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It is enough to prove the relation

ξµ̂(ϵ
2) = (−1)⟨2ρ,µ̂⟩

when G̃, and therefore also Ĝ0 is simple. ϵ2 certainly lies in the Cartan subgroup of Ĝ0

corresponding to ĥ. Ĝ acts as a group of automorphisms of ĝ (of course not faithfully). Let

(·, ·) be the Killing form on ĝ. Ĝ preserves the Killing form. Let eα̂ be a root vector. Then

(eα̂, ϵeα̂) ̸= 0

and
(eα̂, ϵeα̂) = (ϵeα̂, ϵ

2eα̂) = ξα̂(ϵ
2)(ϵeα̂, eα̂) = ξα̂(ϵ

2)(eα̂, ϵeα̂)

because the Killing form is symmetric. Thus ξα̂ = 1. Since ⟨ρ, α̂⟩ is integral and in fact equal
to 1 for simple α̂,

ξα̂ = (−1)⟨2ρ,α̂⟩.
In particular the assertion is true in those cases that L̂− = L̂+. Thus when ĝ is of type E8,
F4, or G2.

In the other cases let β̂ be the top root (as defined in Freudenthal-de Vries). Then
ωeβ̂ = ηeβ̂, with η = ±1, and ωe−β̂ = ηe−β̂. Thus, taking the standard isomorphism of the
group corresponding to

Span
{
eβ̂, e−β̂, [eβ̂, e−β̂]

}
with SL(2,C), ω corresponds to the trivial automorphism if η = 1 and to the inner automor-
phism determined by (

i 0
0 −i

)
if η = −1. The reflection corresponding to β̂ is determined by

δ =

(
0 1
−1 0

)
.

Thus ωδω−1 = δ if η = +1 and (
0 −1
1 0

)
if η = −1. We regard δ as an element of Ĝ0. It takes every root which is not orthogonal to β̂

to a negative root. The roots orthogonal to β̂ are linear combinations of the simple roots

orthogonal to β̂.

We consider the various types separately. Ĥ0 will be the group corresponding to the algebra

generated by root vectors belonging to roots orthogonal to β̂. Ĥ0 is invariant under ω. Ĥ

will be Ĥ0 ∪ ωĤ0. If Ĥ0 is simple we may suppose our assertion is proved for Ĥ. We use the
tables in Fr.-De Vries.

(i) Aℓ: We identify L− and L̂− and L+ and L̂+ as in the previous letter.

2ρ =
(
n− 1, n− 3, . . . ,−(n− 1)

)
, n = ℓ+ 1.
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Here ω, acting on Ĝ0 which we may take as simply connected, is

A→



1
−1

1
−1

±1


tA

−1


±1

1
−1

1

 = γtA−1γ−1

and ϵ is γω. It is clear that ω(γ) = γ so that ϵ2 = γωγω = γ2 which is (−1)n−1I. It is enough
to check the relation

ξµ̂(ϵ
2) = (−1)⟨µ̂,2ρ⟩

for µ̂ fundamental. Let

µ̂ =
( k times︷ ︸︸ ︷
n− k

n
, . . . ,

n− k

n
,

n− k times︷ ︸︸ ︷
−k

n
, . . . ,−k

n

)
Then

ξµ̂(ϵ
2) = (−1)k(n−1)

and
⟨2ρ, µ̂⟩ ≡ k(n− 1) (mod 2).

The result follows.

(ii) Bℓ(= ĝ). Again the notation is that of my previous letter.

2ρ =
(
2ℓ, 2(ℓ− 1), . . . , 2

)
,

β̂ is ω1 + ω2. The automorphism ω is trivial; so η = 1. Ĥ0 corresponds to the diagram of Bℓ

with ρ3 omitted. Thus if δ1 is the reflection corresponding to ρ2 and δ2 is an automorphism
of the group obtained by removing ρ1 and ρ3 from the diagram of Bℓ we may take ϵ = ωδδ1δ2
and, since δ, δ1, and δ2 commute,

ϵ2 = δ2δ21δ
2
2.

By induction
ξµ̂(ϵ

2) = (−1)x

with

x = ⟨µ̂, ω1 + ω2⟩+ ⟨µ̂, ω1 − ω2⟩+
〈
µ̂,

(
0, 0, 2(ℓ− 2), . . . , 2

)〉
=

〈
µ̂,

(
2, 0, 2(ℓ− 2), . . . , 2

)〉
.

The difference between 2ρ and the element of L̂+ appearing here is(
2(ℓ− 1), 2(ℓ− 1), 0, . . . , 0

)
.

The value of this element at any µ̂ is even.

(iii) Cℓ(= ĝ)
2ρ = (2ℓ− 1, 2ℓ− 3, . . . , 1)
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β̂ is 2ω1. ω is again the trivial automorphism. Ĥ0 is now the group obtained by removing ω1

from the Dynkin diagram. If δ1 is the element of Ĥ0 taking roots to their negatives we may
take ϵ = ωδδ1 so that ϵ2 = δ2δ21. By induction

ξµ̂(ϵ
2) = (−1)x

with

x = ⟨µ̂, ω1⟩+
〈
µ̂, (0, 2ℓ− 3, . . . , 1)

〉
=

〈
µ̂, (1, 2ℓ− 3, . . . , 1)

〉
The difference between 2ρ and (1, 2ℓ − 3, . . . , 1) is

(
2(ℓ− 1), 0, . . . , 0

)
. The value of this

element of L+ at any µ̂ in L̂+ is even.

(iv) Dℓ(= ĝ). Here
ρ = (2ℓ− 2, 2ℓ− 4, . . . , 0).

β̂ is ω1 + ω2. We take ℓ > 3. We take Ĥ0 by removing ρ4 from the Dynkin diagram. We may
take

eβ̂ = [eρ4 , [eρ5 , [. . . , [eρℓ , [eρ3 , [. . . , [eρℓ−1
, [eρ2 , [eρℓ , eρ1 ] . . . ]

Now [
eρ2 , [eρℓ , eρ1 ]

]
+
[
eρ1 , [eρ2 , eρℓ ]

]
+
[
eρℓ , [eρ1 , eρ2 ]

]
= 0.

the last term is 0; so [
eρ2 , [eρℓ , eρ1 ]

]
=

[
eρ1 , [eρℓ , eρ2 ]

]
.

If ℓ is even, ω is trivial and η is 1. If ℓ is odd it follows from these calculations that η is also
1, because ωeρ2 = eρ1 and ωeρ1 = eρ2 . Let δ1 be the reflection corresponding to ρ3 and let

δ2 be that element of the Weyl group of Ĥ0 taking positive roots to negative roots. Take
ϵ = ωδδ1δ2. Then by induction

ξµ̂(ϵ
2) = (−1)x

with

x = ⟨µ̂, ω1 + ω2⟩+ ⟨µ̂, ω1 − ω2⟩+
〈
µ̂, (0, 0, 2ℓ− 6, . . . , 0)

〉
=

〈
µ̂, (2, 0, 2ℓ− 6, . . . , 0)

〉
.

The difference between ρ and (2, 0, 2ℓ− 6, . . . , 0) is (2ℓ− 4, 2ℓ− 4, 0, . . . , 0) which takes an
even value at every µ̂. If ℓ = 4 the induction argument cannot be used. In this case δ2 is the
product of the reflection corresponding to ρ1 and that corresponding to ρ2. Thus

ξµ̂(δ
2
2) = (−1)y

with
y = ⟨µ̂, ω3 − ω4⟩+ ⟨µ̂, ω3 + ω4⟩.

This justifies the use of the induction.

E6: The toproot is

2

1 2 3 2 1
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The scheme ⟨β̂, α̂⟩ is given by

4− 3 = 1
·

· · · · ·
2− 2 = 0 4− 3− 1 = 0 6− 2− 2− 2 = 0 4− 3− 1 = 0 2− 2 = 0

Thus Ĥ0 corresponds to A5. Using the table of roots in Freudenthal-de Vries, we see that

eβ̂ = [eρ2 , [eρ6 , [eρ4 , [eρ5 , [eρ6 , [eρ2 , [eρ3 , [eρ1 , [eρ5 , [eρ4 , [eρ6 ], . . . ]

Applying ω we get

[eρ2 , [eρ6 , [eρ5 , [eρ4 , [eρ6 , [eρ2 , [eρ1 , [eρ3 , [eρ4 , [eρ5 , [eρ6 ], . . . ].

Now [
eρ4 , [eρ5 , eρ6 ]

]
+
[
eρ6 , [eρ4 , eρ5 ]

]
+
[
eρ5 , [eρ6 , eρ4 ]

]
= 0,

so that [
eρ4 , [eρ5 , eρ6 ]

]
=

[
eρ5 , [eρ4 , eρ6 ]

]
.

For the same reason the interchange of ρ1 and ρ3 has no effect. Neither has the other
interchange of ρ4 and ρ5. Thus η = 1. By induction

ξµ̂(ϵ2) = (−1)⟨µ̂,β+2ρ0⟩,

where β is the root dual to β̂. ρ0 is one-half the sum of the positive roots for the A5 obtained
by throwing out the root ρ2. From the table of fundamental wts. (ρ is the sum of these) we
find that

· 22
2ρ ←→ · 16 · 30 · 42 · 30 · 16

· 0
2ρ0 ←→ · 5 · 8 · 9 · 8 · 5

Thus 2ρ− β − 2ρ0 corresponds to

· 20
· 10 · 20 · 30 · 20 · 10

and takes even values on every µ̂.

E7 : In this case ω is trivial. The toproot is

· 2
· 1 · 2 · 3 · 4 · 3 · 2

We give (β̂, α̂), α simple, schematically. Note that in this case g is also of type E7. The
normalization is such that (α̂, α̂) = 1.

·
4− 4 = 0

· · · · · ·
2− 2 = 0 4− 4 = 0 6− 6 = 0 8− 8 = 0 6− 6 = 0 4− 3 = 1
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Thus Ĥ0 is of type D6. Let 2ρ0 be the sum of the positive roots for this D6. We have to show
that ρ− β − 2ρ0 is a sum of simple roots in which each root enters an even number of times.
Using the tables as before, we obtain

· 49
2ρ ←→ · 27 · 52 · 75 · 96 · 66 · 34

· 15
2ρ0 ←→ · 10 · 18 · 24 · 28 · 15 · 0

Everything checks.
As an extra check let’s work out G2 and F4 along these lines. Again the Lie algebras and

their duals are the same.

F4: Toproot is

2 3 ⇛ 4 2

ω is of course trivial. The diagram is

2 2

−1
⇛

−1

1 1

−1/2

Thus (β̂, α̂) is given by

2

4− 3 = 1

2

6− 2− 4 = 0
⇛

1

4− 1− 3 = 0

1

2− 4/2 = 0

Ĥ0 is in this case C3 and its dual is B3.

2ρ0 ←→
0 9

⇚
8 5

Note that in passing to the dual the direction of the arrow is reversed.

2ρ ←→
22 42

⇚
30 16

β ←→
2 3

⇚
2 1

because (β, ρ2) = (β, ρ4) = (β, ρ3) = 0. Note again that arrows are reversed. Note also that
there is only one positive root orthogonal to ρ2, ρ3 and ρ4. In any case it checks.

G2: Toproot is

2 3
⇛

The diagram is
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3 1
⇚

−3/2

(β̂, α̂) is given by

6− 9
2
= 3

2
3− 3

2
· 2 = 0

⇛

Thus, in this case,

2ρ0 ←→
0 1
⇚

2ρ ←→
10 6

⇚

and, since β annihilates the root on the right

β ←→ 2 ⇚ 1.

Everything checks in this case also.
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