widehat{\mu}}$ is the corresponding rational character of \widehat{T}_{0} there is an $m(\widehat{\mu}) \in \mathbf{Z}$ such that

$$
\xi_{\widehat{\mu}}(\tau(z))=\left(\frac{z}{|z|}\right)^{m(\widehat{\mu})}
$$

Define $2 \Lambda \in L$ by $m(\widehat{\mu})=\langle 2 \Lambda, \widehat{\mu}\rangle$ for every $\widehat{\mu}$. Then

$$
\xi_{\widehat{\mu}}(\tau(-1))=(-1)^{\langle 2 \Lambda, \widehat{\mu}\rangle}=\xi_{\widehat{\mu}\left(\epsilon^{2}\right)} .
$$

ϵ^{2} does not depend on the choice of ϵ. By some messy calculations involving classification one can show that

$$
\xi_{\widehat{\mu}}\left(\epsilon^{2}\right)=(-1)^{\langle 2 \rho, \widehat{\mu}\rangle}
$$

if 2ρ is the sum of the positive roots of $\widetilde{\mathfrak{h}}$. Thus $2 \Lambda-2 \rho$ is even for all $\widehat{\mu}$ in \widehat{L} and $\Lambda-\rho$ is in L. Of course any Λ satisfying this condition arises from a suitable τ. The irreducible representation $\pi(\tau)$ of $G_{\text {un }}$ corresponding to τ is (this is a definition) the representation with natural parameter Λ. To obtain this representation one chooses w in the Weyl group so that $w \Lambda$ lies in the positive Weyl chamber. The representation with "natural" parameter Λ is that with highest weight $w \Lambda-\rho=w(\Lambda-\rho)+w \rho-\rho\left(w \rho-\rho \in L_{-} \subseteq L\right)$. Thus $\pi(\tau)$ is only defined if Λ is non-singular. (This fits perfectly well with my Washington lecture since $G_{\text {un }}$ is not quasi-split.)

If G is any form with compact Cartan subgroup then G is an inner form of $G_{\text {un }}$; so \widehat{G} is defined as above. In this case the representations of G corresponding to τ are those members of the discrete series for G with a parameter Λ^{\prime} which equals $w \Lambda$ for some w in the (complex) Weyl group of G. We set (a definition)

$$
L(s, \pi(\tau), \widehat{\sigma})=L(s, \widehat{\sigma} \circ \tau)
$$

if $\widehat{\sigma}$ is a complex-analytic representation of $\widehat{G} . L(s, \widehat{\sigma} \circ \tau)$ is the Γ-factor (defined as in my notes on Artin L-functions) for the representation $\widehat{\sigma} \circ \tau$ of $W_{\mathbf{C} / \mathbf{R}}$. We consider those $\widehat{\sigma}$ introduced above. Every time that a non-zero weight $\widehat{\mu}$ occurs in $\widehat{\sigma}$ so does $-\widehat{\mu}$. Thus the representation

$$
\operatorname{Ind}\left(W_{\mathbf{C} / \mathbf{R}}, W_{\mathbf{C} / \mathbf{C}}, \delta_{\langle\widehat{\mu}, 2 \Lambda\rangle}\right)
$$

with

$$
\delta_{m}(z)=\left(\frac{z}{|z|}\right)^{m}: \mathbf{C}^{\times} \rightarrow \mathbf{C}^{\times}
$$

is included in $\widehat{\sigma} \circ \tau$ as often as $\widehat{\mu}$ is a weight of $\widehat{\sigma}$. Therefore each time that $\widehat{\mu}$ occurs one gets a factor

$$
2(2 \pi)^{-(s+|\langle\hat{\mu}, \Lambda\rangle|} \Gamma \Gamma(s+|\langle\widehat{\mu}, \Lambda\rangle|)
$$

in $L(s, \widehat{\sigma} \circ \tau)$. On the spaces corresponding to the weight $0, \widehat{\sigma} \circ \tau$ kills \mathbf{C}^{\times}and is a representation of $\mathfrak{G}(\mathbf{C} / \mathbf{R})=W_{\mathbf{C} / \mathbf{R}} / \mathbf{C}^{\times}$. Every time that this representation contains the trivial representation we get a factor

$$
\pi^{-\frac{1}{2} s} \Gamma\left(\frac{s}{2}\right)
$$

and every time that it contains the non-trivial representation we get a factor

$$
\pi^{-\frac{1}{2}(s+1)} \Gamma\left(\frac{s+1}{2}\right)
$$

Notice that if the weight 0 does not occur in $\widehat{\sigma}_{0}$ the function $L(s, \pi(\tau), \widehat{\sigma})$ depends only on $\widehat{\sigma}_{0}$.
We have to apply this to the representation $\widehat{\sigma}_{0}=\sigma_{0}$ introduced in my last letter. According to the vague suggestions of that letter a certain part of the cohomology group in the middle dimension is broken up into d-dimensional subspaces. To compare with Serre's suggestion we have to see how much of this d-dimensional part corresponds to a given $H^{p, q}$. We arrange things so that $\widetilde{\mathfrak{h}}$ corresponds to a compact Cartan subgroup of G and so that, with respect to the order chosen, every non-compact positive root is totally positive. (To fix ideas I have in mind the case that G is simple and defined over \mathbf{Q}. Presumably $\operatorname{dim} \widehat{\sigma}_{0}=\operatorname{dim} \widehat{\sigma}$ (with the given $\widehat{\sigma}_{0}=\sigma_{0}$) corresponds to the case that we should think of the Shimura variety \widetilde{V} as defined over \mathbf{Q} and $\operatorname{dim} \widehat{\sigma}_{0}=\frac{1}{2} \operatorname{dim} \widehat{\sigma}$ to the case that we should think of \widetilde{V} as defined over a certain imaginary quadratic extension of \mathbf{Q}-see remark in previous letter.)

The tangent space T at $K \in K \backslash G=X$ breaks up into the direct sum of the holomorphic tangent vectors T^{+}and the anti-holomorphic T^{-}. If $t=\frac{1}{2}$ Real-dim X then

$$
\bigwedge^{t} T=\bigoplus_{p+q=t} \bigwedge^{p}\left(T^{+}\right) \otimes \bigwedge^{q}\left(T^{-}\right)
$$

Let ρ_{+}be one-half the sum of the positive non-compact roots (with respect to the given order). This order determines a positive (or for us standard) Weyl chamber W. Take another

Weyl chamber W^{\prime} and let ρ^{\prime} be one-half the sum of the corresponding positive roots and ρ_{+}^{\prime} one-half the sum of the corresponding non-compact positive roots. Choose w in W_{G}, the Weyl group of $G_{\mathbf{C}}$, so that $w W=W^{\prime}$ and let $T_{\rho^{\prime}}$ be the element of the discrete series corresponding to ρ^{\prime}. $T_{\rho^{\prime}}$ depends only on the coset $W_{K} w$, if $W_{K} \subseteq W_{G}$ is the Weyl group of $K_{\mathbf{C}}$. Let p positive non-compact roots with respect to W^{\prime} be positive with respect to W and let q be negative. Then according to Matsushima's discussion (at least formally) and the remarks at the end of the last letter the representation of K with extreme weight $2 \rho_{+}^{\prime}$ occurs with multiplicity one in $\bigwedge^{p} T^{+} \otimes \bigwedge^{q} T^{-}$so that the one-dimensional part of the d-dimensional space contributed by $T_{\rho^{\prime}}$ lies in $H^{p, q}$.

However $\operatorname{dim} \widehat{\sigma}_{0}=\left[W_{G}: W_{K}\right]=d$ so that the weights of $\widehat{\sigma}_{0}\left(=\sigma_{0}\right)$ are $\widehat{w}^{-1} \widehat{\mu}_{0}, w$ varying over representations of $W_{K} \backslash W_{G}$. In particular 0 is not a weight. Finally

$$
\left\langle\widehat{w}^{-1} \widehat{\mu}_{0}, 2 \rho\right\rangle=\left\langle\widehat{\mu}_{0}, w(2 \rho)\right\rangle=\left\langle\widehat{\mu}_{0}, 2 \rho^{\prime}\right\rangle=\left\langle\widehat{\mu}_{0}, 2 \rho_{+}^{\prime}\right\rangle
$$

because $\widehat{\mu}_{0}$ annihilates compact roots. Because of the definition of $\widehat{\mu}_{0}$

$$
\left\langle\widehat{\mu}_{0}, 2 \rho_{+}^{\prime}\right\rangle=p-q .
$$

Moreover the relevant part of the Hasse-Weil(?) zeta-function should be

$$
L\left(s-\frac{t}{2}, T_{\rho}, \widehat{\sigma}\right) \quad \text { with } t=\frac{1}{2} \operatorname{dim} X=p+q
$$

if σ is the representation constructed from $\widehat{\sigma}_{0}$ as above. Since

$$
-\frac{p+q}{2}+\frac{|p-q|}{2}=-\inf (p, q)
$$

we are in perfect agreement with Serre (Sem. Delange-Pisot-Poitou-May 1970). Of course this supposes that the previous parenthetical remarks are O.K. When $\operatorname{dim} \widehat{\sigma}_{0}=\operatorname{dim} \widehat{\sigma}$ so that, under the circumstances mentioned, \widetilde{V} is to be thought of as defined over \mathbf{Q} one has also to check the effect of Serre's σ on $H^{\frac{t}{2}, \frac{t}{2}}$ (when t is even). This one can of course do only in those cases where Shimura has actually defined \widetilde{V}. I have not yet checked anything.

Yours truly,

Bob Langlands

Compiled on May 7, 2024.

