
March 11, 1974

Professor I. M. Singer
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dear Singer,

I will tell you what I can about the alternating sum in which you are interested, sometimes
in my own idiom and sometimes in the classical. Because of this you may well wish to pass over
some parts of the letter very quickly. I shall first give an expression for the alternating sum
in terms of class numbers and then a second expression in terms of the values of L-functions.
The formulae I shall give, special cases of which are already to be found in Hecke, are

consequences of some joint work with Jean-Pierre Labesse which, because of my dilatoriness,
is not yet written up. It is therefore a little reckless of me to state them in an apodictic form.
I recommend in fact that they be treated with some circumspection. I would be glad to give
you an idea of the proof orally now and then, if you wanted them, could send you the details
later. They are however rather complicated and involve considerable computation. I suspect
that it would be easier for you just to sit down and apply the trace formula to your particular
case and let the result fall out—it is not really very difficult.
Take F to be a totally real field and let G be the group SL(2) over F . If S∞ is the set of

infinite places of F and K∞ is a maximal compact subgroup of∏
v∈S∞

G(Fv) = SL(2,R)[F :Q]

then to specify a complex structure on∏
v∈S∞

G(Fv)/K∞

we have to give for each v an imbedding of the circle group

S1 =
{
z ∈ C× ∣∣ |z| = 1

}
inG(Fv). The complex structure as defined by the condition that the eigenvalues of

∏
v ψv(e

ixv)
on the complex tangent space to the point fixed by

∏
v S

1 under
∏

v ψv are the numbers e2ixv .
On the other hand given ψv and a character θv of S

1 one can define two infinite-dimensional
unitary representations π1(θv) and π

−1(θv) of G(Fv). If

θ(eixv) = einvxv

and nv ̸= 0 then π1(θv) and π−1(θv) are the holomorphic and anti-holomorphic discrete
series of parameter |nv|. If T∞ ⊆ S∞ is given the dimension of the space of cusp forms
on G(OF )\

∏
G(Fv)/K∞ of weight |nv|+ 1 at v which are holomorphic for v ∈ T∞ and anti-

holomorphic for v ∈ S − T∞ is the multiplicity m
(
{ϵv}, {θv}

)
with which

⊗
v π

ϵv(θv), ϵv = 1,

1



2 LETTER TO I.M. SINGER—MARCH 11, 1974

v ∈ T∞, ϵv = −1, v ∈ S∞ − T∞ occurs in the space of cusp forms in L2
(
G(Of )\

∏
G(Fv)

)
. I

believe you want a formula for

(1)
∑
{ϵv}

(∏
v

ϵv

)
m
(
{ϵv}, {θv}

)
.

OF is of course the ring of integers in F .
Let A be the group of adèles of F , Af the adèles which are 1 at every infinite place, and

ÔF the integral adèles in Af . Then

G(OF )

∖∏
v

G(Fv) = G(F )\G(A)/G(ÔF ).

Every irreducible representation π of G(A) which occurs in the space cusp forms in

L2
(
G(F )\G(A)

)
is of the form ⊗

v∈S∞

πv

⊗ πf

where πv is a representation of G(Fv) and πf a representation of G(Af ). It is a fact that πf
contains the trivial representation of G(ÔF ) either once or not at all. The representation
of G(A) on the space of cusp forms is a discrete direct sum

(2)
⊕

m(π)π m(π) > 0 in Z.

For a given collection of θv, m
(
{ϵv}, {θv}

)
is the number of π counted with multiplicity for

which πv is equivalent to πϵv(θv) for each v ∈ S∞ and πf contains the trivial representation

of G(Ôf ).
The expression (2) decomposes into three parts.

(3) the sum over all π such that, for some v, πv is equivalent to no πϵv(θv)⊕
m(π)π.

(4) A sum over all π such that, for each v, πv is equivalent to some πϵv(θv)⊕
m′(π)π.

Here m′(π) ∈ R and

m′

(⊗
v

πϵv(θv)

)
⊗ πf


is independent of the ϵv.
(5) A sum over the same π as in (4) ⊕

m′′(π)π.
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Here m′′(π) ∈ R and ∑
{ϵv}

m′′

(⊗
v

πϵv(θv)

)
⊗ πf

 = 0.

You will agree I hope that the alternating sum (1) is affected by (5) alone. What I do
now is give an explicit formula for (5) in terms of totally imaginary quadratic extensions
of F . Then from this explicit form I single out the part corresponding to those π for which

πf contains the trivial representation of G(ÔF ). The next part of the letter you will very
likely prefer not to read. None the less it’s safer not to omit it.
The sum (5) will break up further into a sum over the totally imaginary quadratic

extensions E of F . I consider the term corresponding to a single E. Fix a basis λ1, λ2 of E
over F . For each v ∈ S∞ this gives a basis of Ev = E ⊗ Fv over Fv. If a ∈ Ev let(

αλ1
αλ2

)
=

(
aλ1 + cλ2
bλ1 + dλ2

)
.

We identify Ev with C in such a way that if α ↔ eix then(
a b
c d

)
is conjugate to ψv(e

ix) under G(Fv) ∼ SL(2,R). Choose t0 ∈ E so that Im t0 > 0 in each Ev,
v ∈ S∞.
λ1, λ2 and t0 are now fixed. Let v be a finite place of F , let Ev = E ⊗ Fv, Hv ={
α ∈ Ev

∣∣ NEv/Fvα = 1
}
and let θv be a character of Hv.

(i) If v splits in E so that Ev ≃ Fv ⊕ Fv it is possible to define a representation π(θv)
of G(Fv) = SL(2, Fv) with the following properties:
(a) If θ2v = 1, θv ̸= 1 then π(θv) is irreducible. Otherwise it is the direct sum of two

irreducible representations.
(b) π(θv) contains the trivial representation of G(OF ) if and only if θv is unramified,

that is, trivial in
{
(α, α−1)

∣∣∣ α ∈ O×
Fv

}
⊆ F v

v ⊕ Fv ≃ Ev and then it contains it

exactly once.
(ii) If v does not split then it is possible to define two representations π1(θv) and π

−1(θv)
with the following properties:
(a) If θ2v = 1, θv ̸= 1 then π1(θv), π

−1(θv) are irreducible. Otherwise they are the
direct sum of two one-dimensional representations.

(b) π1(θv) + π−1(θv) contains the trivial representation of G(OFv) if and only if E
is unramified at v and θv is trivial. Then it contains it exactly once. If ϖ is a
generator of the prime ideal in OFv and if ℓv is defined by |t0 − t0|v = |ϖv|ℓv , if
µ1, µ2 form a basis of OEv over OFv , if(

µ1

µ2

)
=

(
a b
c d

)(
λ1
λ2

)
if

|ad− bc|v = |ϖv|kv
then the trivial representation of G(OFv) is contained in

π(−1)kv+ℓv
(1).
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Thus the distinction between π1(θv) and π
−1(θv) depends on the choice of λ1, λ2

and t0.

Let H(A) be the idèles of E which have norm 1 over F and let H(Q) be the elements of E
which have norm 1 in F . We have

Theorem: The sum (5) is a sum over the total imaginary quadratic extensions of

1

2

∑
{θ,θ−1}
θ2 ̸=1

⊗
v

[
π(θv)

π1(θv)− π−1(θv)

]
+

1

4

∑
{θ,θ−1}
θ2=1
θ ̸=1

⊗
v

[
π(θv)

π1(θv)− π−1(θv)

]

Explanation. Here the sum is over characters of the compact group H(F )\H(A). In the
first part θ and θ−1 are grouped together. Moreover the tensor product is taken over all
places, finite and infinite. At a finite split place we put π(θv) and at an infinite place or a
finite place which does not split we put π1(θv)− π−1(θv). Here θv is the restriction of θ to
Hv ⊆ H(A). Notice that if v ∈ S∞ then Hv ≃ ψv(S

1) ≃ S1 so that π1(θv) and π
−1(θv) are

defined. The literal meaning of the tensor products is as follows. One interchanges the tensor
product with the sums, expands the result into an infinite sum of tensor products, discards
those for which an infinite number of minus signs occur, and keeps the rest, each provided
with a well-determined sign. Since and given representation will only occur a finite number
of times in the sum one can then collect terms.

Application. In order to evaluate the sum (1) we are only interested in those representations
such that

πf =
⊗

v finite

πv

contains the trivial representation of G(ÔF ), that is, each πv contains the trivial representation
ofG(OF ). By (ii, b) a given E yields a non-zero contribution only if it is unramified everywhere.
In particular if F has a unit of norm −1, there is no such E and we have the trivial fact:

If F contains a unit of norm −1 the sum (1) is 0.

Let’s calculate the contribution of a given unramified field E to

(1)
∑
{ϵv}

(∏
v

ϵv

)
m
(
{ϵv}, {θ0v}

)
where n0

v are given and

θ0v(e
ixv) = ein

0
vxv v ∈ S∞.

To avoid complications which are irrelevant for your purposes suppose n0
v ̸= 0 for at least

one v. Let {nv} at first run over all collections such that nv = ±n0
v. However if ω is a

generator of the roots of unity and in E we then restrict to those {nv} such that

(6)
∏
v

ωnv
v = 1.

Here ωv is the image of ω under E → Ev → C. (Recall that we had earlier identified
Ev with C in a certain way.) Let the number of such collections {nv} be δE

(
{θ0v}

)
. Let

the quotient of the ideal class group of E by the image of the ideal class group of F have
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order ϵ(E/F ). If {nv} satisfies (6) the number of characters θ of H(F )\H(A) such that θ
restricted to Hv is θv, with θv(e

ixv) = einvxv , for v ∈ S∞ is ϵ(E/F ).
Finally if kv and ℓv are defined as before in terms of λ1, λ2, and t0 then kv = ℓv = 0 for

almost all v which do not split in E and we may set µ(E/F ) equal to the product over all
finite places v which do not split in E of (−1)kv+ℓv .

The sum (1) is equal to

2[F :Q]−2
∑
E

µ(E/F )ϵ(E/F )δE
(
{θ0v}

)
The sum, which is finite, is taken over all unramified quadratic extensions E of F .

Example. Take F to be the real quadratic extension Q(
√
p), p a prime. When can sometimes

use information from the Zahlbericht to simplify the expression above. If p ≡ 1 (mod 4) and
the fundamental unit has norm +1 there is one totally imaginary quadratic extension. If
p ≡ 3 (mod 4) then the fundamental unit necessarily has norm +1 and there is again exactly
one totally imaginary quadratic extension. It is in fact

Q(
√
−p,√p) = Q(

√
−1,

√
p).

In either case if an ideal class Q of F becomes trivial in E then QQ = Q2 is principal.
Since F has no ambiguous classes Q itself must be trivial so

ϵ(E/F ) =
ϵ(E)

ϵ(F )

if ϵ(E) and ϵ(F ) are the class members of E and F respectively.
Suppose p ≡ 3 (mod 4). Let (2) = a2 where a is an ideal of F . Since F has no non-

trivial ambiguous classes a is principal. From §10 of Hilbert’s Über den Dirichletschen
biquadratischen Zahlkörper we conclude that

ϵ(E)

ϵ(F )
= ϵ
(
Q(

√
p)
)
.

If p ̸= 3 the generator of the roots of unity in E is
√
−1. Thus if n0

v = 1 for both infinite v,
the case in which you are principally interested,

δE
(
{θ0v}

)
= 2.

The choice of t0 depends on the choice of the ψv, that is on the choice of complex structure.
For simplicity suppose that the ψv have been so chosen that t0 may be taken as

√
−1. Then

all ℓv are either 0 or 2, in fact ℓv is 0, if v does not divide 2 and 2 if v is the unique place
dividing 2. We may take λ1, λ2 to be 1,

√
−1. Hilbert, in the paper to which I just referred,

gives an integral basis for E from which it follows that kv is 0 if v does not divide 2 but is 2
if v divides 2. Thus the sum (1) is equal to

2ϵ
(
Q(

√
−p)

)
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Evaluation in terms of L-functions. You are primarily interested in evaluating (1) in
terms of the values of L-functions. For this one should, in order to disencumber oneself of the
fixed points, work not with G(OF ) but with a congruence subgroup Γ(N), for N sufficiently
large. The same two interpretations of (1) are still valid. Of course

G(OF )

∖ ∏
v∈S∞

G(Fv)

is to be replaced by

Γ(N)

∖ ∏
v∈S∞

G(Fv) = G(F )\G(A)/K(N)

where
K(N) =

{
g ∈ G(ÔF )

∣∣∣ g ≡ 1 (mod N)
}
.

We assume that no element of Γ(N) has a fixed point in∏
v∈S∞

G(Fv)/K∞.

In particular 2 ̸≡ 0 (mod N).
We again want an expression for

(1)
∑
{ϵv}

(∏
v

ϵv

)
m
(
{ϵv}, {θ0v}

)
.

Now for simplicity I assume all n0
v ≠ 0. You would take all n0

v = 1, so this is, at the moment,
not an important restriction.

Set

M(n0
v) =

∫∞
−∞(1 + ui)−n0

v−1 signu du∫∞
−∞ dt

∫∞
−∞ du

∣∣∣ t+1/t
2

+ u
t
i
∣∣∣−2(n0

v+1)

and let

(7) Θ
(
{n0

v}
)
=

1

2

∏
v∈S∞

2i ImM(n0
v)

 lim
s→1

ζQ(s)

ζF (s)
.

ζQ and ρF are the zeta-functions of Q and F respectively. The constant Θ
(
{n0

v}
)
will occur

in the formula I shall give for (1). I have done as well as I could on extracting the explicit
expression (7) for it from my notes. However when computing it one must keep careful track
of factors which arise from different possible normalizations of Haar measures, so (7) is to be
regarded as completely unreliable.

If v is a finite place of F we let fN
v be the characteristic function of

K(N) ∩G(Fv) =
{
g ∈ G(Fv)

∣∣ g ≡ 1 (mod N)
}
.

fN
v is a function in G(Fv). Let χ be a character of the idèles of F which is 1 on F×. If v is a
place of F , let χv be the restriction of χ to F×

v . We suppose that χ2 = 1, χ ̸= 1, and that χ
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is the sign character for each v ∈ S∞. If v is a finite place∫
F×
v

fN
v

((
1 u
0 1

))
χv(u)|u|sv d×u

converges for Re s > 0. If v divides p and (p,N) = 1 this integral is 0 if χv is ramified but if
χv is unramified it equals

1

1− χv(ϖv)|φv|s
= L(s, χv).

Set

λ(χ,N) = lim
s→1

∏
v finite

∫
F×
v

fN
v

((
1 u
0 1

))
χv(u)|u|s d×u.

Then λ(χ,N) is 0 except for a finite number of χ, those which are unramified outside the
places dividing N , and for such χ

λ(χ,N) = L(1, χ)
∏
v|N


∫
F×
v
fN
v

((
1 u
0 1

))
χv(u)|u| d×u

L(1, χv)


.

The product on the right is elementary.
Each χ determines, by class field theory, a totally imaginary quadratic extension E of F .

Choose t0, λ1, and λ2 as before. Let the matrix of t0 with respect to λ1, λ2 be(
a b
c d

)
.

Then χv(b) = 1 for almost all v. Set

ν(E/F ) =
∏

v finite

χv(b) =
∏
v∈S∞

sign b.

The alternating sum (1) is equal to

Θ
(
{n0

v}
)∑

χ

ν(E/F )λ(χ,N) .

The sum is taken over the χ described above.

Yours truly,
R. Langlands

RL:MMM
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