APPENDIX TO LETTER TO SERGE LANG——DECEMBER 17, 1970

It is enough to prove the relation

$$
\xi_{\widehat{\mu}}\left(\epsilon^{2}\right)=(-1)^{\langle 2 \rho, \widehat{\mu}\rangle}
$$

when \widetilde{G}, and therefore also \widehat{G}_{0} is simple. ϵ^{2} certainly lies in the Cartan subgroup of \widehat{G}_{0} corresponding to $\widehat{\mathfrak{h}}$. \widehat{G} acts as a group of automorphisms of \widehat{g} (of course not faithfully). Let (\cdot, \cdot) be the Killing form on $\widehat{\mathfrak{g}}$. \widehat{G} preserves the Killing form. Let $e_{\widehat{\alpha}}$ be a root vector. Then

$$
\left(e_{\widehat{\alpha}}, \epsilon e_{\widehat{\alpha}}\right) \neq 0
$$

and

$$
\left(e_{\widehat{\alpha}}, \epsilon e_{\widehat{\alpha}}\right)=\left(\epsilon e_{\widehat{\alpha}}, \epsilon^{2} e_{\widehat{\alpha}}\right)=\xi_{\widehat{\alpha}}\left(\epsilon^{2}\right)\left(\epsilon e_{\widehat{\alpha}}, e_{\widehat{\alpha}}\right)=\xi_{\widehat{\alpha}}\left(\epsilon^{2}\right)\left(e_{\widehat{\alpha}}, \epsilon e_{\widehat{\alpha}}\right)
$$

because the Killing form is symmetric. Thus $\xi_{\widehat{\alpha}}=1$. Since $\langle\rho, \widehat{\alpha}\rangle$ is integral and in fact equal to 1 for simple $\widehat{\alpha}$,

$$
\xi_{\widehat{\alpha}}=(-1)^{\langle 2 \rho, \widehat{\alpha}\rangle} .
$$

In particular the assertion is true in those cases that $\widehat{L}_{-}=\widehat{L}_{+}$. Thus when $\widehat{\mathfrak{g}}$ is of type E_{8}, F_{4}, or G_{2}.

In the other cases let $\widehat{\beta}$ be the top root (as defined in Freudenthal-de Vries). Then $\omega e_{\widehat{\beta}}=\eta e_{\widehat{\beta}}$, with $\eta= \pm 1$, and $\omega e_{-\widehat{\beta}}=\eta e_{-\widehat{\beta}}$. Thus, taking the standard isomorphism of the group corresponding to

$$
\operatorname{Span}\left\{e_{\widehat{\beta}}, e_{-\widehat{\beta}},\left[e_{\widehat{\beta}}, e_{-\widehat{\beta}}\right]\right\}
$$

with $\mathrm{SL}(2, \mathbf{C}), \omega$ corresponds to the trivial automorphism if $\eta=1$ and to the inner automorphism determined by

$$
\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

if $\eta=-1$. The reflection corresponding to $\widehat{\beta}$ is determined by

$$
\delta=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Thus $\omega \delta \omega^{-1}=\delta$ if $\eta=+1$ and

$$
\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

if $\eta=-1$. We regard δ as an element of \widehat{G}_{0}. It takes every root which is not orthogonal to $\widehat{\beta}$ to a negative root. The roots orthogonal to $\widehat{\beta}$ are linear combinations of the simple roots orthogonal to $\widehat{\beta}$.

We consider the various types separately. \widehat{H}_{0} will be the group corresponding to the algebra generated by root vectors belonging to roots orthogonal to $\widehat{\beta} . \widehat{H}_{0}$ is invariant under $\omega . \widehat{H}$ will be $\widehat{H}_{0} \cup \omega \widehat{H}_{0}$. If \widehat{H}_{0} is simple we may suppose our assertion is proved for \widehat{H}. We use the tables in Fr.-De Vries.
(i) A_{l} : We identify L_{-}and \widehat{L}_{-}and L_{+}and \widehat{L}_{+}as in the previous letter.

$$
2 \rho=(n-1, n-3, \ldots,-(n-1)), \quad n=l+1
$$

Here ω, acting on \widehat{G}_{0} which we may take as simply connected, is
and ϵ is $\gamma \omega$. It is clear that $\omega(\gamma)=\gamma$ so that $\epsilon^{2}=\gamma \omega \gamma \omega=\gamma^{2}$ which is $(-1)^{n-1} I$. It is enough to check the relation

$$
\xi_{\widehat{\mu}}\left(\epsilon^{2}\right)=(-1)^{\langle\widehat{\mu}, 2 \rho\rangle}
$$

for $\widehat{\mu}$ fundamental. Let

$$
\widehat{\mu}=(\overbrace{\left(\frac{n-k}{n}, \ldots, \frac{n-k}{n}\right.}^{k \text { times }}, \overbrace{-\frac{k}{n}, \ldots,-\frac{k}{n}}^{n-k \text { times }})
$$

Then

$$
\xi_{\widehat{\mu}}\left(\epsilon^{2}\right)=(-1)^{k(n-1)}
$$

and

$$
\langle 2 \rho, \widehat{\mu}\rangle \equiv k(n-1) \quad(\bmod 2) .
$$

The result follows.
(ii) $B_{l}(=\widehat{\mathfrak{g}})$. Again the notation is that of my previous letter.

$$
2 \rho=(2 l, 2(l-1), \ldots, 2)
$$

$\widehat{\beta}$ is $\omega_{1}+\omega_{2}$. The automorphism ω is trivial; so $\eta=1$. \widehat{H}_{0} corresponds to the diagram of B_{l} with ρ_{3} omitted. Thus if δ_{1} is the reflection corresponding to ρ_{2} and δ_{2} is an automorphism of the group obtained by removing ρ_{1} and ρ_{3} from the diagram of B_{l} we may take $\epsilon=\omega \delta \delta_{1} \delta_{2}$ and, since δ, δ_{1}, and δ_{2} commute,

$$
\epsilon^{2}=\delta^{2} \delta_{1}^{2} \delta_{2}^{2}
$$

By induction

$$
\xi_{\widehat{\mu}}\left(\epsilon^{2}\right)=(-1)^{x}
$$

with

$$
\begin{aligned}
x & =\left\langle\widehat{\mu}, \omega_{1}+\omega_{2}\right\rangle+\left\langle\widehat{\mu}, \omega_{1}-\omega_{2}\right\rangle+\langle\widehat{\mu},(0,0,2(l-2), \ldots, 2)\rangle \\
& =\langle\widehat{\mu},(2,0,2(l-2), \ldots, 2)\rangle .
\end{aligned}
$$

The difference between 2ρ and the element of \widehat{L}_{+}appearing here is

$$
(2(l-1), 2(l-1), 0, \ldots, 0) .
$$

The value of this element at any $\widehat{\mu}$ is even.
(iii) $C_{l}(=\widehat{\mathfrak{g}})$

$$
2 \rho=(2 l-1,2 l-3, \ldots, 1)
$$

$\widehat{\beta}$ is $2 \omega_{1} . \omega$ is again the trivial automorphism. \widehat{H}_{0} is now the group obtained by removing ω_{1} from the Dynkin diagram. If δ_{1} is the element of \widehat{H}_{0} taking roots to their negatives we may take $\epsilon=\omega \delta \delta_{1}$ so that $\epsilon^{2}=\delta^{2} \delta_{1}^{2}$. By induction

$$
\xi_{\widehat{\mu}}\left(\epsilon^{2}\right)=(-1)^{x}
$$

with

$$
\begin{aligned}
x & =\left\langle\widehat{\mu}, \omega_{1}\right\rangle+\langle\widehat{\mu},(0,2 l-3, \ldots, 1)\rangle \\
& =\langle\widehat{\mu},(1,2 l-3, \ldots, 1)\rangle
\end{aligned}
$$

The difference between 2ρ and $(1,2 l-3, \ldots, 1)$ is $(2(l-1), 0, \ldots, 0)$. The value of this element of L_{+}at any $\widehat{\mu}$ in \widehat{L}_{+}is even.
(iv) $D_{l}(=\widehat{\mathfrak{g}})$. Here

$$
\rho=(2 l-2,2 l-4, \ldots, 0) .
$$

$\widehat{\beta}$ is $\omega_{1}+\omega_{2}$. We take $l>3$. We take \widehat{H}_{0} by removing ρ_{4} from the Dynkin diagram. We may take

$$
e_{\widehat{\beta}}=\left[e_{\rho_{4}},\left[e_{\rho_{5}},\left[\ldots,\left[e_{\rho_{l}},\left[e_{\rho_{3}},\left[\ldots,\left[e_{\rho_{l-1}},\left[e_{\rho_{2}},\left[e_{\rho_{l}}, e_{\rho_{1}}\right] \ldots\right]\right.\right.\right.\right.\right.\right.\right.
$$

Now

$$
\left[e_{\rho_{2}},\left[e_{\rho_{l}}, e_{\rho_{1}}\right]\right]+\left[e_{\rho_{1}},\left[e_{\rho_{2}}, e_{\rho_{l}}\right]\right]+\left[e_{\rho_{l}},\left[e_{\rho_{1}}, e_{\rho_{2}}\right]\right]=0 .
$$

the last term is 0 ; so

$$
\left[e_{\rho_{2}},\left[e_{\rho_{l}}, e_{\rho_{1}}\right]\right]=\left[e_{\rho_{1}},\left[e_{\rho_{l}}, e_{\rho_{2}}\right]\right] .
$$

If l is even, ω is trivial and η is 1 . If l is odd it follows from these calculations that η is also 1 , because $\omega e_{\rho_{2}}=e_{\rho_{1}}$ and $\omega e_{\rho_{1}}=e_{\rho_{2}}$. Let δ_{1} be the reflection corresponding to ρ_{3} and let δ_{2} be that element of the Weyl group of \widehat{H}_{0} taking positive roots to negative roots. Take $\epsilon=\omega \delta \delta_{1} \delta_{2}$. Then by induction

$$
\xi_{\widehat{\mu}}\left(\epsilon^{2}\right)=(-1)^{x}
$$

with

$$
x=\left\langle\widehat{\mu}, \omega_{1}+\omega_{2}\right\rangle+\left\langle\widehat{\mu}, \omega_{1}-\omega_{2}\right\rangle+\langle\widehat{\mu},(0,0,2 l-6, \ldots, 0)\rangle=\langle\widehat{\mu},(2,0,2 l-6, \ldots, 0)\rangle .
$$

The difference between ρ and $(2,0,2 l-6, \ldots, 0)$ is $(2 l-4,2 l-4,0, \ldots, 0)$ which takes an even value at every $\widehat{\mu}$. If $l=4$ the induction argument cannot be used. In this case δ_{2} is the product of the reflection corresponding to ρ_{1} and that corresponding to ρ_{2}. Thus

$$
\xi_{\widehat{\mu}}\left(\delta_{2}^{2}\right)=(-1)^{y}
$$

with

$$
y=\left\langle\widehat{\mu}, \omega_{3}-\omega_{4}\right\rangle+\left\langle\widehat{\mu}, \omega_{3}+\omega_{4}\right\rangle .
$$

This justifies the use of the induction.
E_{6} : The toproot is

$$
\begin{array}{lllll}
& & 2 & & \\
1 & 2 & 3 & 2 & 1
\end{array}
$$

The scheme $\langle\widehat{\beta}, \widehat{\alpha}\rangle$ is given by

$$
\begin{gathered}
4-3=1 \\
\cdot \\
2-2=0
\end{gathered} \quad \cdot \begin{gathered}
4-3-1=0
\end{gathered} \quad 6-2-2-2=0 \quad 4-3-1=0 \quad 2-2=0
$$

Thus \widehat{H}_{0} corresponds to A_{5}. Using the table of roots in Freudenthal-de Vries, we see that

$$
e_{\widehat{\beta}}=\left[e_{\rho_{2}},\left[e_{\rho_{6}},\left[e_{\rho_{4}},\left[e_{\rho_{5}},\left[e_{\rho_{6}},\left[e_{\rho_{2}},\left[e_{\rho_{3}},\left[e_{\rho_{1}},\left[e_{\rho_{5}},\left[e_{\rho_{4}},\left[e_{\rho_{6}}\right], \ldots\right]\right.\right.\right.\right.\right.\right.\right.\right.\right.
$$

Applying ω we get

$$
\left[e_{\rho_{2}},\left[e_{\rho_{6}},\left[e_{\rho_{5}},\left[e_{\rho_{4}},\left[e_{\rho_{6}},\left[e_{\rho_{2}},\left[e_{\rho_{1}},\left[e_{\rho_{3}},\left[e_{\rho_{4}},\left[e_{\rho_{5}},\left[e_{\rho_{6}}\right], \ldots\right] .\right.\right.\right.\right.\right.\right.\right.\right.\right.
$$

Now

$$
\left[e_{\rho_{4}},\left[e_{\rho_{5}}, e_{\rho_{6}}\right]\right]+\left[e_{\rho_{6}},\left[e_{\rho_{4}}, e_{\rho_{5}}\right]\right]+\left[e_{\rho_{5}},\left[e_{\rho_{6}}, e_{\rho_{4}}\right]\right]=0
$$

so that

$$
\left[e_{\rho_{4}},\left[e_{\rho_{5}}, e_{\rho_{6}}\right]\right]=\left[e_{\rho_{5}},\left[e_{\rho_{4}}, e_{\rho_{6}}\right]\right]
$$

For the same reason the interchange of ρ_{1} and ρ_{3} has no effect. Neither has the other interchange of ρ_{4} and ρ_{5}. Thus $\eta=1$. By induction

$$
\xi_{\widehat{\mu}\left(\epsilon^{2}\right)}=(-1)^{\left.\widehat{\mu}, \beta+2 \rho_{0}\right\rangle}
$$

where β is the root dual to $\widehat{\beta}$. ρ_{0} is one-half the sum of the positive roots for the A_{5} obtained by throwing out the root ρ_{2}. From the table of fundamental wts. (ρ is the sum of these) we find that

2ρ	\longleftrightarrow	. 22				
		- 16	. 30	. 42	. 30	- 16
				- 0		
$2 \rho_{0}$	\longleftrightarrow	. 5	. 8	-9	$\cdot 8$. 5

Thus $2 \rho-\beta-2 \rho_{0}$ corresponds to

$$
\begin{array}{ccccc}
.10 & \cdot 20 & \cdot 30 & \cdot 20 & \cdot 10
\end{array}
$$

and takes even values on every $\widehat{\mu}$.
$E_{7}:$ In this case ω is trivial. The toproot is

$$
\begin{array}{llllll}
& & & \cdot 2 \\
.1 & \cdot 2 & .3 & .4 & .3 & \cdot 2
\end{array}
$$

We give $(\widehat{\beta}, \widehat{\alpha}), \alpha$ simple, schematically. Note that in this case \mathfrak{g} is also of type E_{7}. The normalization is such that $(\widehat{\alpha}, \widehat{\alpha})=1$.

$$
4-4=0
$$

$$
2-\dot{\overrightarrow{2}=0} \quad 4-4=0 \quad 6-6=0 \quad 8-\dot{\text {. }}=0 \quad 6-6=0 \quad 4-3=1
$$

Thus \widehat{H}_{0} is of type D_{6}. Let $2 \rho_{0}$ be the sum of the positive roots for this D_{6}. We have to show that $\rho-\beta-2 \rho_{0}$ is a sum of simple roots in which each root enters an even number of times. Using the tables as before, we obtain

2ρ	\longleftrightarrow	- 27	. 52	. 75	. 49		- 34
					. 96	. 66	
					- 15		
$2 \rho_{0}$	\longleftrightarrow	- 10	- 18	. 24	- 28	- 15	. 0

Everything checks.
As an extra check let's work out G_{2} and F_{4} along these lines. Again the Lie algebras and their duals are the same.
F_{4} : Toproot is

$$
2-3 \Rightarrow 4-2
$$

ω is of course trivial. The diagram is

Thus $(\widehat{\beta}, \widehat{\alpha})$ is given by
\widehat{H}_{0} is in this case C_{3} and its dual is B_{3}.

Note that in passing to the dual the direction of the arrow is reversed.

because $\left(\beta, \rho_{2}\right)=\left(\beta, \rho_{4}\right)=\left(\beta, \rho_{3}\right)=0$. Note again that arrows are reversed. Note also that there is only one positive root orthogonal to ρ_{2}, ρ_{3} and ρ_{4}. In any case it checks. G_{2} : Toproot is

$$
\begin{aligned}
& 2 \\
& \bullet
\end{aligned} \quad \begin{aligned}
& 3 \\
& \bullet
\end{aligned}
$$

The diagram is

$(\widehat{\beta}, \widehat{\alpha})$ is given by

$$
6-\frac{9}{2}=\frac{3}{2} \quad \Rightarrow \quad \begin{gathered}
\bullet \\
3-\frac{3}{2} \cdot 2=0
\end{gathered}
$$

Thus, in this case,

and, since β annihilates the root on the right

$$
\beta \quad \longleftrightarrow \quad 2 \Leftarrow 1
$$

Everything checks in this case also.

Compiled on July 3, 2024.

