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Letter

Dear Meiki,

What I want to do in these letters—there may be more than one—is to formulate exactly
the conjecture of the appendix, which, as it stands, is not only a little vague but also, in
various places, incorrect, and to prove it for certain Shimura “varieties” which can be realized
as coarse moduli schemes for problems whose data involve only polarizations, endomorphisms,
and points of finite order.

The proof then will involve the formulation of the moduli problem M , the verification that
its course moduli scheme exists, and the study of M(k) =M(Spec k). Here k is the algebraic
closure of the finite field k and a morphism of Spec k into the base scheme for the moduli
problem is given. There are presumably two aspects to the study of the set M(k). It must
first be decomposed into isogeny classes and then the structure of the individual isogeny
classes must be analyzed.
You will find that the letter degenerates very rapidly. This is because on the whole it is

less an attempt to explain an idea to you than to justify the idea to myself. This relieves you
of any responsibility to read it.

We suppose we have been given the following:

(i) A semi-simple algebra L over Q with positive involution ℓ→ ℓ∗.
(ii) An order OL in L.
(iii) An algebraic number field E of finite degree over Q and an order OE in E.
(iv) A free finitely generated module V = V (Z). We may extend ψ to V (Q), on which L

acts; we demand that
ψ(ℓu, v) = ψ(u, ℓ∗v).

(v) An exact sequence

0 U V ⊗OE W 0

[2] where U and W are finitely generated, locally free OE-modules. If τU and τW
denote the traces of representations of OL on U and W at best τU and τW may be
extended to maps L→ E. We demand that

τW (ℓ) = τU(ℓ
∗),

that τW (ℓ) lie in OE if ℓ lies in OL, and that ψ is zero on U .
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(vi) If Z is the centre of L and Z0 consists of the elements of Z fixed by the involution,
and if Z0 and Q are the algebraic groups over Q associated to Z and Q in the usual
way, a torus C with

Q ⊆ C ⊆ Z0.

There are further conditions to be imposed on these objects. As they are not yet all clear
to me, I shall not impose them until they become necessary in the course of the discussion.

Let G be the group of all L-automorphisms g of V such that for some µ(g) ∈ C
ψ(gu, gv) ≡ ψ

(
u, µ(g)v

)
.

Let G(Zf ) be the stabilizer of V (Zf ) in G(Af ). To each open compact subgroupK ⊆ G(Zf )
and each finite set of primes Q such that

K = KpG(Zp)

with Kp = K ∩G(Zpf ), for p /∈ Q I want to associate a moduli problem M =MK,Q.
If Q = {p1, . . . , pr}, where pi is a prime of OE the moduli problem will be formulated for

locally noetherian schemes S over SpecOE −
⋃
pi. If A is an abelian scheme over S let

Tp(A) = lim←−Apn .
[3] If OL acts on A and λ, λ′ are two polarizations of A I call λ and λ′ C-equivalent if

there exist c, c′ in C(Q) ∩OL so that

λ ◦ c = λ′ ◦ c′.
Two OL-isomorphisms φ, φ′ : T1(A)

∼−→ V (Zp) will be called K-equivalent if φ′ = kφ with

k ∈ G(Qp) ∩K.
The sheaf H1

DR(A) on S has been studied by, among others, Mazur-Messing. They show

that it is isomorphic to the Lie algebra of the universal vector extension E(Â) of the dual

abelian variety Â. However (cf. Note 1) the sheaf of invariant differential forms on E(Â) is

isomorphic to the sheaf H1
DR(Â). Thus H

1
DR(Â) and H

1
DR(Â) are paired. So are

Hom
(
H1
DR(A), OS

)
⊗OE

R

and
Hom

(
H1
DR(Â), OS

)
⊗OE

R.

But we take the negative of the natural pairing.
That data for the moduli problem M consist of an abelian variety, a C-equivalence class Λ

of polarizations of A given locally on S, a homomorphism i : OL → EndA, with i(1) = 1 and
for each p a K-equivalence class of isomorphisms φp : T (A) ≃ V (Zp) (see Note 4) defined
however only over Sp. The data are subject to the following conditions:

(a) If ∗ denotes the involution of EndA⊗Q defined by a polarization on Λ then

i(ℓ∗) = i(ℓ)∗.

(b) If we choose on Sp an isomorphism of µp∞ = lim←−µpn with [4] Zp = lim←−Z/pZ, so that

the pairing ⟨α, α̂⟩ of Tp(A) with Tp(Â) may be regarded as taking values in Zp, there
is, locally on Sp, a c in C(Qp) so that〈

α, λ(β)
〉
= ψ

(
φ(α), cφ(β)

)
.
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Here c depends on the polarization λ. If we replace λ by λ ◦ α we must replace c by
cα.

(c) For all λ ∈ L, there is a c in C(OS)
(
C(Q) ∩OL

)
, and an OL-isomorphism

η : Hom
(
H1
DR(A), OS

)
≃ V ⊗OE ⊗OE

OS

which preserves the filtrations and satisfies〈
α, λ(β)

〉
= ψ

(
η(α), cη(β)

)
.

Moreover for each p dividing the prime not inQ and each λ ∈ Λ there is a c ∈ C(Q)∩OL

so that λ = λ′ ◦ c where the kernel of λ′ has order prime to p. Here λ is also used to
denote the associated map

Hom
(
H1
DR(A), OS

)
→ Hom

(
H1
DR(Â), OS

)
.

Suppose an imbedding OE → C is given as well as a homomorphism h0 : C× → G(R).
This homomorphism allows C× to act on V (C) and we suppose

V (C) = V +
0 (C)⊕ V −

0 (C)

where

V +
0 =

{
v ∈ V (C)

∣∣ h0(z)v = z−1v ∀z ∈ C× }
V −
0 =

{
v ∈ V (C)

∣∣ h0(z)v = z−1v ∀z ∈ C× }
.

We suppose moreover that the form

ψ
(
u, h0(i)v

)
[5] on V (R) is symmetric and positive definite and that the trace of ℓ ∈ OL on V +(C) is
τw(ℓ).

We may define a moduli problem MC over C. The data consist now of an abelian variety
over C, a C-equivalence class Λ of polarizations of A, a homomorphism i : OL → EndA with
i(1) = 1, and a K-equivalence class of isomorphisms φ : Tf (A)

∼−→ V (Zf ), if

Tf (A) = lim←−An.
The following conditions are to be satisfied:

(a′) The same as (a) above.

(b′) The same as (b) above, except that Tf (A), Tf (Â), and C(Af ) replace TQ(A), TQ(Â),
and CQ.

(c′) The trace of the action of ℓ ∈ OL on the tangent space to A is τw(ℓ).
(d′) Suppose ⟨·, ·⟩λ is a bilinear form on H1(A,Q) defined by a polarization λ ∈ Λ. There

is an OL-isomorphism η of H1(A,Q) with V (Q) and a c ∈ C(Q) so that

⟨x, y⟩λ = ψ
(
η(x), cη(y)

)
.

(e′) If h is the action of C× on H1(A,Q)⊗R defined by the identification of this space
with the tangent space to A at 0 so that ηhη−1 : C× → G(R) then ηhη−1 and h0 are
conjugate under G(R).

As you well know the two problems just formulated are not sufficiently rigid. To stiffen
them we introduce and additional datum. c ∈ C(Q) will be called totally positive if every
eigenvalue of the associated linear transformation of V (R) is positive. If c ∈ C(Q) ∩OL and
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is totally positive and if λ ∈ Λ so is λ ◦ c. The additional datum is an injection (of sheaves in
the Zariski topology)

ϵ : Λ→ C(Q)

such that [6]
ϵ(λ)c = ϵ(λ′)c′

if
λ ◦ c = λ′ ◦ c′.

The stiffened moduli problems M̃ and M̃C allow in action by C(Q). The element c acts by
replacing ϵ by ϵ′ : λ→ cϵ(λ) but leaves the remaining data alone.

An isomorphism of (A,Λ, i, φp, ϵ) with (A,′ Λ′, i′, φ′
p, ϵ

′) is an isomorphism a : A→ A′ and
a bijection λ↔ λ′ of Λ with Λ′ so that ϵ(λ) = ϵ′(λ′), so that

A Â

A′ Â′

λ

α α̂

λ′

is commutative, and so that
φ = φ′ ◦ α

and
φp = φ′

p ◦ α.
An isomorphism of two collections of data for M̃C is defined in a similar manner.

I observe that if K is chosen sufficiently small then no collection of data admits an
automorphism. Any automorphism α of (A,Λ, i, φ, φp, ϵ) fixes each polarization λ ∈ Λ.
Moreover

β → β∗ = λ−1β̂λ

is a positive involution of End0(A) = EndA⊗Q. Since α∗ = α−1 and the eigenvalues of α
are algebraic integers, the eigenvalues are roots of unity and α is of finite order. If ρ ∈ Q the
image of α in G(Qp) lies in the image of K. However if we demand that K acts trivially on
V (Z/pnZ), pn ⩾ 3, [7] then no element but 1 of this image has finite order. We conclude
that α = 1.
I next observe that the set MC is the quotient of M̃C by C(Q) and that M(k) is the

quotient of M̃(k) by C(Q) if k is a field.1 The existence of injections

M̃C/C(Q) ↪→MC

and
M̃(k)/C(Q) ↪→M(k)

is clear. It is a matter of ignoring ϵ. To check that these maps are also surjective, it is enough
to verify that ϵ always exists. Fix λ0 ∈ Λ. If

λ ◦ c = λ0 ◦ c0
and

λ′ ◦ c′ = λ0 ◦ c′0
1algebraically closed.
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then
λ0 ◦ (c0c′) = λ0 ◦ (c′0c).

We conclude that
c0c

′ = c′0c

or
c0c

−1 = c′0c
′−1.

We define
ϵ(λ) = c0c

−1.

As the next step I introduce a structure of complex analytic spaces on MC and M̃C.
Consider pairs consisting of

(a) A Q-valued bilinear form Ψ on V (Q) such that for some c ∈ C(Q)

Ψ(u, v) ≡ ψ(u, cv).

[8]
(b) A homomorphism h of C× into G(R) such that

V (C) = V +(C)⊕ V −(C)

if

V +(C) =
{
v ∈ V (C)

∣∣ h(z)v = z−1v for all z ∈ C× }
V −(C) =

{
v ∈ V (C)

∣∣ h(z)v = z−1v for all z ∈ C× }
Moreover h should be conjugate under G(R) to h0.

If gf ∈ G(Af ) then gfV (Z) is the lattice

gfV (Zf ) ∩ V (Q).

If x ∈ G(R) and
x−1h(z)x = h0(z)

for all z, then
Ψ
(
xu, µ−1(x)c−1h(i)xv

)
= ψ

(
u, h0(i)v

)
is positive definite and symmetric on V (R). However, by Serre’s lemma, C(Q) is dense
in C(R); so there is a b ∈ C(Q) so that

Ψ
(
u, bh(i)v

)
is positive definite and symmetric on V (R). Multiplying b by a positive integer if necessary,
we may also suppose that Ψ(u, bv) takes integral values in gfV (Z).

We may also regard h as being defined by an element g∞ ∈ G(R), namely

g∞ = x.

[9] To Ψ and g = (g∞, gf ) we assign the abelian variety

A = V −(C)\V (C)/gfV (Z) = V (R)/gfV (Z).

The set of all c ∈ C(Q) such that Ψ(u, cv) is integral on gfV (Z) and Ψ
(
u, ch(i)v

)
is positive,

symmetric in V (R), defines a C-equivalence class Λ of polarizations on A. Certainly OL acts
on A. We have an obvious isomorphism (namely φ = g−1

f )

φ : Tf (A)→ V (Zf )
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and an obvious injection
ϵ : Λ ↪→ C(Q).

It is easy to verify that conditions (a′) to (e′) are fulfilled (cf. Note 2).

We now ask when (Ψ, g) and (Ψ′, g′) yield the same element of M̃C. The isomorphism
between A and A′ must be given by a linear transformation γ of V (Q) which takes gfV (Z)
to gfV

′(Z). Thus γ must be a linear transformation of V (Q) and

γgf ≡ g′f (mod K).

α must commute with the action of OL. Moreover

h′(z)γ = γh(z)

so that
γg∞h0g

−1
∞ γ−1 = g′∞h0g

′−1
∞ .

Also
ψ(u, cv) = Ψ(u, v) = Ψ′(γu, γv) = ψ(γu, c′γv).

[10] Thus
µ(γ) = cc′−1

and
γ ∈ G(Q).

The condition is therefore that g and g′ lie in the same double coset.

G(Q)\G(A)/K∞K

and that if
γg ≡ g′ (mod K∞K)

then
Ψ(u, v) = Ψ′(γu, γv)

K∞ is the centralizer of h0 in G(R).

Observe that the action of c in M̃C replaces Ψ by

u, v → Ψ(u, cv)

but leaves g untouched. We shall verify shortly that every element of M̃C corresponds to
some pair (Ψ, g). To divide the action of C(Q) is therefore simply to ignore Ψ.

If (A,Λ, i, φ, ϵ) defines a point of M̃C then, by (d′), we may identify H1(A,Q) with V (Q).
If λ ∈ Λ, ϵ(λ) ∈ c1, and

⟨u, v⟩λ = ψ(u, c2v)

set
Ψ(u, v) = ψ(u, cv)

with
c = c2c

−1
1 .

[11] Introduce h as in (e′) and let

h(z) = g∞h0(z)g
−1
∞ ∀z ∈ C×.

The inverse of φ yields an automorphism gf of V (Af). Because of (b′) (cf. Note 2),
gf ∈ G(Af ). Moreover A is the quotient of V (R) by gfV (Z).
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We have established that, as sets,

M̃C ≃ C(Q)×G(Q)\G(A)/K∞K

and
MC ≃ G(Q)\G(A)/K∞K.

We introduce in the usual way that complex structure on G(R)/K∞ for which h0(z) acts on
the holomorphic tangent space at the coset K∞ as z−1. This complex structure on G(R)/K∞

then yields one in M̃C and on MC. By Baily-Borel M̃C and MC then appear as the set of

complex points on locally noetherian schemes M̃C andMC over C.

I next observe that, if K is sufficiently small, we also have available a point in M̃(M̃C). If
gf ∈ G(Af ) and Ψ are fixed, then

V −(C)\V (C)/gfV (Z)

is a family of abelian varieties over

G(R)gfK/K∞K ≃ G(R)/K∞.

To give it a holomorphic structure we have only to give a holomorphic structure to the family
of vector spaces V −(C)/V (C) over G(R)/K∞. The latter is, as a complex manifold, an open
submanifold of G(C)/P (C) if P (C) is the parabolic subgroup of G(C) with Lie algebra

g(0,0) + g(0,−1).

[12] Also V −1
0 (C) is stable under P (C). The space V −(C) over the coset of g is

gV −
0 (C).

Thus the family is parametrized locally by

V −(C)\V (C)× U = V +(C)× U
if U is a complex analytic slice of G(C)/P (C).

Any c such that Ψ(u, cv) is integral valued on gfV (Z) defines a polarization λ (cf. Note 2).
We shall define ϵ(λ) = c. If K is so small that G(Q)∩gfKg−1

f acts freely on G(R)gfK/K∞K,
as it will if the previous condition of smallness is met, then we divide out to obtain a family
of abelian varieties on

G(Q) ∩ gfKg−1
f \G(R)gfK/K∞K.

We may put these together to obtain an analytic family of abelian varieties on M̃C. So far
as I can see one has to do a little work to verify that it is in fact an algebraic family. This

work I omit for now. However it is done it will be clear that we have an element of M̃(M̃C).
This work may not be necessary. It is probably sufficient for our purposes to know that

M̃C with the given family is universal for the continuous version of MC. For the continuous
version we would demand that the abelian varieties and their duals formed an analytic family
of abelian varieties, that

λ : A→ Â

and ϵ : Λ→ C(Q) were given locally, and on the fibres λ was associated to polarizations.
I will sort this out to some other time. What we have to find now are conditions on the

objects defining our moduli problem which guarantee that M̃C equals M̃(C).
[13] It follows from the computations in Note 3 that (c′) implies (c). What we have to

do is to find conditions which guarantee that (d′) and (e′) are redundant. Such conditions
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are given in the first version of “Travaux de Shimura.” I review them here with some slight
variations.

Suppose we have a representation of L⊗R on the vector space H over R, an alternating
bilinear form ⟨x, y⟩ on H, and an action z → h(z) of CK on the L⊗R moduli H so that〈

h(z)x, h(z)y
〉
= (zz)−1⟨x, y⟩

so that 〈
x, h(i)y

〉
is symmetric and positive definite, and so that

H ⊗C = H+(C)⊕H−(C)

where H+(C) and H−(C) are defined in the usual way by h. Suppose moreover that the
trace of ℓ ∈ L on H+(C) is τW (ℓ) and that

⟨ℓx, y⟩ = ⟨x, ℓ∗y⟩.
We want to verify that there is then an isomorphism η of H with V (R) respecting the

action of L and of C× so that
⟨x, y⟩ = ψ

(
η(x), η(y)

)
.

Since the involution is positive each simple factor of L ⊗R is invariant under it. Thus
decomposing H and V ⊗R into direct sums we suppose that L⊗R is simple. Call it, for
brevity, M . M is then a matrix algebra over R, C, or K with the standard involution. Let
eij be the usual idempotents in M . Then if ellx = x, elly = y

⟨ejl, ekly⟩ = δjk⟨x, y⟩.
[14] Moreover

h(z)ejk = ejkh(z).

Replacing H or V (R) by ellH or ellV (R) we reduce ourselves to the cases M = R, C, or K.
Define an M -valued bilinear form (x, y) on H by

TrM/R

{
ℓ(x, y)

}
= ⟨ℓx, y⟩

for all ℓ ∈M . Define the M -valued bilinear form Ψ(u, v) on V (R) in a similar fashion. The
relations

(ℓx, y) = ℓ(x, y) = (x, ℓy) = (x, y)ℓ∗ (y, x) = −(x, y)∗

are satisfied. Decompose H and V (R) into a direct sum of spaces, invariant under the actions
of M and C and mutually orthogonal, which is as fine as possible. Since x and h(i)x are not
orthogonal unless x = 0, these spaces are at most two-dimensional over M .
If M = R then each one of these spaces has a basis x, h(i)x with(

x, h(i)x
)
= 1.

The existence of η follows. If M = C then h is diagonalizable so each of these spaces has
dimension 1. Again we may suppose

(
x, h(i)x

)
= 1. If j is a fixed square root of −1 in M

the number of subspaces for which h(i) = j−1 is, because of the conditions in the traces, the
same for H and for V (R). The existence of η follows again.
If M = K then one of these subspaces is isomorphic to K and the form (x, y) is given by

(x, y) = xty∗
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with t∗ = −t. Also h(z) is given by right multiplication by h(z) ∈ K×. A [15] change of
basis replaces t by btb∗; hence t can be taken to be any element s of K× with s∗ = −s. We
choose s so that s2 = −1. Since (

h(i)x, h(i)y
)
= (x, y)

and (
x, h(i)x

)
> 0

if x ̸= 0, we have
h(i)sh(i)−1 = h(i)sh(i)∗ = s

and
tr sh(i) > 0.

We conclude that
h(i) = s−1.

The existence of η follows again.
We now introduce an assumption which will remain in force throughout this sequence of

letters.

Assumption I. If G1 is the kernel of µ : G→ C then the image of

H1
(
G(Q/Q), G1(Q)

)
→ H1

(
G(Q/Q), G(Q)

)
satisfies the Hasse principle.

Deligne verifies that this assumption is fulfilled in many cases. What we need to verify
now is that the assumption renders (d′) and (e′) superfluous.

If (d′) is satisfied than every eigenvalue of the c occurring there is positive so that c = d2,
with d ∈ C(R). Then

⟨x, y⟩λ = ψ
(
dη(x), dη(y)

)
.

It follows from the discussion above that [16]

η−1hη = η−1d−1hdη = g−1h0g

with g ∈ G(R) and µ(g) = 1. Thus (e′) as a consequence of (d′).
There is certainly an isomorphism η : H1(A,Q)⊗Q→ V (Q) which commutes with L and

satisfies
⟨x, y⟩λ = ψ

(
η(x), η(y)

)
.

Then σ(η)η−1 defines an element of H1

(
G
(
Q(Q), G1(Q)

))
. However condition (b′) assures

us that this cohomology class is trivial in H1
(
G(Qp/Qp), G(Qp)

)
for every p. The discussion

above together with (e′) implies that it is also trivial at infinity. It remains to apply Hasse’s
principle.

We have next to discover conditions which would guarantee that M̃ is represented by

a scheme smooth over OE[1/p1, . . . , 1/pn] and that the quotient of M̃ by C(Q) is smooth,
quasi-projective, and yields a coarse moduli scheme for M . I shall give these conditions
now, but I do not yet want to try to prove that they have the desired consequences. I shall,
however, give brief arguments which at least indicate that we are on the right track.

Consider Theorem 3.4 of Algebraization of formal moduli I. To verify condition [0] of that
theorem I have to learn descent theory. If we can show that the existence of φ and the φp,
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p /∈ Q impose in reality only a finite number of conditions on the variety then [1] follows
from the imbedding theorem for abelian varieties. A little attention must also be given to
the local properties of ϵ.
The projective representability is dealt with by Schlessinger’s paper. As he observes the

conditions H1 and H2 of his Theorem 2.11 are almost automatically satisfied. I think that as
far as these two conditions are concerned our deformation problem is not more complicated
than his. The condition H3 follows from the observation that the tangent space to our
problem is contained in the tangent space of all deformations of the abelian variety. By
Schlessinger’s Lemma 3.8 the condition H4 will be fulfilled if we take K so small that the
problem has no automorphisms. Of course, [17] if we do not want to take K small we will
have to content ourselves with a coarse moduli scheme.

By the way, Schlessinger employs a ring Λ. I suppose that if the characteristic of k is 0 one
may take Λ = k but that if the characteristic is p one takes Λ to be the ring of Witt vectors
over k. Then any complete local ring with residue field k is a ring over Λ.
A critical test of the correctness of my formulation of the moduli problem is the effective

projective representability. Making use of the polarization and the smoothness of G one can
I suppose carry all data from the finite levels to the limit. The only difficulty is that at the
finite levels a given p may be nilpotent but may cease to be nilpotent in the limit. There
is apparently a new datum to be introduced in the limit, namely φp. We have to impose
supplementary assumptions which make the new datum superfluous.
There are two assumptions to be made. The first is natural enough in terms of the

conjectures in the appendix but rather restrictive from the point of view of moduli. The
second can be fulfilled by choosing Q large enough.

Assumption II. The group G is connected.

Assumption III. If p /∈ Q and OE is the completion of OE at p then OE is unramified over Zp
and OL ⊗ Zp is a direct sum of matrix algebras over unramified extensions of Zp. Moreover
K contains G(Zp), the stabilizer of V (Zp) in G(Qp). Finally the maps G(Zp)→ G(Z/pnZ),
n ⩾ 1, are to be surjective, the determinant of ψ is to be a unit in Zp, and OL ⊗ Zp is to be
stable under the involution.

In order to check that these assumptions do the trick I have to partially verify the formal
smoothness. Suppose we are given

0 R0 R J 0

OE

[18] where J is an ideal of square 0 as well as moduli data over R0. We have to lift the data
to R. I do not yet know how to handle a general R but for the immediate purposes we may
suppose R is local artinian with residue characteristic ρ and apply the deformation theory of
Messing’s book.

We may take the divided powers to be 0. Since

D(G0)S0 ≃ Hom
(
H1
DR(A0), R0

)
≃ V ⊗OE ⊗OE

R0

we may identify Messing’s D(G0)S (p. 150 of his book) with

V ⊗OE ⊗OE
R.
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It comes with a filtration, and action of OL, and a bilinear form, and hence a mapping into
its dual (see Note 7). Since the bilinear form is 0 on the filtering subspace, this mapping into
the dual preserves filtrations. This allows us to lift A, the action of OL, and the polarization.
The other data lift automatically. In particular a factorization λ = λ′ ◦ c, c ∈ C(Q) ∩OL, on
the special fibre lifts.
To come back to the effectiveness, we have to show that if R is the ring of formal power

series over a finite unramified extension of OE, the completion of OE at some p /∈ Q, and if

the moduli data for M̃ are given over R, except that φp is not prescribed or even assumed to
exist, then φp does in fact exist, provided the assumptions are fulfilled, and is unique.
Suppose R is a ring of formal power series over OF where F is an unramified extension

of E. Then we have
SpecF → SpecR.

To show the existence of φp, whose uniqueness is manifest, we just have to exhibit it as an
OL-isomorphism

φp : A(F )p∞
∼−→ V (Zp)

[19] for which 〈
α, λ(β)

〉
= ψ

(
φp(α), zcφp(β)

)
for some z ∈ C(Q) ∩OL and c ∈ C(Zp).
The traces of ℓ ∈ OL on A(F )p∞ and on

Hom
(
H1
DR(A/F ), F

)
are the same. Since OL ⊗ Zp is a direct sum of matrix algebras over unramified extensions
the existence of an OL-isomorphism between A(F )p∞ and V (Z) follows immediately. Using
this isomorphism we pull the bilinear form on A(F )p∞ over to a bilinear form ψ′ on V (Zp).
If we show that there is a z ∈ C(Q) ∩OL, z ̸= 0, so that

ψ′(x, z−1y)

Is integral and has unit determinant, the existence of φp will follow from Note 5.
From (c) we know that, over OF , there exists

η : Hom
(
H1
DR(A), OF

)
≃ V ⊗OF

which satisfies 〈
α, λ(β)

〉
= ψ

(
η(α), z1c1η(β)

)
with c1 ∈ C(OF ), z1 ∈ C(Q) ∩OL. There is a λ′, the order of whose kernel is prime to p, so
that λ = λ′ ◦ c, c ∈ C(Q) ∩OL. Replacing λ by λ′ we may suppose that λ itself has a kernel
whose order is prime to p.2

One still has to verify conditions (3) and (4) of Artin’s Theorem 3.4. Condition (4), which
I still do not really understand, can I believe be handled by his Theorem 3.9. This leaves (3)
which you have shown me how to verify.

I believe you suggested that if A, A′ represent two abelian schemes over S provided with
the necessary auxiliary data one checks that [20]

IsoS(A,A′)

2Then the above condition is satisfied with z = 1.
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is represented by a scheme Y and then uses the fact that

Hom(T, Y )→ Hom(T, S)

is an injection for noetherian T to show that Y is the subscheme of S. However, I shall not
worry about (3) at the moment.

Finally in order to solve the coarse moduli problem for M one presumably has to prove
that the quotient by C(Q) exists. This should not be too difficult.
In the appendix I suggested that the isogeny classes should be indexed by pairs (γ, h0).

However, it seems to me now that the notion of equivalence I introduced there is not the
correct one. The correct conditions defining the equivalence of (γ1, h

0
1) and (γ2, h

0
2) seem to

be local, one condition each finite prime, but none at the infinite prime. First of all, for
some positive integers m, n, γm1 and γn2 must be conjugate in G(Qℓ) for each ℓ ̸= p. At p the
condition is more complicated.

Suppose kp is a finite Galois extension of Qp sufficiently large with respect to some choice
of (γ, h0), and some Cartan subgroup T over Q which contains γ and through which h0

factors. In the appendix I defined an element of H1
(
Wkp/Qp , T (kp)

)
and hence an element

of H1
(
Wkp/Qp , H

0(kp)
)
. I did not verify that this element is independent of T and that it does

not change if h0 is conjugated within H0(R) or, to be more precise, within the normalizer
of T (R) in H0(R). Let me indicate now how this is done.

Suppose bw, bw are two cocycles obtained in the above manner. Then ad bw depends only
on the image σ of w in G(kp/Qp); so we can use it to twist H0 and obtain H0

1 .

cw = bwb
−1
w

is a cocycle in H0
1 (kp). It has to be shown to be trivial. Let D be the [21] maximal split

torus in the centre of H0 and therefore of H0
1 . Modulo D,

bw = xν̂ασ

reduces to ασ. Using this and various results from Galois cohomology, such as the vanishing
of H1 of a simply-connected group, the Tate-Nakayama theory, and Tate duality, one shows
that {cw} which is clearly the pullback of α, {cσ}, σ ∈ G(kp/Qp), is trivial modulo D.
However D is split so that, by Theorem 90, it carries no H1. We conclude that {cσ} is trivial.

The condition for equivalence of (γ1, h
0
1), (γ2, h

0
2) which I impose at p demands first of all

that γn1 and γm2 be conjugate in G(Qun
p ) (m, n as before)

γm2 = gγn1 g
−1.

In the paragraph to follow I associate to (γ, h) and F ∈ H0(Qun
p ) and hence H(Qun

p ) for,

again by the following discussion, H0 and H become isomorphic over Qun
p . Suppose F1 and

F2 are the elements associated to γ1 and γ2. F1 is determined modulo F1 → cF1σ(c
−1),

c ∈ H0
1 (Q

un
p ). Here σ is the Frobenius on Qun

p . Since

gF1σ(g
−1) = (gF1g

−1)
(
gσ(g−1)

)
and both gF1g

−1 and gσ(g−1) lie in H0
2 (Q

un
p ) it makes sense to demand that there be a

c ∈ H0
2 (Q

un
p ) so that

F2 = cgF1σ(g
−1)σ(c−1).

This is in fact demanded.
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Of course I am still not willing to stake all my money on the notion of equivalence introduced
above. However, I do not have anything better to offer and it does work for the groups we
are considering in this letter.

There is something else that I did not anticipate in the appendix. To [22] one equivalence
class of (γ, h0) can correspond several isogeny classes, all with the same structure. These are
parameterized by certain elements of

H1
(
G(Q/Q), H

)
.

The elements in question must first of all be trivial every place except p, including infinity.
Moreover the map H0 → Gder\G leads to H → Gder\G. The elements must have an image in

H1
(
G(Q/Q), Gder\G

)
which is trivial.

I should also at this point correct the definition of X given in the appendix. That
definition suffers more than usual from my hastiness. Taken modulo D, bw defines an element

of H1
(
G(kp/Qp), T/D(kp)

)
and hence an element of H1

(
G(Qp/Qp), T/D(Qp)

)
. By a lemma

which is I believe to be found in “Corps locaux,” there is a finite unramified extension k′p

of Qp so that this element can be realized in H1
(
G(k′p/Qp), T/D(k′p)

)
. This means that by

an appropriate choice of the cocycle bw within its cohomology class and with a sufficiently
large kp we may suppose that the restriction of {bw} to W 0 (defined as in the appendix) takes
values in D(kp). In particular the image of bw in T/D lies in T/D(Qun

p ).

W 0 contains as a subgroup of finite index the units U of Okp . If x ∈ U then bx is of the
form

xν̂ .

Thus for all w ∈ W 0 and all rational characters λ of D∣∣λ(bw)∣∣ = 1.

Suppose Φ ∈ W maps to the Frobenius and σ is the image of Φ in G(kunp /kp). Let kunp be
the completion of kunp and consider the map [23]

x→ σ(x)x−1 x ∈ kunp
×
.

Its image consists of units; I claim that every unit lies in the image.
Since p→ 1, its image is closed. Moreover if p is the maximal ideal of Okp and y is a unit

we can always find x so that
y ≡ σ(x)x−1 (mod p).

If p = (Π), we have

σ(1 + αΠk)

1 + Πk
≡ 1 +

(
σ(α)θ − α

)
Πk (mod Π2k)

if
σ(Πk)

Πk
= θ.

Since
σ(α) ≡ αq (mod Π)
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and the equation
αqθ − α ≡ β (mod Π)

can be solved in kunp , we can establish our assertion by iteration.
Now because the map

T (Qun
p )→ T/D(Qun

p )

is surjective we may represent bΦ as b1b2 with b2 in T (Qun
p ) and b1 ∈ D(kunp ). I claim that

b1 = b3b4

with
b4 ∈ D(Qun

p )

[24] and with ∣∣λ(b3)∣∣p = 1

for any rational character λ of D. To show this I have to show that there is a λ̂ ∈ L̂(D) so
that ∣∣λ(b1)∣∣p = p−⟨λ,λ̂⟩

for all λ. It is in fact enough to establish this relation for rational characters of D which are
restrictions of rational characters of T defined over Qp. This allows us to replace b1 by bΦ.

Suppose λ is a rational character of T over Qp. If w = (x, σ) then∣∣λ(bw)∣∣p = |x|⟨λ,ν̂⟩p

∏
τ

|ασ,τ |⟨λ,µ̂⟩p

because the left side depends only on the class of {bw}. The right side equals

|Nkp/Q
×
p
|⟨λ,µ̂⟩p

∣∣∣∣∣∏
τ

ασ,τ

∣∣∣∣∣
⟨λ,µ̂⟩

p

.

However if v is the image of w in Q×
p under the usual map then

v = {Nkp/Q
×
p
}

{∏
τ

τ−1(ασ,τ )

}
Thus ∣∣λ(bw)∣∣p = |v|⟨λ,µ̂⟩p

as required. I observe at this point that I have been for some time very cavalier with respect
to enlargements of the field kp. For a justification of this, see Note 6.
I may suppose that

∣∣λ(b1)∣∣p < 1 for every rational character of D. I set F = b2. Then

F ∈ T (Qun
p ). Moreover any two choices of Φ and any choice of b2 affect F only by multiplying

it by cσ(c−1) with c in T (Qun
p ).

[25] Kp determines a parahoric subgroup Kp(Qun
p ) of G(Qun

p ) and F0 acts on

X ′′ = G(Qun
p )/Kp(Qun

p ).

Any point of this quotient determines a special vertex in the Bruhat-Tits building of each
simple factor of G(Qun

p ). Let r = [Ep : Qp]. Both F0 and F r
0 act on this quotient. If x′ ∈ X ′′

consider x′ and y′ = F r
0x

′. We consider only those x′ such that for each simple factor the
vertices x′c and y

′
c are either the same or lie on an edge. (By the way, the abelian factors play

no role here.) Thus x′ and y′ determine a parahoric subgroup of G(Qun
p ). X consists of those
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x′ for which this parahoric subgroup is conjugate to I(Qun
p ), where I is defined in basically

the same way as I of the appendix, except that G is used instead of G. I am, however, nagged
by the thought that somewhere in my notes I have imposed an extra condition associated
with the abelian part. Since I do not see what it could have been and do not have my notes
with me as I write, I shall forget about it.

What has to be checked is that the suggestions of the appendix, with the corrections above,
are valid for the groups studied in this letter. We fix a prime p of E not in Q, let kp be the

residue field of OE at p, and study M(kp).

I recall first how G(Ap
f ) acts on M(kp). Suppose A =

(
A, {φℓ},Λ

)
represents an element

of M(kp). Let g =
∏
gℓ lie in G(Ap

f). Suppose we can find an isogeny the order of whose
kernel is prime to p

A′ ψ−→ A

as well as, for each ℓ ̸= p,
φ′
ℓ : Tℓ(A

′)
∼−→ V (Zℓ)

so that [26]

Tℓ(A
′) Tℓ(A)

V (Zℓ) V (Zℓ)

V (Qℓ) V (Qℓ)

ψ

φ′
ℓ

φℓ

⊆ ⊆

gℓ

is commutative. This implies of course that gV (Zℓ) ⊆ V (Zℓ). It also implies that OL acts
on A′. Moreover the φ′

ℓ are determined by the φℓ. We define the class Λ′ to be that of

λ′ = ψ̂λψ λ ∈ Λ.

Then A′ =
(
A′, {φ′

ℓ},Λ′) yields a new element of M(kp). If gℓ takes V (Zℓ) to itself for all ℓ
we can find A′ and {φ′

ℓ}. We define Ag to be A′. This action can be extended to all of G(Ap
f )

by setting Ag = A if g = n is a positive integer prime to p.
Suppose M is a Dieudonné module of A and

N = lim−→
n

M

pn
.

Any submodule M ′ of N , as a module over W (kp), which is invariant under F and V ,
defines an abelian variety A′ isogenous to A. If, as we may suppose after multiplying by a
rational integer, M ⊆M ′ the map

ψ : A′ → A

corresponds to
M ⊆M ′.

In order that OL acts on A′, M ′ must be invariant under OL. We may define φ′
ℓ, ℓ ≠ p as

φℓ ◦ p because the order of the kernel of ψ is a power of p. Define Λ′ as the class of

λ′ : ψ̂λψ λ ∈ Λ.
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[27] In order to check that (c) is satisfied, I observe that it must be interpreted to hold for

any λ : A→ Â such that nλ arises from a polarization in Λ for some n > 0. If I had been
more careful in my discussion of Condition 2 of Artin’s Theorem 3.4, this would have become
clear earlier. Anyhow we may suppose that the kernel of λ is prime to p and that the bilinear
form 〈

α, λ(β)
〉

on
Hom

(
H1
DR(A), kp

)
is non-degenerate. The Dieudonné module M̂ of Â is

HomW (kp)

(
M,W (kp)

)
.

Define N̂ in the same way as N so that M̂ ′ ⊆ M̂ ⊆ N̂ . λ defines M̂ → M and hence a

bilinear form on M̂ as well as one on N̂ , which we use to identify N with N̂ . (Note: N̂ takes

precedence, so that OL acts to the left.) Thus λ corresponds to the inclusion M̂ ↪→M and
λ′ to

M̂ ′ M̂ M M ′ .

We need to know that the bilinear form M̂ is alternating and that its reduction modulo p is
compatible with the isomorphism

M̂/pM̂ ≃ Hom
(
H1
DR(A), kp

)
.

I do not know what the best way to verify this. As a stopgap, one could combine §15 of
Mazur-Messing with the skew-symmetry established in Note 7.

Since we have taken the order of the kernel of λ to be prime to p,

M = M̂.

[28] Condition (c) will be satisfied only if there is a c ∈ C(Q) ∩OL so that

(∗) M̂ ′ = cM ′.

I observe also that M̂ ′ is a Dieudonné module if and only if

(∗∗) pM̂ ′ ⊆ FM̂ ′ ⊆ M̂ ′

and that since
⟨Fx, Fy⟩ = pσ

(
⟨x, y⟩

)
the form ⟨x, cy⟩ yields a non-degenerate bilinear form on M̂ ′/pM̂ ′ with respect to which FM̂

(mod pM̂ ′) is a maximal isotropic subspace. If (c) is satisfied the fibration of OL-modules3

FM̂ ′/pM̂ ′ ↪→ M̂ ′/pM̂ ′

is isomorphic to
U ⊗ kp ↪→ V ⊗ kp.

If all these conditions are fulfilled then
(
A′, {φ′

ℓ},Λ′) will satisfy (c).

In order to have consistency I have to associate to M̂ ′/pr the collection

{
A′,

{
1
pr
φ′
ℓ

}
,Λ′

}
.

3A small blunder: the filtering subspace is V M̂ ′/pM̂ ′! This however has very little effect on the arguments.
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Given A let X be the set of M̂ ′ ⊆ N̂ satisfying the above conditions. To every element
of G(Ap

f )×X we can now associate the point A′ in M(kp). Observe that the group G(Qp)

of all OL-automorphisms of N̂ which preserve the bilinear form up to an element of C(Qun
p )

and commute with F acts on X. Let H(Q) be the group of invertible elements in the tensor
product of the OL-endomorphisms of A with Q which preserves the bilinear form up to
elements of C(Q). We have imbeddings

H(Q) ↪→ G(Qℓ)

H(Q) ↪→ G(Qp)

[29] and
H(Q) ↪→ G(Ap

f )×G(Qp).

To keep the discussion formally simple, I passed the limit over all K containing G(Zp).
Observe that (g, x) and (g1, x1) yield isomorphic A′ if and only if there is an h ∈ H(Q) so
that

g1 = hg x1 = hx.

The point A′ associated to (g, x) is defined by

A′ A′′ A
ψ′ ψ′′

where, if x =M
′
, A′′ has dual Dieudonné module

prM̂ ′ ↪→ M̂. (We may suppose r = 0.)

Also A′ is defined by

Tℓ Tℓ(A
′′)

V (Qℓ) V (Qℓ)

φ′
ℓ

ψ′

φ′′
ℓ

ngℓ

with n prime to p. If A′ is isomorphic to A′
1, we have

η : A′ → A′
1

so that
φ′
ℓ = φ′

ℓ,1 ◦ η.
If ψ = ψ′′ ◦ ψ′, ψ1 = ψ′′

1 ◦ ψ′
1, then

n−1g−1
ℓ ◦ φℓ ◦ ψ = n−1

1 g−1
ℓ,1 ◦ ψ1 ◦ η

[30] or
φ−1
ℓ gℓ,1g

−1
ℓ φℓ = ψ1 ◦ η ◦ ψ−1

and n
n1
ψ1 ◦ η ◦ ψ−1 lies in EndA⊗Q and is invertible. If we call it h, then

gℓ,1 = hgℓ.

In particular h ∈ G(Qℓ) and therefore in H(Q). A′ also has dual Dieudonné module M̂ ′. The
map ψ : A′ → A corresponds to

M̂ ′ ↪→ M̂.

Since η is an isomorphism and
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M̂ ′ M̂

M̂ ′
1

η

ψ

ψ1

is commutative, while n and n1 are prime to p, h takes M̂ ′ to M̂ ′
1. The above computations

may of course be reversed. Thus our isogeny class is parametrized by

H(Q)\G(Ap
f )×X.

We have now to check that H, G and X are as predicted and that our description of the
isogeny classes is correct.
The first step is to find a γ and an h0 associated to A. For this I use a lifting. Let

T be a Cartan subgroup of H over Q and let R be the centralizer of T in EndOL
A ⊗Q.

Examining the situation in Tℓ(A) ⊗Zℓ
Qℓ for some ℓ ̸= p and using Tate’s theorem we see

that R is commutative. I want to show that there is a finite extension of Qp with ring [31] of

integers O, and a point
(
Ã′′, {φ̃′′

ℓ}, Λ̃′′
)
in M(O) with reduction

(
A′′, {φ′′

ℓ},Λ′′) so that there

is an isogeny
ξ : A′′ → A

whose kernel has order of power of p and with

φ′′
ℓ = φℓ ◦ ξ

and
ξ̂ ◦ λ ◦ ξ ∈ Λ′′

if λ ∈ Λ. Moreover I want an order S in R to act as OL-endomorphisms of Ã′′ in such a way

that the involution in R defined by λ̃′′ ∈ Λ̃′′ is that defined by λ ∈ Λ and that the action
of S ∩ Z is that defined by the imbedding S → OL. Moreover ξ should commute with R.
Since we always fix an imbedding Qp ↪→ C, we have in particular O ↪→ C so that(
Ã′′, {φ̃′′

ℓ}, Λ̃′′
)
also yields a point of M(C). Thinking, for the moment of Ã′′ as been defined

over C, we have therefore an isomorphism

H1(Ã
′′)→ V (Q).

Since the Frobenius on A′′ is given by an element of R, this isomorphism associates to the
Frobenius an element γ in V (Q) (or rather a conjugacy class). Since the finite field over which
the data is defined is never specified, we do not really know γ, just γm for m sufficiently large

in a multiplicative sense. Moreover Ã′′ as a variety over C defines an h0. Since Ã′′ admits
complex multiplication by some integer times γ, h0 maps into H0(R). Before continuing with

the discussion of (γ, h0), I verify the existence of Ã′′.
I may take my Dieudonné modules not over W (kp) but over W (k′p) where k

′
p is a large

but unspecified finite extension of kp. (This is a technical point; its purpose is to keep O
inside Qp.) Set

B = OL ⊗S∩Z S.
[32] What I want to show is that there is a Dieudonné module.

M̂ ′ ⊆ M̂
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which is invariant under B so that the filtration

FM̂ ′/pM̂ ′ ⊆ M̂ ′/pM̂ ′ = M̂ ′ ⊗O′ O/ωO

lifts to a B-invariant filtration of M̂ ′ ⊗O′ O buy a subspace which is anisotropic with respect
to the alternating form defined by an element of Λ. Here ω generates the maximal ideal of O
and O′ = W (k′p) is also the largest unramified subring of O.
I may suppose that

OL ⊗ Zp =
⊕

Mi

is a direct sum of matrix algebras over unramified extensions of Zp. Let {e′jj} be the standard
idempotents in Mi. It is really only a question of choosing the eijjM̂

′ for

M̂ ′ =
⊕
i,j

eijjM̂
′.

So for simplicity I suppose OL ⊗Zp it is an integral domain which is an unramified extension

of Zp. A composition series for the W (k′p) module M̂/M̂ ′ consists of one-dimensional spaces
over k′p. I shall also arrange that the length of this composition series is even. Observe that
this will actually yield the same condition for the composition series of

eijjM̂/eijjM̂
′.

S has not yet been chosen. Tentatively I take it to be the ring of integers in R. Let

O′ ⊗Z S =
⊕

Sj.

[33] (Note: in the general case of the left side would be ei(O
′ ⊗Z S).) Since F and V almost

commute with O′ ⊗Z S, F (α⊗ β) =
(
σ(α)⊗ β

)
F , I can certainly find M̂ ′ which is invariant

under O′ ⊗Z S. Observe this is again a tentative choice of M̂ ′. The problem of lifting the
filtration becomes that of lifting a filtration on

Si ⊗O′ O/ωO

to one on
Si ⊗O′ O.

If [Si : O
′] = ri and ωi is a generator of the maximal ideal of Si the first filtration must be of

form Si/ω
ki
i Si, 0 ⩽ ki ⩽ ri. In other words there is only one possible filtering subspace of a

given dimension. Any ideal of Si ⊗O′ O with torsion-free quotient will therefore lift of the
filtration. If ki, k

′, and k are the quotient fields of Si, O
′, and O and if φ1, . . . , φri are the

different imbeddings of ki into k
′ over k then

α⊗ β →
⊕

φi(α)β

imbeds Si ⊗O′ O into
k ⊕ · · · ⊕ k (ri factors).

The intersection of Si ⊗O′ O with the subspace obtained by setting ri − ki factors equal to 0
has the correct rank.
We have to make sure that the listed submodule is anisotropic. If Si ̸= S∗

i we take the
factors for S∗

i to be the complement of those obtained by applying the involution to the ones
chosen for Si. If Si = S∗

i then ki = r1/2 and we just choose the factors so that one is not
obtained from the other by applying the involution.
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However, our choices were only tentative. Since

O′ ⊗Z S ≃ M̂ ′

[34] it has the structure of a Dieudonné module. Let us examine this structure. Since

O′ ⊗Z S ≃ O′ ⊗Zp (Zp ⊗Z S)

we may without any loss of generality suppose Zp ⊗Z S is an integral domain for otherwise
we have a direct sum. Let S1 be the ring of integers in the smallest extension of k′ containing
S and regard Zp ⊗Z S as a subring of S1. Let u be the degree of the maximal unramified
extension of Qp in the quotient field of Zp ⊗Z S. If σ is the Frobenius over Qp then

α⊗ β →
(
αβ, σ(α)β, . . . , σu−1(α)β

)
defines an isomorphism of O′ ⊗Zp (Zp ⊗Z S) with

S1 ⊕ · · · ⊕ S1 (u times).

F acts as
(β1, . . . , βr)→

(
γ2β2, γ3β3, . . . , γuβu, γ1σ

u(β1)
)

and V as

(β1, . . . , βu)→
(
p

γ1
σ−u(βω),

p

γ2
β1, . . . ,

p

γu
βu−1

)
If π generates the maximal ideal of S1 we may take γi to be πℓi with

0 ⩽ ℓi ⩽ [S1 : O
′]

times a unit. Also σu is extended to S1 in such a way that it is trivial on S. If the ℓi are not
all equal to 0 or not all equal to [S1 : O

′] there is an i so that ℓi > 0 and ℓi−1 < [S1 : O
′]. (Take

the subscripts to be of period r.) Then we can modify M̂ ′ by taking only those (β1, . . . , βu)
with βi−1 ≡ 0 (mod π). This changes the length of a composition series by 1.

[35] We still run into difficulty if all ℓi equal 0 or all ℓi equal [S1 : O
′]. In this case, however,

there is no difficulty in lifting the filtration, for it is trivial. Thus we may modify M̂ ′ without
attempting to preserve the invariance under the ring of integers of R. We can let S become
another order. Moreover F and V act now in such a trivial fashion that an O′ submodule is
a Dieudonné submodule.4 Thus it is easy to so modify M̂ ′ that the length of a composition
series changes by one.

Suppose A′ is defined by the condition that there is an isogeny

ζ : A′ → A

the order of whose kernel is a power of p so that the corresponding map on dual Dieudonné
modules is

M̂ ′ ↪→ M̂.

Define φ′
ℓ as φℓ ◦ ζ and define λ′ by

A′ A

Â′ Â

ζ

λ′ λ

ζ̂

4This is not correct. The desired multiplication is none the less easily effected.
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The lift of the filtering subspace of M̂ ′/pM̂ ′ to an anisotropic submodule of M̂ ′ ⊗O′ O

should allow us to lift A′ and λ′ to Ã′ and λ̃′ over O. This I take for granted. We can also
lift φ′

ℓ, ℓ ̸= p, to φ̃′
ℓ.

We start from λ, the order of whose kernel is prime to p. If the order of λ̃′ were prime
to p it would follow from Note 5 that φ̃′

p could be defined in a unique way and then, because
of O′ ↪→ C, (

Ã′, {φ̃′
ℓ}, {λ′}

)
would define a point of M(C). In general what we have to check is that, over C, we can find

an isogeny ψ : Ã′ → Ã′′, commuting with the action [36] of OL and having a kernel whose

order is a power of p, so that λ̃′ factors as

Ã′ Ã′′

̂̃
A′ ̂̃

A′′

ψ

λ̃′ λ̃′′

where the kernel of λ̃′′ has order prime to p. Then we could replace Ã′ by Ã′′, φ̃′
ℓ by φ̃

′′
ℓ

(ℓ ̸= p) where
φ̃′′
ℓ ◦ ψ = φ̃′

ℓ

and λ̃′ by λ̃′′ to obtain a point of M(C). We might also have to change the order S.

What we have to do is show that there is a lattice U in Tp(Ã
′)⊗Qp so that

Tp(Ã
′) ⊆ U

[37] and so that the bilinear form associated to λ̃′ is integral on U with unit determinant.

Observe that Ã′ is not being treated as a variety over C.

We find a standard form for the bilinear form on Tp(Ã
′). We use the notation of Note 5,

except that Tp(Ã
′) replaces V (Zp). If M

∗
1 = Mj, i ≠ j, then we find xkℓ , y

k
ℓ as there except

that
⟨xkℓ , yk

′

ℓ′ ⟩ = αℓδkk′δℓℓ′

where αℓ is a power of p. We obtain a partial basis for U by taking

{α−1
ℓ xkℓ′ , y

k′

ℓ′ }.
Suppose M∗

i =Mi. Let M and V have the same meaning as in Note 5. If the involution is
trivial on the centre of M then we can find a basis {x1, . . . , xr, y1, . . . , yr} of V11 so that

⟨xi, xj⟩ = ⟨yi, yj⟩ = 0

and so that
⟨xi, xj⟩ = αiδij

where αi is a power of p. We take as basis for the analogue for U of V11,

{α−1
1 x1, . . . , α

−1
r xr, y1, . . . , yr}.

Suppose the involution is not trivial on the centre of M . Then on V11 there are coordinates
so that ψ′′

2 has the form ∑
αixiy

∗
i
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where αi is a power of p. Enlarging Tp(Ã
′) if necessary we may assume that each αi is either

1 or p. The number of p is equal, modulo 2, to the length of the composition series of

ei11M̂/ei11M̂
′

and is therefore even. Thus choosing a new basis we can put ψ′′
2 in the form

a∑
i=1

xiy
∗
i + p

b∑
j=1

(ujvb+j − ub+jv∗j )

This makes it easy to define U .
You may have observed that there is a gap in the above discussion; I just did. I have to

guarantee that the trace of the action of OL on the tangent space of Ã′′ is correct. This is the

same as the trace of the action on the tangent space of Ã′. To obtain the correct trace, we

have to exercise more care in our choice of M̂ ′. What we have to ensure is that the elements
of Z have the same trace on

eijj(M̂
′/FM̂ ′)

as on [38]

eijj(M̂/FM̂).

Again when checking this we may suppose OL ⊗ Zp is already a commutative integral
domain. It is unramified over Zp. We regard it it as a subring O′′ of O′. Let [O′′ : Zp] = v.
There are integers k0, . . . , kv−1 so that the action on the tangent space will be correct if the

trace of a ∈ O′ on M̂ ′/FM̂ ′ is

k0a+ k0σ
−1(a) + · · ·+ kv−1σ

−(v−1)(a) (mod p).

Let
Zp ⊗Z S =

⊕
Sj.

Consider the corresponding decompositions into

Sj1 ⊕ · · · ⊕ S
j
1.

The action of F on one of these pieces is given by integers ℓji . Only∑
i

ℓji

is a priori determined. This direct sum decomposition of M̂ ′ does not yield a direct sum

decomposition of M̂ . However, it does yield a decomposition series which is just as good for
computing traces as well as indices so we may suppose once again that Zp ⊗Z S is already an
integral domain. We drop the subscript j. Since

u∑
i=1

[S1 : O
′]− ℓi =

v−1∑
j=0

kj

and since
kj ⩽

u

v
[S1 : O

′]

we may suppose [39] ∑
i≡j+1 (mod v)

[S1 : O
′]− ℓi = kj.
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This gives the required trace. But we have to worry once again about the conditions on the
indices.
O′′ ⊗Zp O

′ acts on both M̂ ′ and M̂ . It contains the projections on L′
0, . . . , L

′p
v−1 where L′

j

is the set of
(β1, . . . , βu) ∈ S1 ⊕ · · · ⊕ S1

such that βi = 0 unless i ≡ j + 1 (mod v). Then

FL′
j = L′

j−1.

Let Lj be the corresponding space for M̂ . Then FLj ⊆ Lj−1. But if [Lj : L
′
j] denotes the

length of a composition series for a quotient

[Lj : L
′
j] = [FLj : FL

′
j]

and
[L′

j : FL
′
j+1] = kj = [Lj : FLj+1].

Since
[Lj : FL

′
j+1] = [Lj : L

′
j] + [L′

j : FL
′
j+1] = [Lj : FLj+1] + [FLj+1 : FL

′
j+1]

we conclude that
[Lj : L

′
j] = [Lj+1 : L

′
j+1].

Thus if v is even
[M̂ ′ : M̂ ] =

∑
j

[Lj : L
′
j]

is automatically even.
Since it is only for v even that we actually exploited the condition on [40] the length of

the composition series, we may forget about odd v.
We verify first that H, defined in terms of A and Λ, and H0, defined by γ, bear the

predicted relation to each other and that X, defined in terms of A and Λ, has the structure
defined by γ and h0. I observe first that it is clear, from Tate’s theorem, that H and H0 are
isomorphic over Qℓ for ℓ ̸= p. It is also clear that any two choices of γ are, if we define them
in terms of the Froebenius automorphisms over the same extension of kp, conjugate in G(Qℓ).
Suppose T is the Cartan subgroup of H used to define γ and h0. The isomorphism of H

with H0 over Qℓ takes T to a Cartan subgroup T 0 of H0 which is again defined over Q,

namely to the Cartan subgroup of H0 defined by taking the centralizer of R, which acts on Ã′′

and hence on V (Q), in G. The map T → T 0 is, however, defined over Q. It corresponds
to taking the identity map on R. Thus H is obtained from H0 by an inner twisting with a
cocycle from the image of T 0 in H0

ad. Since Hder(R) is compact because the Rosati involution
is positive, the twisting is the predicted one at infinity.

I again take the Dieudonné module M̂ to be defined over W (kp). Then N̂ is defined over

the quotient field k of W (kp). There is an OL ⊗Z R isomorphism of N̂ with

V ⊗ k
which preserves the bilinear form. We want to analyze the structure of N̂ . As before there is
no loss of generality in assuming that

OL ⊗Z Qp

is already a field. We can also assume that R⊗Qp is a field k1. Then we may identify V (Q)
with k1.
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I observe that, although it was not made explicit, our argument showed that S, which

acts on Ã′′, can be so chosen that its completion contains [41] the projections on the factors

of R⊗Qp. I assume it has been so chosen. Let M̂ ′′ ⊆ N̂ be the dual Dieudonné module of

the reduction A′′ of Ã′′.
As before if k2 is the extension of k determined by k1

k ⊗ k1 ≃ k2 ⊕ · · · ⊕ k2.
The isomorphism being of the form

α⊗ β →
(
αβ, σ(α)β, . . . , σu−1(α)β

)
F acts as

(β1, . . . , βr)→
(
γ2β2, . . . , γrβr, γ1σ

u(β1)
)
.

Because we can change coordinates on k2 ⊕ · · · ⊕ k2 without changing the action of k ⊗ k1,
the only invariant of F is ∣∣∣∏ γi

∣∣∣.
We have seen before with this absolute value is. If π is a uniformizing parameter for k2 it is

|π|u

where u is the dimension over kp of the range in M̂ ′′/FM̂ ′′ of the projection corresponding
to the factor k1. This is the number of imbeddings of k1 in the closure of Qp yielding R→ C
coming from the action of R on

eijj Tang Ã
′′/C.

These yield the characters of T on which µ̂ takes the value 1. By the way, with the present
conventions I have to replace the µ̂ of the appendix by its negative.
The action of σ alone is [42]

(β1, . . . , βr)→
(
β2, . . . , βr, σ

u(β1)
)
.

Thus the twisting defining the action of F is given by

(γ2, . . . , γr, γ1).

Since
⟨Fx, Fy⟩ = pσ

(
⟨x, y, ⟩

)
the element b of R⊗ k defined by putting together the (γ2, . . . , γr, γ1) actually lies in T (k).
We have just seen that b is basically determined by∣∣λ(b)∣∣
where λ is a rational character of T defined over Qp. The expression (∗) shows that this
absolute value is

p−⟨λ,µ̂⟩.

This shows that the present F is the F defined in terms of γ and h0. Consequently any two
(γ, h0) associated to

(
A, {φℓ},Λ

)
are going to be equivalent in the sense described.

The G(Qp) defined in terms of
(
A, {φℓ},Λ

)
is the set of all

g ∈ G(k)
such that

gF = Fg.
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Then
gF r = F rg

[43] for all r. In order to compare with the prediction we take F in the form given earlier,
that is, the predicted form. Then for a suitable r

F r = pν̂ · σr.
Then

p−sν̂gpsν̂ = σrs(g).

It follows readily that g commutes with psν̂ and hence with pν̂ . Then it follows that G

is obtained from G
0
by twisting in the predicted manner. Now H(Q) is nothing but the

centralizer of large powers of γ in G(Qp). Therefore H over Qp is obtained from H0 over Qp

by twisting in the specified manner.
As I said we shall parameterize several isogeny classes by the same family of (γ, h0). Let

me now describe the isogeny classes which are lumped together with that of
(
A, {φℓ},Λ

)
.

Let B = EndOL
A1 ⊗Q. Suppose d is a symmetric element in B which is positive in B(R).

Multiplying d by an integer if necessary we may suppose λ ◦ d is again a polarization. Over Q

d = b∗b

and aσ = bσ(b−1) defines an element of H1
(
G(Q/Q), H1

)
if H1 is the kernel of H → C.

Suppose the image of {aσ} in H1
(
G(Qℓ/Qℓ), H

)
is trivial for ℓ ̸= p. Then

bσ(b−1) = hℓσ(h
−1
ℓ ) σ ∈ G(Qℓ/Qℓ)

[44] with hℓ ∈ H(Qℓ) and

d = b∗h∗ℓ
−1h∗ℓhℓh

−1
ℓ b = g∗ℓ

−1g−1
ℓ cℓ

with cℓ ∈ C(Qℓ) and gℓ ∈ B(Qℓ)
×. Thus if ⟨x, y⟩ is the bilinear form determined by λ then

⟨gℓx, dgℓy⟩ = ⟨x, cℓy⟩.
We define A′ and φ : A→ A′ so that it is possible to construct the commutative diagram

Tℓ(A
′) Tℓ(A)

V (Qℓ) V (Qℓ)

φ

φ′
ℓ

φℓ

gℓ

so that φ′
ℓ takes Tℓ(A

′) to V (Zℓ). For this we may have to multiply gℓ by an integer. We
define λ′ by pulling back λ ◦ d. Then〈

x, λ′(y)
〉
=

〈
φ(x), λdφ(y)

〉
= ψ

(
φℓφ(x), φℓdφ(y)

)
= ψ

(
gℓφ

′
ℓ(x), dgℓφ

′
ℓ(y)

)
= ψ

(
φ′
ℓ(x), cℓφ

′
ℓ(y)

)
.

We have here allowed d to operate on both Tℓ(A) and on V (Qℓ) and have used to the fact
that it is symmetric.
To force

(
A, {φℓ},Λ

)
to lie in M(kp) we have to exercise some care in the choice of the

p-component of the kernel of φ, which is still at our disposal. Let M̂ ′ ↪→ M̂ be the dual
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Dieudonné module of Â′. If the above triple is to lie in M(kp) there must be a c ∈ C(Q) so
that

dM̂ ′ = cM ′.

[45] Without any loss of generality we may suppose c = 1. There is another property of d I
want to deduce from

dM̂ ′ =M ′

and the fact that the traces of the elements of OL on M̂ ′/FM̂ ′ are correct. For this I can
proceed as before and suppose that OL ⊗ Zp is a commutative integral domain O′′. For

simplicity let O′ = W (kp). The decomposition

O′′ ⊗Zp O
′ ≃ O′ ⊕ · · · ⊕O′ v = [O′′ : Zp] factors

leads to corresponding decompositions of M̂ ′ and M̂ .

M̂ ′ =
⊕

L̂′
j M̂ =

⊕
L̂j.

We may define [L̂j : L̂
′
j ] as the difference [L̂j : X]− [L̂′

j : X] where X is a sufficiently small to

lie in both L̂j and L̂
′
j. An argument used before shows that

[L̂j : L̂
′
j]

is independent of j. Moreover if

M ′ =
⊕

L′
j M =

⊕
Lj

so that L = L̂j then

[L′
j : Lj] = [L̂j : L̂

′
j].

Thus
[L′

j : L̂
′
j] = 2[L̂j : L̂

′
j].

Thus [46]

|det d| = p−2v[L̂1:L̂′
1].

In particular if v is even this exponent is a multiple of 4.
Conversely suppose there is a c ∈ C(Q) ∩OL so that the order of the determinant of eid

is a multiple of 2v for every simple idempotent of OL ⊗ Zp which is invariant under the

involution. Then I claim there is a Dieudonné module M̂ ′ so that

dM̂ ′ = cM ′

and so that the trace of OL on M̂ ′/FM̂ ′ is correct. Again we may suppose OL ⊗ Zp = O′′

is already a commutative integral domain and that c = 1, except in one case. Suppose the
involution interchanges two factors in the direct sum decomposition of the centre of OL ⊗ Zp.

Suppose M̂1, M̂2 are the corresponding factors of M̂ . We can take M̂ ′
1 to be M̂1 and M̂ ′

2 to

be the dual of dM̂ ′
1. I remind you that we are using the original λ to identify M̂ and M .

Anyhow this trivial case disposed of, suppose that OL ⊗ Zp = O′′. The involution can be
trivial or not on O′′. Suppose it is trivial.

Introduce the modules L̂j as above. They are mutually orthogonal and

dL̂j ⊆ QL̂j.
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We first try to find M ′ without trying to control the trace of the elements in OL. The

standard form of ⟨x, dy⟩ in L̂j will have a matrix

pe1

per

−pe1

−per


with e1 ⩽ e2 ⩽ · · · ⩽ er. Suppose the maximum of the er as j varies is positive. Let it be e.
Consider [47]

X =
{
x ∈ M̂

∣∣∣ ⟨x, dy⟩ ≡ 0 (mod pe) for all y ∈ M̂
}
.

X is invariant under F and V because

⟨Fx, y⟩ = σ(x, V y).

Also
X =

⊕
Xj

with Xj = X ∩QL̂j. The form
1

pe
⟨x, dy⟩

is non-degenerate on X/X ∩ pM̂ . Since ⟨Fx, Fy⟩ = pσ⟨x, y⟩ and ⟨V x, V y⟩ = pσ−1⟨x, y⟩ both
FX and V X give isotropic subspaces of X/X ∩ pM̂ . If FX ⊈ pX + pM̂ or V X ⊈ pX + pM̂
we take Y to be one of

FX + pX or V X + pX.

Otherwise we just take Y so that X ⊇ Y ⊇ pX and Y/pX is maximal isotropic in X/pX+pM̂

and invariant under O′ ⊗O′′. We replace M̂ by

M̂ +
Y

p
.

This has the effect of decreasing the number of ek which equal e. Continuing we may
eventually reach the stage that no er is positive.
Suppose some e1 is negative. Let e be the smallest of the e1.
Consider

X =
{
x ∈ M̂

∣∣∣ ⟨x, dy⟩ ≡ 0 (mod pe+1)
}
.

X is again invariant under F and V and p annihilates M̂/X. If FM̂ ⊈ X or V M̂ ⊈ X we

replace M̂ by FM̂ +X or NM̂ +X. Otherwise we replace it by Y so that Y/X is a maximal

isotropic subspace of M̂/X with respect to

p−e⟨x, dy⟩ (mod p)

[48] and so that Y is invariant under O′′ ⊗ O′. Again we can repeat this process arriving

finally at M̂ ′ such that dM̂ ′ is the dual of M̂ ′.

M̂ =
⊕

L̂′
j.
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Moreover
[L̂′

j : L̂j] =
∑

ei

Since
∑
ei is independent of j, a variant of the argument used before shows that

[L̂′
j−1 : FL̂

′
j] = [L̂j−1 : FL̂j].

Thus there is no problem with the traces.
Suppose now the involution is not trivial. Then v is even. The involution is extended

to O′′ ⊗Zp O
′ by making it trivial on O′. If we regard the elements of

O′ ⊕ · · · ⊕O′

as infinite sequences by setting
βi+v = σ−v(βi)

then its effect is to replace (βi) by β
′
i with

β′
i = σv/2(βi+v/2).

Then L̂i is orthogonal to L̂j unless j ≡ i+ r/2 (mod v). We may choose bases {xk} and {yℓ}
for L̂j and L̂i+v/2, 0 ⩽ i < v/2 so that

⟨xk, dyℓ⟩ = δkℓp
eℓ

with e1 ⩽ · · · < er. Our condition on the determinant of d says that∑
eℓ

[49] which is independent of i, is even. Again suppose that some er is positive. Suppose the
maximum er is e.
If 0 < 2f < e consider

X =
{
x ∈ M̂

∣∣∣ ⟨x, dy⟩ ≡ 0 (mod pe) for all y ∈ M̂
}
.

Again X is invariant under F and V and we may replace M̂ by M̂ + X
pf

= Y . Then

[Yj : L̂j] = [Yj+v/2 : L̂j+v/2].

This allows us to carry out a reduction until all eℓ are at most 1.
In the same way if the smallest e1 is negative let it be e. If e < 2f < 0 and

X =
{
x ∈ M̂

∣∣∣ ⟨x, dy⟩ ≡ 0 (mod pe+1) for all y ∈ M̂
}

we can replace M̂ by

X + pfM̂.

The condition (∗) will again be satisfied.
We suppose then all eℓ are either −1, 0 or 1. A reduction similar to the above allows us to

suppose that they are in fact all 0 or 1. Let

X =
{
x ∈ M̂

∣∣∣ ⟨x, dy⟩ ≡ 0 (mod p) for all y ∈ M̂
}
.

Suppose er = 1 for some i. Then er−1 is also 1. Choose a minimal non-zero subspace of

Xi/Xi ∩ pM̂ which is invariant under F and V . This subspace must be annihilated by
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F and V and is therefore one-dimensional. Let the subspace be generated by the image
of x ∈ Xi. The orthogonal complement of x in

Xi+v/2/Xi+v/2 ∩ pM̂
[50] with respect to 1/p⟨x, dy⟩ (mod p) is not 0. It is moreover invariant under F and V .
Therefore it contains a one-dimensional subspace invariant under F and V . Let this space be

spanned by γ. Then we can replace M̂ by

M̂ +
O′x

p
+
O′y

p
.

This allows us to reduce the number of ei which are 1. Continuing, we finally arrive at M̂ ′.
What we have arranged in addition is that

[L̂′
i : L̂i] = [L̂′

i+v/2 : L̂i+v/2].

It is this condition which guarantees that the traces of the elements of OL are correct. We
can now proceed as before.
The condition on the determinants of b can be reinterpreted. It means simply that the

image of {aσ} in
H1

(
G(Qp/Qp), Gder\G1

)
is 0. Since Hasse’s principle is valid for the group Gder\G1 (cf. Travaux de Shimura), this,
together with the demand that {aσ} be trivial away from p, implies that {aσ} has trivial
image in H1

(
G(Q/Q), Gder\G1

)
. Conversely suppose we have a cocycle {aσ} which is trivial

away from p and has trivial image in H1
(
G(Q/Q), Gder\G

)
. Then in particular it has

trivial image in G1\G = H1\H so that it may be supposed to take values in H1. Since, by
Theorem 90, B× has no cohomology

aσ = bσ(b−1) b ∈ B×(Q).

Set
d = b∗b.

Then d is a symmetric positive element in B(Q). This shows that we have [51] lumped the
elements into isogeny classes in a way consistent with our predictions.

It remains to verify that every (γ, h0) yields an isogeny class and that if (γ1, h
0
1), (γ, h

0
2) are

equivalent they yield the same isogeny classes F in a Cartan subgroup T of H0 containing
γ. Let R be the centralizer of T in the ring of OL-endomorphisms of V (Q). h0 and V (Z)

define together an abelian variety Ã over C on which OL and an order S in R act. Ã comes

provided with Λ̃ and φ̃ℓ. Ã and Λ̃ can be defined over some finite extension of E. Moreover,
although this is something I have still to check, if we make the extension large enough they
should reduce well at a prime dividing p. It is clear that (γ, h0) correspond to the isogeny
class obtained by reduction. One just has to check that some power of γ reduces to the
Frobenius.
However, if γ1 is the element of R given by the Frobenius then, replacing γ and γ1 by

integral powers if necessary, we see from Manin’s theorem and the discussion above that for
any homomorphism λ of R into Q ∣∣λ(γγ−1

1 )
∣∣
v
= 1
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for all valuations v. Thus γγ−1
1 is a root of unity in R. Taking powers again

γ = γ1.

Suppose (γ1, h
0
1) and (γ2, h

0
2) are equivalent. Replacing γ1 and γ2 by powers we may suppose

γ1 = γ2 = γ. Let A1, A2 be corresponding varieties over kp. Tate’s theorem guarantees the
existence of an isogeny

A1
φ−→ A2.

For each ℓ ̸= p let hℓ : V (Qℓ)→ V (Qℓ) be defined by the commutativity of [52]

Tℓ(A1) Tℓ(A2)

V (Qℓ) V (Qℓ)

φ

hℓ commutes with OL and with γ. Suppose λ1 ∈ Λ1, λ2 ∈ Λ2. Define λ
′
2 by

A1 A2

Â1 Â2

λ1

φ

λ′2

φ̂

Some multiple of λ′2 is a true isogeny. Set

λ′2 = λ2 ◦ d
where d is a positive symmetric element in EndOL

A2 ⊗Q = B. Then〈
φ(x), dφ(y)

〉
2
= ⟨hℓx, cℓdhℓy⟩1 cℓ ∈ C(Qℓ)

This shows that (γ1, h
0
1), (γ2, h

0
2) define the same family of isogeny classes.

There is still the structure of X to be considered. As before, if k is the quotient field

of W (kp) we identify N̂ with V ⊗ k. We may suppose M̂ corresponds to V ⊗W (kp). We
defined X ′′ as

G(k)/kp(k).

This is just the set of W (kp) lattices M̂
′ in N̂ invariant under OL and with dual M ′ of the

form

(∗) M ′ = cM̂ ′ c ∈ C(k).

The parahoric subgroup I is just the stabilizer of the pair FM̂ ↪→ M̂ .

If M̂ ′
1, M̂

′
2 are any two lattices satisfying (∗) then they determine [53] special vertices x1i ,

x2i in the Bruhat-Tits building of each simple factor of G. The condition that x1i , x
2
i are

either the same or are joined by an edge and that the corresponding parahoric is of type I
says that for some z ∈ Z(k×) either

(i) pM̂ ′
1 ⊆ zM̂ ′

2 ⊆ M̂ ′
1

or

(ii) pM̂ ′
2 ⊆ zM̂ ′

1 ⊆ M̂ ′
2

and the trace of o ∈ OL on zM̂ ′
2\M̂ ′

1, respectively zM̂
′
1\M̂ ′

2, is that on FM̂\M̂ . To see this

observe that to give all x1i is to give M̂ ′
1 up to a factor in Z×(k). Thus if the corresponding
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parahoric is of type I we can find z1, z2 and g ∈ G(k) so that either z1gM̂
′
1, z2gM̂

′
2 or z2gM̂

′
2,

z1gM̂
′
1 is the pair FM̂ , M̂ .

Each point of X ′′ determines a point in the Bruhat-Tits building of Gder\G, i.e. a point

of Gder\G(k) modulo elements all of whose eigenvalues have absolute value 1. Since M̂ is

fixed we may speak of the determinant of a lattice M̂ ′. More precisely, if e is a standard

idempotent of OL ⊗ k we may speak of the determinant of eM̂ ′ or at least of its order. It is

these orders which give the point in the Bruhat-Tits building of Gder\G corresponding to M̂ ′.
If

dim(eM̂/eFM̂) = a(e)

then the difference between the orders of eM̂ ′ and eFM̂ ′ is a(e).

Suppose M̂ ′
1, M̂

′
2 are taken to be M̂ ′, FM̂ ′. In case (i) the difference between the orders of

eM̂ ′
1 and eM̂ ′

2 is
a(e) + b(e) ord(ez).

Here b(e) is the rank of eM̂ overW (kp) and ez is treated as a scalar. In case (ii) the difference
is [54]

−a(e)− b(e) ord(ez).
Thus if case (i) occurs, z may be taken to be 1. Case (ii) can only occur if

−b(e) ord(ez) = 2a(e)

for all e. If e∗ is obtained from e by the involution then b(e∗) = b(e) and a(e∗) = b(e)− a(e).
Thus this equation implies that 2a(e) = b(e) for all e and that ord(ez) = 1 for all e; so that z
may be taken to be p. Then (i) holds with z = 1. In other words the points of the predicted

X are just those M̂ ′ which satisfy (∗) and

(∗∗) pM̂ ′ ⊆ FM̂ ′ ⊆ M̂ ′.

and for which the trace of the elements of OL on FM̂ ′\M̂ ′ is correct. Thus the predicted X
gives the actual X.

Yours,

Bob (September 2, 1974)

P.S.

(i) The notes will follow.
(ii) Because of the blunder on p. 16 all sorts of F ’s must be replaced by V . Moreover the

parahoric I must be replaced by its opposite.
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Notes

Note 1. Let A be an abelian scheme over S. An element of H1
DR(A) = H1

DR(A/S) is obtained
from an open covering {U1} of A by S-schemes Ui together with sections ωi of Ω

1
A/S on Ui

and sections gij of OA on Ui ∩ Uj so that

ωi − ωj = dgij

on Ui ∩ Uj.
This universal vector extension

0 ωA E(A) A 0

is a principal homogeneous space over A with group ωÂ in the Zariski topology. To verify
this one must, so far as I can see, observe that although E(A) is introduced as a principal
homogeneous space for the fppf topology, it becomes trivial over every open affine subscheme
of A, because ωÂ is a vector group, and is therefore a principal homogeneous space for the
Zariski topology.

Choose an open covering Ui of A and isomorphisms

φi : E(A)
∣∣
Ui
≃ ωÂ × Ui.

Let
φiφ

−1
j : (x;u)→

(
x+ ψij(u), u

)
on Ui ∩ Uj. Let νi × ωi be the restriction of µ to ωÂ × Ui. νi is an invariant differential form
on ωÂ and hence defines an element of the dual space of ωÂ. Set

gij(u) = νj
(
ψij(u)

)
.

Since µ is well-defined [2]

ωi = d
(
νj
(
ψij(u)

))
+ ωj = dgij + ωj.

If φi is modified by composing it with

(x, u)→
(
x+ ηi(u), u

)
then ωi is replaced by

gij + fi − fj.
This gives us a well-defined map ωE(A) → H1

DR(A).
It is compatible with the filtrations

0 ωA ωE(A) ω∗
Â

0

0 H0(Ω1
A/S) H1

DR(A/S) H1(Ω0
A/S) 0

The middle arrow is an isomorphism because the first and last are.
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Note 2. There is a possibility of error when passing from the analytic to the algebraic
definition of various objects associated to an abelian variety. In this note I check some things
against Mumford’s book in an attempt to keep the number of errors down.

If the abelian variety A is represented as the quotient of V (R) by a lattice U then h(z) is
defined so that h(z−1) is the action of z on V (R) regarded as the tangent space to A.

Our Ψ(u, cv) is Mumford’s E(u, v). As in Mumford (p. 237) let πℓ denote the natural map
from U to Tℓ(A). Thus u is mapped to the sequence un = u/ℓn (mod U). We choose the
isomorphism [3]

x→ e−2πix/ℓn

of Z/ℓnZ with µℓn and use these to identify Zℓ∞ with µℓ∞ . According to p. 237 of Mumford〈
πℓ(u), λπℓ(v)

〉
= E(u, v)

if E is the form associated analytically to the polarization λ.
The description of the dual abelian variety on p. 86 of Mumford can be reformulated.

Suppose A is the quotient of V (R) by U . Set

V̂ (R) = HomR

(
V (R),R

)
V̂ (C) = HomC

(
V (C),C

)
= V (R)⊗C.

Let ĥ be defined by 〈
h(z)v, ĥ(z)v̂

〉
= (zz)−1⟨v, v̂⟩

and let
û = Hom

(
V (Z),Z

)
.

Then Mumford’s T is V̂ +(C) where v̂ ∈ V̂ (C) defines ℓ ∈ T by

ℓ(v) = 2i⟨v, v̂⟩ v ∈ V (R)

and his U ′ is the projection on V̂ +(C) along V̂ −(C) of Û because for v̂ ∈ V̂ (R) and v ∈ V (R)

⟨v, v̂⟩ = ⟨v, v̂+⟩+ ⟨v, v̂−⟩ = 2Re⟨v, v̂+⟩

and his T̂ /U ′ is isomorphic to

V̂ −(C)\V̂ (C)/Û ≃ V̂ (R)/Û .

[4] The map V (R)→ V̂ (R) defined by the map A→ Â associated to λ is v → v̂ with

⟨u, v̂⟩ = E(u, v).

Consider the family A of abelian varieties over G(R)gfK/K∞K constructed in the text.

The family of dual abelian varieties is given by V̂ (C), V̂ −(C); defined with respect to ĥ, and

ĝf V̂ (Z) if ĝf is defined by
⟨gfv, ĝf v̂⟩ = ⟨v, v̂⟩.

These give us an analytic family Â on M̃C. The map v → v̂ given on G(R)gfK/K∞K
by v → v̂ with

Ψ(u, cv) = ⟨u, v̂⟩
when Ψ(u, cv) is integral-valued on gfV (Z) yields a map A → Â over M̂C.
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Note 3. We have to work out the conventions in Note 1 over C. We have the exact sequence

0 V̂ −(C) V̂ (C)/U Â 0 .

What I want to check is that V̂ (C)/U is a universal vector extension E(Â) of Â. If

0 C W Â 0

is a vector extension then V̂ (C) → Â lifts to a map φ : V̂ (C) → W , unique up to a map

V̂ (C)→ C. There is therefore exactly one way of choosing φ so that φ is 0 on U . This gives
then [5]

0 V̂ −(C) V̂ (C)/Û Â 0

0 C W Â 0

φ
.

It follows that V̂ (C)/U gives the universal vector extension. Thus the procedure in Note 1

identifies H1
DR(Â) with V (C), the dual of V̂ (C).

On the other hand if v̂ ∈ V̂ (C) we associate it to a line bundle L(v̂) on A by dividing

C× V (R)

by the action
(·, v)→ (e2πi⟨u,v̂⟩, v + u)

of U . The trivial connection on C× V (R) induces a connection on L(v̂). Also L(v̂) together

with its connection depends only on v̂ modulo Û . If v̂ = v̂+ + v̂− then the holomorphic line
bundle depends only on v̂+ and is the same as that defined by

v̂+ + v̂+

which is given by the holomorphy factor

u→ e2πi2Re⟨u,v̂+⟩.

Thus the map V̂ (C)/Û → Â is compatible with passage from L(v̂) to the point of Â defined
by the associated line bundle.

In any case we can now identify V̂ (C)/Û with the group E♮ introduced on p. 48 of Mazur-

Messing. Because of the universal property there is only one way of identifying E♮ ≃ V̂ (C)/Û

with E(Â) and that is by the identity map

V̂ (C)/Û = V̂ (C)/Û .

[6] The constructions of Mazur-Messing allow us therefore to identify HDR(A) with V̂ (C)

and the pairing introduced between H1
D(A) and H

1
DR(Â) is the negative of the natural pairing

between V̂ (C) and V (C) and that between

Hom
(
H1

DR(A),C
)

and
Hom

(
H1

DR(Â),C
)
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is the negative of the pairing between V (C) and V̂ (C). The map

Hom
(
H1

DR(A),C
)
→ Hom

(
H1

DR(Â),C
)

induced by a polarization is that on the cotangent spaces at 0 of the induced map

E(A)→ E(Â).

Now A→ Â can be lifted to V (C)→ V̂ (C) as v → v̂ with

⟨u, v̂⟩ = E(v, u).

Since this takes U → Û it gives the unique lifting of V (C)/U → V̂ (C)/Û . Thus the bilinear
form on V (C) associated to λ is

E(u, v).

Note 4. You will have noticed that I have been very careless in my definition of φp. I suppose
that to be exact one must proceed along the following lines. Over Sp one can consider the
sheaf in the étale topology

Iso
(
Apn , V (Z/pnZ)

)
n = 0, 1, 2, . . . .

Regarding it as a presheaf one may divide by the action of K. [7]

k : φ→ k ◦ φ
and then construct the associated sheaf Xn. We have

X0 X1 X2 · · ·
φp should I suppose be taken to be a consistent family φ0

p, φ
1
p, . . . of sections of these sheaves

over Sp.

Note 5. We need to show that assumptions II and III have the following consequence.
Suppose ψ′ is an alternating form on V (Zp) with

ψ′(ℓx, y) = ψ′(x, ℓ∗y) ℓ ∈ OL ⊗ Zp.

Suppose moreover that the determinant of ψ′ is a unit. Then there is an OL-automorphism η
of V (Zp) so that

ψ′(x, y) = ψ
(
η(x), η(y)

)
.

Since ψ satisfies the same conditions as ψ′ all we have to do is verify that the conditions
allow us to transform ψ′ into a canonical form.

As in the text let

OL ⊗ Zp ≃
n⊕
i=1

Mi

and let 1 =
⊕

ei be the corresponding partition of unity. Set Vi = eiV (Zp). For a given i
either M∗

i =Mi or M
∗
i =Mj, i ̸= j. In the second instance we can choose bases {xkℓ}, {ykℓ }

for Vi and Vj so that

ψ′(xkℓ′ , x
k′

ℓ′ ) = δkk′δℓℓ′

eik′ℓ′x
k
ℓ = δℓ′ℓx

k
k′

ei
∗

k′ℓ′y
k
ℓ = δk′ℓy

k
ℓ′ .
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[8] Moreover the spaces Vi and Vj are isotropic. This puts at least part of ψ′ in standard
form.

Suppose M∗
i =Mi. For simplicity of notation I drop the subscript and write simply M and

V and ejk. Let O be the centre of M . It is clear that M is the direct sum of the submodules
e∗jjMeii. Moreover

e∗kkMeii = e∗kje
∗
jjMeiieiℓ.

Thus these spaces are isomorphic to each other and to O. Let

α : e∗11Me11 → 0

be an isomorphism. Set Vjj = ejjV . If rankOM = n2 and W is the n-dimensional coordinate
space over O then

(x1, . . . , xn)⊗ x→
∑

xjej1x

yields an isomorphism of W ⊗O V11 with V . Define the skew hermitian form ψ′′(x, y) on V
over O by

TrO/Zp aψ
′′(x, y) = ψ′(ax, y).

The determinant of ψ′′ is also a unit. We just have to show that ψ′′ can be put in a standard
form.

Choose a ∈ e∗11Me11 so that α(a) = 1. Define ψ′′
2 on V11 by

ψ′′
2(x, y) = ψ′′(x, ay).

Define a form ψ′′
1 on W by

ψ′′
1

(
(x1, . . . , xn), (y1, . . . , yn)

)
=

∑
xitijy

∗
j

with
tjk = α(e∗j1ek1).

[9] Then
ψ′′ = ψ′′

1 ⊗ ψ′′
2 .

One of ψ′′
1 and ψ′′

2 is hermitian. The other is skew-hermitian. They both have determinants
which are units. Since

ψ′′
1(ℓu, v) = ψ′′

1(u, ℓ
∗v)

ψ′′
1 is determined up to a unit factor by the involution alone. Since we can absorb scalar

factors into ψ′′
2 , we may suppose ψ′′

1 is given.
It becomes therefore merely a question of finding a standard form of ψ′′

2 . If G is connected
so is the group G1 obtained by replacing C by C1 = Z0. If however the involution is trivial
on O then G1 cannot be connected unless ψ′′

2 is alternating (see pp. 28–29 of the suppressed
version of Travaux de Shimura).

Thus if the involution is trivial ψ′′
2 can be put in the usual standard form with matrix(

0 I
−I 0

)
.

Suppose the involution is not trivial on O. If ψ′′
2(x, x) were congruent to 0 modulo p for

every x then
0 ≡ ψ′′

2(αx+ y, αx+ y) ≡ (αx, y) + (αx, y)∗.

Since O is unramified
(x, y) ≡ 0 (mod p).
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Since this is impossible we conclude that ψ′′
2 can be put in the form∑
xix

∗
i

[10] with respect to appropriate coordinates.

Note 6. In the text, I have proceeded as though the cocycle {bw} was invariant under lifting.
Although this is not quite so, it is sufficiently invariant for our purposes. Suppose F is a local
field and L1 ⊆ L2 are two finite Galois extensions of F . Set

G1 = G(L1/F ) G2 = G(L2/F ).

Let T be a torus over F which splits over L1 and let L̂ = L̂(T ).
The map

λ̂→ λ̂

sends H−1(G1, L̂)→ H−1(G2, L̂). Inflation sends H1(G1, T ) to H
1(G2, T ). The square

H1(G1, L̂) H1(G1, T )

H1(G2, L̂) H1(G2, T )

∼

∼

is commutative. The easiest way to check this is to choose L̂′ free over G1 so that L̂′ → L̂ is
surjective. Associated to

0 L̂′′ L̂′ L̂ 0

is

0 T ′′ T ′ T 0

and
H−1(G1, L̂

′) ≃ H1(G1, T
′) = 0 = H1(G2, T

′) ≃ H−1(G2, L̂
′).

Thus we have [11]

H1(G1, T ) H2(G1, T
′′)

H1(G2, T ) H2(G2, T
′′)

.

This is commutative. Suppose λ̂ is the image of λ̂′ and∑
G1

σλ̂′ = ν̂

so that ∑
G2

σλ̂′ = [L2 : L1]ν̂.

Let {a1σ,τ} be the fundamental class for G1 and {a2σ,τ} that for G2. Inflating {a1σ,τ} we obtain

[L2 : L1] times the class of {a2σ,τ}. Under the map

H1(G1, T )→ H2(G1, T
′′)
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the class ∑
G1

στλ̂⊗ a1σ,τ

maps to
ν̂ ⊗ a1ρ,σ

while the class of ∑
G2

στλ̂⊗ a2σ,τ

in H1(G2, T ) maps to
[L2 : L1]ν̂ ⊗ a2ρ,σ.

The commutativity is established.
In the situation of the text the previous observation can only be applied [12] to T/D.

However we can say that the cohomology class of {bw} is respected by the lifting up to an
element s of D such that ∣∣λ(s)∣∣

p
= 1

for all rational characters of D. To check this one has only to check that if λ is a rational
character of T over Qp then

∣∣λ(bw)∣∣p is independent of the cocycle representing the class and

behaves properly on lifting. This results from a calculation made in the text.

Note 7. I just noticed a lacuna in this discussion. In order to make the desired identification
we must show that λ defines an alternating form on D(G0)S and then we have to carry out a
verification similar to that of Note 5.
D(G0)S and V ⊗ OE ⊗OE

R are isomorphic modulo J as OL-modules provided with a
bilinear form. Suppose p is the inverse image of OE of the maximal ideal of R. Then OE → R
extends to OEp → R. Thus OL ⊗ R is a direct sum of matrix algebras over unramified
extensions of R. Thus the given isomorphism can be lifted to an isomorphism between the
OL-modules D(G0)S and V ⊗OE ⊗OE

R. This gives us two bilinear forms on V ⊗OE ⊗OE
R.

We can assume they both have unit determinant. Suppose we know they are both alternating.
We have then to show that they are equivalent under an OL-automorphism congruent to the
identity modulo J . This is done as in Note 5.
The rest of Note 7 will follow. I am having trouble with the verifications.

Ich kann nämlich noch nicht zeigen, daß die Paarung zwischen LieE(A) und LieE(Â)
kristallisch ist. Ich werde Deligne danach fragen.5

5This last line in German was handwritten.
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