
December 9, 1975

Dear Serre,

Thanks for your letter. About the second question I have nothing to say, but the first I
find very suggestive. Let me sketch a proof of the relation. πpseudo(ρ) = π(ρ), and hence of
the Artin conjectures, for representations of tetrahedral type. It is based on your observation.

(a) • ρ: two-dimensional representation of G(K/F ) of tetrahedral type.
• ρv: restriction of ρ to decomposition group at v. It is also regarded as a
representation of the local Weil group.

• π = πpseudo(ρ): for almost all v choose ρiv so that πv = π(ρ′v)—see p. 19 of the
notes. If E is the cubic extension of F used to define π and w is a place of E
dividing v then Pw = P ′

w if Pw, P
′
w are the restrictions of ρv, ρ

′
v to the Weil group

over Ew.
Think of [2]

GL(2) GL(3)

PGL(2)

ψ

as a map from one associate group to another. Set σ = φ◦ρ and define σv, σ
′
v in a sim-

ilar manner. Clearly Σw = Σ′
w, if Σw, Σ

′
w are the restrictions of σv, σ

′
v. As you observe,

there is a character θ of G(K/E), or of E×\IE so that σ = Ind
(
G(K/F ),G(K/E), θ

)
.

(i) Results of Piatetski-Shapiro presumably imply that π1 = π(σ) exists as an
automorphic representation of GL(3).

(ii) Results of Jaquet, P-S, and Shalika presumably imply that the map φ∗ from
automorphic representations of GL(2) to automorphic representations of GL(3)
demanded by the philosophy exists. Let π′

1 = φ∗π.
(iii) There is one possible way to show that π1 = π′

1. Let π̃1 be the representation
contragradient to π1. According to Jacquet one may be able [3] to show that the
analytic behaviour of L(s, π1 × π̃1) and of L(s, π′

1 × π̃1) are different, that the
first has a pole at s = 1 and the second does not, unless π1 = π′

1. We need to
show that

(∗) Lv(s, π × π̃1) = Lv(s, π
′ × π̃1)

for almost all v. The left side is

L(s, σv ⊗ σ̃v)

1
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and

σv =
⊕
w|v

Ind(Fv, Ew, θw)

σv ⊗ σ̃v =
⊕
w|v

Ind(Fv, Ew,Σw ⊗ θ−1
w ).

Σw is the restriction of σv from Fv to Ew. Moreover the right side is

L(s, σ′
v ⊗ σ̃v)

and
σ′
v ⊗ σ̃v =

⊕
w|v

Ind(Fv, Ew,Σ
′
v ⊗ θ−1

w ).

Since Σ′
w = Σw we deduce the equation (∗). [4] Then one argues as on pp. 9.21–

9.22 of the notes and concludes that π′
1 = π1.

(iv) We conclude that σ′
v = σv for almost all v. If v splits in E we know that ρ′v = ρv.

Otherwise let ρv take the Frobenius to(
av 0
0 bv

)
and ρ′v take it to (

ξav 0
0 ξ2bv

)
ξ3 = 1.

We need to show that ξ = 1. Since σ′
v = σv either

ξav = λav ξ2bv = λbv =⇒ ξ = 1, λ = 1

or
ξav = λbv ξ2bv = λav =⇒ λ2 = 1.

Thus (
av 0
0 bv

)
= av

(
1

λξ

)
.

If λ = −1 then σv takes the Frobenius to−ξ2

1
−ξ


which has order 6, and that is impossible. [5]
Unfortunately, Jacquet estimates the amount of work necessary to establish the
assertions used above as several hundred pages. For representations of octahedral
type one is even worse off.

(b) ρ representation of octahedral type. Assume representations of tetrahedral type have
been handled. Let E be the quadratic extension of F used to define πpseudo(ρ) = π.
Introduce ρv, ρ

′
v as before. If w is a place of E dividing v then Pw = P ′

w. Let

φ : GL(2) → GL(4)

be defined by the representations on the symmetric tensors of degree 3. Let σ = φ ◦ ρ.
I claim that it is monomial. The relevant sub group consists of those group elements,
which take a given diagonal of the square into itself. Grant [text cut off] for the
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moment. I assume also, even though no proofs are in sight, that π1 = π(τ) and that
π′
1 = φ∗π exist. Step (iii) can probably be [6] [illegible] out again. However the

argument used to show that

(∗) Lv(s, π1 × π̃1) = Lv(s, π
′
1 × π̃′

1)

has to be a little different since the group of elements which take a given diagonal to
itself is not contained in G(K/E). If v splits on E then the relation is clear. Otherwise
ρv takes the Frobenius to

a

(
1 0
0 ζ

)
with ζ4 = 1 and ζ ̸= 1, where ρ′v takes it to

a′
(
1 0
0 ξ

)
with a′ = ±a, ξ = ±ζ. The eigenvalues of σv applied to the Frobenius are therefore

a3, a3ζ, a3ζ3, a3ζ3

and those of σ′
v applied to it are

a′
3
, a′

3
ζ, a′

3
ζ3, a′

3
ζ3

[7] these two sets are the same unless ξ = 1, ζ = −1. Then the numbers a3ζi

a3ζj
and

a3ξi

a′3ξj
, 0 ⩽ i, j ⩽ 3 each consist of +1 and −1 counted with multiplicity 8; so the

equality again follows.
We conclude that σv ∼ σ′

v and hence that either

a′ = λa, ξa′ = λξa, λ3 = 1 =⇒ λ = 1 and ρv ∼ ρ′v

ξa′ = λa, a′ = λζa, λ3 = 1 =⇒ λ = ±ξ =⇒ λ = 1 and ρv ∼ ρ′v.

To verify that σ is monomial I use the correspondence between points on S2 ⊆ R3

and lines on C2 compatible with U(2) → SO(3,R)

x

y

Take the diagonal to be xy and the corresponding group to be G(K/E ′). The edges
not containing x or y are
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[8] Let x1, x2, x3 be vectors in C2 in the directions determined by the three marked
points. In the symmetric algebra x1x2x3 is an eigenvector of each element of G(K/E ′)
and defines a character θ. To show that

σ ∼ Ind
(
G(K/F ),G(K/E ′), θ

)
we need only verify that the representation on the right is irreducible or that its
restriction to G(K/E ′) contains θ only once. If G(K/E ′) is the group fixing each
point of the axis uv, if r is the rotation through π about the axis u′v′,

u′

u

v

v′

and if µ(x) = θ(rxr−1), x ∈ G(K/E ′′) then the restriction is

θ ⊕ Ind
(
G(K/E ′),G(K/E ′′), µ

)
.

Since µ is not equal to the restriction of θ to G(K/E ′) the second summand does not
contain θ.

Yours,
R. Langlands

[9]
PS. I read through your letter again, and after opening up a text to recall which was the
alternating and which was the symmetric group, I saw that I misinterpreted the first question.
You want to show in addition that if ρ is of octahedral type and π = πpseudo(ρ) then det ρ = ωπ,
the restriction of π [cut off] the centre, and therefore that Deligne-Serre gives π = π(ρ) when
F = Q and det ρ is the sign character at infinity. This seems feasible.

Define φ by

GL(2) GL(3)

PGL(2)

φ

and let σ = φ ◦ ρ as on case (a). Let E be the quadratic extension over which ρ becomes
tetrahedral.
Define π1 and π′

1 as before. This is done by steps (i) and (ii). The step (iii) of (a) [is]
accomplished by results from the theory of base change for GL(3). It may be permissible
to extend the other parts of the theory to GL(3) for the difficulties are not overwhelming.
Suppose, for the sake of the present argument, that it can be done, then π1 and π′

1 have the
same lifting to automorphic representations of GL(3,AE). Since detσv = detσ′

v = 1, π1 and
π′
1 agree on the centre and are the same. It follows that σv ≃ σ′

v for almost all v and that
ρv ≃ ±ρ′v. Hence det ρv = det ρ′v and det ρ = ωπ.

Added: Feb. 10, 1976. Choose v so that πv is unramified and so that ρ(Φv) and ρ(Φ∞) are
conjugate. It is enough to show that ρv(Φv) = ρ(Φv) and ρ′v(Φv) have the same eigenvalues.
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Now

ρv(Φv) ≃
(
1 0
0 −1

)
so

ρ′v(Φv) ≃
(
±1 0
0 ±1

)
.

If the conclusion is not satisfied then ρ′v(Φv) = ±I and σ′
v(Φv) = 1. This is impossible.
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