APPENDIX TO LETTER TO SERGE LANG—DECEMBER 17, 1970

It is enough to prove the relation

$$\xi_{\widehat{\mu}}(\epsilon^2) = (-1)^{\langle 2\rho, \widehat{\mu} \rangle}$$

when \widetilde{G} , and therefore also \widehat{G}_0 is simple. ϵ^2 certainly lies in the Cartan subgroup of \widehat{G}_0 corresponding to $\widehat{\mathfrak{h}}$. \widehat{G} acts as a group of automorphisms of \widehat{g} (of course not faithfully). Let (\cdot,\cdot) be the Killing form on $\widehat{\mathfrak{g}}$. \widehat{G} preserves the Killing form. Let $e_{\widehat{\alpha}}$ be a root vector. Then

$$(e_{\widehat{\alpha}}, \epsilon e_{\widehat{\alpha}}) \neq 0$$

and

$$(e_{\widehat{\alpha}}, \epsilon e_{\widehat{\alpha}}) = (\epsilon e_{\widehat{\alpha}}, \epsilon^2 e_{\widehat{\alpha}}) = \xi_{\widehat{\alpha}}(\epsilon^2)(\epsilon e_{\widehat{\alpha}}, e_{\widehat{\alpha}}) = \xi_{\widehat{\alpha}}(\epsilon^2)(e_{\widehat{\alpha}}, \epsilon e_{\widehat{\alpha}})$$

because the Killing form is symmetric. Thus $\xi_{\widehat{\alpha}} = 1$. Since $\langle \rho, \widehat{\alpha} \rangle$ is integral and in fact equal to 1 for simple $\widehat{\alpha}$,

$$\xi_{\widehat{\alpha}} = (-1)^{\langle 2\rho, \widehat{\alpha} \rangle}.$$

In particular the assertion is true in those cases that $\widehat{L}_{-} = \widehat{L}_{+}$. Thus when $\widehat{\mathfrak{g}}$ is of type E_{8} , F_{4} , or G_{2} .

In the other cases let $\widehat{\beta}$ be the top root (as defined in Freudenthal-de Vries). Then $\omega e_{\widehat{\beta}} = \eta e_{\widehat{\beta}}$, with $\eta = \pm 1$, and $\omega e_{-\widehat{\beta}} = \eta e_{-\widehat{\beta}}$. Thus, taking the standard isomorphism of the group corresponding to

$$\operatorname{Span} \Bigl\{ e_{\widehat{\beta}}, e_{-\widehat{\beta}}, [e_{\widehat{\beta}}, e_{-\widehat{\beta}}] \Bigr\}$$

with $SL(2, \mathbb{C})$, ω corresponds to the trivial automorphism if $\eta = 1$ and to the inner automorphism determined by

$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

if $\eta = -1$. The reflection corresponding to $\widehat{\beta}$ is determined by

$$\delta = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Thus $\omega \delta \omega^{-1} = \delta$ if $\eta = +1$ and

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

if $\eta = -1$. We regard δ as an element of \widehat{G}_0 . It takes every root which is not orthogonal to $\widehat{\beta}$ to a negative root. The roots orthogonal to $\widehat{\beta}$ are linear combinations of the simple roots orthogonal to $\widehat{\beta}$.

We consider the various types separately. \widehat{H}_0 will be the group corresponding to the algebra generated by root vectors belonging to roots orthogonal to $\widehat{\beta}$. \widehat{H}_0 is invariant under ω . \widehat{H} will be $\widehat{H}_0 \cup \omega \widehat{H}_0$. If \widehat{H}_0 is simple we may suppose our assertion is proved for \widehat{H} . We use the tables in Fr.-De Vries.

(i) A_{ℓ} : We identify L_{-} and \widehat{L}_{-} and L_{+} and \widehat{L}_{+} as in the previous letter.

$$2\rho = (n-1, n-3, \dots, -(n-1)), \qquad n = \ell + 1.$$

Here ω , acting on \widehat{G}_0 which we may take as simply connected, is

$$A \to \begin{pmatrix} & & & & & 1 \\ & & & & -1 \\ & & & 1 \\ & & & -1 \end{pmatrix} {}^{t} A^{-1} \begin{pmatrix} & & & & \pm 1 \\ & & & & \pm 1 \\ & & 1 & & \\ & & -1 & & \\ & & & \end{pmatrix} = \gamma^{t} A^{-1} \gamma^{-1}$$

and ϵ is $\gamma\omega$. It is clear that $\omega(\gamma) = \gamma$ so that $\epsilon^2 = \gamma\omega\gamma\omega = \gamma^2$ which is $(-1)^{n-1}I$. It is enough to check the relation

$$\xi_{\widehat{\mu}}(\epsilon^2) = (-1)^{\langle \widehat{\mu}, 2\rho \rangle}$$

for $\widehat{\mu}$ fundamental. Let

$$\widehat{\mu} = \left(\underbrace{\frac{n-k}{n}, \dots, \frac{n-k}{n}}^{k \text{ times}}, \underbrace{-\frac{k}{n}, \dots, -\frac{k}{n}}^{n-k \text{ times}} \right)$$

Then

$$\xi_{\widehat{\mu}}(\epsilon^2) = (-1)^{k(n-1)}$$

and

$$\langle 2\rho, \widehat{\mu} \rangle \equiv k(n-1) \pmod{2}.$$

The result follows.

(ii) $B_{\ell}(=\widehat{\mathfrak{g}})$. Again the notation is that of my previous letter.

$$2\rho = (2\ell, 2(\ell-1), \dots, 2),$$

 $\widehat{\beta}$ is $\omega_1 + \omega_2$. The automorphism ω is trivial; so $\eta = 1$. \widehat{H}_0 corresponds to the diagram of B_ℓ with ρ_3 omitted. Thus if δ_1 is the reflection corresponding to ρ_2 and δ_2 is an automorphism of the group obtained by removing ρ_1 and ρ_3 from the diagram of B_ℓ we may take $\epsilon = \omega \delta \delta_1 \delta_2$ and, since δ , δ_1 , and δ_2 commute,

$$\epsilon^2 = \delta^2 \delta_1^2 \delta_2^2.$$

By induction

$$\xi_{\widehat{\mu}}(\epsilon^2) = (-1)^x$$

with

$$x = \langle \widehat{\mu}, \omega_1 + \omega_2 \rangle + \langle \widehat{\mu}, \omega_1 - \omega_2 \rangle + \langle \widehat{\mu}, (0, 0, 2(\ell - 2), \dots, 2) \rangle$$
$$= \langle \widehat{\mu}, (2, 0, 2(\ell - 2), \dots, 2) \rangle.$$

The difference between 2ρ and the element of \hat{L}_+ appearing here is

$$(2(\ell-1), 2(\ell-1), 0, \dots, 0).$$

The value of this element at any $\widehat{\mu}$ is even.

(iii)
$$C_{\ell}(=\widehat{\mathfrak{g}})$$

$$2\rho = (2\ell - 1, 2\ell - 3, \dots, 1)$$

 $\widehat{\beta}$ is $2\omega_1$. ω is again the trivial automorphism. \widehat{H}_0 is now the group obtained by removing ω_1 from the Dynkin diagram. If δ_1 is the element of \widehat{H}_0 taking roots to their negatives we may take $\epsilon = \omega \delta \delta_1$ so that $\epsilon^2 = \delta^2 \delta_1^2$. By induction

$$\xi_{\widehat{\mu}}(\epsilon^2) = (-1)^x$$

with

$$x = \langle \widehat{\mu}, \omega_1 \rangle + \langle \widehat{\mu}, (0, 2\ell - 3, \dots, 1) \rangle$$

= $\langle \widehat{\mu}, (1, 2\ell - 3, \dots, 1) \rangle$

The difference between 2ρ and $(1, 2\ell - 3, ..., 1)$ is $(2(\ell - 1), 0, ..., 0)$. The value of this element of L_+ at any $\widehat{\mu}$ in \widehat{L}_+ is even.

(iv)
$$D_{\ell}(=\widehat{\mathfrak{g}})$$
. Here

$$\rho = (2\ell - 2, 2\ell - 4, \dots, 0).$$

 $\widehat{\beta}$ is $\omega_1 + \omega_2$. We take $\ell > 3$. We take \widehat{H}_0 by removing ρ_4 from the Dynkin diagram. We may take

$$e_{\widehat{\beta}} = [e_{\rho_4}, [e_{\rho_5}, [\dots, [e_{\rho_\ell}, [e_{\rho_3}, [\dots, [e_{\rho_{\ell-1}}, [e_{\rho_2}, [e_{\rho_\ell}, e_{\rho_1}] \dots]$$

Now

$$\left[e_{\rho_2}, [e_{\rho_\ell}, e_{\rho_1}]\right] + \left[e_{\rho_1}, [e_{\rho_2}, e_{\rho_\ell}]\right] + \left[e_{\rho_\ell}, [e_{\rho_1}, e_{\rho_2}]\right] = 0.$$

the last term is 0; so

$$[e_{\rho_2}, [e_{\rho_\ell}, e_{\rho_1}]] = [e_{\rho_1}, [e_{\rho_\ell}, e_{\rho_2}]].$$

If ℓ is even, ω is trivial and η is 1. If ℓ is odd it follows from these calculations that η is also 1, because $\omega e_{\rho_2} = e_{\rho_1}$ and $\omega e_{\rho_1} = e_{\rho_2}$. Let δ_1 be the reflection corresponding to ρ_3 and let δ_2 be that element of the Weyl group of \widehat{H}_0 taking positive roots to negative roots. Take $\epsilon = \omega \delta \delta_1 \delta_2$. Then by induction

$$\xi_{\widehat{\mu}}(\epsilon^2) = (-1)^x$$

with

$$x = \langle \widehat{\mu}, \omega_1 + \omega_2 \rangle + \langle \widehat{\mu}, \omega_1 - \omega_2 \rangle + \langle \widehat{\mu}, (0, 0, 2\ell - 6, \dots, 0) \rangle = \langle \widehat{\mu}, (2, 0, 2\ell - 6, \dots, 0) \rangle.$$

The difference between ρ and $(2,0,2\ell-6,\ldots,0)$ is $(2\ell-4,2\ell-4,0,\ldots,0)$ which takes an even value at every $\widehat{\mu}$. If $\ell=4$ the induction argument cannot be used. In this case δ_2 is the product of the reflection corresponding to ρ_1 and that corresponding to ρ_2 . Thus

$$\xi_{\widehat{\mu}}(\delta_2^2) = (-1)^y$$

with

$$y = \langle \widehat{\mu}, \omega_3 - \omega_4 \rangle + \langle \widehat{\mu}, \omega_3 + \omega_4 \rangle.$$

This justifies the use of the induction.

 E_6 : The toproot is

The scheme $\langle \widehat{\beta}, \widehat{\alpha} \rangle$ is given by

Thus \widehat{H}_0 corresponds to A_5 . Using the table of roots in Freudenthal-de Vries, we see that

$$e_{\widehat{\beta}} = [e_{\rho_2}, [e_{\rho_6}, [e_{\rho_4}, [e_{\rho_5}, [e_{\rho_6}, [e_{\rho_2}, [e_{\rho_3}, [e_{\rho_1}, [e_{\rho_5}, [e_{\rho_4}, [e_{\rho_6}], \dots]$$

Applying ω we get

$$[e_{\rho_2}, [e_{\rho_6}, [e_{\rho_5}, [e_{\rho_4}, [e_{\rho_6}, [e_{\rho_2}, [e_{\rho_1}, [e_{\rho_3}, [e_{\rho_4}, [e_{\rho_5}, [e_{\rho_6}], \dots]]$$

Now

$$\left[e_{\rho_4}, \left[e_{\rho_5}, e_{\rho_6}\right]\right] + \left[e_{\rho_6}, \left[e_{\rho_4}, e_{\rho_5}\right]\right] + \left[e_{\rho_5}, \left[e_{\rho_6}, e_{\rho_4}\right]\right] = 0,$$

so that

$$\left[e_{\rho_4}, [e_{\rho_5}, e_{\rho_6}]\right] = \left[e_{\rho_5}, [e_{\rho_4}, e_{\rho_6}]\right].$$

For the same reason the interchange of ρ_1 and ρ_3 has no effect. Neither has the other interchange of ρ_4 and ρ_5 . Thus $\eta = 1$. By induction

$$\xi_{\widehat{\mu}(\epsilon^2)} = (-1)^{\langle \widehat{\mu}, \beta + 2\rho_0 \rangle},$$

where β is the root dual to $\widehat{\beta}$. ρ_0 is one-half the sum of the positive roots for the A_5 obtained by throwing out the root ρ_2 . From the table of fundamental wts. (ρ is the sum of these) we find that

Thus $2\rho - \beta - 2\rho_0$ corresponds to

$$\begin{array}{cccc}
 & \cdot 20 \\
 & \cdot 10 & \cdot 20 & \cdot 30 & \cdot 20 & \cdot 10
\end{array}$$

and takes even values on every $\widehat{\mu}$.

 E_7 : In this case ω is trivial. The toproot is

We give $(\widehat{\beta}, \widehat{\alpha})$, α simple, schematically. Note that in this case \mathfrak{g} is also of type E_7 . The normalization is such that $(\widehat{\alpha}, \widehat{\alpha}) = 1$.

Thus \widehat{H}_0 is of type D_6 . Let $2\rho_0$ be the sum of the positive roots for this D_6 . We have to show that $\rho - \beta - 2\rho_0$ is a sum of simple roots in which each root enters an even number of times. Using the tables as before, we obtain

$$2\rho \longleftrightarrow 27 \cdot 52 \cdot 75 \cdot 96 \cdot 66 \cdot 34$$

$$2\rho_0 \longleftrightarrow 10 \cdot 18 \cdot 24 \cdot 28 \cdot 15 \cdot 0$$

Everything checks.

As an extra check let's work out G_2 and F_4 along these lines. Again the Lie algebras and their duals are the same.

 F_4 : Toproot is

$$2 \longrightarrow 3 \Rightarrow 4 \longrightarrow 2$$

 ω is of course trivial. The diagram is

Thus $(\widehat{\beta}, \widehat{\alpha})$ is given by

 \widehat{H}_0 is in this case C_3 and its dual is B_3 .

Note that in passing to the dual the direction of the arrow is reversed.

because $(\beta, \rho_2) = (\beta, \rho_4) = (\beta, \rho_3) = 0$. Note again that arrows are reversed. Note also that there is only one positive root orthogonal to ρ_2 , ρ_3 and ρ_4 . In any case it checks.

 G_2 : Toproot is

$$\begin{array}{ccc}
2 & & & 3 \\
\bullet & \Rightarrow & \bullet
\end{array}$$

The diagram is

$$\begin{array}{ccc}
3 & & 1 \\
\bullet & \Leftarrow & \bullet \\
& -3/2 & \\
\end{array}$$

 $(\widehat{\beta}, \widehat{\alpha})$ is given by

$$\begin{array}{ccc}
\bullet & \Longrightarrow & \bullet \\
6 - \frac{9}{2} = \frac{3}{2} & 3 - \frac{3}{2} \cdot 2 = 0
\end{array}$$

Thus, in this case,

$$\begin{array}{cccc}
2\rho_0 & \longleftrightarrow & \bullet & \Leftarrow & \bullet \\
 & 0 & 1 \\
2\rho & \longleftrightarrow & \bullet & \Leftarrow & \bullet \\
 & 10 & 6 & \\
\end{array}$$

and, since β annihilates the root on the right

$$\beta \longleftrightarrow 2 \Leftarrow 1.$$

Everything checks in this case also.

Compiled on November 17, 2025.